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TIME-STEP-SIZE-INDEPENDENT CONDITIONING AND
SENSITIVITY TO PERTURBATIONS IN THE NUMERICAL

SOLUTION OF INDEX THREE DIFFERENTIAL ALGEBRAIC
EQUATIONS∗
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Abstract. We propose a simple preconditioning for the equations of motion of constrained
mechanical systems in index three form. The scaling transformation is applied to the displacement-
velocity-multiplier and to the reduced displacement-multiplier forms. The analysis of the transformed
system shows that conditioning and sensitivity to perturbations become independent of the time step
size, as in the case of well-behaved ordinary differential equations. The new scaling transformation is
simple to implement and does not require the rewriting of the system equations as other approaches
do. The theoretical analysis is confirmed by numerical examples.
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1. Introduction. It is well known that the amplification of small errors and
perturbations in the solution of high index differential algebraic equations (DAEs)
causes severe numerical difficulties. For example, Petzold and Lötstedt have shown
in [1] that index three DAEs for constrained mechanical (multibody) systems are
severely ill conditioned for small time step sizes when discretized using backward dif-
ferentiation formulas (BDFs). Their analysis indicates that, unless corrective actions
are taken, the condition number of the iteration matrix is O(h−3). Furthermore, er-
rors propagate in the displacement, velocity, and multiplier fields at rates which are
shown to be O(h−1), O(h−2), and O(h−3), respectively. A related perturbation anal-
ysis that deals with the propagation of the error in the satisfaction of the constraint
equations is described in Arnold [2], which also considers systems with friction. These
results indicate that errors will grow very rapidly as the time step size is reduced, pre-
venting in practice the use of time refinement procedures, and imposing a very tight
tolerance on the solution of the nonlinear discrete equations. Furthermore, the ill
conditioning of the linear system does not favor the use of iterative solvers.

Several methods have been proposed in the literature to address these problems.
For example, the system can be recast in index two form, by replacing the displacement
level constraints with the velocity level ones. While the index two form is more robust
to perturbations [2], this approach suffers from the well-known drift effect, which calls
for further adhoc corrective actions.
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An alternative approach is to rewrite the governing equations so as to include, to-
gether with the position level constraints, their derivatives, as in the Gear, Leimkuhler,
and Gupta (GGL) [3] and embedded projection (EP) [4] methods. These methods,
however, require additional multipliers which imply a somewhat increased problem
size and, hence, a possibly higher computational cost.

Petzold and Lötstedt [1] discuss a simple scaling transformation of the index three
governing equations which yields a condition number O(h−2) and an improvement of
one order in the errors for all solution fields. Although the sensitivity to perturbations
is reduced with respect to the unscaled problem, difficulties can still be expected in
practice.

In this paper we propose a solution to the conditioning and error propagation
problems that is based on a left and right preconditioning. The left preconditioning
amounts to a scaling of the dynamic equilibrium and constraint equations, while the
right preconditioning amounts to a scaling of the unknowns. The proposed procedure
is trivially implemented in an existing code and does not require the rewriting of the
equations of motion as in the GGL and EP methods.

The new scaling transformation is applied first to the equations in the standard
displacement-velocity-multiplier form, using a scaling of the sole Lagrange multipliers.
A similar scaling was previously considered in Cardona and Géradin [5] in the context
of the Hilbert, Hughes, and Taylor (HHT) scheme. The analysis of the present paper
shows that errors propagate in the displacement, velocity, and multiplier fields at
rates equal to O(h0), O(h−1), and O(h0), respectively, while the condition number is
O(h−1). Next, it is shown that if the velocities are scaled together with the Lagrange
multipliers, one can achieve perfect time step size independence (O(h0)) for error
propagation and conditioning.

Finally, we analyze the displacement-multiplier form, obtained by static conden-
sation of the velocities at each time step. This form of the equations is more compu-
tationally interesting than the full form for applications denoted by a large number
of degrees of freedom, since it leads to the solution of smaller linear problems. Even
in this case, the preconditioning of the reduced form leads to perfect time step size
independence for both the conditioning and the error propagation in the displacement-
multiplier solution variables.

These results indicate that index three DAEs are as easy to integrate as well-
behaved ordinary differential equations (ODEs), once they are recast in one of the
O(h0) forms.

The paper is organized as follows. In section 2 we formulate the equations of
motion of multibody systems in index three three-field form for BDF-type schemes,
and we derive their sensitivity to perturbations and conditioning. Preconditioning by
scaling of the discretized equations is presented in section 3; the left preconditioning
strategy is detailed in section 3.1, while the left and right preconditioning is described
in section 3.2. The classical pendulum problem in section 3.3 numerically confirms the
results of the analysis and concludes this section. The two-field form of the problem
is discussed in section 4, the left preconditioning is described in section 4.2, the left
and right preconditioning is given in section 4.2, and the pendulum problem verifies
the analysis in section 4.3. Finally, a more complex contact-impact problem for a
flexible multibody system is presented in section 5 to show the importance of scaling
in complex problems involving time step size refinement. The paper closes with section
6, which reports the main conclusions and findings of this work.
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2. Sensitivity to perturbations and conditioning of multibody system
equations. The governing DAEs for multibody systems are written as

u′ = v,(1a)

v′ = f + Gλ,(1b)

φ = 0,(1c)

where (1a) are the kinematic equations, (1b) represent the equations of dynamic
equilibrium, u are generalized coordinates, v are generalized velocities, λ are Lagrange
multipliers that enforce the constraints (1c), and finally GT = φ,u is the constraint
Jacobian. Following [1], we have considered for simplicity an identity mass matrix in
(1b) without loss of generality.

The solution of (1) is sought by means of a k-step BDF method [6], where temporal
derivatives in (1a) and (1b) are replaced with the following difference approximation:

(•)′n =
1

h

k∑
i=0

αi(•)n−i.(2)

Although the analysis here is restricted to BDF methods, similar results and conclu-
sions can be reached for other integration schemes for DAEs. For example, the case of
the Newmark family of integrators is analyzed in Bottasso, Dopico, and Trainelli [7].

Using a Newton-type method, at each time step one solves a linear system of
equations in the form

Az = b,(3)

where the iteration matrix is

A = hJn =

⎡⎣ α0I −hI 0
hX α0I + hY −hG
hGT 0 0

⎤⎦ ,(4)

with

X = −f,u −G,uλ,(5a)

Y = −f,v.(5b)

The three block rows of this matrix correspond to the kinematic, equilibrium, and
constraint equations of system (1), while the three block columns correspond to the
u, v, and λ variables, respectively.

Petzold and Lötstedt [1] show that, by using Gaussian elimination with partial
pivoting, the accuracy in the ith component of the solution can be estimated as

|Δzi| ≤ rε
∑
j

|(A−1)ij | ‖ A ‖∞‖ z + Δz ‖∞,(6)

where r is an unknown coefficient, ε is the machine accuracy, and

(A + ΔA)(z + Δz) = b,(7)

with

‖ ΔA ‖∞≤ rε ‖ A ‖∞ .(8)
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The leading terms in the inverse of the iteration matrix (4) were derived in [1] as

A−1 = (hJn)−1 =
1

α0

⎡⎣ I − T γ(I − T )R−1 γ−1R−1GS
−γ−1T (I − T )R−1 γ−2R−1GS

−γ−2SGT −γ−1SGTR−1 γ−3S

⎤⎦ ,(9)

where γ = h/α0 and

R = I + γY + γ2X,(10a)

S = (GTR−1G)−1,(10b)

T = R−1GSGT .(10c)

Therefore, using (6) and (9), we conclude that the roundoff errors in the solution are

Δui = O(h−1),(11a)

Δvi = O(h−2),(11b)

Δλi = O(h−3).(11c)

This shows that, as h → 0, the accuracy in the Lagrange multipliers deteriorates
quickly. Furthermore, it is readily verified that

‖ A ‖∞ = O(h0),(12a)

‖ A−1 ‖∞ = O(h−3).(12b)

Hence, the condition number C =‖ A ‖∞‖ A−1 ‖∞ becomes

C = O(h−3),(13)

and the iteration matrix becomes severely ill conditioned for small h. The O(h−3)
dependence of roundoff errors and conditioning on the time step size pose limitations
to the practical use of variable step size solvers and time refinement procedures.

3. Preconditioning by scaling.

3.1. Left preconditioning. As suggested in [1], this situation can be improved
by considering a left diagonal scaling transformation of the equations. The scaled
system can be written as

Ãz = b̃,(14)

where

Ã = DA,(15a)

b̃ = Db,(15b)

and D is a diagonal scaling matrix defined as

D =

⎡⎣ I 0 0
0 I 0
0 0 h−1I

⎤⎦ .(16)
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The inverse of the iteration matrix is in this case

Ã−1 =
1

α0

⎡⎣ I − T γ(I − T )R−1 α0R
−1GS

−γ−1T (I − T )R−1 α0γ
−1R−1GS

−γ−2SGT −γ−1SGTR−1 α0γ
−2S

⎤⎦ ,(17)

and, using (6) again, we find

Δui = O(h0),(18a)

Δvi = O(h−1),(18b)

Δλi = O(h−2).(18c)

The situation is improved with respect to the original (unscaled) system, but the error
in the Lagrange multipliers still grows rapidly as h → 0 even for the left preconditioned
problem. Similarly, we find ‖ Ã ‖∞= O(h0) and ‖ Ã−1 ‖∞= O(h−2), which leads to
the conclusion that the condition number is

C = O(h−2),(19)

which is again not a favorable behavior.

3.2. Left and right preconditioning. A further improvement on the situation
expressed by (18) can be obtained by considering a left and right preconditioning, i.e.,
a scaling of the equations together with a scaling of the unknowns. In particular, since
the Lagrange multipliers are affected by the largest roundoff errors according to (18),
the governing equations are here rewritten in the form

u′ = v,(20a)

v′ = f + sGλ̂,(20b)

φ = 0,(20c)

where λ̂ = λ/s are scaled Lagrange multipliers, and the scaling factor is s = O(h−2).

The idea is now to solve the problem in terms of the scaled multipliers λ̂ and general-
ized coordinates u and velocities v, and to recover the values of λ once at convergence.

Consider first for simplicity s = 1/h2. The linear iteration problem for the left
and right preconditioned system can be written as

Âẑ = b̂,(21)

where

Â = DLADR,(22a)

ẑ = D−1
R z,(22b)

b̂ = DLb.(22c)

The left diagonal scaling matrix DL is defined as

DL =

⎡⎣ I 0 0
0 hI 0
0 0 h−1I

⎤⎦ .(23)
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The scaling of the third block rows is the same as in [1], while the scaling of the second

block rows is needed to ensure ‖ Â ‖∞= O(h0), which is beneficial for the condition
number. The right diagonal transformation DR which scales the Lagrange multipliers
is defined as

DR =

⎡⎣ I 0 0
0 I 0
0 0 h−2I

⎤⎦ .(24)

This gives the following form for the inverse of the iteration matrix:

Â−1 =
1

α0

⎡⎣ I − T α−1
0 (I − T )R−1 α0R

−1GS
−γ−1T α−1

0 γ−1(I − T )R−1 α0γ
−1R−1GS

−α2
0SG

T −α0SG
TR−1 α3

0S

⎤⎦ .(25)

Using (6), the roundoff errors for the three solution fields are in this case

Δui = O(h0),(26a)

Δvi = O(h−1),(26b)

Δλ̂i = O(h0).(26c)

Notice that the roundoff errors in the displacement field and in the scaled Lagrange
multipliers are now insensitive to the time step size, while the condition number is

C = O(h−1).(27)

The Lagrange multipliers are recovered at convergence of the Newton process
from the scaled multipliers using λ = sλ̂. The scaled multipliers will be affected by
an error due to machine accuracy and to the Newton termination tolerance, error
which is O(h0) for the results above. Since s is O(h−2), then λ will be affected
by an error O(h−2) due to the recovery process. However, the reduced accuracy of
the multipliers cannot affect the iterative Newton process, since this is formulated in
terms of the scaled variables. Hence, the Newton iterations can be carried out until
as tight a tolerance as necessary has been achieved.

A more general form for the multiplier scaling factor can be derived based on a
dimensional argument. Recall that in general the dynamic equilibrium equations (1b)
express the balance of inertial forces, elastic forces, constraint reactions, and externally
applied forces. To reflect the different nature of these forces, s is selected as

s = kave +
mave

h2
,(28)

where kave represents an average stiffness term for the system and mave an average
mass term. To understand the dimensional effect of this scaling, let uave denote a
representative displacement of the system, F elas

ave a representative value of the elastic
forces, and finally F iner

ave a representative value of the inertial forces. For large time

step sizes, s ≈ kave, and λ̂ ≈ λ/kave. Then the ratio of the constraint reactions and

of the elastic forces is approximately sGλ̂/F elas
ave ≈ kaveGλ̂/(kaveuave) ≈ Gλ̂/uave;

this means that the scaled Lagrange multipliers will be roughly of the same order of
magnitude as the displacements, balancing the magnitude of all the unknowns of the
problem. For very small time step sizes, s ≈ mave/h

2, and λ̂ ≈ λ/(mave/h
2). It then
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follows that sGλ̂/F iner
ave ≈ (maveGλ̂/h2)/(maveuave/h

2) ≈ Gλ̂/uave; this means that
even in this case the scaled Lagrange multipliers will be roughly of the same order of
magnitude as the displacements, balancing again the magnitude of all the unknowns
of the problem.

The roundoff errors and the conditioning of the left and right scaled system are
much improved with respect to the unscaled or the left scaled ones. Yet, the velocity
field still shows a mild dependence on the time step size, which in turn induces the
same behavior in the conditioning. This effect can be eliminated by considering a
scaling of the unknowns that includes, together with the scaling of the Lagrange
multipliers, also a scaling of the velocities, as suggested by Arnold [8]. This amounts
to the following redefinition of the right diagonal transformation DR:

DR =

⎡⎣ I 0 0
0 h−1I 0
0 0 h−2I

⎤⎦ .(29)

The inverse of the iteration matrix is readily found as

Â−1 =
1

α0

⎡⎣ I − T α−1
0 (I − T )R−1 α0R

−1GS
−α0T (I − T )R−1 α2

0R
−1GS

−α2
0SG

T −α0SG
TR−1 α3

0S

⎤⎦ ,(30)

which is not dependent on h. Hence, the roundoff errors in all solution variables and
the conditioning are O(h0).

3.3. Numerical example. We consider the problem of the pendulum, with
equations

u′
x = vx,(31a)

u′
y = vy,(31b)

v′x = λux,(31c)

v′y = λuy − 1,(31d)

0 =
1

2
(u2

x + u2
y − 1),(31e)

where ux, uy are the Cartesian coordinates of the point mass, and vx, vy the mass
velocity components. Bar length, point mass, and acceleration of gravity are all equal
to 1. The point mass is initially at rest with ux = 1 and uy = 0 and falls under
the action of gravity. The integration of (31) is performed using the two-step BDF
formula until time t = 1 · 10−3, using the time step sizes h = {1 · 10−4, 1 · 10−5, 1 ·
10−6, 1 · 10−7, 1 · 10−8}.

At each time step, the nonlinear discrete equations are solved using Newton
method. At the jth Newton iteration of time step n, we solve the linear system
of equations

Aj
nz

j
n = bjn,(32)

which yields the corrections zj
n. Typically, the norm of the corrections will decrease

at each Newton step, until the accumulation of roundoff errors leads to a saturation
value. If further iterations are carried out, one typically observes an oscillation of the
correction norm around its saturation value. An example of this behavior is given in
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Fig. 1. Convergence and saturation for the norm of the Newton corrections zj
n plotted versus

the Newton iteration j for the scheme without preconditioning and h = 1 · 10−7.

Figure 1, which shows ‖ zj
n ‖ versus the Newton iteration j for the scheme without

preconditioning and h = 1 · 10−7. In this case, the saturation is reached at the
fourth iteration, after which the correction norm has very small oscillations around a
saturation value of approximatively 4 ·10−3. To quantify this effect of roundoff errors,
in this work iterations are arrested when the Newton corrections stop decreasing, i.e.,
when we detect the condition

‖ zj+1
n ‖≥‖ zj

n ‖ .(33)

Hence, the magnitude of the last decreasing Newton correction gives an indication of
the tightest achievable convergence of the Newton iterations, which cannot be further
improved no matter how many iterations one carries out.

At first, we consider the scaling of the sole Lagrange multipliers based on the
simple choice s = 1/h2, and we use the definition of DR given in (24). Figure 2 shows
the maximum throughout each simulation of the 2-norm of the last decreasing Newton
corrections versus the time step size, i.e., maxn ‖ zj

n ‖ versus h. The results obtained
with the left preconditioned problem are shown with the � symbol, while the ones of
the left and right preconditioning are shown with the ◦ symbol. Notice that with left
preconditioning alone it is in fact impossible to solve the nonlinear iteration with a
tight tolerance for small values of the time step.

Figure 3 shows the maximum throughout each simulation of the absolute value
of the last decreasing Newton corrections by field type, i.e., maxn max(|zjux,n|, |zjuy,n|),
maxn max(|zjvx,n|, |zjvy,n|), maxn |zjλ,n|. These results are in accordance with the
analysis of the previous sections.

Finally, Figure 4 shows the condition number C versus h. The condition number
is computed by means of the singular value decomposition of the iteration matrix at
convergence, i.e., at the last decreasing Newton iteration. Here again, a substantial
improvement is observed for the left and right preconditioning with respect to the left
preconditioning alone.
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Fig. 2. Last decreasing Newton corrections versus time step size.

Next, we consider the previous scaling of the multipliers together with the scaling
of the velocities, with DR as given in (29). Figure 5 shows the maximum throughout
each simulation of the 2-norm of the last decreasing Newton corrections versus the
time step size, while Figure 6 shows the condition number C versus h. In both cases,
the solution of the left and right preconditioned problem does not depend on h, as
predicted by the analysis.

4. Displacement based form. For large scale applications denoted by many
degrees of freedom, the displacement-velocity-multiplier form discussed in the previous
section leads to the solution of large linear systems. For example, this is the case when
the governing DAEs (1) are obtained by spatial discretization using the finite element
method of a flexible mechanical system. A substantial performance increase can be
obtained by implementing the integration scheme in displacement-multiplier form,
which is simply achieved by statically eliminating the velocity unknowns at each time
step. In fact, considering again the k-step BDF method, velocities at time tn are
computed from the kinematic equations (1a) using the difference approximation (2)
as

u′
n = vn =

1

h

k∑
i=0

αiun−i.(34)

Inserting this expression into the accelerations of the dynamic equilibrium equa-
tions (1b), we get

v′
n =

1

h

k∑
i=0

αivn−i =
1

h

(
α0

h

k∑
i=0

αiun−i +

k∑
i=1

αivn−i

)
.(35)

Using Newton’s method, one solves the reduced system of linear equations

By = c,(36)
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Fig. 3. Last decreasing Newton corrections by field type versus time step size. Top: Displace-
ments. Center: Velocities. Bottom: Lagrange multipliers.
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Fig. 4. Condition number of Jacobian at convergence versus time step size.
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Fig. 5. Last decreasing Newton corrections versus time step size. Left and right preconditioning
based on (23) and (29).

where the iteration matrix is in this case

B = hJn =

[
α0U −hG
hGT 0

]
,(37)

with

U = γ−1I + Y + γX.(38)

The first block rows of this matrix correspond to the equilibrium equations in
displacement-based form, while the second block rows correspond to the constraint
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Fig. 6. Condition number of Jacobian at convergence versus time step size. Left and right
preconditioning based on (23) and (29).

conditions. The two block columns correspond to the u and λ variables, respectively.
Once at convergence, velocities are recovered using the vector relationship (34).

The inverse of the iteration matrix is

B−1 =
1

α0

[
(I −W )U−1 γ−1U−1GV

−γ−1V GTU−1 γ−2V

]
,(39)

where

V = (GTU−1G)−1,(40a)

W = U−1GV GT .(40b)

Using (6), and considering that

lim
h→0

U−1 = O(h),(41a)

lim
h→0

V = O(h−1),(41b)

the roundoff errors in the primary solution variables are found to be

Δui = O(h−1),(42a)

Δλi = O(h−3),(42b)

while the condition number C becomes

C = O(h−4);(43)

again these are very unfavorable behaviors with respect to the time step size.
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4.1. Left preconditioning. Even in this case, the simple left preconditioning of
Petzold and Lötstedt [1] gives a modest benefit with respect to the unpreconditioned
problem. In fact, defining the left scaling transformation as

D =

[
I 0
0 h−1I

]
,(44)

we find

B̃−1 =
1

α0

[
(I −W )U−1 α0U

−1GV
−γ−1V GTU−1 α0γ

−1V

]
,(45)

which gives for the propagation of errors

Δui = O(h0),(46a)

Δλi = O(h−2),(46b)

while the conditioning is

C = O(h−3).(47)

4.2. Left and right preconditioning. The left and right scaling matrices for
the reduced problem are simply obtained from (21)–(24) and are defined as

DL =

[
hI 0
0 h−1I

]
(48)

and

DR =

[
I 0
0 h−2I

]
,(49)

where we have considered again the simple choice s = 1/h2. This gives

B̂−1 =
1

α0

[
α−1

0 γ−1(I −W )U−1 α0U
−1GV

−α0V GTU−1 α3
0γV

]
,(50)

which yields time-step-size-independent sensitivity to perturbations of the primary
variables

Δui = O(h0),(51a)

Δλ̂i = O(h0),(51b)

and a time-step-size-independent conditioning, i.e.,

C = O(h0),(52)

which is the best possible behavior that can be expected of a numerical method.



410 C. L. BOTTASSO, O. A. BAUCHAU, AND A. CARDONA

10
−9

10
−8

10
−7

10
−6

10
−5

10
−20

10
−15

10
−10

10
−5

10
0

10
5

h

N
ew

to
n

 c
o

rr
ec

ti
o

n
 ||

y|
|

2/1

Petzold and Lotstedt, 1986
Left & right preconditioning

Fig. 7. Last decreasing Newton corrections versus time step size for the displacement-multiplier
form.
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Fig. 8. Condition number of Jacobian at convergence versus time step size for the displacement-
multiplier form.

4.3. Numerical example. We consider again the model problem (31), using
the same data. At the jth Newton iteration of time step n, we solve the linear system
of equations

Bj
ny

j
n = cjn,(53)

which yields the corrections yj
n. As in the previous case, iterations are arrested only

when the Newton corrections stop decreasing.
The results of the analysis are confirmed by Figures 7 and 8. In particular,

the former shows the maximum throughout each simulation of the 2-norm of the
last decreasing Newton corrections versus the time step size, maxn ‖ zj

n ‖ versus
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Fig. 9. Configuration of the contact problem.

h, while the latter reports the condition number C versus h. For the left and right
preconditioning, exact time step size independence is achieved.

5. Numerical example: The need for scaling in contact-impact analy-
sis of flexible multibody systems. In this section we consider a more challenging
problem involving a flexible multibody system subjected to unilateral contact condi-
tions. In general, to accurately determine the contact events and for resolving the
large gradients in the interactional forces at contact, time step size refinement pro-
cedures must be used for contact problems. However, whenever small values of the
time steps are used, formulations in index three form will suffer from the problems
discussed in the previous sections.

Figure 9(a) depicts a cam of length 0.4 m connected to the ground at point A
by means of a revolute joint. The relative rotation in the joint is prescribed to be
φ(t) = φ0(1−cos Ωt), where φ0 = π/3 rad, and Ω = 2π/3 rad/sec. A rigid impactor of
total mass MI = 4 kg is attached at the tip of the cam. A flexible beam of length 2.4
m is clamped to the ground at point R, and a point mass MT = 40 kg is attached at
its free end, point T . Finally, a rigid body of total mass MP = 4 kg is attached at the
middle point P of the beam. As the impactor moves, it contacts the outer surface of
this rigid body, as shown in Figure 9(b). The physical properties of the flexible beam
are axial stiffness EA = 44000 kN, bending stiffnesses I22 = 300 and I33 = 23 kN·m2,
torsional stiffness GJ = 28 kN·m2, and mass per unit span m = 1.6 kg/m. The
bending stiffnesses of the cam are I22 = 23, I33 = 300 kN·m2, and the axial stiffness,
torsional stiffness, and mass per unit span are the same as those of the beam.
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Fig. 10. Time step size as a function of time. mave = 0: Thick dashed line. mave = 1: Thin
solid line.

When the two bodies come in contact, a contact model and friction model are used
to define the normal and tangential contact forces, respectively. A linear spring with a
stiffness constant k = 2 GN/m in parallel with a viscous damper of constant μ = 10−3

were used to evaluate the normal contact force. The friction force was computed
with the help of the LuGre model, using the following parameters: σ0 = 105 m−1,
σ1 = σ2 = 0 sec/m, vs = 10−3 m/sec, μk = 0.30, μs = 0.30, and γ = 2. More details
about this modeling technique and the definition of these parameters can be found in
Bauchau and Ju [9].

The simulation was conducted for a 1 sec duration. From t = 0 to 0.4 sec a
constant time step size, h = 10−2 sec, was used and at that point, an automated time
step size adaptivity algorithm was activated [10]; the desired local error was set to
εloc = 10−7. In light of (28), the scaling factor was selected as s = kave + mave/h

2,
where kave = 103 and mave = 0 or 1. When mave = 0, the scaling is independent of
the time step size, whereas it becomes time step dependent when mave = 1.

For the problem at hand, large time step sizes were used before contact occurs,
i.e., when t < 0.494 sec. This portion of the simulation is not challenging and both
scaling factors performed equally well. At time t ≈ 0.494 the time step size was
drastically reduced by the adaptivity algorithm to decrease the large contact force
gradients that would result from using a constant time step. Figure 10 depicts the
time step size as a function of time during the simulation, for both mave = 0 and 1.
As should be expected from the analysis developed in this paper, when mave = 0, the
simulation fails to converge as soon as the time step size becomes small, whereas for
mave = 1, convergence is achieved at each time step, despite the complex dynamic
behavior of the system after impact. Figure 11 shows the corresponding history of
the scaling factor. Note that scaling factors of the order of 1013 were needed at the



CONDITIONING AND SENSITIVITY OF INDEX THREE DAEs 413

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

2

10
4

10
6

10
8

10
10

10
12

10
14

Time t [sec]

C
o

n
st

ra
in

t 
sc

al
in

g
 f

ac
to

r 
s

Fig. 11. Constraint scaling factor s. mave = 0: Thick dashed line. m = 1: Thin solid line.

instant of contact; after impact, the highly vibratory response of the system required
small time steps and the scaling factor was in the range of s ∈ [108, 1011].

6. Conclusions. We have proposed a simple scaling transformation for the index
three DAEs describing constrained multibody dynamical systems. The approach
amounts to a left and right preconditioning of the iteration matrix, which has the
goal of making the solution less sensitive to the propagation of perturbations and of
improving the condition number.

Using the left preconditioning, the constraint equations are divided by the time
step size as already proposed by [1], while the dynamic equilibrium equations are
multiplied by the same quantity. The right preconditioning amounts to a definition
of a set of modified unknowns: modified multipliers are obtained by scaling with
the square of the time step size of the original Lagrange multipliers, while modified
velocities are obtained by scaling with the time step size.

The new scaling was applied to the displacement-velocity-multiplier and to the
reduced displacement-multiplier forms. In both cases, we obtain the remarkable
results that both error propagations and conditioning are O(h0); i.e., the numeri-
cal solution of index three DAEs behaves as in the case of regular ODEs.

The simple problem of the pendulum was used to numerically confirm the results
of the analysis, while a more challenging problem dealing with the contact-impact
analysis of a flexible multibody system was used to illustrate the effect of scaling
when using time refinement procedures.

Although other approaches are available to deal with the problem of ill condi-
tioning and error propagation for high index DAEs, the present approach has the
possible advantages of being trivial to implement and of not requiring a rewriting of
the equations of motion, and furthermore it does not introduce additional unknowns.



414 C. L. BOTTASSO, O. A. BAUCHAU, AND A. CARDONA

REFERENCES

[1] L. Petzold and P. Lötstedt, Numerical solution of nonlinear differential equations with
algebraic constraints II: Practical implications, SIAM J. Sci. Statist. Comput., 7 (1986),
pp. 720–733.

[2] M. Arnold, A perturbation analysis for the dynamical simulation of mechanical multibody
systems, Appl. Numer. Math., 18 (1995), pp. 37–56.

[3] C. Gear, B. Leimkuhler, and G. Gupta, Automatic integration of Euler–Lagrange equations
with constraints, J. Comput. Appl. Math., 12–13 (1985), pp. 77–90.

[4] M. Borri, L. Trainelli, and A. Croce, The embedded projection method: A general in-
dex reduction procedure for constrained system dynamics, Comput. Methods Appl. Mech.
Engrg., 195 (2006), pp. 6974–6992.
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