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Abstract

The Fokker-Planck equation models chemical reactions on a mesoscale.
The solution is a probability density function for the copy number of the
different molecules. The number of dimensions of the problem can be large
making numerical simulation of the reactions computationally intractable.
The number of dimensions is reduced here by deriving partial differential
equations for the first moments of some of the species and coupling them
to a Fokker-Planck equation for the remaining species. With more sim-
plifying assumptions, another system of equations is derived consisting of
integro-differential equations and a Fokker-Planck equation. In this way,
the simulation of the chemical networks is possible without the exponential
growth in computatational work and memory of the original equation and
with better modelling accuracy than the macroscopic reaction rate equa-
tions. Some terms in the equations are small and are ignored. Conditions
are given for the influence of these terms to be small on the equations and
the solutions. The difference between different models is illustrated in a
numerical example.

Keywords: master equation, Fokker-Planck equation, reaction rate equa-
tions, dimensional reduction

AMS subject classification: 65M20, 65M50

1 Introduction

Simulation in silico of biological cells is important in the emerging field of sys-
tems biology [8, 18]. In computer simulations, the models of the complicated
regulatory networks in a cell can be compared quantitatively to experimental
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data. The macroscopic model equations for simulation of biochemical reactions
in the cells are the reaction rate equations. They form a system of deterministic,
nonlinear ordinary differential equations (ODEs) for the concentrations of the
participating chemical species. This model is accurate for reactions with many
participating molecules of each species. If the number of molecules is small or if
the reactions occur far from thermodynamic equilibrium, then a stochastic model
on a mesoscale such as the master equation [2, 9, 10, 16, 24] is a much more pre-
cise description. This is often the case in molecular biology where the majority
of the reacting molecules are found in copy numbers less than one hundred in
cells such as Escherichia coli [14]. An example where a macroscopic model is
insufficient and a stochastic view is necessary is found in [25] where a biological
clock is investigated.

The master equation [12, 16] is a differential-difference equation for the time
dependent probability density function (PDF) p of the number of molecules of
each species. The dimension of the discrete spatial domain of p is the same as the
number of species. Since there are tens of thousands of active proteins in a cell,
the size of the computational problem to solve the equation can be formidable.
The Fokker-Planck (FP) equation is a partial differential equation (PDE) for p
in time and continuous space approximating the master equation [12, 16, 23].
The spatial dimension is the same as in the master equation. The FP equation
can be solved numerically after discretization using techniques for PDEs, but for
many molecular species and many spatial dimensions other methods are needed
due to the exponential growth of computational work and storage requirements
with increasing dimension (’the curse of dimensionality’). There are deterministic
and stochastic algorithms tailored for high dimensional problems. Sparse grids
is a deterministic method designed for high dimensional problems [3]. Stochastic
methods e.g. for high-dimensional integrals [4] and Gillespie’s stochastic simula-
tion algorithm (SSA) [13] for the master equation do not suffer from the curse of
dimensionality. Gillespie’s method is a Monte Carlo method simulating the reac-
tions step by step and is the standard method to simulate mesoscopic biochemical
reactions in cells.

The dimensionality of the problem is reduced in this paper by assuming that
certain species are normally distributed with a small variance. Then a system of
PDEs is derived, similar to the FP equation, for a quantity proportional to the
expected values of the species. The PDF of the remaining species satisfies the
FP equation. Suppose that m species are handled in the ususal way with the
FP equation, n species are treated in the special way approximated by a normal
distribution, and that L grid points are needed in each coordinate direction to
resolve the FP equation. Then the original problem with N = m + n species
requires Lm+n grid points and variables for a representation of the PDF with the
FP equation. The reduced problem is solved in m dimensions with n+1 unknowns
thus needing only (n + 1)Lm memory cells to store the solution. The quotient
between the storage requirements of the two methods is (n+1)/Ln, a substantial
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improvement when L > 1 and n is large. Assuming that the expected values in the
normal distribution are independent of space, an intermediate model is obtained
with integro-differential equations (IDEs) for the expected values coupled to the
FP equation. Some species should be modelled with full generality with the FP
equation, e.g. if they are present in small copy numbers, while other species are
well approximated by a normal distribution with a small variance, e.g. if there are
many molecules of this kind. If m = 0, then we recover the macroscopic reaction
rate equations and if n = 0, then we have the full mesoscopic FP equation.
The simplification of the FP equation is motivated by applications in molecular
biology but is applicable also to other problems governed by different forms of
the FP equation.

A similar partitioning of the variables is made in [5, 15, 17, 21] to improve the
efficiency of the SSA algorithm. The species are either fast or slow and the fast
variables satisfy ODEs and the slow variables are simulated by the SSA method
[15, 17]. The deterministic part and the stochastic part are coupled in the same
manner as the IDEs and the FP equation.

The same reduction of the computational work is achieved in the quantum-
classical molecular dynamics (QCMD) model for simulation of the time evolution
of large molecules. Each degree of freedom of the molecule introduces one dimen-
sion in the Schrödinger equation and quickly makes it impossible to compute
the solution for molecules with more than a few atoms. Therefore, most atoms
are described by classical mechanics while a critical small part of the system is
treated with quantum mechanics. See e.g. [6, 7] for numerical schemes suitable
for this approximation.

The paper is organized as follows. The reaction rate equations, the master
equation and the FP equation are given in the next section. Different ways of
approximating the FP equation in fewer dimensions are introduced in Section 3.
Some of the molecular species are assumed to be normally distributed with a small
variance. Equations are derived for the expected values of these species and a FP
equation for the remaining species. If all species have a normal distribution, then
we obtain the macroscopic reaction rate equations. In Section 4, three different
simplifications of the original FP equation are compared in a numerical example
with four chemical compounds.

The i:th element of a vector v is denoted by vi. If v has the length N then
the `2-norm is ‖v‖2 = (

∑N
i=1 |vi|2)1/2 in the paper.

2 The reaction rate, master and Fokker-Planck

equations

In a spatially homogeneous mixture of molecules, biochemical reactions in a cell
are modeled on a macroscale by the reaction rate equations. They form a system
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of nonlinear ODEs for the concentrations of the molecular species. A stochastic
model on the mesoscale is governed by the master equation [16]. Its solution is
the PDF for the copy numbers of the particpating molecules. The FP equation
is obtained after Taylor expansion in space of the master equation.

Assume that there are N chemically active molecular species Xi, i = 1 . . . N ,
and that there are xi molecules of substrate Xi at time t. Then xi is a non-
negative integer number, xi ∈ Z+, and is a component in the state vector x. A
chemical reaction r is a transition from a state xr to x so that xr = x + nr. The
non-negative propensity wr(xr, t) is the probability for the reaction to occur per
unit time. It is often modeled as a polynomial or in a Michaelis-Menten model
it is a rational polynomial in xi. The reaction r can now be written

xr
wr(xr,t)−−−−→ x, nr = xr − x. (1)

The dependent variables in the reaction rate equations are the concentrations
of the chemical compounds. The concentration of Xi is denoted by [xi] and
collected in [x] ∈ RN

+ , where R+ denotes a non-negative real number. Then the
reaction rate equations for N species and R reactions are [16]

d[xi]

dt
= −

R∑
r=1

nriwr([x], t), i = 1 . . . N. (2)

The equations (2) are valid when the molecular copy number of each species is
large.

The master equation is a differential-difference equation for the time evolution
of the PDF p(x, t) for the probability that the molecular state is x at time t [16].
Introduce a splitting of nr into two parts as in [11] so that

nr = n+
r + n−r , n+

ri = max(nri, 0), n−ri = min(nri, 0).

The inequality relation x ≥ 0 for a vector x denotes that all components are non-
negative. A reaction (1) at xr takes place if xr ≥ 0 and x ≥ 0 or equivalently
x + n−r ≥ 0, and a reaction at x occurs if x ≥ 0 and x − nr ≥ 0 or equivalently
x− n+

r ≥ 0. Introduce the flux for the r:th reaction

qr(x, t) = wr(x, t)p(x, t).

With R reactions the master equation is

∂p(x, t)

∂t
=

R∑
r = 1

x + n−r ≥ 0

qr(x + nr, t)−
R∑

r = 1

x− n+
r ≥ 0

qr(x, t). (3)

The total probability
∑

x≥0 p(x, t) is conserved by the master equation [11].
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The FP equation (or forward Kolmogorov equation) is derived by first letting
x ∈ RN

+ , then expanding the first sum of the master equation (3) in its Taylor
series (the Kramers-Moyal expansion), and finally truncating after the second
order term [12, 16, 23]. The FP equation for the PDF is

∂p(x, t)

∂t
=

R∑
r=1

{
N∑

i=1

nri
∂qr(x, t)

∂xi

+
N∑

i=1

N∑
j=1

nrinrj

2

∂2qr(x, t)

∂xi∂xj

}

=
R∑

r=1

{
N∑

i=1

nri
∂

∂xi

(
qr(x, t) +

1

2

N∑
j=1

nrj
∂qr(x, t)

∂xj

)}
.

(4)

The conservation form of the FP equation is obtained by introducing Fr with
the components

Fri = nri(qr + 0.5nr · ∇qr), r = 1 . . . R, i = 1 . . . N.

Then by (4)

∂p(x, t)

∂t
=

R∑
r=1

∇ · Fr. (5)

The quantity
∑

r Fr is denoted the probability current in [12] and is the flux
function when (5) is regarded as a conservation law. Let the boundaries of the
domain be denoted by Γi = {x | x ∈ RN

+ and xi = 0}. With the boundary
conditions (reflecting barrier conditions in [12])

R∑
r=1

nri(qr + 0.5nr · ∇qr) = 0 on Γi, i = 1 . . . N, (6)

and Fr = 0 far away from the origin, the total probability
∫
x≥0

p(x, t) dx is

conserved for all t by the FP equation [11]. An alternative is to apply absorbing
barrier conditions [12]

p(x, t) = 0 on Γi, i = 1 . . . N. (7)

Then the total probability is not necessarily preserved.

3 Dimensional reduction of the Fokker-Planck

equation

By deriving equations for the expected values of certain species, the dimension
of the problem is reduced and becomes tractable while retaining full spatial de-
pendence for a few of the molecular species in the master or FP equations.
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3.1 Simplifying assumptions

In order to reduce the number of dimensions in x, introduce a splitting such that
xT → (xT ,yT ) and nT

r → (mT
r ,nT

r ), where x ∈ Rm
+ , y ∈ Rn, mr ∈ Zm, nr ∈ Zn,

and N = m+n. Assume that the two sets of stochastic variables Xi, i = 1 . . .m,
and Yj, j = 1 . . . n, are independent such that the corresponding PDF is

p(x,y, t) = pX(x, t)pY (y, t).

The PDF p is zero for x far away from the origin, i.e.

p(x,y, t) = 0 for Sη =
{
x|x ∈ Rm

+ , ‖x‖2 > η
}

, (8)

for some η > 0. Furthermore, assume that the Yj-variables are normally dis-
tributed and independent resulting in

p(x,y, t) = γnpX(x, t) exp(−
n∑

j=1

(yj − φj)
2

2σ2
). (9)

The assumptions on φ is that it is bounded in x and t and has bounded first and
second derivatives in x so that φ belongs to the Sobolev space [22]

φ ∈ W 2,∞(Qη), Qη = Rm
+\Sη. (10)

The parameter σ is small and constant in the approximation. If the number of
molecules of a certain kind is large, then the corresponding variance is small [16].

The marginal PDF p0 is defined by

p0(x, t) =

∫
p(x,y, t) dy = γnpX(x, t)

∫
exp(−

n∑
j=1

(yj − φj)
2

2σ2
) dy. (11)

The integration
∫

as in (11) is taken over Rn. The normalization constant γn

satisfies

γn = (2σ2π)−n/2

for y ∈ Rn so that

γn

∫
exp(−

n∑
j=1

(yj − φj)
2

2σ2
) dy = 1,

and p0(x, t) = pX(x, t). Since p and p0 are non-negative and

∫ ∫

Rm
+

p(x,y, t) dx dy =

∫

Rm
+

p0(x, t) dx = 1, (12)
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both p and p0 are PDFs. The first partial moment for yk with respect to y is

pk(x, t) =

∫
ykp(x,y, t) dy = γnp0(x, t)

∫
yk exp(−

n∑
j=1

(yk − φk)
2

2σ2
) dy

= p0(x, t)γ1

∫
yk exp(−(yk − φk)

2

2σ2
) dyk

= p0(x, t)γ1

∫
(zkσ

√
2 + φk) exp(−z2

k)σ
√

2 dzk

= p0(x, t)φk(x, t)γ1

∫
exp(−z2

k)σ
√

2 dzk = p0(x, t)φk(x, t).

(13)

The conditional expected value of yk is φk since

E[yk|x] =

∫
ykp(x,y, t)dy/

∫
p(x,y, t)dy = pk(x, t)/p0(x, t) = φk(x, t). (14)

The following lemma relates E[w|x] to w and is needed to obtain approximate
differential-difference equations for p0 and the moments pk.

Lemma 3.1. Assume that

w(x, φ + ∆φ, t) = w(x,φ, t) +
n∑

j=1

cj(x, φ, t)∆φj + ρ(x,φ, ∆φ, t)

for φ ∈ Rn, and let the conditional expected value of w be

E[w|x] = γn

∫
w(x,y, t) exp(−

n∑
j=1

(yj − φj)
2

2σ2
) dy.

If δj ∈ Z+, |δ| = ∑
j δj, and

|ρ(x,φ, ∆φ, t)| ≤
q∑

k=2

∑

|�|=k

ξ�(x, t)
n∏

j=1

|∆φj|δj ,

then

|E[w|x]− w(x,φ, t)| ≤ κ1σ
2(1− σq−1)/(1− σ),

where κ1 depends on x, t, and n and is independent of σ.

The proof of the lemma is found in the appendix.
The propensities wr in the chemical reactions (1) are usually polynomials or

rational polynomials in x and y without poles for x ∈ Rm
+ and y ∈ Rn with

time dependent coefficients. They possess a bound on the remainder term ρ as
in the lemma with a limited q. If they are independent of or linear in y, then
E[w|x] = w(x,φ, t). If σ < 1, then the difference between E[w|x] and w(x,φ, t)
is proportional to σ2.
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3.2 Differential equations

After defining p0 in (11) and pk in (13) we derive differential-difference equations
and the corresponding FP equations satisfied by them. The equation for p0 is
obtained for one reaction r from the master equation (3)

∂p0(x, t)

∂t
=

∫
∂p

∂t
dy =

∫
qr(x + mr,y + nr, t)− qr(x,y, t) dy

=

∫
wr(x + mr,y + nr, t)γnp0(x + mr, t) exp(−

n∑
j=1

(yj + nrj − φj)
2

2σ2
)

−wr(x,y, t)γnp0(x, t) exp(−
n∑

j=1

(yj − φj)
2

2σ2
) dy

= wr(x + mr,φ(x + mr, t), t)p0(x + mr, t)− wr(x,φ(x, t), t)p0(x, t) + ρ0(p0).

(15)

The functional ρ0 is bounded by Lemma 3.1 and vanishes like σ2 for a bounded
p0 and a small σ.

The corresponding FP equation is

∂p0(x, t)

∂t
=

{
m∑

i=1

mri
∂qr0(x, t)

∂xi

+
m∑

i=1

m∑
j=1

mrimrj

2

∂2qr0(x, t)

∂xi∂xj

}
+ ρ0(p0),

(16)

with qr0(x, t) = wr(x,φ(x, t), t)p0(x, t), cf. (4). Let Fr0 consist of the elements

Fr0i = mri(qr0 + 0.5mr · ∇qr0), r = 1 . . . R, i = 1 . . .m.

Then the FP equation for p0 with R reactions is

∂p0(x, t)

∂t
=

R∑
r=1

∇ · Fr0, (17)

where ρ0 is ignored, cf. (5). Since p0 is a PDF, its total mass should be conserved
over Rm

+ . It follows from the assumption (8) on p and (11) that p0(x, t) = 0 when
x ∈ Sη and therefore ∇p0 = 0. By the definition of Fr0 we have Fr0 = 0 in Sη.
The time evolution of the total mass of p0 is obtained by Gauss’ formula

∂

∂t

∫

Rm
+

p0(x, t) dx =

∫

Rm
+

∇ ·
R∑

r=1

Fr0 dx =

∫

Γi

R∑
r=1

n̂i · Fr0 dx = 0, (18)

where n̂i is the zero vector except for the i:th element which is −1. This is the
normal direction of Γi. Then the conclusion from (18) is that suitable boundary
conditions for (17) to preserve the total probability are

R∑
r=1

mri(qr0 + 0.5mr · ∇qr0) = 0 on Γi, i = 1 . . . m, (19)
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(cf. (6)).
The differential-difference equation satisfied by the first partial moments is

derived for a single reaction r from the master equation (3) in the same manner
as in (15)

∂pk(x, t)

∂t
=

∫
yk

∂p

∂t
dy =

∫
ykqr(x + mr,y + nr, t)− ykqr(x,y, t) dy

=

∫
(yk − nrk)qr(x + mr,y, t)− ykqr(x,y, t) dy

= φk(x + mr, t)wr(x + mr,φ(x + mr, t), t)p0(x + mr, t)
−φk(x, t)wr(x,φ(x, t), t)p0(x, t)
−nrkwr(x + mr,φ(x + mr, t), t)p0(x + mr, t) + ρk(p0, pk)

= wr(x + mr,φ(x + mr, t), t)pk(x + mr, t)− wr(x,φ(x, t), t)pk(x, t)
−nrkwr(x + mr,φ(x + mr, t), t)p0(x + mr, t) + ρk(p0, pk).

(20)

As in (15), for bounded p0 and pk, ρk is bounded by Lemma 3.1 and is of O(σ2)
for a small σ. The FP approximation of (20) is

∂pk(x, t)

∂t
=

m∑
i=1

mri
∂qrk(x, t)

∂xi

+
m∑

i=1

m∑
j=1

mrimrj

2

∂2qrk(x, t)

∂xi∂xj

−nrkwr(x + mr,φ(x + mr, t), t)p0(x + mr, t) + ρk,

(21)

with qrk(x, t) = wr(x, φ(x, t), t)pk(x, t). With R reactions and the components

Frki = mri(qrk + 0.5mr · ∇qrk), i = 1 . . .m, k = 1 . . . n, r = 1 . . . R,

in Frk, the FP equation for pk with R reactions ignoring ρk is

∂pk(x, t)

∂t
=

R∑
r=1

∇ · Frk −
R∑

r=1

nrkwr(x + mr, φ(x + mr, t), t)p0(x + mr, t).

(22)

The following theorem provides bounds on the differences between the solu-
tions to (16) and (17) and the solutions to (21) and (22) due to the variance
parameter σ in (9). The solutions are weak solutions of the PDEs [1, 22].

Theorem 3.2. Assume that wr, r = 1 . . . R, is bounded and has bounded first
and second derivatives in x and y in Qη × [0, T ], that φ satisfies (10) and that
M(x, t) =

∑
r wrmrm

T
r ∈ Rm×m is positive definite.

Let p̃0 be the solution of (16) and p0 the solution of (17) with the boundary
conditions p̃0(x, t) = 0 and p0(x, t) = 0 on the boundary ∂Qη of Qη and identical
initial conditions at t = 0. Then for σ sufficiently small and t ∈ [0, T ]

|p̃0(x, t)− p0(x, t)| ≤ C0σ
2,
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where σ is the variance in (11) and C0 depends on η, T, wr,φ,m, and mr.
Let p̃k be the solution of (21) and pk the solution of (22) with the boundary

conditions p̃k(x, t) = 0 and pk(x, t) = 0 on the boundary ∂Qη and the same initial
conditions at t = 0. Then for σ sufficiently small and t ∈ [0, T ]

|p̃k(x, t)− pk(x, t)| ≤ Ckσ
2,

where Ck depends on η, T, wr,φ,m, and mr.

Proof. Let wr = wr(x, φ(x, t), t) and

A(p,∇p) = 0.5
∑

r wrmrm
T
r ∇p = 0.5M∇p,

B0(p,∇p) = (
∑

r(mr · ∇)(wr + 0.5(mr · ∇)wr)) p
+(

∑
r(wr + 0.5(mr · ∇)wr)mr) · ∇p.

Then the equation for p0 in (17) is

∂p0

∂t
= ∇ · A(p0,∇p0) + B0(p0,∇p0). (23)

Since M is positive definite, there is an a such that uTA(p,u) ≥ auTu. Moreover,
there are ā, c(x, t), and d(x, t) in the bounds

|A(p,u)| ≤ ā‖u‖2, |B0(p,u)| ≤ c‖u‖2 + d|p|. (24)

From the bounds on wr and φ and their derivatives, there is a constant ā and
c(x, t) and d(x, t) are bounded in the norm

‖f‖∞ = sup
t∈[0,T ]

sup
x∈Qη

|f(x, t)|.

The maximum principle in Theorem 1 in [1] provides an upper bound on p0. A
lower bound is obtained by applying the maximum principle to the equation for
−p0. Therefore, ‖p0‖∞ is bounded.

The equation for pk in (22) has the same spatial differential operator as p0 in
(23) plus a source term so that

Bk(pk,∇pk) = B0(pk,∇pk)−
R∑

r=1

nrkwr(x + mr, φ(x + mr, t), t)p0. (25)

There is a bound on |Bk| as in (24) with a term g1(x, t) bounding the sum in
(25). Since ‖wr‖∞ and ‖p0‖∞ are bounded, so is ‖g1‖∞. Consequently, according
to the maximum principle in [1] there is also a bound on ‖pk‖∞.

The difference δp0 = p̃0 − p0 satisfies (23) with δp0 = 0 initially and on
the boundary and g2 = ρ0(p0) in the right hand side. By Taylor’s formula and
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the bounds on wr and φ, the assumptions on w in Lemma 3.1 are fulfilled and
‖g2‖∞ ≤ Cgσ

2‖p0‖∞. Hence, by the maximum principle we have

δp0 ≤ C ′
0‖g2‖∞ ≤ C0σ

2.

The same bound for −δp0 is obtained by applying the maximum principle to the
equation for −δp0.

The bound on |δpk| follows from the maximum principle in [1] and Lemma
3.1 in the same manner. ¥

The sufficient conditions in the theorem are often satisfied by chemical reac-
tions. To be able to apply the maximum principle separately to the equations for
p0 and pk, the coupling φ between the equations is assumed to be smooth. The
difference between the solutions with and without the remainder term ρ can be
made as small as we wish by choosing a small σ.

3.3 Back to the reaction rate equations

The equations can be simplified further by considering the expected value of φj

or equivalently the expected value of yk defined by

φ̄k(t) =

∫

Rm
+

φk(x, t)p0(x, t) dx =

∫

Rm
+

pk(x, t) dx =

∫ ∫

Rm
+

ykp(x,y, t) dxdy.

(26)

Integrate (22) over Rm
+ to obtain

dφ̄k

dt
=

∫

Rm
+

∂pk

∂t
dx =

R∑
r=1

∫

Rm
+

∇ · Frk dx

−
R∑

r=1

∫

Rm
+

nrkwr(x + mr,φ(x + mr, t), t)p0(x + mr, t) dx.

(27)

Let the boundary conditions for pk be

R∑
r=1

mri(qrk + 0.5mr · ∇qrk) = 0 on Γi, i = 1 . . .m, (28)

and since p0(x, t) = 0 for x ∈ Sη we also have pk(x, t) = 0 and ∂pk/∂xi = 0
for x ∈ Sη. After integration with Gauss’ formula, the system of differential
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equations for φ̄ is from (27)

dφ̄k

dt
=

m∑
i=1

∫

Γi

R∑
r=1

n̂i · Frk dx

−
R∑

r=1

nrk

∫

Rm
+

wr(x + mr,φ(x + mr, t), t)p0(x + mr, t) dx

= −
R∑

r=1

nrk

∫

Rm
+

wr(x + mr,φ(x + mr, t), t)p0(x + mr, t) dx,

k = 1 . . . n.

(29)

The last integral in (29) is the expected value of wr after a shift with mr.
In order to close the system, assume that p0 has a special form

p0(x, t) = γm exp(−
m∑

j=1

(xj − ψj)
2

2σ2
)

with time dependent positive values ψj, j = 1 . . .m, and a small σ implying that
p0(x, t) is small for x close to Γi. Then

∫

Rm
+

wr(x + mr,φ(x + mr, t), t)p0(x + mr, t) dx

= γm

∫

Rm

wr(x + mr,φ(x + mr, t), t) exp(−
m∑

j=1

(xj + mrj − ψj)
2

2σ2
) dx + ρwbd

= wr(ψ(t), φ(ψ(t), t), t) + ρw + ρwbd.

(30)

Here, ρw is small for a small σ by Lemma 3.1 and the correction ρwbd due to the
removal of the boundary is also small when σ is small and is bounded in the next
lemma.

Lemma 3.3. Assume that

|w(x + ∆x, t)| ≤
q∑

k=0

∑

|�|=k

η�(x, t)
m∏

j=1

|∆xj|δj

for ∆xj ∈ R, δj ∈ Z+, j = 1 . . . m, and |δ| = ∑
j δj. Let the expected value of w

be

E[w] = γm

∫

Rm
+

w(x + m, t) exp(−
m∑

j=1

(xj + mrj − ψj)
2

2σ2
) dx.

Furthermore, assume that mrj − ψj < 0 for all j and let

Iw = γm

∫

Rm

w(x + m, t) exp(−
m∑

j=1

(xj + mrj − ψj)
2

2σ2
) dx.

12



Then

|E[w]− Iw| ≤ κ3 exp(−minj(ψj −mrj)
2

2σ2
),

where κ3 is polynomial in (ψj −mrj)/σ of degree at most q − 1 with coefficients
depending on x, t, q, and m.

The proof of the lemma is found in the appendix.
As in Lemma 3.1, the condition on w is usually satisfied by the propensities in

models for chemical reactions. The difference between integration over the posi-
tive orthant for E[w] and the whole space for Iw decreases rapidly for decreasing
σ.

With the assumption (10) on φ, it follows from (26), (30) with wr = φk(x, t),
Lemma 3.1 and Lemma 3.3 that for small σ

φ̄k(t) = φk(ψ(t), t) + ρφ + ρφbd ≈ φk(ψ(t), t). (31)

Insert (31) into (30), sum over all reactions as in (29), and ignore terms that
vanish with vanishing σ to arrive at

dφ̄k

dt
= −

R∑
r=1

nrkwr(ψ(t), φ̄(t), t), k = 1 . . . n. (32)

The first moment of xk over Rm is
∫

Rm

xkp0(x, t) dx = γm

∫

Rm

xk exp(−
m∑

j=1

(xj − ψj)
2

2σ2
) dx = ψk, k = 1 . . .m.

(33)

By Lemma 3.3 with w = xk, the difference between the expected value of xk

defined by

E[xk] =

∫

Rm
+

xkp0(x, t) dx

and ψk is

|E[xk]− ψk| = |
∫

Rm\Rm
+

xkp0(x, t) dx| ≤ κ3 exp(−0.5 min
j

(ψj −mrj)
2/σ2).

The difference vanishes exponentially fast when σ → 0.
The differential-difference equation satisfied by ψ(t) for a single reaction r is

dψk

dt
=

∫

Rm

xk
∂p0

∂t
dx =

∫

Rm

xkqr0(x + mr, t)− xkqr0(x, t) dx

=

∫

Rm

(xk −mrk)qr0(x, t) dx−
∫

xkqr0(x, t) dx

= −γmmrk

∫

Rm

wr(x,φ(x, t), t) exp(−
m∑

j=1

(xj − ψj)
2

2σ2
) dx

= −mrkwr(ψ,φ(ψ, t), t) + ρrψ.

(34)
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The remainder term ρrψ is bounded by Lemma 3.1. Replace φ by φ̄ in (34). The
difference in the right hand side is bounded by a function in x and t depending
on wr times the sum of ρφ and ρφbd in (31). Add the contributions from all R
reactions and ignore terms that vanish when σ vanishes to arrive at

dψk(t)

dt
= −

R∑
r=1

mrkwr(ψ, φ̄(t), t), k = 1 . . . m. (35)

The first moments of x in ψ satisfy a system of ODEs (35) and the first

moments of y in φ̄ in (26) also satisfy a system of ODEs (32). With (ψT , φ̄
T
) →

[x]T and (mT
r ,nT

r ) → nT
r in (35) and (32) we have derived the macroscopic

reaction rate equations (2). The same equations are obtained directly with the
assumption

p(x,y, t) = γmγn exp(−
m∑

j=1

(xj − ψj)
2

2σ2
) exp(−

n∑
j=1

(yj − φj)
2

2σ2
).

inserted into the master equation.

3.4 Another simplification

Another way of closing the system (29) is to assume that φ(x, t) varies slowly
with x so that ∆φ = φ(x, t)− φ̄(t) is small. Then it follows with the assumption
on wr in Lemma 3.1 that since p0 is a PDF

|
∫

Rm
+

wr(x + mr,φ(x + mr, t), t)p0(x + mr, t) dx

−
∫

Rm
+

wr(x + mr, φ̄(t), t)p0(x + mr, t) dx|

≤
∫

Rm
+

|wr(x + mr,φ(x + mr, t), t)− wr(x + mr, φ̄(t), t)|p0(x + mr, t) dx

≤
∫

Rm
+

cr(x, t)∆φ̂p0(x + mr, t) dx ≤ Cr(t)∆φ̂,

(36)

with |∆φj(x, t)| ≤ ∆φ̂ for all j and some positive cr and Cr. The equation for

φ̄ is then derived from (29) and after discarding small terms depending on ∆φ̂
according to (36) we have

dφ̄k

dt
= −

R∑
r=1

nrk

∫

Rm
+

wr(x + mr, φ̄(t), t)p0(x + mr, t) dx. (37)

The equation for p0 derived from the master equation is as in (15). Replace
φ by φ̄ in (15) and ignore ρ0. The difference between the right hand sides due to

14



this change is denoted by ρrφ̄. With the assumption in Lemma 3.1 on wr, there

is a bound on ρrφ̄ which is linear in ∆φ̂ when ∆φ̂ is sufficiently small, see (36).
The equation for p0 and one reaction is now

∂p0(x, t)

∂t
= wr(x + mr,φ(x + mr, t), t)p0(x + mr, t)− wr(x,φ(x, t), t)p0(x, t)

= wr(x + mr, φ̄(t), t)p0(x + mr, t)− wr(x, φ̄(t), t)p0(x, t) + ρrφ̄.

(38)

The FP equation derived from (38) is

∂p0(x, t)

∂t
=

{
m∑

i=1

mri
∂q̄r0(x, t)

∂xi

+
m∑

i=1

m∑
j=1

mrimrj

2

∂2q̄r0(x, t)

∂xi∂xj

}
+ ρφ̄, (39)

with q̄r0(x, t) = wr(x, φ̄(t), t)p0(x, t) and ρφ̄ =
∑

r ρrφ̄. Neglecting the term ρφ̄,
the FP equation for p0(x, t) in conservation form is

∂p0(x, t)

∂t
=

R∑
r=1

∇ · F̄r0, (40)

with the flux functions

F̄r0i = mri(q̄r0 + 0.5mr · ∇q̄r0), i = 1 . . . m, r = 1 . . . R.

The time evolution of the expected values φ̄(t) and the PDF p0(x, t) is governed
by a system of usually nonlinear IDEs (37) and a PDE (40). The differences
between the solutions of (29) and (37) and the solutions of (39) and (40) are
estimated in the next theorem. These differences are small if ∆φ̂ is small.

Theorem 3.4. Assume that wr, r = 1 . . . R, is bounded and has bounded first and
second derivatives in x in Qη × [0, T ] and that M(x, t) =

∑
r wrmrm

T
r ∈ Rm×m

is positive definite.
Let φ̃ be the solution of (29) and φ̄ the bounded solution of (37) with identical

initial conditions at t = 0. Assume that p0 is a PDF and that |φk(x, t)− φ̄k(t)| ≤
∆φ̂ for all k,x, and t. Then for t ∈ [0, T ]

|φ̃k(t)− φ̄k(t)| ≤ ∆φ̂
∑

r

|nrk|
∫ t

0

Cr(τ) dτ .

Let p̃0 be the weak solution of (39) and p0 the weak solution of (40) with
the boundary conditions p̃0(x, t) = 0 and p0(x, t) = 0 on the boundary ∂Qη and

identical initial conditions at t = 0. Then for ∆φ̂ sufficiently small and t ∈ [0, T ]

|p̃0(x, t)− p0(x, t)| ≤ Cφ∆φ̂,
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where Cφ depends on η, T, wr, φ̄,m, and mr.

Proof. The difference δφk = φ̃k − φ̄k satisfies

−
∑

r

|nrk|Cr(t)∆φ̂ ≤ dδφk

dt
≤

∑
r

|nrk|Cr(t)∆φ̂, k = 1 . . . n,

by (36). The bound on |δφk(t)| is obtained by Gronwall’s lemma.
The difference δp0 = p̃0 − p0 satisfies (40) with the source term g = ρφ̄. The

boundary and initial condition is δp0 = 0. Then δp0 is a solution to (23) with
g added to the right hand side. As in the proof of Theorem 3.2, the maximum
principle in Theorem 1 of [1] is applicable with g bounded by a sum over r of the
bound in (36) and the bound on δp0 follows without any smoothness assumptions
on φ̄. ¥

In [15, 17], the purpose of the splitting of the species is to have one set of slow
variables and one set of fast variables. The fast variables correspond to φ̄ in (37)
and the equation for the slow variables is the master equation corresponding to
(40).

The equations in QCMD [7] also have a structure similar to (37) and (40).
There is a system of equations in QCMD for the positions of the particles with
an averaged right hand side as in (37) and there is a PDE for the wave function
corresponding to (40) for the PDF p0 here.

The case when all species are treated in the same manner without any as-
sumption on the PDF as in (9) and n = 0 results in the FP equation (4) or (5).
The solution depends on time and the m-dimensional space and since m = N no
reduction of the original problem is achieved.

In the other extreme case m = 0 and p0 and wr depend only on t. The
expected value in (14) also only depends on t and φk equals pk apart from a
scaling factor. The equation (22) agrees with (32) with ψ = ∅. The macroscopic
reaction rate equations for φk are the governing equations.

By replacing the integrals over y in (15) and (20) by summation over a y
taking integer values, differential-difference equations of the same type as the
master equation are obtained corresponding to (17) and (22). Summation over
x ∈ Zn

+ in (37) and over all reactions in (38) yields the equations in discrete space
corresponding to (37) and (40).

If it is impossible to reduce m to, say, 4 or 5 so that (40) can be solved
numerically as a PDE, then p0 in (37) can be generated by a stochastic algorithm
such as in [13] without the exponential growth in m of the computational work.
This is a way of coupling stochastic simulation of some species while the expected
values of the remaining species are given by IDEs.

Two different models mixing the macroscopic and the mesoscopic view have
been derived:

1. (17) and (22),
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2. (37) and (40).

In both cases, the spatial dimension of the PDE is reduced from m + n in the
FP equation to m. The number of independent variables has increased from 1
to n + 1 but this is much less of a problem from a computational point of view.
The molecular species where the mesoscopic model is critical for an accurate
description of the reactions should be among the selected m compounds in the
first group satisfying an FP equation. The expected values of the remaining n
species are solutions of n additional equations. Assuming that the first m species
have the same type of probability distribution as the remaining n species, we
revert to the macroscopic reaction rate equations.

4 Numerical results

Consider the following nine reactions for the molecular species X and Y modeling
the creation of two metabolites controled by two enzymes EX and EY from [9]:

∅ w1−→ X ∅ w2−→ Y

X + Y
w3−→ ∅

X
w4−→ ∅ Y

w5−→ ∅
∅ w6−→ EX ∅ w7−→ EY

EX
w8−→ ∅ EY

w9−→ ∅
The difference between the states and the propensities for the nine reactions are
with xT = (x, y) and yT = (eX , eY )

nT
1 = (−1, 0, 0, 0), w1 = kXeX

1+ x
KI

, nT
2 = (0,−1, 0, 0), w2 = kY eY

1+ y
KI

,

nT
3 = (1, 1, 0, 0), w3 = k2xy, nT

4 = (1, 0, 0, 0), w4 = µx,

nT
5 = (0, 1, 0, 0), w5 = µy, nT

6 = (0, 0,−1, 0), w6 =
kEX

1+ x
KR

,

nT
7 = (0, 0, 0,−1), w7 =

kEY

1+ y
KR

, nT
8 = (0, 0, 1, 0), w8 = µeX ,

nT
9 = (0, 0, 0, 1), w9 = µeY .

(41)

In the experiments, the coefficients are kX = kY = 0.3, k2 = 0.001, KI = 60, KR =
30, kEX

= kEY
= 0.02, and µ = 0.002.

The system with m = 2 and n = 2 is simulated with the FP equation using
three different alternatives:

1. X and Y are stochastic variables, EX and EY have normal distributions
with a small σ as in (9) ⇒ three PDEs for p0(x, y, t) (17) and p1(x, y, t) and
p2(x, y, t) (22) in 2D,

2. X and Y are stochastic variables, EX and EY have normal distributions
with a small σ and the expected values of EX and EY are independent of
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x and y ⇒ one PDE for p0(x, y, t) (40) in 2D and two IDEs for φ̄1(t) and
φ̄2(t) (37),

3. X, Y, EX , EY all have normal distributions with a small σ ⇒ four reaction
rate equations (2) or (32), (35).

The PDEs are discretized in an m-dimensional space by a finite volume
method of second order and in time by the backward differentiation formula of
order two (BDF-2) as in [11, 20]. Spatial first derivatives are approximated by an
upwind scheme for improved spatial stability and BDF-2 is suitable for parabolic
equations with its unconditional temporal stability. The system of nonlinear
equations in every time step is solved by a Newton-Krylov method with GMRES
[19]. The computational domain is the square Ω = {0 ≤ x, y ≤ 200}.

The initial distribution of p0 at t = 0 is a Gauss pulse with center at x =
y = 60. The solutions at t = 0, 120, and 3000, are displayed in Fig. 1. The
computed p0 with Alternative 1 is close to the solution with Alternative 2 in the
figure. The trajectory of the macroscopic solution with Alternative 3 is close to
the trajectories of the peak of p0. The difference between the solutions of p0 at
t = 3000 is found in Fig. 2.a. It is small compared to the maximum of p0 (see
Fig. 3). The computed φ1(x, 3000) and φ2(x, 3000) only mildly dependent on x
in Figs. 2.b and 2.c and φ1(x, y, 3000) = φ2(y, x, 3000).

The time evolution of the maxima and the mean values of p0 determined with
φ(x, t) and φ̄(t) are displayed in Fig. 3. The mean value is constant because of
the conservation of p0. The difference is small between Alternatives 1 and 2 for
this chemical system since φ(x, t) is almost constant in x (see Figs. 2.b and 2.c).
Alternative 2 is less computationally expensive and is the preferred model in this
case.
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Figure 1: The isolines of p0 are displayed at t = 0, 120, 3000, using φ(x, t) (a)
and φ̄(t) (b). The solid thick line is the trajectory of the macroscopic solution.
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Figure 2: The difference between p0 obtained with φ(x, t) and φ̄(t) at t = 3000
(a), φ1(x, 3000) (b), and φ2(x, 3000) (c).
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Figure 3: The maximum and the mean value of p0 obtained with φ(x, t) (a) and
φ̄(t) (b).

The solution of the macroscopic reaction rate equations is found in Fig. 4.a.
The solution is compared to φ̄1(t) and φ̄2(t) from Alternative 2 in Fig. 4.b. The
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difference is barely visible in the plot. The mean values of φ(x, t) in Alternative
1 are (φ1, φ2) = (7.98, 4.93) at t = 120 and (φ1, φ2) = (4.96, 4.96) at t = 3000,
also in good agreement with Fig. 4.b. The reaction rate equations yield good
approximations of the expected values here.
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Figure 4: The solution of the reaction rate equations (a) and φ̄1(t) and φ̄2(t)
compared with φEX

and φEY
from the reaction rate equations (b).

5 Conclusions

Four different levels of modelling chemical reactions have been derived and dis-
cussed. The most complete model considered here is the mesoscopic master
equation and the corresponding FP equation for the PDF of all molecular species
(5). Assuming that the species can be divided into two sets where the species in
the second set are independently and normally distributed, one FP equation is
derived for the PDF of the first set of species (17) and equations for the partial
first moments of the second set of species (22). If the variation of the conditional
expected values in the second set is small over the first set, then a system of IDEs
(37) and an FP equation (40) are the appropriate model equations. Finally, when
also the species of the first set are independently and normally distributed, we
obtain the macroscopic reaction rate equations (2). If there are m species in the
first set and n in the second set, the spatial dimension of the FP equation is
m + n. In the first simplification, n + 1 PDEs are solved in m dimensions. The
equations of the second simplification are n time-dependent IDEs and one PDE
in m dimensions. The reaction rate equations are a system of time-dependent
ODEs for m + n concentrations.

A four dimensional problem is reduced to two dimensions using (17), (22),
and (37), (40), in a numerical example. These solutions are compared with the
solution of the reaction rate equations. In this particular example, the difference
between all the solutions is small, but this is in general not the case.
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Appendix

The proofs of two lemmas in Sect. 3 are presented here.

Proof of Lemma 3.1.
Introduce the change of variables zj = (yj −φj)/σ in E[w|x] and let ∆φ = σz to
obtain

E[w|x] = γnσ
n

∫
(w(x,φ, t) + σ

n∑
j=1

cj(x, φ, t)zj

+ρ(x, φ, σz, t)) exp(−0.5
n∑

j=1

z2
j ) dz

= w(x, φ, t) + γnσ
n+1

n∑
j=1

cj(x,φ, t)

∫
zj exp(−0.5

n∑
j=1

z2
j ) dz

+(2π)−n/2

∫
ρ(x,φ, σz, t) exp(−0.5

n∑
j=1

z2
j ) dz.

The first integral in the expression for E[w|x] is zero and a bound on the second
integral of ρ, Iρ, is

|Iρ| = |
∫

ρ(x,φ, σz, t) exp(−0.5
n∑

j=1

z2
j ) dz|

≤
∫ q∑

k=2

σk
∑

|�|=k

ξ�(x, t)
n∏

j=1

|zj|δj exp(−0.5z2
j ) dz

≤ 2n

∫

Rn
+

q∑

k=2

σk
∑

|�|=k

ξ�(x, t)
n∏

j=1

z
δj

j exp(−0.5z2
j ) dz

= 2n

q∑

k=2

σk
∑

|�|=k

ξ�(x, t)
n∏

j=1

∫ ∞

0

z
δj

j exp(−0.5z2
j ) dzj.

The integrals in the product all have bounds depending on δj and therefore on k
and q. There is a κ1(x, t, n) such that

(2π)−n/2|Iρ| ≤
q∑

k=2

σkκ1 = κ1σ
2(1− σq−1)/(1− σ),

The lemma is proved. ¥
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Proof of Lemma 3.3.
The difference between E[w] and the integral over Rm is

δI = γm

∫

Rm\Rm
+

w(x + m, t) exp(−
m∑

j=1

(xj + mrj − ψj)
2

2σ2
) dx

= σmγm

∫

U
w(ψ + σz, t) exp(−0.5

m∑
j=1

z2
j ) dz,

with the change of variables xj = σzj − uj, uj = mrj − ψj < 0, and U =⋃m
j=1 Uj, Uj = {z|zj ≤ uj/σ}. Then δI is bounded by

|δI| ≤ σmγm

m∑
i=1

∫

Ui

|w(ψ + σz, t)| exp(−0.5
m∑

j=1

z2
j ) dz

≤ σmγm

m∑
i=1

q∑

k=0

σk
∑

|�|=k

η�(ψ, t)

∫

zi≤ui/σ

m∏
j=1

|zj|δj exp(−0.5z2
j ) dz.

(42)

The integrals can be written

∫

zi≤ui/σ

m∏
j=1

|zj|δj exp(−0.5z2
j ) dz

=

∫ ui/σ

−∞
(−1)δizδi

i exp(−0.5z2
i ) dzi

∏

j 6=i

∫
|zj|δj exp(−0.5z2

j ) dzj.

The product of the integrals has a bound depending on δj (cf. the proof of Lemma
3.1). A recursion formula applicable to the first integral is

Ik =

∫ v

−∞
zk exp(−0.5z2) dz = −vk−1 exp(−0.5v2) + (k − 1)Ik−2, k = 2 . . . ,

I1 = − exp(−0.5v2), I0 ≤
∫ v

−∞
exp(−0.5vz) dz = −2v−1 exp(−0.5v2).

Thus, the integrals in (42) are bounded by

Pk−1(ui/σ) exp(−0.5(ui/σ)2),

where Pk−1 is a polynomial of degree k− 1. Sum all the terms in the estimate of
|δI| (42) and the lemma is proved. ¥
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