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SYMMETRY AND AUTOMATED BRANCH FOLLOWING FOR

A SEMILINEAR ELLIPTIC PDE ON A FRACTAL REGION

JOHN M. NEUBERGER, NÁNDOR SIEBEN, AND JAMES W. SWIFT

Abstract. We apply the Gradient-Newton-Galerkin-Algorithm (GNGA) of Neuberger & Swift
to find solutions to a semilinear elliptic Dirichlet problem on the region whose boundary is the
Koch snowflake. In a recent paper, we described an accurate and efficient method for generating a
basis of eigenfunctions of the Laplacian on this region. In that work, we used the symmetry of the
snowflake region to analyze and post-process the basis, rendering it suitable for input to the GNGA.
The GNGA uses Newton’s method on the eigenfunction expansion coefficients to find solutions to
the semilinear problem. This article introduces the bifurcation digraph, an extension of the lattice
of isotropy subgroups. For our example, the bifurcation digraph shows the 23 possible symmetry
types of solutions to the PDE and the 59 generic symmetry-breaking bifurcations among these
symmetry types. Our numerical code uses continuation methods, and follows branches created
at symmetry-breaking bifurcations, so the human user does not need to supply initial guesses for
Newton’s method. Starting from the known trivial solution, the code automatically finds at least one
solution with each of the symmetry types that we predict can exist. Such computationally intensive
investigations necessitated the writing of automated branch following code, whereby symmetry
information was used to reduce the number of computations per GNGA execution and to make
intelligent branch following decisions at bifurcation points.

1. Introduction.

We seek numerical solutions to the semilinear elliptic boundary value problem

∆u+ fλ(u) = 0 in Ω

u = 0 on ∂Ω,(1)

where ∆ is the Laplacian operator, Ω ⊂ R2 is the region whose boundary ∂Ω is the Koch snowflake,
u : Ω→ R is the unknown function, and fλ : R→ R is a one-parameter family of odd functions. For
convenience, we refer to Ω as the Koch snowflake region. This article is one of the first to consider
a nonlinear PDE on a region with fractal boundary. In this paper, we choose the nonlinearity to
be

fλ(u) = λu+ u3,(2)

and treat λ ∈ R as the bifurcation parameter. When the parameter is fixed, we will sometimes use
f in place of fλ. Using this convention, note that λ = f ′(0).

This paper exploits the hexagonal symmetry of the Koch snowflake region, and the fact that f
is odd. Our nonlinear code would work with any region with hexagonal symmetry and any odd
‘superlinear’ function f (see [4]), and with minor modification for other classes of nonlinearities
as well. We chose to work with odd f primarily because of the rich symmetry structure. The
explicit shape of Ω represents a considerable technological challenge for the computation of the
eigenfunctions [16, 27], which are required as input to the nonlinear code.

It is well known that the eigenvalues of the Laplacian under this boundary condition satisfy

0 < λ1 < λ2 ≤ λ3 ≤ · · · → ∞,(3)
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and that the corresponding eigenfunctions {ψj}j∈N can be chosen to be an orthogonal basis for

the Sobolev space H = H1
0 (Ω) = W 1,2

0 (Ω), and an orthonormal basis for the larger Hilbert space
L2 = L2(Ω). The inner products are

〈u, v〉H =

∫

Ω
∇u · ∇v dx and 〈u, v〉2 =

∫

Ω
u v dx,

respectively (see [1, 9, 15, 17]). Theorem 8.37 and subsequent remarks in [9] imply that the
eigenfunctions are in C∞(Ω). In [17], properties of the gradients of eigenfunctions near boundary
points are explored in light of the lack of regularity of ∂Ω.

Using the Gradient-Newton-Galerkin-Algorithm (GNGA, see [26]) we seek approximate solutions

u =
∑M

j=1 ajψj to (1) by applying Newton’s method to the eigenfunction expansion coefficients of

the gradient ∇J(u) of a nonlinear functional J whose critical points are the desired solutions. The
definition of J , the required variational equations, a description of the GNGA, and a brief history
of the problem are the subject of Section 2.

The GNGA requires as input a basis spanning a sufficiently large but finite dimensional subspace
BM = span{ψ1, . . . , ψM}, corresponding to the first M eigenvalues {λj}Mj=1. As described in [27],
a grid GN of N carefully placed points is used to approximate the eigenfunctions. These are the
same grid points used for the numerical integrations required by Newton’s method. Section 3 briefly
describes the process we use for generating the eigenfunctions.

Section 4 concerns the effects of symmetry on automated branch following. The symmetry the-
ory for linear operators found in [27] is summarized and then the extensions required for nonlinear
operators are described. Symmetry-breaking bifurcations are analyzed in a way that allows an
automated system to follow the branches created at the bifurcations. As we develop the theory, we
present specific examples applying the general theory to equation (1) on the snowflake region. In
particular, we find that there are 23 different symmetry types of solutions to (1), and 59 generic
symmetry-breaking bifurcations. The symmetry types and bifurcations among them are summa-
rized in a bifurcation digraph, which generalizes the well-known lattice of isotropy subgroups (see
[10]). As far as we know, the bifurcation digraph is a new way to organize the information about
the symmetry-breaking bifurcations.

Section 5 describes how understanding the symmetry allows remarkable increases in the efficiency
of the GNGA. Section 6 describes the automated branch following. We use repeated executions of
the GNGA or a slightly modified algorithm (parameter-modified GNGA) to follow solution branches
of (1, 2). The GNGA uses Newton’s method, which is known to work well if it has a good initial
approximation. The main shortcoming of Newton’s method is that is works poorly without a good
initial approximation. We avoid this problem by starting with the trivial solution (u = 0). The
symmetry-breaking bifurcations of the trivial solution are found by the algorithm and the primary
branches are started. The program follows the branches by continuation methods, and then follows
the new branches created at symmetry-breaking bifurcations. To follow an existing branch, we vary
λ slightly between executions. To start new solution branches created at bifurcation points, we
treat λ as a variable and fix one of the null eigenfunctions of the Hessian evaluated at the bifurcation
point. The symmetry analysis tells which null eigenfunction to use. In this way solutions with all
23 symmetry types are found automatically, starting from u = 0, without having to guess any
approximations for Newton’s method.

In our experiments, many bifurcation diagrams were generated by applying the techniques men-
tioned above. A selection of these diagrams are provided in Section 7, along with contour plots
of solutions to (1) corresponding to each of the 23 symmetry types predicted to exist. We include
evidence of the convergence of our algorithm as the number of modesM and grid points N increase.

Many extensions to our work are possible, including enforcing different boundary conditions on
the same region, solving similar semilinear equations on other fractal regions, and applying the
methodology to partial difference equations (PdE) on graphs [25]. Section 8 discusses some of
these possible extensions. In particular, we are in the process of re-writing the suite of programs.
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We plan to be able to solve larger problems using a parallel environment. We will be able to solve
problems with larger symmetry groups by automating the extensive group theoretic calculations.
This concluding section also has a discussion of the convergence of the GNGA.

2. GNGA.

We now present the variational machinery for studying (1) and follow with a brief description of
the general GNGA. Section 6 contains more details of the implementation of the algorithm for our
specific problem. Let Fλ(u) =

∫ u
0 fλ(s) ds for all u ∈ R define the primitive of fλ. We then define

the action functional J : R×H → R by

(4) J(λ, u) =

∫

Ω

{

1
2 |∇u|

2 − Fλ(u)
}

dx.

We will sometimes use J : H → R to denote J(λ, ·). The class of nonlinearities f found in
[4, 5, 25, 28] imply that J is well defined and of class C2 on H. The choice (2) we make in
this paper belongs to that class. Critical points of J are by definition weak solutions of (1) (see
for example [4, 28, 9]), and clearly classical solutions are critical points. The usual “bootstrap”
argument of repeatedly applying Theorem 8.10 of [9] can be used in our case. Specifically, Hk

0 is
embedded in Lq for all q ≥ 2 when the space diminsion n is 2, regardless of the regularity of ∂Ω (due
to the zero Dirichlet boundary condition, see [1]). Hence u ∈ Hk implies f(u) ∈ Hk as well. As a
result, if u is a critical point then u ∈ C∞(Ω) ∩ C(Ω̄), hence a classical solution. If one considered
boundary conditions, space dimensions, and nonlinear terms other than the choices made in this
paper, it could happen that critical points would be weak not classicial solutions. Regardless, our
approximations lie inBM ⊂ C∞. Here, the existence proofs for positive, negative, and sign-changing
exactly once solutions from [4, 28] immediately give at least 3 nontrivial (classical) solutions for
our specific superlinear boundary value problem; appealing to symmetry implies the existence of
even more solutions (see for example [25]).

The choice of H for the domain is crucial to the analysis of the PDE (see [4, 24], and references
therein), as well as for understanding the theoretical basis of effective steepest descent algorithms
(see [7, 22, 23], for example). We will work in the coefficient space RM ∼= BM . The coefficient vector

of u ∈ BM is the vector a ∈ RM satisfying u =
∑M

j=1 ajψj . Using the corresponding eigenvalues

(3) and integrating by parts, the quantities of interest are

(5) gj = J ′(u)(ψj) =

∫

Ω
{∇u · ∇ψj − f(u)ψj} = ajλj −

∫

Ω
f(u)ψj , and

(6) hjk = J ′′(u)(ψj , ψk) =

∫

Ω
{∇ψj · ∇ψk − f ′(u)ψj ψk} = λjδjk −

∫

Ω
f ′(u)ψj ψk,

where δjk is the Kronecker delta function. Note that there is no need for numerical differentiation
when forming gradient and Hessian coefficient vectors and matrices in implementing Algorithm 2.1;
this information is encoded in the eigenfunctions.

The vector g ∈ RM and theM×M matrix h represent suitable projections of the L2 gradient and
Hessian of J , restricted to the subspace BM , where all such quantities are defined. For example,
for u =

∑M
j=1 ajψj , v =

∑M
j=1 bjψj , and w =

∑M
j=1 cjψj , we have:

PBM
∇2J(u) =

M
∑

j=1

gjψj, J
′(u)(v) = g · b, and J ′′(u)(v,w) = hb · c = b · hc.

We can identify g with the approximation PBM
∇2J(u) of ∇2J(u) = ∆u + f(u), which is defined

for u ∈ BM . The solution χ to the M -dimensional linear system hχ = g is then identified with the
(suitably projected) search direction (D2

2J(u))
−1∇2J(u), which is not only defined for u ∈ BM , but

is there equal to (D2
HJ(u))

−1∇HJ(u). We use the least squares solution of hχ = g. In practice,
the algorithm works even near bifurcation points where the Hessian is not invertible.
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The heart of our code is Newton’s method in the space of eigenfunction coefficients:

Algorithm 2.1. (GNGA)

(1) Choose initial coefficients a = {aj}Mj=1, and set u =
∑

ajψj.

(2) Loop

(a) Calculate the gradient vector g = {J ′(u)(ψj)}Mj=1 from equation (5).

(b) Calculate the Hessian matrix h = {J ′′(u)(ψj , ψk)}Mj, k=1 from equation (6).

(c) Exit loop if ||g|| is sufficiently small.

(d) Solve hχ = g for the Newton search direction χ ∈ RM.

(e) Replace a← a− χ and update u =
∑

ajψj.

(3) Calculate sig(h) and J for the approximate solution.

If Newton’s method converges then we expect that u approximates a solution to the PDE (1),
provided M is sufficiently large and the eigenfunctions and numerical integrations are sufficiently
accurate. See Section 8.

Our estimate for the Morse index (MI) of the critical point of J is the signature of h, denoted
sig(h), which is defined as the number of negative eigenvalues of h. This measures the number of
linearly independent directions away from u in which J decreases quadratically.

The basic Algorithm 2.1 is modified to take advantage of the symmetry of our problem. The M
integrations required in step (a) and the M(M +1)/2 integrations in step (b) are reduced to fewer
integrations if the initial guess has nontrivial symmetry.

We often use a “parameter-modified” version of the GNGA (pmGNGA). In this modification, λ
is treated as an unknown variable and one of the M coefficients ak is fixed. Along a given branch,
symmetry generally forces many coefficients to be zero. When a bifurcation point is located by
observing a change in MI, we can predict the symmetry of the bifurcating branches using the
symmetry of the null eigenfunctions of the Hessian. By forcing a small nonzero component in the
direction of a null eigenfunction (orthogonal to the old branch’s smaller invariant subspace), we can
assure that the pmGNGA will not converge to a solution lying on the old branch. Another benefit
of the pmGNGA is that it can handle a curve bifurcating to the right as well as one bifurcating
to the left. In our system, the branches that bifurcate to the right have saddle node bifurcations
where they turn around and go to the left. The pmGNGA can follow such branches while the
normal GNGA cannot.

The implementation of pmGNGA is not difficult. The M equations are still

gi = J ′(u)(ψi) = 0,

but the M unknowns are

ã = (a1, . . . , ak−1, λ, ak+1, . . . , aM ),

and the value of one coefficient, ak, is fixed. Consequently, we replace the Hessian matrix h with a
new matrix h̃ where the k-th column is set to ∂gi/∂λ = −ai:

h̃ij =

{

hij if j 6= k
−ai if j = k

.

The search direction χ̃ is the solution to the system h̃χ̃ = g. The pmGNGA step is

ã← ã− χ̃,
and then u and λ are updated. After Newton’s method converges, the k-th column of the original
hij is calculated and the MI of the solution, sig(h), is computed.

We conclude this section with a very brief history of the analytical and numerical aspects of
the research into (1) given our type of nonlinearity f . Our introduction to this general subject
was [4], where a sign-changing existence result was proven. This theorem is extended in [5]; we
indicate briefly in Section 7 where this so-called CCN solution can be found on our bifurcation
diagrams. The article [7] was our first success in using symmetry to find higher MI solutions. The
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Figure 1. The Koch snowflake region Ω with the grids G13 and G133 at levels
ℓ = 2 and 3, respectively. A generic grid point (which is not on any line of reflection
symmetry) is indicated in the larger grid.

GNGA was developed in [26], wherein a much more detailed description of the variational structure
and numerical implementation can be found. The first implementation of the GNGA for regions
where the eigenfunctions are not known in closed form is in [12], where the region is a Bunimovich
stadium. The article [24] provides a historical overview of the authors’ experimental results using
variants of the Mountain Pass Algorithm (MPA, MMPA, HLA) and the GNGA, as well as recent
analytical results and a list of open problems; the references found therein are extensive.

3. The Basis of Eigenfunctions.

In [27], we describe theoretical and computational results that lead to the generation of a basis
of eigenfunctions solving

(7) ∆u+ λu = 0 in Ω, u = 0 on ∂Ω.

That paper details the grid technique and symmetry analysis that accompanied the effort; we briefly
summarize those results in this section.

The Koch snowflake is a well-known fractal, with Hausdorff dimension log3 4. Following Lapidus,

Neuberger, Renka, and Griffith [16], we take our snowflake to be inscribed in a circle of radius
√
3
3

centered about the origin. We use a triangular grid GN of N points to approximate the snowflake
region. Then, we identify u : GN → R with u ∈ RN , that is,

(8) u(xi) = ui

at grid points xi ∈ GN . Our paper [27] differs from [16] in that we use a different placement of the
grid points and a different method of enforcing the boundary condition, resulting in more accurate
eigenvalue estimates with fewer points. Figure 1 depicts the levels 2 and 3 grids in the family of grids
used in [27] to compute eigenfunctions; we used the first M eigenfunctions computed at levels 4, 5,
and 6 in our nonlinear experiments. The number of grid points at level ℓ is N = (9ℓ−4ℓ)/5, and the
spacing between grid points is h = 2/3ℓ. We computed the eigenvalues and eigenfunctions for (7)
using ARPACK and this approximation to the Laplacian with zero-Dirichlet boundary conditions:

−∆u(x) ≈ 2

3h2

(

(12 − number of neighbors)u(x)−
∑

{neighboring values of u}
)

.(9)

The ARPACK is based upon an algorithmic variant of the Arnoldi process called the Implicitly
Restarted Arnoldi Method (see [19]) and is ideally suited for finding the eigen-pairs of the large
sparse matrices associated with the discretization of the Laplacian.
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4. Symmetry: The Lattice of Isotropy Subgroups and The Bifurcation Digraph.

This section describes equivariant bifurcation theory as it applies to the branching of solutions
to equation (1), see [6, 10, 11, 18]. We are able to describe the expected symmetry types of
solutions to (1), as traditionally arranged in a lattice of isotropy subgroups. We introduce the
bifurcation digraph, a refinement of the lattice, which shows every possible generic bifurcation from
one symmetry type to another as a directed edge which is labeled with information about the
bifurcation. The bifurcation digraph is of interest in its own right and summarizes the essential
information required by our automated branch following code. In this project, GAP (Groups,
Algorithms, and Programming, see [8]) was used solely to verify the symmetry analysis we did by
hand. In our continuing projects GAP is a useful tool since it can perform the tedious calculations
and write the information in a format that can be read by the branch following code. Matthews
[21] has used GAP to do similar calculations. We apply this methodology to the snowflake domain
being considered in this paper. The analysis shows that solutions fall into 23 symmetry types, and
that there are 59 types of generic symmetry breaking bifurcations.

Group Actions and the Lattice of Isotropy Subgroups. Let Γ be a finite group and V be a
real vector space. A representation of Γ is a homomorphism α : Γ → GL(V ). Where convenient,
we identify GL(V ) with the set of invertible matrices with real coefficients. Every representation
α corresponds to a unique group action of Γ on V by the rule γ · v := α(γ)(v) for all γ ∈ Γ and
v ∈ V . We will usually use the action rather than the representation. The group orbit of v is
Γ · v = {γ · v | γ ∈ Γ}.

Example 4.1. Let

D6 := 〈ρ, σ | ρ6 = σ2 = 1, ρ σ = σρ5〉
be the dihedral group with 12 elements. It is convenient to define τ = ρ3σ. It follows that
στ = τσ = ρ3. The group D6 is the symmetry of a regular hexagon, and of the Koch Snowflake
region Ω. The standard D6 action on the plane is given by

ρ · (x, y) =
(

1
2x+

√
3
2 y,−

√
3
2 x+ 1

2y
)

σ · (x, y) = (−x, y)
τ · (x, y) = (x,−y).

(10)

In this action, ρ is a rotation by 60◦, σ is a reflection across the y-axis, and τ is a reflection across
the x-axis. These group actions are depicted in Figure 13, near the end of the paper.

We will denote subgroups of D6 by listing the generators. While any given subgroup of D6

can be defined using only ρ and σ, we find it geometrically descriptive to use τ in certain cases.
For example, we prefer 〈ρ2, τ〉 to the equivalent 〈ρ2, ρσ〉. In order to make relationships among
subgroups intuitive, we often include τ when its membership is implied by the other generators
(see for example Figure 2).

The standard D6 group action (10) is not the only action we consider. For a function u ∈ L2(Ω)
and group element γ ∈ D6, we define (γ · u)(x) = u(γ−1 · x). In this paper, a vector u defined by
ui = u(xi), for a given grid GN = {xi}Ni=1, is a discrete approximation of a function on Ω. The D6

group action on u ∈ RN is a permutation of the components: (γ ·u)i = u(γ−1 ·xi). Given a function
u ∈ L2(Ω) or RN , the group orbit D6 · u consists of functions obtained from u by a reflection or
rotation.

Example 4.2. The group D6 × Z2, where Z2 = {1,−1}, acts on L2(Ω) in a natural way. For all
(γ, z) ∈ D6 × Z2, define

(γ, z) · u = z(γ · u).
We will denote (γ, 1) ∈ D6 × Z2 by γ and (γ,−1) ∈ D6 × Z2 by −γ. With this natural notation
(−γ) · u = −(γ · u), which we call simply −γ · u.
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Let us recall some facts about group actions, following [6, 10, 11]. The isotropy subgroup or
stabilizer of v ∈ V in Γ is

Stab(v,Γ) := {γ ∈ Γ | γ · v = v}.
The isotropy subgroup measures the symmetry of v, and is sometimes called the little group of v, or
Γv. If the group Γ is understood, we may simply write Stab(v) in place of Stab(v,Γ). The stabilizer
of a subset W ⊆ V in Γ is Stab(W,Γ) := {γ ∈ Γ | γ ·W = W}. This must be distinguished from
the point stabilizer of a subset

pStab(W,Γ) := {γ ∈ Γ | γ · v = v for all v ∈W} =
⋂

{Stab(v,Γ) | v ∈W}.
Another commonly used notation is ΓW for the stabilizer and Γ(W ) for the point stabilizer. Note
that pStab(W,Γ) is always normal in Stab(W,Γ), and the effective symmetry group acting on W is
Stab(W,Γ)/pStab(W,Γ), which acts faithfully on W .

If Σ is a subgroup of Γ then the fixed point subspace of Σ in V is

Fix(Σ, V ) := {v ∈ V | γ · v = v for all γ ∈ Σ}.
Another notation for the fixed point subspace is VΣ. We write Fix(Σ) when V is understood.

An isotropy subgroup of the Γ action on V is the stabilizer of some point v ∈ V . For some group
actions, not every subgroup of Γ is an isotropy subgroup.

Example 4.3. Consider the D6 action on the plane R2 described in equation (10. It is well-known
that 〈ρ〉 is not an isotropy subgroup of this action.

Now consider the D6 action on the function space L2(Ω). We give a standard argument that
every subgroup of D6 is an isotropy subgroup. Start with a function u∗ that is zero everywhere
except for a small region, and suppose that the region is distinct from each of its nontrivial images
under the D6 action. Then for any subgroup Σ ≤ D6, the average of the function u∗ over Σ, defined
as

(11) PΣ(u
∗) =

1

|Σ|
∑

γ∈Σ
γ · u∗

has isotropy subgroup Σ. Therefore every subgroup of the D6 action on L2(Ω) is an isotropy
subgroup. The average over the group is an example of a Haar operator, and PΣ : V → Fix(Σ, V )
is an orthogonal projection operator [36].

Similarly, every subgroup of D6 is an isotropy subgroup of the D6 action on RN , the space of
functions on the grid GN , provided ℓ ≥ 3. This follows from averaging the function that is 1 at a
generic lattice point, and 0 elsewhere. Recall that a generic point is one whose isotropy subgroup
is trivial. Figure 1 shows that the level two grid G13 does not have a generic point, while the level
three grid G133 does. Thus, the space of functions on G133 has the same isotropy subgroups as
L2(Ω), but a much smaller space has this same property. Start with any generic point x1 ∈ Ω.
Then D6 acts on the space of functions on the 12 points D6 · x1. This D6 action on R12 has the
same structure of isotropy subgroups as the D6 action on L2(Ω), and is the D6 action used in
our GAP calculations. The corresponding 12-dimensional representation is the well-known regular

representation of D6 (see [29, 31, 34]).

The symmetry of functions is described by two related concepts. A function q : V → R is
Γ-invariant if q(γ · v) = q(v) for all γ ∈ Γ and all v ∈ V . Similarly, an operator T : V → V is
Γ-equivariant if T (γ · v) = γ · T (v) for all γ ∈ Γ and all v ∈ V .

Example 4.4. The energy functional J defined in equation (4) is D6 × Z2-invariant. The nonlinear
PDE (1) can be written as (∆+ f)(u) = 0, where ∆+ f is a D6 ×Z2-equivariant operator. (There
are subtleties concerning the domain and range of ∆. See [6, 7] for a careful treatment of the
function spaces.) In particular, ∆ + f is D6-equivariant because the snowflake region Ω has D6

symmetry, and (∆+ f)(−u) = −(∆+ f)(u), since f is odd. As a consequence, if u is a solution to
(1), then so is every element in its group orbit (D6 × Z2) · u.
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The isotropy subgroups and fixed point subspaces are important because of the following simple
yet powerful results. See [6, 10, 11].

Proposition 4.5. Suppose Γ acts linearly on V , T : V → V is Γ-equivariant and Σ is an isotropy

subgroup of Γ.

(a) If v ∈ Fix(Σ) then T (v) ∈ Fix(Σ). Thus, T |Fix(Σ) : Fix(Σ)→ Fix(Σ) is defined.

(b) Stab(Fix(Σ)) = NΓ(Σ), the normalizer of Σ in Γ, and pStab(Fix(Σ)) = Σ.
(c) T |Fix(Σ) is NΓ(Σ)-equivariant.
(d) T |Fix(Σ) is NΓ(Σ)/Σ-equivariant, and NΓ(Σ)/Σ acts faithfully on Fix(Σ).

If Σ is a subgroup of Γ, the normalizer of Σ in Γ is defined to be NΓ(Σ) := {γ ∈ Γ | γΣ = Σγ},
which is the largest subgroup of Γ for which Σ is a normal subgroup. The presence of the normalizer
in Proposition 4.5(b) is interesting, since the normalizer is a property of the abstract groups, and
is independent of the group action.

Example 4.6. As a consequence of Proposition 4.5, we can solve the PDE (1), written as (∆+f)(u) =
0, by restricting u to functions in Fix(Σ, L2(Ω)). This leads to a simpler problem since the function
space Fix(Σ, L2(Ω)) is simpler than L2(Ω). An example of this is in Costa, Ding, and Neuberger
[7]. The techniques of that paper, applied to our problem, would find sign-changing solutions with
Morse index 2 within the space Fix(D6, L

2(Ω)). This space consists of all functions which are
unchanged under all of the rotations and reflections of the snowflake region.

Proposition (4.5) also applies to the GNGA, since the Newton’s method iteration mapping is
D6 × Z2-equivariant. If the initial guess is in a particular fixed point subspace, all the iterates will
be in that fixed point subspace. This fact can be used to speed numerical calculations, as described
in Section 5.

Two subgroups Σ1,Σ2 of Γ are conjugate (Σ1 ∼ Σ2) if Σ1 = γΣ2γ
−1 for some γ ∈ Γ. The

symmetry type of v ∈ V for the Γ action is the conjugacy class of Stab(v,Γ). Note that Stab(γ ·v) =
γ Stab(v)γ−1. Thus, every element of a group orbit Γ · v has the same symmetry type.

Let S = {Si} denote the set of all symmetry types of a Γ action on V . The set S has a natural
partial order, with Si ≤ Sj if there exits Σi ∈ Si and Σj ∈ Sj such that Σi ≤ Σj. The partially
ordered set (S,≤) is called the lattice of isotropy subgroups of the Γ action on V [10]. The diagram
of the lattice of isotropy subgroups is a directed graph with vertices Si and arrows Si ← Sj if, and
only if, Si � Sj and there is no symmetry type between Si and Sj .

Example 4.7. The symmetry type of a solution u to our PDE (1) for the D6 × Z2 action is the
conjugacy class of Stab(u,D6 × Z2); we refer to this as the symmetry type of u, without reference
to D6×Z2. The discussion of D6 acting on L2(Ω) in Example 4.3 can easily be extended to D6×Z2

acting on L2(Ω). Note that if −1 ∈ Σ ≤ D6×Z2, then the average of any function over Σ is u = 0.
Therefore the only isotropy subgroup of D6 ×Z2 which contains −1 is D6×Z2 itself. On the other
hand, the argument in Example 4.3 shows that any subgroup of D6 × Z2 which does not contain
−1 is an isotropy subgroup. Therefore, Σ ≤ D6 × Z2 is an isotropy subgroup of this group action
if and only if Σ = D6 × Z2 or −1 /∈ Σ.

This result allowed us to compute the isotropy subgroups by hand. We verified our calculations
using GAP. There are exactly 23 conjugacy classes of isotropy subgroups for the D6 × Z2 action
on L2(Ω), shown in condensed form in Figure 2. Thus, a solution to the PDE (1) has one of 23
different symmetry types.

Irreducible Representations and the Isotypic Decomposition. In order to understand the
symmetry-breaking bifurcations we need to first understand irreducible representations and the
isotypic decomposition of a group action. The information about the irreducible representations is
summarized in character tables [29, 31, 32, 34]. For our purposes, irreducible representations over
the field R are required, see [6, 10, 11]. The irreducible representations of Γ are homomorphisms

from Γ to the space of dj × dj real matrices: γ 7→ α(j)(γ), such that no proper subspace of Rdj is
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Γ0 = 〈ρ, σ, τ,−1〉 = D6 × Z2
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Γ1 = 〈ρ, σ, τ〉 = D6

Γ2 = 〈ρ,−σ,−τ〉
Γ3 = 〈−ρ, σ,−τ〉
Γ4 = 〈−ρ,−σ, τ〉

2
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2
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Γ5 = 〈σ, τ〉
Γ6 = 〈−σ,−τ〉
Γ7 = 〈σ,−τ〉
Γ8 = 〈−σ, τ〉

2

2 ��

2
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Γ9 = 〈ρ2, σ〉
Γ10 = 〈ρ2, τ〉
Γ11 = 〈ρ2,−τ〉
Γ12 = 〈ρ2,−σ〉

4
%%
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Γ13 = 〈ρ〉
Γ14 = 〈−ρ〉

2
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Γ15 = 〈σ〉
Γ16 = 〈τ〉
Γ17 = 〈−τ〉
Γ18 = 〈−σ〉
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Γ19 = 〈ρ3〉
Γ20 = 〈−ρ3〉

2
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Γ21 = 〈ρ2〉

wwoooooooooooooooooooooooooooooo

Γ22 = 〈1〉

Figure 2. The condensed diagram of the isotropy lattice (see [10]) for the D6×Z2

action on L2(Ω). The vertices of this diagram are the symmetry types (equivalence
classes of isotropy subgroups). We follow the convention [6, 10, 11] that one element
Γi of each symmetry type Si = [Γi] is listed. The representatives Γi have the property
that Γi ≤ Γj iff Si ≤ Sj. Contour plots of solutions to PDE (1) with each of the
23 symmetry types are given in Figures 13 and 14. The diagram of the isotropy
lattice is condensed as in [32]. The small numbers on the edges tell the number of
connections emanating from each symmetry type in a box. A missing small number
means 1. For example, the two arrows representing [Γ21] ≤ [Γ13] and [Γ21] ≤ [Γ14]
in the full diagram are collapsed to a single arrow in the condensed diagram. For
Γ0 through Γ4, the τ generator is redundant since τ = ρ3σ, but its presence makes
the subgroups manifest. For example, Γ2 = 〈ρ,−σ,−τ〉 = 〈ρ,−σ〉, but the three
generators make it clear that 〈−σ,−τ〉 ≤ 〈ρ,−σ,−τ〉.
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invariant under α(j)(γ) for all γ ∈ Γ. The dimension of the irreducible representation α(j) is dj. We
call W ⊆ V a Γ-invariant subspace of V if Γ ·W ⊆W . An irreducible subspace of V is an invariant
subspace with no proper invariant subspaces. Every irreducible subspace of the Γ action on V
corresponds to a unique (up to similarity) irreducible representation of Γ. The dimension of the
irreducible subspace is the same as the dimension of the corresponding irreducible representation.

For each irreducible representation α(j) of Γ, the isotypic component of V for the Γ action,

denoted by V
(j)
Γ , is defined to be the direct sum of all of the irreducible subspaces corresponding

to the fixed α(j) [6, 10, 11, 27]. The isotypic decomposition of V is then

(12) V =
⊕

j

V
(j)
Γ .

Some of the isotypic components might be the single point at the origin. These can be left out
of the isotypic decomposition. A description of the isotypic components in terms of projection
operators is given in [27].

For any group Γ, we denote the trivial representation by α(1). That is α(1)(γ) = 1 for all γ ∈ Γ.
Thus, if Γ is an isotropy subgroup of a Γ0 action on V , then

V
(1)
Γ = Fix(Γ, V ).

Example 4.8. Let us consider the D6 = 〈ρ, σ, τ〉 action on L2(Ω). We need to consider the six
irreducible representations of D6, which are listed in [27], to find the isotypic decomposition of
L2(Ω). Since these isotypic components are central to our problem, we drop the D6 and define

V (j) := V
(j)
D6

, j = 1, 2, . . . , 6 as follows:

V (1) = {u ∈ L2(Ω) | ρ · u = u, σ · u = u, τ · u = u}(13)

V (2) = {u ∈ L2(Ω) | ρ · u = u, σ · u = −u, τ · u = −u}
V (3) = {u ∈ L2(Ω) | ρ · u = −u, σ · u = u, τ · u = −u}
V (4) = {u ∈ L2(Ω) | ρ · u = −u, σ · u = −u, τ · u = u}
V (5) = {u ∈ L2(Ω) | ρ3 · u = u, u+ ρ2 · u+ ρ4 · u = 0}
V (6) = {u ∈ L2(Ω) | ρ3 · u = −u, u+ ρ2 · u+ ρ4 · u = 0}.

Example 4.9. The isotypic decomposition of Γ13 = 〈ρ〉 ∼= Z6 illustrates some features of real repre-
sentation theory. The irreducible representations of Z6 over C are all one-dimensional. They are
α(j)(ρ) = (eiπ/3)j−1 for j = 1, 2, . . . , 6. Over the field R, however, the one-dimensional irreducible
representations of Z6 are given by

(14) α(1)(ρ) = 1, α(2)(ρ) = −1,
and the two-dimensional irreducible representations of Z6, up to similarity transformations, are
given by

(15) α(3)(ρ) =

(

−1
2

√
3
2

−
√
3
2 −1

2

)

, α(4)(ρ) =

(

1
2

√
3
2

−
√
3
2

1
2

)

.

Note that α(3)(ρ) is matrix for a rotation by 120◦ and α(4)(ρ) is a 60◦ rotation matrix.
An irreducible representation over R is called absolutely irreducible if it is also irreducible over C.

For example, all of the irreducible representations of D6 listed in [27] are absolutely irreducible, as
are the one-dimensional irreducible representations of Z6 in equation (14). On the other hand, the
two-dimensional irreducible representations of Z6 in equation (15) are not absolutely irreducible.

The four isotypic components of the 〈ρ〉 action on L2(Ω) are

V
(1)
〈ρ〉 = {u ∈ L2(Ω) | ρ · u = u} = V (1) ⊕ V (2)
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V
(2)
〈ρ〉 = {u ∈ L2(Ω) | ρ · u = −u} = V (3) ⊕ V (4)

V
(3)
〈ρ〉 = V (5), and V

(4)
〈ρ〉 = V (6).

If we had used the complex irreducible representations, some of the corresponding isotypic compo-
nents would contain complex-valued functions. It is more natural to use real irreducible representa-
tions, and consider only real-valued functions. The price we pay is that most of the representation
theory found in books, and built into GAP, is done for complex irreducible representations.

The isotypic decomposition for each of the 23 isotropy subgroups, Γi, of D6 × Z2 can be written

as a direct sum of some subset of the eight spaces V (j), for j = 1, . . . , 4, and V
(j)
1 and V

(j)
2 for

j = 5, 6 defined in (13) and [27]. The C++ program can easily check if a function is in any of the

isotypic components V
(j)
Γi

of BM for each of the Γi, i = 0, 1, . . . , 22, actions.

Symmetry-Breaking Bifurcations. The fact that there are 23 possible symmetry types of
solutions to the PDE (1) begs the question, do solutions with each of these symmetry types exist?
Clearly the trivial solution u = 0, with symmetry type S0, exits. Our procedure for finding
approximate solutions with each of these symmetry types is to start with the trivial solution and
recursively follow solution branches created at symmetry-breaking bifurcations.

Let us start by abstracting the PDE defined by (1), which depends on the real parameter λ. Let
V be an inner product space and J : R×V → R be a family of Γ0−invariant functions that depends
on a parameter λ. That is, J(λ, γ · u) = J(λ, u) for all γ ∈ Γ0 and u ∈ V . It is understood that Γ0

is the largest known group for which J is invariant; of course J is also invariant under any subgroup
of Γ0. We will use Γ, or Γi, to refer to an isotropy subgroup of the “full” group Γ0. Consider the
steady-state bifurcation problem g(λ, u) = 0, where g(λ, u) = ∇J(λ, u). Throughout this paper,
the gradient ∇ acts on the u component. The solutions to g(λ, u) = 0 are critical points of J , so
we use the terms “solution” and “critical point” interchangeably. Note that g : R × V → V is a
family of Γ0−equivariant gradient operators on V . That is, g(λ, γ · u) = γ · g(λ, u). For our PDE,
Γ0 = D6 × Z2. In the numerical implementation, V = RM ∼= BM and g is defined in (5).

We define a branch of solutions to be a connected component of {(λ, u) ∈ R× L2(Ω) | g(λ, u) =
0, Stab(u) = Γ}, where Γ is called the isotropy subgroup, or symmetry, of the branch. A branch of
solutions B1 has a symmetry-breaking bifurcation at the bifurcation point (λ∗, u∗) ∈ B1 if a branch
of solutions, B2, with a different symmetry, has (λ∗, u∗) as a limit point but (λ∗, u∗) /∈ B2. We say
that branch B2 is created at this bifurcation, and often refer to B1 as the mother branch and B2

as the daughter branch. The symmetry of the daughter branch is always a proper subgroup of the
symmetry of the mother branch. That is, the daughter has less symmetry than the mother.

The main tool for finding bifurcation points is the Hessian of the energy functional, h. If (λ∗, u∗)
is a bifurcation point, then h(λ∗, u∗) is not invertible, since otherwise the implicit function theorem
would guarantee the existence of a unique local solution branch. The Morse index (MI) of a critical
point (λ, u) is defined to be the number of negative eigenvalues of h(λ, u) = D2J(λ, u), provided
no eigenvalue is 0. The Hessian is symmetric, so all of its eigenvalues are real. The MI on a branch
of solutions typically changes at a bifurcation point.

Example 4.10. The trivial solution to (1, 2) is u = 0, and the trivial branch is {(λ, 0) | λ ∈ R}.
Since h(λ, 0)(v) = ∆v+ λv, the bifurcation points of the trivial branch are (λi, 0), where λi, i ∈ N,
are the eigenvalues (3). If λi < λ < λi+1, then the MI of the trivial solution (λ, 0) is i. The i-th
primary branch is created at the bifurcation point (λi, 0) on the trivial branch. In cases with double
eigenvalues there are two branches created at the same point in our problem. For example, the
second and third primary branches are created at λ2 = λ3. Near (λi, 0), the solutions on the i-th
primary branch are approximately some constant times the i-th eigenfunction of the Laplacian, ψi.

We define a degenerate critical point, or a degenerate solution, to be a point (λ∗, u∗) which
satisfies g(λ∗, u∗) = 0 and det h(λ∗, u∗) = 0. Thus, every bifurcation point is a degenerate critical
point. Some degenerate critical points are not bifurcation points. For example, when a branch
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folds over and is not monotonic in λ, the fold point is degenerate, but is not a bifurcation point as
we have defined it. (Note that we avoid the term “saddle-node bifurcation” since there is really no
bifurcation.)

Let us develop some notation to talk about bifurcations. Suppose that (λ∗, u∗) is an isolated
degenerate critical point of a Γ0-equivariant system g(λ, u) = 0. Let Γ = Stab(u∗,Γ0), and define
L := h(λ∗, u∗). Note that Γ, not Γ0, is important as far as the bifurcation of (λ∗, u∗) is concerned.
Let E be the null space of the Γ-equivariant operator L. We call E the center eigenspace. Let Γ′

be the point stabilizer of E. The definitions are repeated here for reference:

(16) Γ := Stab(u∗,Γ0), L := h(λ∗, u∗), E := N(L), Γ′ := pStab(E,Γ).

If e ∈ E, then L(e) = 0 by definition. For any γ ∈ Γ, γ · e ∈ E since the Γ-equivariance of L
implies that L(γ · e) = γ · L(e) = 0. Hence,

Stab(E,Γ) = Γ.

Note that Stab(E,Γ)/pStab(E,Γ) = Γ/Γ′ acts faithfully on E. In the usual case where (λ∗, u∗) is
a bifurcation point, not just a degenerate critical point, we say that Γ/Γ′ is the symmetry group of

the bifurcation, or that (λ∗, u∗) undergoes a bifurcation with Γ/Γ′ symmetry.

In the notation of (16), L sends each of the isotypic components V
(j)
Γ to itself [27, 31, 34].

Barring “accidental degeneracy,” the center eigenspace E is a Γ-irreducible subspace. Thus, E is

typically a subspace of exactly one isotypic component V
(j)
Γ , and dim(E) is the dimension dj of

the corresponding corresponding irreducible representation, α(j). Furthermore, the point stabilizer
of E is the kernel of α(j) and can be computed without knowing E. In summary, at a generic
bifurcation point there is some irreducible representation α(j) of Γ such that:

E is Γ-irreducible, E ⊆ V (j)
Γ , dim(E) = ∆MI = dj , Γ′ = {γ ∈ Γ | α(j)(γ) = I}.

Accidental degeneracy is discussed in [27, 31, 34]. We did not encounter any accidental degeneracy
in our numerical investigation of (1, 2), so we will not discuss it further here.

We finally have the background to describe the bifurcations which occur in equivariant systems.
The goal is to predict what solutions will be created at each of the symmetry breaking bifurcations,
and know what vectors in E to use to start these branches using the pmGNGA. While such a
prediction is impossible for some complicated groups, we can determine how to follow all of the
bifurcating branches in the system (1, 2). We follow the treatment and notation of [10, 11]. At a
symmetry-breaking bifurcation we can translate (λ∗, u∗) to the origin, and we could, in principle,
do an equivariant Liapunov-Schmidt reduction or center manifold reduction to obtain reduced
bifurcation equations g̃ : R × E → E where g̃(0, 0) = 0, Dg̃(0, 0) = 0, and g̃ is Γ := Stab(u∗)-
equivariant. It is important to realize that we do not actually need to perform the Liapunov-Schmidt
reduction.

The most powerful tool for understanding symmetry breaking bifurcations is the Equivariant
Branching Lemma. Recall that absolutely irreducible representations were defined in Example 4.9.
See [6, 10, 11] for a thorough discussion of the Equivariant Branching Lemma, including further
references.

Theorem 4.11. Equivariant Branching Lemma (EBL) Suppose Γ acts absolutely irreducibly

on the space E, and let g̃ : R × E → E be Γ-equivariant. Assume that Γ acts nontrivially, so

g̃(λ, 0) = 0. Since Γ acts absolutely irreducibly, Dg̃(λ, 0) = c(λ)Id for some function c : R → R,

where Id is the identity matrix of size d = dim(E). Assume that c(0) = 0 and c′(0) 6= 0. Let Σ
be an isotropy subgroup of the Γ action on E with dimFix(Σ, E) = 1. Then there are at least two

solution branches of g̃(λ, u) = 0 with isotropy subgroup Σ created at (0, 0).

The EBL, combined with Liapunov-Schmidt theory, implies that there are at least two solution
branches of the full problem g(λ, u) = 0 with isotropy subgroup Σ created at the bifurcation point
(λ∗, u∗). We call these newly created branches EBL branches since their existence can be predicted
by the EBL. Other branches created at a bifurcation are called non-EBL branches.
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Figure 3. Diagrams of the six isotropy lattices for the actions of D6 = 〈ρ, σ, τ〉 on
each of the six isotypic components V (j) of the D6 action on L2(Ω). This describes
the six possibilities (barring accidental degeneracy) for the D6 action on the center
eigenspace E at a degenerate critical point.

Following [6, 10, 11], we define a maximal isotropy subgroup of a Γ action on V to be an isotropy
subgroup Σ 6= Γ with the property that if Θ is an isotropy subgroup such that Σ ≤ Θ, then Θ = Σ
or Θ = Γ. In other words, a maximal isotropy subgroup is a maximal proper isotropy subgroup. If
dim(Fix(Σ, E)) = 1, then Σ is a maximal isotropy subgroup of the Γ action on E. The converse,
however, is not true.

In gradient systems, for example the PDE (1), more can be said. If Σ is any maximal isotropy
subgroup of the Γ action on E, then there is typically a solution branch created at the bifurcation
with isotropy subgroup Σ. If dimFix(Σ, E) ≥ 2, the branch created is an example of a non-EBL
branch. See [30] for a discussion of bifurcations in gradient systems.

By Proposition 4.5, the effective symmetry group of g̃, restricted to Fix(Σ, E), is NΓ(Σ)/Σ. This
effective symmetry group determines how solutions with symmetry Σ bifurcate.

Example 4.12. Consider a degenerate critical point with isotropy subgroup Γ1 = D6 = 〈ρ, σ, τ〉.
Barring accidental degeneracy, the center eigenspace E is a subspace of one of the 6 isotypic
components of the D6 action on L2(Ω) described in Example 4.8. Figure 3 shows the lattice of

isotropy subgroups for D6 acting on each of these 6 isotypic components V (j). These 6 cases can
be distinguished by determining which isotypic component an arbitrary eigenfunction in E belongs
to. We shall go through each of these six cases, and describe the resulting bifurcation. Recall that
Γ = Γ1 = D6 for each of these six cases, and Γ′ = pStab(E,Γ).

E ⊆ V (1) ⇒ Γ′ = Γ1 = 〈ρ, σ, τ〉, dimE = 1, Γ/Γ′ ∼= 〈1〉
E ⊆ V (2) ⇒ Γ′ = Γ13 = 〈ρ〉, dimE = 1, Γ/Γ′ ∼= Z2

E ⊆ V (3) ⇒ Γ′ = Γ9 = 〈ρ2, σ〉, dimE = 1, Γ/Γ′ ∼= Z2

E ⊆ V (4) ⇒ Γ′ = Γ10 = 〈ρ2, τ〉, dimE = 1, Γ/Γ′ ∼= Z2

E ⊆ V (5) ⇒ Γ′ = Γ19 = 〈ρ3〉, dimE = 2, Γ/Γ′ ∼= D3

E ⊆ V (6) ⇒ Γ′ = Γ22 = 〈1〉, dimE = 2, Γ/Γ′ ∼= D6.

The first case, E ⊆ V (1) = Fix(Γ1, L
2(Ω)), does not lead to a symmetry-breaking bifurcation. The

D6 action on E is trivial, so the EBL does not apply. The degenerate critical point (u∗, λ∗) is
typically a fold point (or saddle-node), not a bifurcation point. In the neighborhood of the fold
point there is only one solution branch, with isotropy subgroup Γ1, and the branch lies to one side
of λ = λ∗ or the other.

The next three cases, with Γ/Γ′ ∼= Z2 symmetry, are called pitchfork bifurcations. Clearly, the
only maximal isotropy subgroup is Γ′ in each case, and the EBL applies. The effective symmetry
group acting on E is Z2, so there are two conjugate solution branches created at the bifurcation.
In the branch following code we follow one of these branches using the pmGNGA starting with any
eigenvector e ∈ E.
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Figure 4. The diagrams of the four isotropy lattices for the actions of Γ13 = 〈ρ〉 on
each of the four isotypic components V

(j)
〈ρ〉 of the Γ13 action on L2(Ω). This describes

the four possibilities (barring accidental degeneracy) for the Γ13 action on the center
eigenspace E at a degenerate critical point.

The next case, with E ⊆ V (5), is a bifurcation with D3 symmetry. The maximal isotropy
subgroup Γ5 = 〈σ, τ〉 satisfies

dimFix(Γ5, E) = 1, and NΓ1
(Γ5)/Γ5 = 〈1〉.

Our branch following code uses a projection operator to find an eigenvector e ∈ E with Stab(e,Γ1) =
Γ5. The pmGNGA using this eigenvector e will follow one of the solution branches created at the
bifurcation, and the pmGNGA using the negative eigenvector −e will find a branch that is not
conjugate to the first. Bifurcations with D3 symmetry are typically transcritical, and two D3-orbits
of branches are created at the bifurcation [10, 11].

The last case, with E ⊆ V (6), is a bifurcation with D6 symmetry. There are two maximal
symmetry types, the conjugacy classes of Γ15 and Γ16. A calculation shows that

dimFix(Γ15, E) = dimFix(Γ16, E) = 1, and NΓ1
(Γ15)/Γ15 = NΓ1

(Γ16)/Γ16 = Z2.

To follow one branch from each of the group orbits of solution branches created at this bifurcation,
it suffices to use the pmGNGA twice, with the eigenvectors e1, e2 ∈ E, where Stab(e1,Γ1) = Γ15

and Stab(e2,Γ1) = Γ16. It is well-known that these EBL-branches are typically the only branches
created at a bifurcation with D6 symmetry [10, 11].

Example 4.13. Consider a degenerate critical point with isotropy subgroup Γ13 = 〈ρ〉 ∼= Z6. Barring
accidental degeneracy, the center eigenspace E is a subspace of one of the 4 isotypic components

V
(j)
〈ρ〉 defined in Example 4.9. Figure 4 shows the lattice of isotropy subgroups for Γ13 acting on

each of these 4 isotypic components. Recall that Γ = Γ13 = 〈ρ〉 for each of these cases, and the
minimal isotropy subgroup is Γ′ = pStab(E,Γ). We shall go through each of the four cases, and
describe the resulting bifurcation:

E ⊆ V (1)
〈ρ〉 = V (1) ⊕ V (2) ⇒ Γ′ = Γ13 = 〈ρ〉, dimE = 1, Γ/Γ′ ∼= 〈1〉

E ⊆ V (2)
〈ρ〉 = V (3) ⊕ V (4) ⇒ Γ′ = Γ21 = 〈ρ2〉, dimE = 1, Γ/Γ′ ∼= Z2

E ⊆ V (3)
〈ρ〉 = V (5) ⇒ Γ′ = Γ19 = 〈ρ3〉, dimE = 2, Γ/Γ′ ∼= Z3

E ⊆ V (4)
〈ρ〉 = V (6) ⇒ Γ′ = Γ22 = 〈1〉, dimE = 2, Γ/Γ′ ∼= Z6.

The first two cases are analogous to the first two cases in Example 4.12. When Γ/Γ′ ∼= 〈1〉 there is a
fold point, but no symmetry breaking bifurcation. There is a pitchfork bifurcation when Γ/Γ′ ∼= Z2.
The next two cases are interesting because Γ13 does not act absolutely irreducibly on E, and the
EBL does not apply. In both cases Γ′ is a maximal isotropy subgroup.

In the third case, where E ⊆ V
(3)
〈ρ〉 = V (5), every eigenfunction in the 2-dimensional E has

isotropy subgroup Γ19. Since we have a gradient system, we know that solution branches with
isotropy subgroup Γ19 are created at this bifurcation with Z3 symmetry. The bifurcation is well-
understood, and it looks like a bifurcation with D3 symmetry, except that the “angle” of the
bifurcating solutions in the E plane is arbitrary. This means that trial and error is needed, in
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general, to find eigenfunctions in E for which the pmGNGA will converge. If a branch is found for
a starting eigenfunction e, then the eigenfunction −e is used to find the other solution branch.

In the fourth case, where E ⊆ V
(4)
〈ρ〉 = V (6), every eigenfunction in E has the same isotropy

subgroup: Γ22 = 〈1〉. Gradient bifurcations with Z6 symmetry look like bifurcations with D6

symmetry, except that the angle in the E plane is arbitrary. Again, trial and error is needed to
find starting eigenfunctions for which the pmGNGA converges.

The Bifurcation Digraph. A calculation similar to those summarized in Examples 4.12 and
4.13 was done for each of the isotropy subgroups of the D6 ×Z2 action on L2(Ω). The calculations
were done by hand, and verified with GAP. There are 59 generic symmetry-breaking bifurcations,

one for each isotypic component V
(j)
Γi

on which Γi acts nontrivially. The amount of information is
overwhelming, so we display the essential results in what we call a bifurcation digraph.

Definition 4.14. The bifurcation digraph of the Γ0 action on a real vector space V is a directed
graph with labelled arrows. The vertices are the symmetry types (equivalence classes of isotropy
subgroups). Given Σ ≤ Γ, two isotropy subgroups of the Γ0 action on V , we draw an arrow from

[Γ] to [Σ] iff Σ is a maximal isotropy subgroup of the Γ action on some isotypic component V
(j)
Γ

of V . Each arrow has the label Γ/Γ′, where Γ′ is the kernel of the Γ action on V
(j)
Γ . Furthermore,

each arrow is either solid, dashed or dotted. The arrow is

solid if dimFix(Σ, E) = 1 and NΓ(Σ)/Σ = Z2,

dashed if dimFix(Σ, E) = 1 and NΓ(Σ)/Σ = 〈1〉, and

dotted if dimFix(Σ, E) ≥ 2,

where E is any irreducible subspace contained in V
(j)
Γ .

Note that if dimFix(Σ, E) = 1, then NΓ(Σ)/Σ is either Z2 or 〈1〉, since these are the only linear
group actions on E ∼= R1. Thus, the three arrow types (solid, dashed, and dotted) exhaust all
possibilities.

Theorem 4.15. For a given Γ0 action on V , every arrow in the diagram of the isotropy lattice is

an arrow in the bifurcation digraph.

Proof. Suppose [Γ]→ [Σ] is an arrow in the diagram of the isotropy lattice. Then some Σ∗ ∈ [Σ] is a
maximal isotropy subgroup of the Γ action on V . Choose u∗ ∈ V such that Stab(u∗,Γ) = Σ∗. Such

a u∗ exists since Σ∗ is an isotropy subgroup. Now consider the isotypic decomposition {V (j)
Γ }j∈J

of V . We can write u∗ =
∑

j∈J u
(j), where u(j) ∈ V

(j)
Γ are uniquely determined. Let γ be any

element of Σ∗. Then γ · u∗ =
∑

j∈J γ · u(j) = u∗. Since each of the components V
(j)
Γ is Γ-invariant,

γ · u(j) = u(j) for each j ∈ J . Thus Σ∗ ≤ Stab(u(j),Γ) for each j ∈ J . Either Stab(u(j),Γ) = Γ or

Stab(u(j),Γ) = Σ∗, since Σ∗ is a maximal isotropy subgroup of the Γ action on V . If Stab(u(j),Γ) =

Γ for all j ∈ J , then Stab(u∗,Γ) = Γ. But Stab(u∗,Γ) 6= Γ, so Stab(u(j),Γ) = Σ∗ for some j ∈ J ,
and Σ∗ is a maximal isotropy subgroup of the Γ action on this component V

(j)
Γ of V . Therefore the

bifurcation digraph has an arrow from [Γ] to [Σ∗] = [Σ]. �

Theorem 4.15 says that the bifurcation digraph is an extension of the diagram of the isotropy
lattice. The bifurcation digraph has more arrows, in general. As with the lattice of isotropy
subgroups, we usually draw a single element Γ of the equivalence class [Γ] for each vertex of the
bifurcation digraph.

An arrow from Γ to Σ in the bifurcation digraph indicates that a Γ0-equivariant gradient system
g(λ, u) = 0 can have a generic symmetry-breaking bifurcation where a mother branch with isotropy
subgroup Γ creates a daughter branch with isotropy subgroup Σ. The symmetry group of the
bifurcation is Γ/Γ′, and the center eigenspace at the bifurcation point is the Γ-irreducible space
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E. The information encoded in the label and arrow type is used by the heuristics of our branch-
following algorithm. A solid arrow indicates that every e in the one-dimensional space Fix(Σ, E)
satisfies γ · e = −e for some γ ∈ Σ. Thus, there is typically a pitchfork bifurcation in the space
Fix(Σ, E). A dashed arrow indicates that γ · e = e for all e ∈ Fix(Σ, E) and γ ∈ Σ. Thus,
the daughter branches bifurcating in the directions e and −e are not conjugate. A dotted arrow
indicates that the EBL does not apply to this bifurcation. As mentioned above, branching of
solutions corresponding to a dotted arrow is generic in gradient systems [30, 10].

A condensed bifurcation digraph for the D6 × Z2 action on L2(Ω) is shown in Figure 5. The
calculations for the directed edges coming from Γ1 and Γ13 are described in examples 4.12 ane 4.13,
respectively. The digraph has 65 directed edges, but there are only 5 possibilities for the symmetry
group of the bifurcation: Γ/Γ′ = Z2, Z3, Z6, D3, or D6. The symmetry-breaking bifurcation with
each of these symmetries is well understood [10, 11], and each is described briefly in Example 4.12
or 4.13. This digraph is of great help in writing an automated code for branch following.

In our problem the label Γ/Γ′ and arrow type are sufficient to characterize the bifurcation
completely. For more complicated groups, the label may need to contain more information about
the action of Γ on E. For example the label Γ/Γ′ = S4 would be ambiguous, since S4 has two
faithful irreducible representations with different lattices of isotropy subgroups.

5. Symmetry and Computational Efficiency.

Several modifications of the GNGA (2.1) take advantage of symmetry to speed up the calcula-
tions. The symmetry forces many of the components of the gradient and Hessian to be zero. We
identified these zero components and avoided doing the time-consuming numerical integrations to
compute them. At the start of the C++ program, the isotropy subgroup, Γi, of the initial guess is
computed. Recall that there are M modes in the Galerkin space BM , so dim(BM ) = M . Define
Mi := dim(Fix(Γi, BM )). We chose the representatives Γi within each conjugacy class so that
Fix(Γi, BM ) is a coordinate subspace of BM . Thus,M −Mi components of the gradient g(λ, u) are
zero if Fix(u) = Γi. The numerical integrations in (5) are done only for the Mi potentially nonzero
components of g. Similarly, Mi(Mi + 1)/2 rather than M(M + 1)/2 numerical integrations are
needed to compute the part of the Hessian matrix h needed by the GNGA algorithm: The numer-
ical integrations in (6) are done only if ψj and ψk are both in Fix(Γi, BM ). The system hχ = g for
the Newton step χ reduces to a system of Mi equations in Mi unknowns. After Newton’s method
converges to a solution, the full Hessian needs to be calculated in order to compute the MI. Here,
too, we can take advantage of the symmetry: Since h is Γi -equivariant, hj k = 0 if ψj and ψk are

in different isotypic components V
(j)
Γi

of BM .
As an example, consider the execution time for approximating a solution with Γ1 symmetry

using M = 300 modes and a level ℓ = 5 grid on a 1GHz PC. Our C++ code uses only M1 = 30
modes, and takes about 1.5 seconds per Newton step, compared to 44 seconds when the symmetry
speedup is not implemented.

6. Automated Branch Following.

The branch following code is a complex collection of about a dozen Perl scripts, Mathematica and
Gnuplot scripts, and a C++ program. These programs write and call each other fully automatically
and communicate through output files, pipes and command line arguments. A complete bifurcation
diagram can be produced by a single call to the main Perl script.

Two choices for the function of u plotted vs. λ are shown in Figure 6. In most bifurcation
diagrams we plot approximate solutions u evaluated at a generic point (2/27, 4

√
3/27) (the big dot

in Figure 1) versus the parameter λ; other choices for the vertical axis such as J(u) or ‖u‖∞ lead to
less visible separation of branches. Two conjugate solutions can have different values at the generic
point, but since our program follows only one branch in each group orbit this does not cause a
problem.
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Figure 5. The bifurcation digraph for the D6 × Z2 action on L2(Ω) extends the
diagram of the isotropy lattice. The digraph shown is condensed as in Figure 2.
The arrows indicate generic symmetry breaking bifurcations. The Morse index of
the mother branch changes by 1 at bifurcations with Z2 symmetry, and it changes
by 2 at all other bifurcations shown here.

The C++ program implements the GNGA algorithm. Its input is a vector of coefficients a ∈ RM

for an initial guess in Newton’s method, an interval for λ, a stepsize for λ and several other
parameters such as the grid level. It finds solutions on a single branch of the bifurcation diagram.
Every solution is written as a single line in an output file. This line contains all the information
about the solution, and can be used to write an input file for a subsequent call to the same C++
program.

The C++ program finds one branch (referred to as the main branch) and a short segment of each
of the daughter branches created at bifurcations of the main branch. The coefficients approximating
the first solution on the branch are supplied to the C++ program. Newton’s method is used to find
this first solution, then λ is incremented and the next solution is found. The program attempts to
follow the main branch all the way to the final λ, usually 0. Heuristics are used to double or halve



18 JOHN M. NEUBERGER, NÁNDOR SIEBEN, AND JAMES W. SWIFT

0
5

10
15
20
25
30
35
40
45

0 50 100 150 200

||u
|| 2

2

λ

-15

-10

-5

0

5

10

15

0 50 100 150 200

u(
2/

27
,3

1/
2 4/

27
)

λ

Figure 6. Bifurcation diagrams of the sixth primary branch (which bifurcates
from λ6), showing ||u||22 and u(2/27, 4

√
3/27) as a function of λ. Since ||u||22 is a

D6 × Z2-invariant function of u, each group orbit of solution branches is shown as
one curve on the left. The disadvantage of plotting ||u||22 is that the curves in many

bifurcation diagrams are not well separated. The point (2/27, 4
√
3/27) is not on

any of the reflection axes of the snowflake region. There are 2 primary branches
with symmetry S1, four secondary branches with symmetry S9, and four secondary
branches with symmetry S10. Our choice for the bifurcation diagrams in this paper
combines the advantages of both views: u(2/27, 4

√
3/27) is plotted as a function of

λ for exactly one branch (the solid lines) from each group orbit. Unless indicated
otherwise, all figures were produced with level ℓ = 5 and M = 300 modes.

the λ stepsize when needed, keeping the stepsize in the interval from the initial stepsize (input to
the C++ program) to 1/32 of the initial stepsize. For example, the stepsize is halved if Newton’s
method does not converge, if it converges to a solution with the wrong symmetry, or if more than
one bifurcation is detected in one λ step.

The Morse index is computed at each λ value on the main branch. When the MI changes a
subroutine is called to handle the bifurcation before the main branch is continued. If the MI
changes from m1 to m2, we define m = max{m1,m2}. Then the bifurcation point is approximated
by using the secant method to set the m-th eigenvalue of the Hessian h(u) to zero as a function of
λ. The GNGA is needed at each step of the secant method to compute u = u(λ). We find that the
GNGA works well even though we are approximating a solution for which the Hessian is singular.

After the bifurcation point is approximated, a short segment of each bifurcating branch is com-
puted and one output file is written for each branch, using Algorithm 6.1. If the Equivariant
Branching Lemma (EBL) holds, then we know exactly which critical eigenvector to use for each
branch.

Algorithm 6.1. (follow_branch)

(1) Input: bifurcation point (λ, a), one critical eigenvector e ∈ RM,

and stepsize ∆λ < 0. Output: A file is written for one daughter branch.

(2) Write (λ, a) to output file. Set t = 0.1. Set λb = λ.
(3) Compute index k so that |ek| ≥ |ei| for all i ∈ {1, . . . ,M}.
(4) Repeat until λb − λ < ∆λ, or t < 0.1/32 or some maximum number of points have

been written to the file.

(a) Do the pmGNGA with initial guess (λ, a+ t e), fixing coefficient k.
(b) If Newton’s method converges replace (λ, a) by the solution found and

write this point to the file, else t← t/2.
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Figure 7. A partial bifurcation diagram of the 14-th primary branch showing a D6,
a D3 and several Z2 bifurcations. At the D6 bifurcation, 12 branches in two different
group orbits are born. In accordance with Figure 6, only two branches are followed
and shown on this bifurcation diagram. An animation showing the followed branch
with symmetry type S15 is shown in s3s15.gif, and an animation of the followed
branch with symmetry type S17 is in s3s17s7.gif. Note that this branch with S17
symmetry “dies” at a bifurcation with Z2 symmetry, showing that we cannot always
make a consistent distinction between secondary and tertiary branches. At the D3

bifurcation, 6 branches in two different group orbits are born. As before, only two
branches are followed. An animation showing the “upper” branch with symmetry
type S7, through the bifurcation point and continuing to the “lower” branch with
symmetry type S7 is shown in s7s3s7.gif. For clarity, the branches bifurcating
from 3 of the Z2 bifurcations are not shown. The numbers next to a branch indicate
the MI of the solution. The MI changes by 2 at a square, and by 1 at a circle.

Note that the pmGNGA can follow a branch that bifurcates to the right or the left. Those
that bifurcate to the right usually turn over in a saddle-node “bifurcation” that does not offer any
difficulty for the pmGNGA. Figures 7 and 8 show several examples of bifurcations.

The EBL does not hold at bifurcations with Z3 and Z6 symmetry in our problem, since the 2-
dimensional center eigenspace does not have a 1-dimensional subspace with more symmetry. Figure
8 shows one of the few bifurcations with Z3 symmetry that we observed. By good fortune, the
branches with symmetry type S19 were successfully followed using the same eigenvectors one would
choose for a bifurcation with D3 symmetry. A better method for following bifurcating solutions that
are not predicted by the EBL would be to use the pmGNGA with random (normalized) eigenvectors
in E repeatedly until it appears that all equivalence classes of solutions have been found.

The branch following code is called recursively by a main Perl script. Initially, the C++ program
follows the trivial branch on a given λ range. This results in an output file for the trivial branch
and another output file for each bifurcating primary branch. Then the short parts of the primary
branches are followed with more calls to the C++ program. Any bifurcating branch results in
a new output file, and the Perl script makes another call to the C++ program to continue that
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Figure 8. The D3 bifurcation of the 13-th primary branch is on the left. This is
the only observed D3 bifurcation that is not transcritical. An animation of the upper
branch with symmetry type S5, through the bifurcation point and continuing with
the lower branch is shown in s5s1s5.gif. A Z3 bifurcation of a daughter of the
24-th primary branch is shown on the right. The branches created at this bifurcation
are not described by the EBL. An animation of the branches with symmetry type
S19 is shown in s19s13s19.gif.

branch. The main Perl script’s most important job is book keeping. It saves the output files with
distinct names, and calls the branch following code to continue each of the new branches. The
process stops when all the branches are fully followed within the given λ range.

In this way, a complete bifurcation diagram is produced by a single invocation of the main Perl
script. There is no need to guess initial conditions for input to Newton’s method, since the trivial
solution is known exactly (a = 0) and all the other solutions are followed automatically.

The main Perl script calls several other smaller scripts. For example, there is a script which
extracts solutions from output files and feeds them to the branch following code as input. Another
script creates Gnuplot scripts on the fly to generate bifurcation diagrams. Perl scripts are used to
automatically number and store the output files and create human readable reports about them.

7. Numerical Results.

Our goal was to find solutions to (1, 2) at λ = 0 with each of the 23 symmetry types. The
24-th primary branch is the first one with symmetry type S2, so we followed the first 24 primary
branches. With level ℓ = 5 and M = 300 modes, which gave our most accurate results, this found
solutions with all symmetry types except S11 and S14. We then searched the first 100 primary
branches, only following solutions with symmetry above S11 and S14 on the bifurcation digraph
(Figure 5.) In this way we found solutions with all 23 symmetry types. The bifurcation diagrams
which lead to these solutions are shown in Figures 9–12. We chose one solution at λ = 0 with
each symmetry type by taking the one descended from the lowest primary branch. These choices
are indicated by dots in Figures 9–12, and the corresponding contour diagrams of the solutions are
shown in Figures 13 and 14. The contour diagrams use white for u > 0 and black for u < 0, and
gray indicates u = 0. Equally spaced contours are drawn along with dots for local extrema. Details
about the technique for generating these contour diagrams are found in [27].

We ran our experiments using a range of modes and levels in order to observe convergence and
qualitative stability of the implementation of our algorithm. At level ℓ = 5 we have computed 300
eigenfunctions so M ≤ 300 is possible. At level ℓ = 6 we computed only 100 eigenfunctions. Due
to our limited computational resources, using more than 100 modes on level 6 was not practical.
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Figure 9. The complete bifurcation diagram for the first six primary branches
bifurcating from the trivial branch. The second branch, with symmetry S7, contains
the CCN solution. The dots at λ = 0 in Figures 9–12 correspond to solutions
depicted in Figures 13 and 14. We used the level 5 grid with 300 modes in creating
all bifurcation diagrams. In Figure 15 convergence data for the solution of symmetry
type S10 at λ = 0 is provided.

As an indication of the convergence, consider the bifurcation diagram in Figure 9. The diagram
looks qualitatively the same for any choice of ℓ andM that we used. The position of the bifurcation
point creating the S10 solution (near λ = 30) changes slightly, according to this table:

ℓ = 4 ℓ = 5 ℓ = 6
M = 100 35.3931 34.9814 34.9252
M = 200 32.1131 32.2964
M = 300 32.0518

.

The level 5 and 6 approximations with M = 100 modes are very close, but increasing the mode
number has more of an effect. This indicates that the results with (ℓ,M) = (5, 300) are more

accurate than those with (6, 100). Figure 15 shows how u(2/27, 4
√
3/27) varies with mode number

and ℓ for the solution with S10 symmetry at λ = 0 shown in Figures 9 and 13. The horizontal
segments of the graphs correspond to the addition of modes with zero coefficients for this solution.
Based on this and other similar convergence results, we chose to use level 5 with 300 modes in most
of our numerical experiments.

8. Conclusions.

We are currently working on a more general program for recursive branch following in symmetric
systems. Starting with any graph, the analog to Equation 1 is the Partial difference Equation
(PdE) Lu + f(u) = 0 [25], where L is the well-known discrete Laplacian on that graph and u is
a real-valued function on the vertices. Discretizing a PDE as we have done in this paper leads to
a PdE on a graph with a large number of vertices. The grid points are the vertices of the graph,
and the edges of the graph connect nearest neighbor grid points. Starting with an arbitrary graph,
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from the 8-th and 10-th primary branches. Again, the dots at λ = 0 indicate
solutions shown in Figures 13 and 14. The contour plots as a function of λ are
animated for the branches ending with the dots indicating symmetry types S15
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Figure 11. A partial bifurcation diagram providing three additional symmetry
types. For clarity, the trivial branch is not shown in this and the next figure.
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Figure 12. A partial bifurcation diagram containing solutions of the seven remain-
ing symmetry types. Primary branch 24 is the first branch with symmetry type S2.
The symmetry types S14 and S11 were found by searching the first one hundred
primary branches, following only those branches which can lead to solutions with
the desired symmetry. These two solutions are included for completeness, but their
existence for the PDE would have to be confirmed with more modes and a higher
level approximation of the eigenfunctions.

our new suite of programs will analyze the symmetry of the graph and compute the bifurcation
diagrams for the PdE on the graph.

The programs we describe in the current paper will work with other superlinear odd f and other
regions with hexagonal symmetry. The nonlinearity f needs to be superlinear since our program
assumes that the branches eventually “go to the left.” Our general program will not have this
restriction; the GNGA and pmGNGA will be replaced by a single method of branch following that
is able to go through fold points, and has no prejudice about the parameter increasing or decreasing.
This new method of branch following has already been successfully implemented in [33]. We hope
to write the new code so that a cluster of computers can be used in parallel, with each computer
following a single branch at one time, under the control of a central PERL script.

With minor modifications, our program would analyze the PDE (1) even when f is not odd. The
appropriate bifurcation digraph for D6 acting on L2(Ω) is a subgraph of the digraph in Figure 5,
so the bifurcating branches would be followed properly unless the symmetry of the mother solution
is incorrectly identified. The Perl scripts which start with the trivial branch would have to be
modified, since u = 0 is not a solution when f is not odd (unless f(0) = 0). If f(0) = 0, the
trivial branch exists, but its bifurcations are not properly described by the bifurcation digraph in
Figure 5, and some special code would be needed to handle these bifurcations.

It is valid to ask the question “does the GNGA converge” (as implemented in this current re-
search). While we do not have a complete proof affirming the positive of this conjecture, many
references contain relevant theorems. The GNGA is an implementation of Newton’s method, which
indeed converges under standard assumptions. In [14], one finds the classical fixed point itera-
tion proof that Newton’s method in RN converges when the initial guess is sufficiently close to a
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Action of ρ, σ, and τ . Γ0 = 〈ρ, σ, τ,−1〉 = D6 × Z2 Γ1 = 〈ρ, σ, τ〉 = D6

Γ2 = 〈ρ,−σ,−τ〉 ∼= D6 Γ3 = 〈−ρ, σ − τ〉 ∼= D6 Γ4 = 〈−ρ,−σ, τ〉 ∼= D6

Γ5 = 〈σ, τ〉 ∼= Z2 × Z2 Γ6 = 〈−σ,−τ〉 ∼= Z2 × Z2 Γ7 = 〈σ,−τ〉 ∼= Z2 × Z2

Γ8 = 〈−σ, τ〉 ∼= Z2 × Z2 Γ9 = 〈ρ2, σ〉 ∼= D3 Γ10 = 〈ρ2, τ〉 ∼= D3

Figure 13. The action of the generators of D6 on the plane, along with contour
plots of solutions with symmetry types S0, . . . , S10 at λ = 0. Recall that Si = [Γi].
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Γ11 = 〈ρ2,−τ〉 ∼= D3 Γ12 = 〈ρ2,−σ〉 ∼= D3 Γ13 = 〈ρ〉 ∼= Z6

Γ14 = 〈−ρ〉 ∼= Z6 Γ15 = 〈σ〉 ∼= Z2 Γ16 = 〈τ〉 ∼= Z2

Γ17 = 〈−τ〉 ∼= Z2 Γ18 = 〈−σ〉 ∼= Z2 Γ19 = 〈ρ3〉 ∼= Z2

Γ20 = 〈−ρ3〉 ∼= Z2 Γ21 = 〈ρ2〉 ∼= Z3 Γ22 = 〈1〉

Figure 14. Contour plots of solutions with symmetry types S11, . . . , S22 at λ = 0.
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3/27) as a function of the number of modes for

the lowest energy solution at λ = 0 with symmetry type S10. The point at M = 300
matches the point labelled with S10 in Figure 9.

nondegenerate zero of the object function. This proof applies almost without change to the infi-
nite dimensional case. Also addressed in [14] are algorithms where the object function and/or its
derivative are only approximated; this would apply to our implementation due to numerical inte-
gration errors, as well as owing to our imperfect knowledge of the eigenfunctions and corresponding
eigenvalues. While not discussed exactly in the cited literature, elementary fixed point arguments
indicate that the restriction of our object function ∇J to sufficiently large subspaces BM will still
result in convergent iterations. It would be worthwhile to string these type of results together
in order to obtain a “best possible” GNGA convergence theorem. Monograph [13] gives an easy
introduction into some of the details of implementing Newton’s method to solve nonlinear prob-
lems. Further, in the spirit of [7] and [35], by the invariance of the Newton map, any convergence
result should hold in fixed point subspaces corresponding to a given symmetry type. The articles
[20, 35] and others by those authors discuss the convergence of algorithms similar to the GNGA,
at times also considering symmetry restrictions. Finally, the well-known book [3] contains relevant
convergence results for Newton and approximate Newton iterative fixed point algorithms.

In summary, we have written a suite of programs that automatically computes the bifurcation
diagram of the PDE (1, 2). The program finds solutions with each of the 23 symmetry types by
following solution branches which are connected to the trivial branch by a sequence of symmetry-
breaking bifurcations. A thorough understanding of the possible symmetry-breaking bifurcations
is required for this task. We introduced the bifurcation digraph, which summarizes the results of
the necessary symmetry calculations. For the group D6×Z2, these calculations were done by hand
and verified by the GAP computer program [8, 21]. In the future, we plan to implement automated
branch following in systems where the symmetry group is so complicated that GAP is necessary.
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