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Abstract. We present modeling and analysis of smectic C phases of liquid crystals capable of
sustaining spontaneous polarization. The layered liquid crystals are also assumed to be chiral. We
study minimization of the total energy subject to electrostatic constraints. In order to determine
mathematically and physically relevant boundary conditions, we appeal to the analogy between the
current problem and the vorticity in fluids. We place a special emphasis on the nonlocal and self-
energy effects arising from spontaneous polarization. We discuss examples pertaining to the electric
field created by the liquid crystal in dielectric media, and also to the possible role of a domain shape
as an energy reduction mechanism.
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1. Introduction. This article analyzes nonlocal electrostatic effects associated
with polarized states of liquid crystals. We assume that the liquid crystals are of
smectic type, possess spontaneous polarization, and may also be chiral. We study
minimization of the total energy in R3, subject to electrostatic constraints.

In smectic liquid crystals, centers of mass of molecules are arranged locally in
one-dimensional layers described by a complex field ψ = ρeiω; level sets of the phase
function ω denote layer locations, with∇ω being parallel to the layer normal. Nonpar-
allel unit vector fields n and p describe the orientational ordering of biaxial molecules.
Another feature of smectic C phases is that the director n makes a preferred angle α
with the layer normal vector. The angle α is a temperature and material dependent
quantity ranging typically from 0 to π

4 . We visualize smectic C phases in terms of
cones with axis along the layer normal and semi-angle α. The director n is then par-
allel to a generating straight line of the cone. Since the systems that we consider are
ferroelectric, that is, they have spontaneous polarization, we take p to be parallel to
the polarization field P; n corresponds to the uniaxial director measuring the average
alignment of molecular long axes of either rod-like or bent-core molecules [33, 34].
The electrostatic potential ϕ is also a variable of the problem.

Many different types of liquid crystals form smectic C phases (i.e., one-dimensional
layer structures). The earlier low molecular weight liquid crystals labelled as smec-
tic C [25] owe ferroelectricity to the molecular dipoles associated with side chains. In
such cases, the direction of P is determined and tends to be perpendicular to n and
∇ω (This type of ferroelectricity, known as improper [21], is absent in the smectic A
phase due to n being parallel to ∇ω). Since the magnitude of the polarization is
usually small, studies of such liquid crystals normally neglect nonlocal electric field
effects, and assign constant values to applied fields. Many of the low molecular weight
smectic C liquid crystals are cholesteric. On the other hand, B2 phases of bent-core
molecule liquid crystals are mostly non-chiral and have large polarization values. Al-
though P tends to be perpendicular to n, the plane determined by these vectors is
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2 Electrostatic Effects in Liquid Crystals

free to rotate about n. Unlike in the case of small molecule smectics, the B2 phases
are not subject to the constraint of P, that is parallel to ∇ω × n. However, analysis
of the latter requires accounting for nonlocal energy.

Throughout this work, we will assume that the liquid crystals are chiral and use
the conventional notation C* to denote such chiral smectic phases. An important
bulk configuration of chiral smectic C phases is that the variables n and p rotate
spatially around the axis of the previously described cone, with n being parallel to a
generating straight line of the cone. This accordingly results in zero net polarization
over a helical pitch. In suppressing the helix by applying an external electric field
or boundary conditions, ferroelectric states with opposite polarization emerge. The
transition between the chiral state and the ferroelectric ones is not regarded as a
typical phase transition; however, it is at the core of device applications of ferroelec-
tric liquid crystals. Mathematically, we address in previous work [27] some stability
properties with respect to boundary conditions and electric fields, in the case that
nonlocal effects are neglected.

The total energy we analyze consists of nematic, smectic, Ginzburg-Landau, elec-
trostatic, and surface contributions. The nematic and smectic free energy densities
follow the forms of Oseen-Frank, de Gennes, and Chen-Lubensky that penalize de-
parture from preferred molecular alignment and orientation with respect to the lay-
ers. Other macroscopic theories of smectic C phases can be found in the literature
[23, 33, 37]. Our choice is motivated by the covariant structure of the Lubensky form;
this is quadratic in second order gradients of ψ and especially amenable to treatment
by calculus of variations. We relax the constraint p ⊥ {n,∇ω}, and instead incorpo-
rate a penalty energy into the model. The Ginzburg-Landau energy tends to select
a preferred magnitude of the polarization according to temperature and material pa-
rameters. The current energy is appropriate to model B2 ferroelectric phases provided
that we omit the previously mentioned penalty term and chirality.

The electrostatic energy comprises a dielectric contribution and a ferroelectric
one. The latter accounts for the energy of self-interaction between the polarization
and its own electric field, as well as the electrostatic energy outside the liquid crystal
domain. So far, this situation is analogous to that of a ferroelectric solid. However,
there are some fundamental differences between these two behaviors. In the solid, the
directions of polarizations are determined by lattice directions; the latter are difficult
to alter by an external field. The ”softness” of a liquid crystal allows for changes in
molecular alignments so as to reduce the energy. For instance, in the case of a liquid
crystal located between conducting plates, the distribution of polarization is such
that it gets compensated by free charges in the conductor, inducing a zero electric
field outside. As a result, the nonlocal energy vanishes. Suppressing the helix in the
smectic C* phase is a mechanism of reducing nonlocal energy. In a related work [19],
Khachaturyan showed that a polarized homogeneous state of the nematic phase is
unstable with respect to a slight dipole-dipole interaction, resulting in a symmetry
breaking.

If a B2 liquid crystal is embedded in another liquid, such as its own isotropic
phase, it may actually change its shape so that the nonlocal energy is zero. This gives
a good explanation for the telephone-cord shape observed in many ferroelectric liquid
crystal filaments [5, 8, 16, 17]. Modeling of static liquid crystal helical filaments can be
found in [2, 36]. Chevron structures with alternating domains of opposite polarization
are also found in some materials [5]. The phenomena of changing shape to reduce
electrostatic energy has also been observed in thin polarized piezoelectric films (for
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example, ZnO nanobelt [20]).
In the current analysis, defects are not included. In particular, we assume that

∇ω is defined everywhere on ∂Ω with possible exceptions on the edges of Ω. This,
in turn, determines the type of the domain occupied by the liquid crystal, and the
nature of boundary conditions on the phase function ω. We make use of analogies
with the geometry of vortex tubes and sheets in fluid mechanics. Indeed, we take
Ω to be a cylinder-like domain analogous to a vortex tube which has the lateral
surface Σ corresponding to a vortex sheet, and is contained between surfaces S1 and
S2. We deal with two types of boundary conditions on ω: one corresponding to the
layer structure reaching the boundary in a tangential fashion, and the other with
layers being perpendicular to the boundary. The latter correspond to the geometry
of the Clark-Lagerwall effect in ferroelectric displays [4, 14, 39]. We also prescribe
the electrostatic potential on a part of the boundary. These boundary conditions
together with assumptions for the constitutive parameters (see section 3) allow us to
prove existence of minimizers of the total energy by using direct methods of calculus of
variations. One important issue is whether the minimizers thus obtained correspond
to chiral structures or ferroelectric ones. We apply asymptotic analysis to obtain a
classification of minimizers [1].

In [18], Joo and Phillips studied the phase transitions between chiral nematic,
smectic A*, and C* liquid crystals, and carried out extensive stability analyses. Their
work gives a rigorous classification of the energy minimizing phase regimes. Another
important merit of the article is establishing the coercivity of the smectic C* energy
for the first time. For a mathematical analysis of the phase transitions between
the chiral and smectic A* liquid crystals with focus on the analogies of the phase
transition between conductor and superconductor, the reader is referred to [1]. Studies
of periodic ferroelectric and antiferroelectric phases, and analysis of time dependent
problems arising in switching are also carried out by the authors [28]. Experimental
treatments and studies of smectic C* liquid crystals including the influence of an
electric field are found in [10, 11, 12, 29, 30, 31]. For structural understanding and
modeling of ferroelectricity, we refer to the books by Goody et al [13], Lagerwall [21],
Pikin [32], and by Muševič, Blinc and Žekš [26].

This article is organized as follows: In section 2, we present free energy functions of
smectic C* materials with concentration on the polarization and electrostatic energies.
We discuss constraint relaxation and approximations of the electrostatic energies.
In section 3, we prove existence of minimizers and study examples regarding the
relationship between domain shapes and polarizations. We also present two different
versions of the variational problem, with one of them corresponding to a liquid crystal
placed between metalic plates. In the other formulation, the liquid crystal is placed in
a dielectric media, subject to the electric field generated by the material polarization.
In section 4, we carry out asymptotic studies of the minimizers obtained in section 3
to determine whether they correspond to chiral or ferroelectric structures. We outline
some conclusions in section 5.

2. Free energy functions. We present the energy functional for smectic mate-
rials to be analyzed. This includes nematic, smectic, Ginzburg-Landau, surface, and
electric contributions. We will also show how they give rise to simple forms found in
the literature.

Equilibrium configurations of smectic C* liquid crystals occupying a smooth do-
main Ω in R3 are given by quadruples (ψ,n,P,E) of fields, ψ : Ω → C, n : Ω → S2,
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P : Ω → R3, and E : R3 → R3, that are critical points of the total energy functional

E(n,P, ψ,E) =
∫

Ω

{FN (n,P,∇n) + FSm(∇n,∇ψ,∇2ψ)

+FP (n,P,∇P,∇ψ)} dx +
∫

∂Ω

FS(n, ν) dS

+
∫
R3
FE(nχΩ,PχΩ,E)dx, (2.1)

subject to Maxwell’s equations

−∇ ·D = 0, ∇×E = 0 in Ω, (2.2)

where D is the electric displacement vector, E is the electric field, and the functions
FN , FSm, FE , FS , FP represent the Oseen-Frank, the smectic, the electrostatic, the
surface anchoring ([6], p. 99), and the Ginzburg-Landau energy densities, respectively.
χΩ denotes the characteristic function.

2.1. Dielectric, nonlocal, and self-interaction terms. The electrostatic en-
ergy density in R3 [7, 22] is given by

FE = −1
2
(
(εE ·E)χΩ + (E ·E)χΩc

)
− (P ·E)χΩ, (2.3)

3D = εEχΩ + EχΩc + PχΩ, (2.4)
ε = ε⊥I + εan⊗ n, (2.5)

where ε, ε⊥, and εa represent the susceptibility tensor, dielectric permittivity, and
dielectric anisotropy, respectively.

Note that (2.3) can be written as,

FE = −1
2

[(
ε⊥|E|2 + εa(n ·E)2 + |E|2χΩc

]
− (P ·E)χΩ. (2.6)

So, the electrostatic energy is given by∫
R3
FE dx = −1

2

∫
Ω

{ε⊥|E|2 + εa(E · n)2} dx

−1
2

∫
R3−Ω

|E|2 dx−
∫

Ω

P ·E dx. (2.7)

The two terms in the last row in (2.7) correspond to the self-interaction and nonlocal
electrostatic energies, respectively. The term in the first row gives the dielectric
contribution.

2.2. Nematic and Smectic free energies. The Oseen-Frank free energy den-
sity is given by

FN = K1(∇ · n)2 +K2(n · ∇ × n + τ)2 +K3|n× (∇× n) + γP|2

+(K2 +K4)(tr(∇n)2 − (∇ · n)2). (2.8)

3We note that the electric dispacement D is usually written by D = εEχΩ + EχΩc + 4πP. For
simplicity, we represent 4πP by P in this paper.
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where Ki, i = 1, 2, 3, 4, denote elasticity constants. The scalar τ represents the chiral
pitch of the helical structure of the cholesteric phases [9], and K3γ

2|P|2 is an intrinsic
bending stress ([7], p. 384). Here, γ is a parameter included for the purpose of
dimensionalization; hereafter, we will take γ to be 1. Such a term appears only in
connection with the modeling of the smectic C* since nematics with intrinsic bending
have not been observed. Both quantities result from the loss of mirror symmetry of
the smectic C* phases. The fourth term in FN is a null-Lagrangian; its integral is
determined by n on ∂Ω. The classical Oseen-Frank energy corresponds to the case
that P is zero. Existence and regularity of minimizers for the classical Oseen-Frank
energy were studied by R. Hardt et al [15].

The free energy density associated with the smectic layering follows the covariant
form presented in [3]:

FSm = D(D2ψ)(D2ψ)∗ + [C||ninj + C⊥(δij − ninj)](Diψ)(Djψ)∗

+r|ψ|2 +
g

2
|ψ|4. (2.9)

with D ≡ ∇ − iqn, q is the modulation wave number of the smectic layer, and r =
a(T − T ∗), a > 0; here T denotes the (constant) temperature of the material and
T ∗ is the transition temperature from nematic to smectic. Model (2.9) yields the
de Gennes model for Smectic A* when C|| − C⊥ = 0 and D = 0. The smectic C
phase is characterized by C⊥ < 0. Moreover, C⊥ ≥ 0 in the smectic A* and C⊥ = 0
characterizes the transition to smectic C. Equivalently, the energy (2.9) can also be
written as follow:

FSm = D|D2ψ|2 + C⊥|Dψ|2 + Ca|n · Dψ|2 + r|ψ|2 +
g

2
|ψ|4. (2.10)

Remark. The first term in (2.9) is obtained from [24] and it is a modification of
D⊥(δij −ninj)(δkl−nknl)(DiDj)(DkDl)∗ in the original Chen-Lubensky model. The
purpose of introducing the new term is to obtain coercivity of the energy. This fact
was first observed in [18].

2.3. Anchoring energy. The anchoring energy is the Rapini-Papoular surface
energy [7, 21] given by

FS = ωn(1− α0(n · ν)2
)
, (2.11)

where ωn and |α0| < 1 are material constants, and ν denotes the unit normal to the
surface. Note that the surface energy due to the polarization is not explicitly included
in (2.11). In fact, the role of such a surface energy is an approximation to the nonlocal
energy in (2.7), which we explicitly include in the problem.

2.4. Ginzburg-Landau energy with relaxation. The energy associated with
the phase transition to the ferroelectric phases is given by the Ginzburg-Landau ex-
pression [22], a0|P|2 + b0|P|4, where b0 > 0 and a0 = α(T − Tc). Ferroelectric phases
correspond to the case T < Tc.

In contrast to solids, the direction of polarization in many liquid crystals is de-
termined by the direction n and the layer normal ∇ω. In fact, a symmetry argument
shows that P is perpendicular to both n and ∇ω. For this reason, we express P as
follows ([7], p. 384):

P =
{
|P| ∇ω×n

|∇ω×n| if ∇ω × n 6= 0,
0 if ∇ω × n = 0.

(2.12)



6 Electrostatic Effects in Liquid Crystals

Therefore, the Ginzburg-Landau energy with relaxation is given by

FP = B|∇P|2 + a0|P|2 + b0|P|4 +
1
ε2
|(|∇ω × n|)P− |P|(∇ω × n)|2, (2.13)

where B > 0, a0 < 0, b0 > 0 and ε > 0. Here, we note that the last term in (2.13),
1
ε2 |(|∇ω×n|)P−|P|(∇ω×n)|2, is a penalty term for (2.12) and |∇P|2 is a regularizing
term.

2.5. Electrostatic approximations. The presence of polarization in the sam-
ple causes a point charge density ρp = −∇·P in the bulk, and σ = P ·ν where σ is the
surface density of charges [38]. This will help us interpret the energies

∫
R3−Ω

|E|2 dx
and

∫
Ω

P ·E dx. For this, let us consider the special case that Ω is a ball of radius r0
centered at 0, with the constant surface charge density σ. We calculate the electric
potential ϕ [38] as

ϕ(x) =

{
σr2

0
|x| if |x| > r0,

σr0 if |x| ≤ r0.

Then for |x| > r0, we get

|E(r)| = σr20
r2

,

and hence ∫
R3−Ω

|E|2 dx =
∫ 2π

0

∫ π

0

∫ ∞

r0

σ2r40
r2

sinφdr dφ dθ

= r0

∫
∂Ω

(P · ν)2 dS.

This explains why the term
∫

∂Ω
(P · ν)2 dS appears in liquid crystal models [21].

Now, let us consider the self-interaction energy. For our illustration, we consider
the case that εa << ε⊥, and we neglect εa in the model. It then follows that the
self-interaction energy is related with the Coulomb energy by∫

Ω

∫
Ω

∇ ·P(x)∇ ·P(y)
|x− y|

dx dy = −4πε⊥
∫

Ω

P ·E dx.

We point out that the Coulomb energy is often approximated by the polar energy∫
Ω
(∇ ·P)2 dx found in the literature [7, 21]. We summarize the total energy involved

in the electrostatic approximation without an external field as follows:

E(n,P, ψ) =
∫

Ω

{FN + FSm +GP }dx +
∫

∂Ω

GS dS, (2.14)

GS = ωp

(
1− P · ν

|P|

)
+ ωr

(
1− (P · ν)2

|P|2
)

(2.15)

+ωn

(
1− (n · ν)2

)
,

GP = FP +B1(∇ ·P)2. (2.16)

Minimization of the energy (2.14) is studied in previous work [27].
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3. Existence of minimizers. In this section, we study the boundary conditions
for smectic-C* layer configurations, and prove existence of minimizers. We also discuss
applications and provide examples that explain the relationship between domain shape
and ferroelectricity.

Throughout this paper, we assume that the constitutive parameters satisfy

g > 0, q ≥ 0, τ ≥ 0, r < 0, b0 > 0, ωn > 0, (3.1)
D > 0, C⊥ < 0, Ca > 0, c1 ≥ K2 +K4 ≥ c0, (3.2)
K1 ≥ K2 +K4, K3 ≥ K2 +K4, 0 ≥ K4 (3.3)

where c0 and c1 are positive constants. The latter inequalities are necessary conditions
to ensure coercivity of the energy [1].

3.1. Boundary conditions. Let Ω ⊂ R3 be a bounded, cylinder-like domain,
with boundary ∂Ω = Σ∪S1∪S2. We assume that the lateral surface Σ is of class C2,
and that S1 and S2 are plane cross sections with unit normal ν1 and ν2, respectively.
Letting ψ = ρeiω, we rewrite FSm as

FSm = D|D2ψ|2 + C⊥|Dψ|2 + Ca|n · Dψ|2 + r|ψ|2 +
g

2
|ψ|4

= D[(∆ρ− ρ|∇ω − qn|2)2 + (ρ∇ · (∇ω − qn)
+2∇ρ · (∇ω − qn))2] + C⊥[|∇ρ|2 + ρ2|∇ω − qn|2]

+Ca[(∇ρ · n)2 + ρ2(∇ω · n− q)2] + rρ2 +
g

2
ρ4. (3.4)

The following lemma based on Gauss’ theorem motivates the boundary conditions
taken into account.

Lemma 3.1. Let Ω ⊂ R3 be as previously defined. Let f be a smooth scalar
function defined in Ω. Then f satisfies the following identity:∫

Ω

|4f |2 =
∫

∂Ω

[∇ · (∇f)(ν · ∇f)− 1
2
∇(|∇f |2) · ν] dS

+
∑

i,j=1,2,3

∫
Ω

(∂i∂jf)2 dx. (3.5)

Let k > q be a given constant. We assume that the boundary ∂Ω satisfies either

∇ω · ν = 0 on Σ, ∇ω · νi = k on Si, i = 1, 2,
|∇ω|2 = k2 on Σ ∪ S1 ∪ S2, (3.6)

or

∇ω · ν = ±k on Σ, ∇ω · νi = 0 on Si, i = 1, 2,
|∇ω|2 = k2 on Σ ∪ S1 ∪ S2. (3.7)

Such relations correspond to smectic layers reaching the boundary in a perpendicular
and tangential fashion, respectively, with a prescribed wave number k. In case of
(3.7), the surface integration in (3.5) becomes ±2k2

∫
Σ
H dS, where H is the mean

curvature. In constrast, with boundary conditions (3.6) the surface integration in
(3.5) is zero.
Remark. The choice of domain and boundary conditions of the problem are moti-
vated by vorticity geometry. Indeed, Ω and Σ play the roles of vortex tube and vortex
sheet, respectively. Moreover, ∇ω is analogous to the fluid vorticity ξ.
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PSfrag replacements ξ

C1

C2

S2

S1

Σ

Fig. 3.1. A vortex tube: C1 and C2 are the boundary curves of S1 and S2.

3.2. Existence of minimizers. For simplicity, we restrict ourselves to the case
that ρ is constant (say ρ = 1), that is, no nematic defects are present in the sample,
and rewrite the smectic energy as follows:

FSm = D(∆ω − q∇ · n)2 +D
(
|∇ω − qn|2 +

C⊥
2D

)2

+Ca(∇ω · n− q)2 +
(
r +

g

2
− C2

⊥
4D

)
. (3.8)

We also assume that D and E satisfy Maxwell’s equations (2.2). We use an electric
potential ϕ satisfying E = ∇ϕ and impose boundary conditions for ϕ so that (2.2)
reads  −∇ · ((ε⊥I + εan⊗ n)∇ϕ) = ∇ ·P in Ω,

ϕ = ϕ0 on Σ,
−

(
(ε⊥I + εan⊗ n)∇ϕ

)
· ν = P · ν on S1 ∪ S2,

(3.9)

where ϕ0 ∈ H
1
2 (Σ) is prescribed.

Define

X =
{

(n,P) ∈W 1,2(Ω,S2)×W 1,2(Ω,R3) : ||P ||∞ ≤ P0,
}

H = {ω ∈W 2,2(Ω) | ω satisfies (3.6) or (3.7) on ∂Ω}
H1

ϕ0
= {ϕ ∈ H1(Ω) : ϕ = ϕ0 on Σ},

A∗ = H×X , and
A = A∗ ×H1

ϕ0
,

where P0 is the given polarization saturation constant depending on the material and
temperature. For constant potential ϕ0, the boundary condition ϕ = ϕ0 on Σ can be
considered as ϕ = ϕ0 in R3 − Ω. In this case, the nonlocal energy

∫
R3−Ω

|E|2 dx is
zero. For simplicity, we will drop the nonlocal energy in E . We then rewrite the total
energy functional E as a sum:

E = W − 1
2

∫
Ω

{ε⊥|∇ϕ|2 + εa(n · ∇ϕ)2 + 2P · ∇ϕ} dx, (3.10)

where

W =
∫

Ω

{FN + FSm + FP } dx +
∫

∂Ω

ωn((1− α0(n · ν)2) dS. (3.11)

Since we are interested in the case that K2 and K3 are large, we assume that
min{K2,K3} ≥ 8c1 [1]. We note that for all n ∈ W1,2(Ω,S2), the following identities
hold:

tr(∇n)2 = |∇n|2 − |∇ × n|2,
|∇ × n|2 = |n · ∇ × n|2 + |n×∇× n|2.
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Using these identities, we get

FN = (K1 −K2 −K4)(∇ · n)2 + (K2 +K4)|∇n|2 − (K2 +K4)|∇ × n|2

+K2(n · ∇ × n + τ)2 +K3|n×∇× n + P|2. (3.12)

Now, the following inequalities hold:

K2(n · ∇ × n + τ)2 +K3|n×∇× n−P|2 − (K2 +K4)|∇ × n|2

≥ 4c1(
1
2
|n×∇× n|2 − 2|P|2) + 2c1(n · ∇ × n + τ)2 − (K2 +K4)|∇ × n|2

≥ 2c1|∇ × n + τn|2 − 8c1|P|2 − (K2 +K4)|∇ × n|2

≥ 2c1(
1
2
|∇ × n|2 − 2τ2)− 8c1|P|2 − (K2 +K4)|∇ × n|2

≥ (c1 −K2 −K4)|∇ × n|2 − 4c1(τ2 + 2|P|2)
≥ −4c1(τ2 + 2|P|2). (3.13)

It follows from (3.12), (3.13), and Lemma 3.1 that W is bounded below in A∗. There-
fore, we have

M1 ≤ inf
(n,P,ω)∈A∗

W(n,P, ω) <∞,

for some M1 ∈ R.
Now, we rewrite the Oseen-frank energy in (3.12) as follows:

FN = (K1 −K2 −K4)(∇ · n)2 + (K2 +K4)|∇n|2 −K4(n · ∇ × n− τK2

K4
)2

+K|n×∇× n +
K3

K
P|2 + (K3 −

K2
3

K
)|P|2 + τ2

(
K2 −

K2
2

|K4|

)
,

where K = K3 −K2 −K4.
Let {(nj ,Pj , ωj)} be a minimizing sequence for W. Since |nj | = 1, we get

nj ⇀ n∞, in W 1,2(Ω),
nj → n∞, almost everywhere in Ω, and
Pj ⇀ P∞ in W 1,2(Ω).

as j →∞. Furthermore, we have

nj ×∇× nj ⇀ n∞ ×∇× n∞ in L2(Ω),
nj · ∇ × nj ⇀ n∞ · ∇ × n∞ in L2(Ω),

as j →∞. Note that for all j,∫
Ω

|∇ωj |2 dx ≤ 2
∫

Ω

(|∇ωj − qnj |2 + q2) dx, and (3.14)∫
Ω

|∆ωj |2 x =
∫

Ω

(|∆ωj − q∇ · nj + q∇ · nj |2 dx

≤ 2
∫

Ω

(|∆ωj − q∇ · nj |2 + q2(∇ · nj)2 dx (3.15)
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hold. From (3.14), (3.15), and Lemma 3.1, we get

||ωj ||W 2,2(Ω) ≤ R,

for some R > 0. Hence, we obtain that

ωj ⇀ ω∞ in W 2,2(Ω), and
∇ωj × nj → ∇ω∞ × n∞ in L2(Ω),

as j →∞. Using ||a| − |b|| ≤ |a− b| for a and b in R, we show that∣∣∣(|∇ωj × nj |)Pj − |Pj |(∇ωj × nj)
∣∣∣2 → ∣∣∣(|∇ω∞ × n∞|)P∞ − |P∞|(∇ω∞ × n∞)

∣∣∣2
in L1 as j →∞.

Since n · ν ∈ H 1
2 (∂Ω) ⊂ L2(∂Ω) with strong topology,

∫
∂Ω
ωn(1 − α0(n · ν)2) dS

is lower semicontinuous. Therefore, W is coercive and weakly lower semicontinuous,
that is,

W(n∞,P∞, ω∞) ≤ lim
j→∞

W(nj ,Pj , ωj).

Therefore we have the following lemma.
Lemma 3.2. Assuming that min{K2,K3} ≥ 8c1, there exists a minimizing triple

(n,P, ω) of the energy functional W in A∗.
Now, we prove existence of minimizers for E in A. For any (n,P, ω) ∈ A∗, by the

fundamental theory of elliptic PDEs the equation (3.9) has a unique solution which
we denote by Φϕ0(n,P), and thus Φϕ0(n,P) is the unique minimizer of the functional
−

∫
Ω
(FE dx in H1

ϕ0
. Substituting Φϕ0(n,P) for ϕ in E , we define E∗ by

E∗(n,P, ω) = E(n,P, ω,Φϕ0(n,P)).

After modifying theorem 4.1 in [15], we have the following theorem.
Theorem 3.3. For any ϕ0 ∈ H

1
2 (Σ), there exists a triple (n,P, ω) which mini-

mizes E∗ in A∗. Furthermore, a quadruple (n,P, ω, ϕ) is a critical point of E, which
satisfies (3.9) and

δE(n,P, ω, ϕ) = 0 in A (3.16)

if and only if

ϕ = Φϕ0(n,P), and δE∗(n,P, ω) = 0 in A∗. (3.17)

Theorem 3.4. For ϕ0 as above and min{K2,K3} ≥ 8c1, there exists a triple
(n,P, ω) which minimizes E∗ in A∗, and therefore E achieves its minimum in A.

Proof. Let (ñ, P̃, ω̃) be a minimizer of W in A∗. Then

inf
(n,P,ω)∈A∗

E∗(n,P, ω) ≤ E∗(ñ, P̃, ω̃) <∞.

Let

A(∇ϕ,n) = [(ε⊥I + εan⊗ n)∇ϕ] · ∇ϕ.
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If ϕ̃ is some fixed W 1,2 extension of ϕ0 to Ω, then for any η > 0,

−2
∫

Ω

FE dx =
∫

Ω

[A(∇Φϕ0(n,P),n) + P · ∇Φϕ0(n,P)] dx

≤
∫

Ω

[A(∇ϕ̃,n) + P · ∇ϕ̃] dx

≤ C(Ω, ϕ0),

for some C(Ω, ϕ0) depending on Ω and ϕ0. Since W is bounded from below, it follows
from the above that E∗ is also bounded below.

Now, choose a minimizing sequence (ni,Pi, ωi) in A∗ and set ϕi = Φϕ0(n
i,Pi).

Using the same computation as in the proof of the previous lemma, we obtain that

nj ⇀ n∞ in W 1,2,

nj → n∞ almost everywhere in Ω,
Pj ⇀ P∞ in W 1,2, and
ωj ⇀ ω∞ in W 2,2

as j →∞. Since (Pj) converges strongly to P∞ in L2,∫
Ω

Pj · ∇ξ dx →
∫

Ω

P∞ · ∇ξ dx as j →∞ (3.18)

for any ξ ∈ H1(Ω). It follows from (3.9) and (3.18) that (ϕj) converges strongly to
ϕ∞ in H1

ϕ0
.

Since ϕi is the minimizer of −
∫
Ω
FE(ni,Pi,∇ϕ) dx for each fixed ni and Pi, we

have

−
∫

Ω

FE(ni,Pi,∇ϕi) dx ≤ −
∫

Ω

FE(ni,Pi,∇ϕ∞) dx.

By Lebesgue’s theorem, we obtain

lim
i→∞

{
−

∫
Ω

FE(ni,Pi,∇ϕi) dx
}

= −
∫

Ω

FE(n∞,P∞,∇ϕ∞) dx,

so that

lim sup
i→∞

{
−

∫
Ω

FE(ni,Pi,∇ϕi) dx
}
≤ −

∫
Ω

FE(n∞,P∞,∇ϕ∞) dx.

This implies that

lim inf
i→∞

∫
Ω

FE(ni,Pi,∇ϕi) dx ≥
∫

Ω

FE(n∞,P∞,∇ϕ∞) dx.

Since W is lower semicontinuous, we finally conclude that

E∗(n∞,P∞, ω∞) = inf
(n,P,ω)∈A∗

E∗(n,P, ω).
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3.3. Applications. Problems analogous to the model problem of the previous
subsection are often found in applications. Let us discuss two examples. First we
consider the case of a liquid crystal contained in a dielectric liquid media with free ions
that form a charged layer of density σ on the interface. Letting Ω be a bounded domain
occupied by liquid crystals, the goal is to find an electric potential ϕ ∈ W 1,2(R3)
satisfying  −∇ · ((ε⊥I + εan⊗ n)∇ϕ) = ∇ ·P in Ω,

−∆ϕ = 0 in R3 − Ω̄,
−[(ε⊥I + εan⊗ n)∇ϕ− ε0∇ϕ] · ν = P · ν + σ on ∂Ω,

(3.19)

where ε0 is the dielectric coefficient of the media.
The second case comes up in device applications. Now the liquid crystal domain

Ω is confined between two conducting plates Ω1 and Ω2 respectively. We assume that
there is no free charge in Ω, and we neglect end-effects. In this case, the boundary
value problem is stated as follows: For a given potential ϕ̃, find ϕ satisfying the
following conditions:

−∇ · ((ε⊥I + εan⊗ n)∇ϕ) = ∇ ·P in Ω,
−∆ϕ = 0 in R3 − (Ω̄ ∪ Ω̄1 ∪ Ω̄2),

(ε⊥∇ϕ+ εa(n · ∇ϕ)n + P) · ν = 0 on ∂Ω1 ∪ ∂Ω2,
∇ϕ = 0 in Ω1, ϕ = ϕ̃ in Ω2,

ϕ→ 0 as |x| → ∞.

(3.20)

If ϕ̃ is set to zero, ∇ϕ gives the electric field created by the polar distribution. Anal-
ogous boundary value problems for ferroelectric solids are considered in [35]. The
existence proofs developed in the previous section extend with some modifications to
the present examples.

3.4. Shapes and polarization. We close this section with examples to illus-
trate the relationship between the nonlocal energy and the shape of the domain.

Example 1. Uniformly polarized rectilinear cylinder. Let Ω be a cylinder in
R3, x2 + y2 ≤ r21, occupied by a smectic C material such that

∇ω = er, n = f(r)er + g(r)eθ, P = P0k.

Let Ω̃ denote a second cylinder, x2 + y2 ≤ r22, r1 < r2. Suppose that E is the electric
field on the cylindrical surface ∂Ω̃. Applying Gauss’ theorem to Ω̃, we get∫

∂Ω̃

E · ν dS = 0

since the net charge inside Ω̃ is zero. By symmetry, we observe that |E| is constant
on ∂Ω̃, E · ν = |E|, and thus ∫

R3−Ω

|E|2 dx = 0.

We note that the electric field E due to the polarization may not be zero outside Ω
if the shape is non-symmetric. For instance, in the case of a bent cylindrical domain,
the electric field created by the polarization is not rotationally symmetric. Therefore,
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we cannot conclude that |E| is constant on ∂Ω̃ , and so E is, in general, non-zero on
∂Ω̃. In this case, the self energy

∫
R3−Ω

|E|2 dx is also non-zero.

Example 2. Polarized helical filament. In example 1, we replace Ω by a thin
filament [2],

Ω = {x ∈ R3 : x = C(s) + ξe, s ∈ [0, l], ξ ∈ [0, r], e ·T = 0, e · e = 1}

where C : [0, l] → R3 is a smooth curve and T is the unit tangent vector. The domain
Ω is a thin filament and not necessarily a right cylinder. Let N and B denote the
normal and binormal vectors to the curve, respectively.

The curve C represents the center curve of the curvilinear cylindrical domain Ω.
We assume that for each s ∈ [0, r], the smectic layer normal is parallel to T, and the
director field n is parallel to the plane determined by T and B, making a constant
tilt angle with T. Accordingly, we set

∇ω = T, n = αT + βB, α2 + β2 = 1, P = −P0N.

Define a coordinate system (s, ξ, θ) so that

eξ = cos θN + sin θB, eθ = − sin θN + cos θB.

Since the net charge in Ω̃ is zero, by Gauss’ theorem∫
∂Ω̃

E · ν dS = 0.

In general, though, we cannot conclude that E is symmetric around the curve C, and
so E may not be zero outside the filament region. Now the question is whether or not
there is a shape such that E = 0 in R3 − Ω. Heuristically, we can view such a shape
as the limiting case of a helical filament as the pitch approaches zero. Note that this
would allow us to recover the symmetry property of the domain and of the electric
field, and conclude that

∫
R3−Ω

|E|2 is negligible.

Fig. 3.2. A polarized helical filament

4. Classification of energy minimizers. We apply asymptotic arguments to
determine whether energy minimizers correspond to either helical configurations or
ferroelectric ones. In this section, we consider the energy as in (2.14). We wish to
identify the smectic layer geometry and find parameter conditions leading to helical
director configurations in the bulk with zero average polarization, as well as those giv-
ing homogeneous ferroelectric states. For this, we will consider a rectangular domain
between two parallel plates:

Ω = {x = (x, y, z) : 0 < y, z < L, 0 < x < d.},

for fixed 0 < L, 0 < d. Let i, j and k denote the corresponding orthonormal system of
vectors.
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4.1. Helical energy minimizers. We determine the structure of the energy
minimizers (n, ω,P) when K2 and K3 as well as the smectic coefficients dominate
over the Ginzburg-Landau energy and surface energy parameters, and C⊥ < 0. Such
a situation arises at temperatures below the threshold of the smectic A to smectic C
transition yielding helical configurations of n and P. It is well known that in the
higher temperature transition from nematic to smectic A, K2 becomes unbounded
and the smectic coefficient C⊥ ≥ 0.

We take the admissible set so that

k = q

√
|C⊥|
2Dq2

+ 1. (4.1)

We consider admissible fields such that n makes a constant angle α with the layer
normal vector ∇ω. We also choose α such that

tanα =

√
|C⊥|
2Dq2

. (4.2)

Specifically, we let
n0 = (a cos τz

a2 , a sin τz
a2 , c),

a = sinα 6= 0, c = cosα 6= 0, a2

c2 = |C⊥|
2Dq2 ,

P0 = cτ
a (− sin τz

a2 i + cos τz
a2 j),

ω0 = kz, k = q
c , ν = i.

(4.3)

A simple calculation gives

∇ω0 · n0 = q, 4ω0 = 0, |∇ω0 − qn0|2 =
|C⊥|
2D

,

∇ · n0 = 0, n0 · ∇ × n0 + τ = 0, |n0 × (∇× n0) + P0| = 0,

∇ ·P0 = 0, |∇P0| =
cτ2

a3
, P0 = ∇ω0 × n0.

We observe that the quantity tanα =
√

|C⊥|
2Dq2 is of the order of tan π

6 according to
experimental measurements of the director tilt angle. This together with available
information on the wave number q in the smectic A phase allows us to determine the
relative value of the smectic parameters |C⊥| and D.

The total energy corresponding to the fields in (4.3) is given by

E0 = L2d[r +
g

2
− C2

⊥
4D

+ (K2 +K4)
τ2

a2
+
c2τ2

a2
(B

τ2

a4
+ a0 + b0

c2

a2
τ2)]

+(2L2 + 4dL)(Cpωp + Crωr + Cnωn),

where Cr, Cp, Cn are expressions involving a, c, q and τ .
Letting K0 = 1

2 min{K2,K3}, we write the Oseen-Frank energy as follows:

FN = (K2 −K0)|n · ∇ × n + τ |2 + (K3 −K0)n×∇× n + P|2

+(K1 −K2 −K4)(∇ · n)2 + (K2 +K4)|∇n|2

+K0|n · ∇ × n + τ |2 +K0|n×∇× n + P|2 − (K2 +K4)|∇ × n|2. (4.4)
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We invoke the following estimate for the last three terms

K0(|n · ∇ × n + τ |2 + |n×∇× n + P|2)− (K2 +K4)|∇ × n|2

≥ −4c1(τ2 + 2|P|2).

We then obtain the following estimates:∫
∂Ω

GS dS ≥ −(2|ωp|+ 2|ωr|+ |ωn|(1 + |α|)(2L2 + 4dL),∫
Ω

(FSm + FN +GP ) dx ≥
[
r +

g

2
−

(C2
⊥

4D
+

(a0 − 8c1)2

4b0
+ 4c1τ2

)]
dL2.

Letting (n,P, ω) denote an energy minimizer, we get

0 ≤ E(n,P, ω) + (2|ωp|+ 2|ωr|+ |ωn|(1 + |α|)(2L2 + 4dL)

+[
C2
⊥

4D
+

(a0 − 8c1)2

4b0
+ 4c1τ2 − r − g

2
]dL2.

≤ E0 + (2|ωp|+ 2|ωr|+ |ωn|(1 + |α|)(2L2 + 4dL)

+[
C2
⊥

4D
+

(a0 − 4c1)2

4b0
+ 4c1τ2 − r − g

2
]dL2 ≡ Ē0. (4.5)

Since |C⊥|
2Dq2 is bounded, we note that the quantity on the right hand side of the inequal-

ity is independent of D,C⊥,K1,K2 and K3, with the only Ki constants appearing as
the sum K2 + K4. From (4.5) together with (3.12) and (3.13), we get the following
theorem:

Theorem 4.1. Let q > 0, τ > 0 be fixed. Suppose that the constitutive parameters
satisfy assumptions (3.1)-(3.3). Suppose that K2,K3 ≥ 8c1 and 0 < |C⊥|

2Dq2 ≤ 1. If
(n,P, ω) is a minimizer of E, then the following estimates hold:

||(∇ω × n)|P| −P(|∇ω × n|)||22,Ω ≤ ε2Ē0, (4.6)

||∇n||2,Ω ≤
Ē0

K2 +K4
, (4.7)

||n×∇× n + P||22,Ω ≤
Ē0

min{K2,K3}
, (4.8)

||n · ∇ × n + τ ||22,Ω ≤
Ē0

min{K2,K3}
, (4.9)

‖|1
q
∇ω − n|

2

− |C⊥|
2Dq2

‖22,Ω ≤
Ē0

Dq2
, (4.10)

‖1
q
∇ω · n− 1‖22,Ω ≤

Ē0

Ca
, (4.11)

||∇P||2,Ω ≤
Ē0

B
. (4.12)

Next, we proceed to take limits in (4.6)-(4.11). We use the following representation
for n:

n = sin θ cosφi + sin θ sinφj + cos θk,

where φ = φ(x, y, z) and θ = θ(x, y, z) are functions resulting from energy minimiza-
tion.
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Theorem 4.2. Suppose that the hypotheses of the previous theorem hold. Then
the energy minimizing fields (n,P, ω) satisfy the following limiting relations:

lim
Ca→∞

∇ω · n = q, (4.13)

lim
|C⊥|→∞

|∇ω| = q

√
|C⊥|
2Dq2

+ 1, (4.14)

lim
ε→0

P = cotατ
k× n
|k× n|

, cotα =

√
2Dq2

|C⊥|
, (4.15)

lim
K→∞

(n×∇× n + P) = 0, (4.16)

lim
K→∞

(n · ∇ × n + τ) = 0, (4.17)

where K = min{K2,K3}. Furthermore, we get

lim
|C⊥|→∞

ω = (q

√
|C⊥|
2Dq2

+ 1)z, (4.18)

lim
K→∞

n = sinα cos
τ

a2
zi + sinα sin

τ

a2
zj + cosαk. (4.19)

Proof. From the geometry of the domain and the boundary conditions, it follows
that ∇ω = |∇ω|k, which together with (4.10) and (4.11) yield (4.13), (4.14), and
(4.18). It now follows from (4.13) and (4.14) that θ = α is the constant given by
(4.2). These together with (4.6) yield P = |P| k×n

|k×n| . Combining this equation with
(4.16) and (4.17) gives φ = τ

a2 z in (4.19). This also yields (4.15).
Note that from the property limD→∞(4ω−q∇·n) = 0, it follows that the limiting

director field has zero divergence, in agreement with (4.19).

4.2. Ferroelectric energy minimizers. In the previous theorem, the elastic-
ity constants K2 and K3 become unbounded with respect to the parameters of the
polarization contribution to the energy. We will show that the ferroelectric configu-
rations,

n = ± sinαj + cosαk, P = ±P0i, P0 =

√
|a0|
b0

, (4.20)

with α the constant in (4.15), are limits of minimizers at the limit of K1 large, and
when the polar coefficients ωp and ωr dominate over the twist and bending elasticity
constants K2 and K3. This situation occurs at temperatures lower than those of the
helical regime. The role of the surface energy is also relevant in such a case.

Next, we take the following set of admissible fields to determine the ferroelectric
limits:

n = ± sinαj + cosαk, P = ±

√
|a0|
b0

i, (4.21)

with 0 < α < π
2 , and ω as in (4.15) and (4.18), respectively. We find that the energy

E1 corresponding to such fields is:

E1 = L2[(K2τ
2 +

|a0|
b0

K3)d+ 2[ωp + ωr + ωn − (
|a0|
b0

)2ωr

−α0ωn sin2 α)]. (4.22)
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Replacing E0 with E1, the estimates of Theorem 4.1 hold. These allow us to establish
the following asymptotic limits of minimizers:

∇ · n = 0 as K1 →∞, (4.23)
|∇ω| = k as |C⊥| → ∞. (4.24)

Letting D →∞ and taking (4.23) into account, it follows that 4ω = 0. This together
with the boundary conditions on ∂Ω gives∇ω = (0, 0, k), with k as in (4.1). Moreover,

letting Ca → ∞ gives cosα = q
k , and P =

√
|a0|
b0

k×n
|k×n| results by letting ε → 0 and

using the expression for ∇ω. By letting ωr →∞, we get φ = ±π
2 .

We finally make the following remarks:
1. The limiting fields (n,P, ω) given by (4.18) and (4.20) satisfy the Euler-Lagrange
equations with the prescribed boundary conditions.
2. Likewise, (n,P, ω) as in (4.18) and (4.19) solve the Euler-Lagrange equations at
the limit |C⊥| → ∞.

5. Conclusions. We studied modeling of ferroelectirc smectic C* liquid crystals
and investigated nonlocal electrostatic effects. We discussed how the proposed model
is consistent with well-known approaches found in the physics literature. We proved
existence of minimizers for the total energy by means of direct methods of calculus of
variations, within the class of fields satisfying physically relevant boundary conditions,
with respect to the layering configuration. We presented examples to illustrate the
relationship between domain shape and reduction of the nonlocal energy. For instance,
we argued that a thin filament may become helical in order to lower the nonlocal
energy. We also studied the asymptotic properties of the energy minimizers as the
parameters of the energy become unbounded upon the temperature reaching transition
values from smectic C* to lower temperature ferroelectric limits.

6. Acknowledgement. We would like to thank professor Marta Lewicka for
many interesting comments and suggestions.
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