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ABSTRACT

In this paper, we present the first 3D discrete curvelet transform. This transform is an extension to the 2D
transform described in Candes et al..! The resulting curvelet frame preserves the important properties, such
as parabolic scaling, tightness and sparse representation for singularities of codimension one. We describe three
different implementations: in-core, out-of-core and MPI-based parallel implementations. Numerical results verify
the desired properties of the 3D curvelets and demonstrate the efficiency of our implementations.

Keywords: Curvelet transform; Parabolic scaling; High-dimensional singularities; Partition of unity; Fast
Fourier transform; Out-of-core algorithm; Parallel algorithm; Wrapping.

1. INTRODUCTION

Curvelets are two dimensional waveforms that provide a new architecture for multiscale analysis. In space, a
curvelet at scale j is an oriented “needle” whose effective support is a 277 by 277/2 rectangle and thus obeys
the parabolic scaling relation width ~ length?. In frequency, a curvelet at scale j is a “wedge” whose frequency
support is again inside a rectangle, but of size 27 by 27/2. Unlike wavelets, curvelets are localized not only
in position (the spatial domain) and scale (the frequency domain), but also in orientation. This localization
provides the curvelet frame with surprising properties: it is an optimally sparse representation for singularities
supported on C? curves in two dimensions?; it forms an optimally sparse basis for pseudodifferential operators
(PDOs) and Fourier integral operators (FIOs)? 4 and it has become a promising tool for various image processing
problems.?

Starck et al.? gave the first discrete curvelet transform specialized for image processing applications. However,
in the past few years, curvelets have been redesigned to make them easy to use and understand.? Recently,
Candes et al.! presented two 2D discrete curvelet transforms for the second-generation curvelets. These new
transforms are numerically tight frames, and the resulting curvelets are faithful analogs of their continuous
counterparts.

In many scientific and engineering disciplines, such as video processing, seismic imaging and medical imaging,
the data is inherently three dimensional. With the increase of computational power, direct processing of three
dimensional data becomes feasible. Since properties such as scale-position-direction localization and parabolic
scaling can naturally be extended to 3D, a 3D curvelet transform will open new opportunities to analyze and
study large data sets in these fields.

In this paper, we present the first 3D discrete curvelet transform. This transform is an extension to the 2D
transform presented in Candes et al..! This new discrete curvelet frame preserves the important properties,
such as parabolic scaling, tightness and sparse representation for surface-like singularities of codimension one.

The paper is organized as follows. Section 2 reviews the 2D curvelet transform. Section 3 briefly outlines the
2D discrete transform. In Section 4, we describe the architecture of the 3D discrete curvelet transform. Section
5 presents three different implementations of the 3D transform and some numerical results.

Contact info: [lexing,demanet,emmanuel]@acm.caltech.edu.



2. 2D CURVELET TRANSFORM

In this section, we briefly introduce the curvelet transform in 2D. We work throughout in R?, with spatial
variable x, with frequency value w, and with r and 6 being the polar coordinates in the frequency domain. We
start with a pair of windows W(r) and V(t), which we will call the radial window and the angular window,
respectively. They are both smooth, nonnegative and real-valued, with W taking positive real arguments and
supported on r € [1/2,2] and V taking real arguments and supported on ¢t € (—27,2x]. These windows will
always obey the conditions:
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As in the wavelet theory, we introduce the lowpass window W;, which satisfies the following condition
Wi, (r)* + Z W2 ir)? =1.
J>Jjo
For each j > jo, W(277r) smoothly extracts the frequency content inside the dyadic region (2771, 29+1). Curvelets

are organized by the triple index (4, ¢, k), with j standing for scale, ¢ for orientation, and k = (k1, ko) for spatial
location.

Coarsest scale j = jo. The coarsest scale curvelets are isotropic, and the only index for ¢ is zero. We define
the frequency window Uj, o by
Ujo,0(w) = W, (w).

Suppose Uj, o is supported on a rectangle of size Ly ;, by Lo j, (by our choice of W, Ly j, = L2 j,). The coarsest
curvelets are defined by means of their Fourier transform

$jo.0.k(W) = Ujy 0(w) - exp[—2mi(kywi /Ly j, + kawa/ L2 jo)1/v/ L1 jo - L2,jo-

Fine scale j > jo. The frequency content radially extracted by W (277r) is further partitioned into 27 /2 angular
windows. For each £: 0 < ¢ < 29/2, we define a wedge-like frequency window Uj¢(w) by
Ujo(w) =W(27r). V(2j/2(9 —6y))

where 6, = 27¢ - 277/ (see Figure 1(a)). Suppose U, is supported a rectangle of size L; ; by Lo j. Clearly
Ly ;= O(2) and Ly ; = O(27/2). The curvelets at scale j and orientation ¢ = 0 are defined through their Fourier

transforms

@j0,k(w) = Ujo(w) - exp[=2mi(kiwi/L1,j + kawz/La ;)] /\/L1,; - La;.
Directly from this definition, we know, for any k = (k1, ko) with k1, ks € Z, @ 0 1(x) = @j0,0(@—(ki1/L1,k2/ Lo ;)).
For general ¢, the curvelets of orientation ¢ are defined by

@iek(®) = j0k(R-g, - 7)
where Ry is the rotation matrix by ¢ radians. Obviously, the Fourier transform ¢, of a curvelet ¢; 1 is
localized on the support of the frequency window Uj ,.

The curvelet coefficients of a function f € L?(R?) are simply the inner products between f and the curvelets
Pj.l.k

(g, b, k) = pj ek, ) = / . @jen(z) f(z) de.
R
The coarsest scale curvelets are non-directional. However, it is the behavior of the fine-scale directional

elements that are of interest. Figure 1 summarizes the key components of this construction. We now summarize
a few properties of the curvelet transform:
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Figure 1. 2D curvelet tiling of space and frequency. (a) The induced tiling of the frequency domain. In Fourier space,
curvelets are supported near a parabolic wedge, Uj ¢ is one of these wedges. (b) The associated Cartesian grid in space.
The spacing of the grid again obeys the parabolic scaling.

1. Tight-frame. Much like in an orthonormal basis, we can expand an arbitrary function f(x1,x2) € L*(R?)
as a series of curvelets: we have a reconstruction formula
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with equality holding in an L? sense; and a Parseval relation

Yo eien)l’ = 1F1122mey,  VF € LP(RP).
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2. Parabolic scaling. The frequency localization of Uj, implies the following spatial structure: ;¢ () is
of rapid decay away from a 277 by 279/2 rectangle with major axis orthogonal to the direction ;. In short,
the effective length and width obey the scaling relation

length =~ 2792 width~277 = width~ length?.

3. Oscillatory behavior. As is apparent from its definition, U} o is actually supported away from the vertical
axis w1 = 0 but near the horizontal ws = 0 axis. This implies that goj,o,k(x) is oscillatory in the x1-direction
and lowpass in the zs-direction. The situation for any other ¢, is exactly the same up to a rotation.
Hence, at scale j, a curvelet is a fine needle whose envelope is a ridge of effective length 277/2 and width
277, and which displays an oscillatory behavior across its minor axis.

4. Optimal basis for curve-like singularities. As a result of the parabolic scaling property, the curvelet
frame is the optimal sparse representation for those functions with singularities along C? curves but oth-
erwise smooth.*

3. 2D DISCRETE TRANSFORM

In this section, we describe the 2D discrete curvelet transform on which our 3D transform is based. The discrete
transform takes as input a Cartesian grid of the form f(ni,ns2), 0 < nq,ne < n, and outputs a collection of
coefficients ¢ (4,4, k) defined by

PGl k) =Y f(n1,na) @D, (n1, )

ni,n2



where ‘Pfg, i are digital curvelet waveforms which preserve the listed properties of the continuous curvelet. The
definition of these discrete curvelets gajl?& . are parallel to the definition of their continuous counterparts.

The frequency grid of the input f is f(w) with w = (w1,ws) and —n/2 < wy,ws < n/2. In the continuous
definition, the window Uj;, smoothly extracts frequencies near the dyadic corona {2771 <y < 271} and near
the angle {—m - 2792 <9 — 0, < - 2_j/2}. Coronae and rotations are not adapted to Cartesian data. Instead,
it is convenient to replace these concepts by Cartesian equivalents: the “Cartesian coronae” based on concentric
squares (instead of circles) and shears. The Cartesian analog to the family (W;);>;,, W;(w) = W(277w), is a
window of the form

Wiy (@) = (@) and Wj(w) = /02, (@) = ®2(w), j = jo,

where @ is defined as the product of low-pass one dimensional windows ®;(w1,ws) = ¢(277w1) - (27 ws). The
function ¢ is smooth, obeys 0 < ¢ < 1, is equal to 1 on [—1, 1] and vanishes outside of [-2,2]. It is immediate

to check that .
w)? + Z sz(w) =
Jj=Jo

To angularly window each Cartesian corona, we introduce a smooth and localized function V which satisfies

> ViHt-20)=1, teR.

l=—o0

Coarsest scale j = jg. The frequency window [7j070 is defined by
Ujmo(w) = Wjo (w)

Suppose Uj, 0 is supported in a rectangle of integer size L j, by Lg j,. Discrete curvelets at the coarsest level
are defined by their discrete Fourier transforms:

$P o kw) = Ujp0(w) - exp[—2mi(kswi /L1 j, + kawa /L2 jy)l/\/L1jo - Lajo

for 0 <k < Ll,jo and 0 < ko < Lg,jo.

Fine scale jy < j < je. Each Cartesian coronae has four quadrants: East, North, West and South. Each
quadrant is separated into 27/2 wedges with the same areas (see Figure 2(a)). Take the East quadrant (—m/4 <
0 < m/4) as an example. Suppose we order the wedges in a counterclockwise way. The center slope for the ¢th
wedge ap = —1+2- (£ +1/2) -277/2. We define the smooth angular window for the ¢th direction as

).

Vie(w) = V(202 222012

w1
For the other quadrants, we would have a similar definition by exchanging the roles of w; and w.. Based on the
definition of V} ¢, each w is covered by exactly two of the angular windows V ¢ from scale j. The sum of the
squares of VM for a fixed j is equal to one except for w near the diagonals (Jwi| = |ws|). To enforce this partition
of unity property, which is essential for the tightness of the discrete transform, the following step is sufficient.
Suppose two smooth angular windows V . and V; o overlap, but the sum of their square is not equal to one on
the overlapping region of their supports. We redeﬁne them on the overlapping region by:

(o). Vi) = (Vo). Vi ()

\/er )+ V2, ()

The frequency window U ;¢ is then defined by
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Figure 2. 2D discrete curvelet transform. (a) Discrete frequency tiling. ﬁj,g has center slope ay. It smoothly localizes
the frequency near the shaded wedge. (b) One curvelet at scale j and orientation ¢ in spatial domain. Notice that the
major axes of the curvelet in the frequency and space domains are orthogonal to each other.

Tt is clear that ﬁj,g isolates frequencies near the wedge {(wy,ws) : 2771 < wy < 20+ —279/2 < wy/wy — ay <
2-9/2},

With the localized frequency window U ;¢ available, the final step is to choose a spatial grid to translate the
curvelet at scale j and orientation ¢. In the continuous transform, the grid we use has its two axes aligned with
the major and minor axes of the frequency window. For the discrete transform, two approaches are possible: (1)
a slanted grid mostly aligned with the axes of the frequency window which leads to the USFFT-based curvelet
transform (for details, see Candes at all); (2) a grid aligned with the input Cartesian grid which leads to the
wrapping-based curvelet transform. Here we follow the wrapping-based approach.

Fix the scale j and angle . Suppose L1 j, and L ;. are a pair of positive integers which satisfy the following
conditions: (1) one cannot find two w and w’ such that Uj ¢(w) > 0, U;¢(w’) > 0, and wy — w} and wy — wh are
multiples of L ; , and Lo ;¢ respectively; and (2) Ly j¢ - Lo ;¢ is minimal.

The discrete curvelet with index k at scale j and angle ¢ is defined by means of its Fourier transform:

@D p(w) = Uj o(w) - exp[—2mi(kywi /Ly je + kawa /Lo j.0)]/v/L1 e - Laje-

for 0 < ky < Ly j¢ and 0 < ko < Ly j 0. Geometrically, the computation of the coefficients ‘Pfe,k for fixed j and ¢

is equivalent to wrapping the windowed frequency data U; ;(w)f(w) around a Ly ;¢ by Lg j rectangle centered
at the origin, and then applying the inverse FFT to the wrapped data. This justifies the word “wrapping”. Our
choice of L; ;¢ and Lo ; ¢ guarantees the data does not overlap with itself after the wrapping process.

Last scale j = j. = logy(n/2). This final scale extracts the highest frequency content. For the purpose of
this paper, the basis functions used at this scale are like wavelets (for other choices, see Candes et al'). The
frequency window is

Uje’(](w) = Wje (w)'
The curvelets at this level are defined by
o onw) = Uj. 0(w) - exp[—2mi(kw /L j, + kaws/La 3. )|/ v/In g, - Laj.,

with Ll’jg = LQJE =nand 0 < k‘l,k}Q <n.



.
/

!

!
r=-r-

T
1 I
' 1
1

1
'

I
I

-l--l--r-+-L-L-/-

1

R S R .
I

'

(a) (b)

Figure 3. 3D frequency tilings. (a) Schematic plot for the frequency tiling of continuous 3D curvelets. (b) Discrete

frequency tiling. w1, ws and ws are three axes of the frequency cube. Smooth frequency window Uj, extracts the
frequency content near the shaded wedge which has center slope (1, ae, 5¢).

This frame of discrete curvelets has all the required properties of the continuous curvelet transform in Section
2. Figure 2(b) shows one typical curvelet in the spatial domain. To summarize, the algorithm of the 2D discrete
curvelet transform is as follows:

—

. Apply the 2D FFT and obtain Fourier samples f(wy,ws), —n/2 < wi,ws < n/2.
2. For each scale j and angle ¢, form the product ﬁjyg(wl,wg)f(wl, wa).

3. Wrap this product around the origin and obtain W(ﬁj)g F)(w1,ws), where the range for w; and ws is now
—L1;¢/2<wy <Ly e/2and —Lg /2 <wy < Ly j¢/2. For j = jo and je, no wrapping is required.

4. Apply a Ly j ¢ Lo ; ¢ inverse 2D FFT to each W((NJj,gf), hence collecting the discrete coefficients ¢ (j, £, k).

4. 3D DISCRETE CURVELET TRANSFORM

The 3D curvelet transform is expected to preserve the properties of the 2D transform. Most importantly, the
frequency support of a 3D curvelet shall be localized near a wedge which follows the parabolic scaling property.
One can prove that this implies that the 3D curvelet frame is a sparse basis for representing functions with surface-
like singularities (which is of codimension one in 3D) but otherwise smooth. For the continuous transform, we
window the frequency content as follows. The radial window smoothly extracts the frequency near the dyadic
corona {2771 < < 29F1} this is the same as the radial windowing used in 2D. For each scale j, the unit sphere
S? which represents all the directions in R? is partitioned into O(27/2 - 27/2) = O(27) smooth angular windows,
each of which has a disk-like support with radius O(277/2), and the squares of which form a partition of unity
on S? (see Figure 3(a)).

Like the 2D discrete transform, the 3D discrete curvelet transform takes as input a 3D Cartesian grid of the
form f(n1,n2,n3),0 < ny,ne,n3 < n, and outputs a collection of coefficients c”(j, 1, k) defined by

CD(j:& k) = Z f(n17n27n3) @J‘D)&k(nlan%ni%)

ni,n2,n3

where j,£ € Z and k = (k1, ko, k3).



We use Cartesian coronae of the form

Win(w) = Bjo(w) and W) = /82,,(w) = 92(w), j > Jo,

with @ (w1, w2,ws) = ¢(279w1) - (27 ws) - #(2 7 ws), where the function ¢ is the same as before.

Coarsest Scale j = jp. The frequency window ﬁjo,o is again defined by

Ujmo(w) = Wjo (w)

Suppose Uj, o is supported in a rectangular box of integer size L1 j, X Lo j, X L3 j,. The discrete curvelets at the
coarsest level are defined by their Fourier transforms:

$P o k(W) = Ujp0(w) - exp[—2mi(kiwi /L1 j, + kawa/La j, + ksws/Ls jo)l/\/L1jo - L2,jo - L3.jo

for 0 < k1 < L17j07 0<ky < L27j0 and 0 < k3 < L37j0.

Fine Scale jy < j < je. Now every Cartesian corona has six components, one for each face of the unit cube.
Each component is regularly partitioned into 27/2 - 27/2 wedges with same volume (see Figure 3(b)). Take the
first component (corresponding to wy > 0) as an example. Suppose, for the ¢th wedge, (1, ap, B¢) is the direction
of the center line of the wedge. We define its smooth angular window as

T () = 93/, W2 T A Wiy 5 Wa — Browi
Vie(w) =V( o)V o

where V is defined as before. For the other five components, we would have a similar definition by exchanging
the roles of wy with ws or ws.

Similar to the 2D case, the squares of Vj, form a partition of unity except near w satisfying |w;| = |w;]| for
i # j. We enforce this property everywhere by using the modification applied to the 2D case. Suppose three
smooth angular windows V; ¢, V; ¢ and Vj g overlap, but the sum of their squares is not equal to one on the
overlapping region of their supports. We redefine them on the overlapping region using:

- - - 1 - - -
(Tl B By )) = V720) + V20 @) + 72 (w) (Fhele) Faeo) Ve )

The frequency window ﬁM is then defined by

Uje(w) = Wj(w) - Vje(w).

It is clear that ﬁjl isolates frequencies near the wedge {(w1,ws,w3) : 2771 < w; < 271 —279/2 < wyfwy —ap <
279/2 —9273/2 < wyfwy — B < 279/2} (see Figure 3(b)).

The final step is to translate the discrete curvelet. Fix the scale j and angle ¢. Suppose L1 ¢, Lo j, and
Ls ;¢ are three positive integers such that: (1) one cannot find two w and w’ such that U; ¢(w) > 0, U; ¢(w') > 0,
and wy —w}, wy —w) and w3 —wh are multiples of Ly j ¢, Lo j, and Lg ; ; respectively; and (2) Ly j¢- Lo j¢- L3 je
is minimal. The discrete curvelets with index k£ at scale j and angle ¢ are defined by means of their Fourier
transforms:

@fe,k(w) = Ujo(w) - exp|—2mi(kyw1 /L1 jo + kowa /Lo jo + ksws/Ls j0)l// L1 je - Laje- Lsje

for 0 < k1 < L1)j7g, 0<ky < Lg,jyg and 0 < k3 < L37j)g.



Last scale j = j. = log,(n/2). This final scale extracts the highest frequency content of the 3D frequency cube.
Similar to the 2D discrete transform, the basis functions here are again wavelet-like. The frequency window is

Uj..ow) = Wi (w).

The curvelets at this level are defined by

@F o 1(w) =Uj, o(w) - exp[=2mi(kyw1 /Ly j, + kaws/La j, + kswa/Ls ;. )l/\/L1j. - Laj. - Lsj.,

with Ll,jg = L2,jE = LS’jE =nand 0 < kl,k27k3 <n.

To summarize, the algorithm 3D discrete curvelet transform is as follows:

1. Apply the 3D FFT and obtain Fourier samples f(wl,wg,wg), —n/2 < wy,ws, w3 < nJ2.
2. For each scale j and angle ¢, form the product ﬁm(wl,w%wg)f(wl, wa,ws3).

3. Wrap this product around the origin and obtain W(ﬁm f )(w1,ws,ws), where the range for wy, wo and ws
is now 7L17j7g/2 <w < L17j,g/2, 7L27j75/2 <wy < L27j7g/2 and 7L37j7g/2 <wsg < L37j7g/2. No wrapping
is necessary at scales jo and j..

4. Apply a Ly j¢ X Lo j ¢ x L3 j e 3D inverse FFT to each W(l_'N]j,gf), hence collecting the discrete coefficients
c? (4,4, k).

Figure 4 shows how the 3D curvelets look like in the spatial domain. There are plate-like objects which
follow parabolic scaling and oscillates along the shortest axis. So far, we have discussed the 3D discrete curvelet
transform based on the wrapping strategy. The 2D USFFT-based transform can also be extended to 3D with
minor modifications.!

5. IMPLEMENTATIONS

A problem we encounter in the 3D transform is the drastic increase of the size of the data. To store a complex-
valued Cartesian grid of size 5122 with double-precision, we need 2GB of memory. Moreover, the curvelet
transform is redundant in general, and the 3D transform described in Section 4 has a redundancy factor of about
5. It is impossible for most computers to store data of this size in the memory. This imposes extra complications
on the implementation of a 3D curvelet transform for large data from real scientific and engineering applications.
In this section, we propose three different implementations differing by how the data is managed.

In-core implementation. This is a direct implementation of the transform described in the previous section.
Both the input data and the curvelet coefficients are stored in the memory. This implementation is extremely
efficient: each 3D curvelet transform takes the same time as a few 3D FFT transform. The disadvantage of this
implementation is obviously the limitation on the size of the input grid. A common desktop computer with 1GB
memory can only handle Cartesian grids of size below 2003. Table 1 shows the performance of our algorithm with
several input grids on a desktop computer with a 2.6GHz CPU. By denoting the forward and inverse transforms
by Cr and C7 respectively, we measure the error by || f — Cr(Cr(f))|li2/||fll;z for an input grid f. Since our
transform is designed to be numerically tight, the error is close to the machine accuracy.

Grid size Memory Used Time Error
64 x 64 x 64 40MB 1.4 sec  1.3055e-15
128 x 128 x 128 320MB 10.8 sec  1.4731e-15
180 x 180 x 180 900MB 34.8 sec  1.2213e-15

Table 1. Results of the in-core implementation.



Figure 4. 3D discrete curvelets at two scales. In each plot, we show the behavior of the curvelet at three cross-sections.
Top: two coarse scale 3D curvelets. Bottom: two fine scale 3D curvelets.

Out-of-core implementation. In this implementation, only the input Cartesian grid and a small portion
of the curvelet coefficients are stored in memory, while most of the curvelet coefficients are stored on the disk.
Whenever a curvelet coeflicient is required, we check whether it is in the memory. If not, we load it from the
disk. We also keep track of how many curvelet coefficients reside in the memory. Whenever the number is above
a certain threshold, we release the memory used by some of the curvelet coefficients and store them onto the
disk. Such coefficients are selected based on the Least-Recently-Used (LRU) algorithm, which is commonly used
for resource management by all kinds of computer systems. This implementation has the advantage that we can
reuse the existing in-core FFT algorithms on the input Cartesian data. It is able to handle a grid of size 5003
on a desktop computer. Table 2 presents the performance of our out-of-core algorithm on two medium-size data
sets.

Grid size Memory Used Time
256 x 256 x 256 768MB 250 sec
512 x 512 x 512 6GB 2100 sec

Table 2. Results of the out-of-core implementation.



MPI-based Parallel implementation. In this implementation, both the input Cartesian grid and the
curvelet coefficients are stored distributed on multiple processors. The Cartesian grid is partitioned into small
cubes of size bx bx b. Suppose n is a multiple of b and define p = n/b. Throughout the MPI-based transform, the
coefficients in one cube are treated atomically: they are loaded, stored, discarded and communicated altogether.
At any moment, every processor has a subset of these cubes residing in its memory and the union of these subset
over all processors contains all the cubes.

Curvelet coeflicients are naturally organized into wedges, each one corresponding to a frequency window U 56
The partition of these wedges among the processors maximizes the coherence: the wedges belonging to one
processor are geometrically close to each other in the frequency domain.

The parallel transform has the following steps:

1. Partition the b x b X b cubes of the input grid into slices along the z direction. Each processor has a few
adjacent slices in its memory.

2. Apply the n x n x n 3D FFT on the input data. This is done in three stages, each one containing the 1D
FFTs in one Cartesian axis. After the first two stages in the x and y directions, a communication step
migrates the cubes among the processors to make the data ready for the third stage in the z direction.

3. Migrate the cubes again so that each process has in its memory the cubes overlapping with its wedges.

4. For each processor, iterate through its wedges. For each wedge (j,£), form the product ﬁmf, wrap it to

obtain W(ﬁj’gf), and perform the 3D inverse FFT on W(U, ; f) to collect the curvelet coefficients cP (4, £, k).
These inverse 3D FFTs are done locally.

5. For the last level, window the frequency data with (7»670, and perform the n x n x n inverse 3D FFT to get
the curvelet coefficients at the last level. This is similar to the second step.

Table 3 presents the result of our parallel implementation on several data sets. These experiments are
performed on the IBM cluster “DataStar” at the San Diego Supercomputing Center. Each processor of this
cluster has CPU speed 1.5GHz.

Grid size Number of Processors Time
256 x 256 x 256 4 47 sec
512 x 512 x 512 32 50 sec

1k x 1k x 1k 128 94 sec

Table 3. Results of the parallel implementation.

6. CONCLUSION

In this paper, we present the first 3D discrete curvelet transform. This transform is an extension to the 2D
transform presented in Candes et al..! The resulting curvelet frame preserves the important properties, such
as parabolic scaling, tightness and being a sparse basis for surface-like singularities of codimension one. We
have presented three different implementations to address the memory issue caused by large data sets. All three
implementations are highly efficient. We expect our 3D discrete transform to be widely applicable in various
scientific and engineering fields.
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