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5 FITTING EFFECTIVE DIFFUSION MODELS TO DATA
ASSOCIATED WITH A “GLASSY POTENTIAL”: ESTIMATION,

CLASSICAL INFERENCE PROCEDURES AND SOME HEURISTICS
∗

CHRISTOPHER P. CALDERON †

Abstract. A variety of researchers [15, 22, 27, 29, 31, 33] have successfully obtained the pa-
rameters of low-dimensional diffusion models using the data that comes out of atomistic simulations.
This naturally raises a variety of questions about efficient estimation, goodness-of-fit tests, and con-
fidence interval estimation. The first part of this article uses maximum likelihood estimation (MLE)
to obtain the parameters of a diffusion model from a scalar time series. I address numerical issues
associated with attempting to realize asymptotic statistics results with moderate sample sizes in the
presence of exact and approximated transition densities. Approximate transition densities are used
because the analytic solution of a transition density associated with a parametric diffusion model is
often unknown. I am primarily interested in how well the deterministic transition density expansions
of Aı̈t-Sahalia capture the curvature of the transition density in (idealized) situations that occur
when one carries out simulations in the presence of a “glassy” interaction potential. Accurate ap-
proximation of the curvature of the transition density is desirable because it can be used to quantify
the goodness-of-fit of the model and to calculate asymptotic confidence intervals of the estimated
parameters. The second part of this paper contributes a heuristic estimation technique for approxi-
mating a nonlinear diffusion model. A “global” nonlinear model is obtained by taking a batch of time
series and applying simple local models to portions of the data. I demonstrate the technique on a
diffusion model with a known transition density and on data generated by the Stochastic Simulation
Algorithm [21].

Key words. Effective diffusion model, multiscale approximation, log likelihood ratio expansion,
piecewise polynomial SDE, quasi-maximum likelihood, stochastic process approximation
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1. Introduction. Complicated systems are often approximated by overly sim-
plified models. A significant research effort has gone into attempting to efficiently
summarize the information contained in a complicated atomistic simulation with a
low-dimensional effective model [15, 22, 27, 29, 31, 33]. Atomistic simulations contain
many observables, an effective diffusion model aims at representing the salient fea-
tures of the data in the drift component of a stochastic differential equation (SDE)
and lumping the effects of the neglected details into the noise term. The appeal
of effective models stems from the fact that information contained in the effective
models can easily and quickly be extracted by analytical methods or well-established
numerical procedures. The idea being that the “truth” is contained in the atomistic
simulation, but the computational load required to get the information is so large
that the researcher has a difficult time exploring all of the process parameters under
study.

Before one attempts to wrap effective models around the output of an atom-
istic simulation, a variety of assumptions need to be made about the data and the
parametric model. In this paper, I obtain parameter estimates from the classical
parametric framework via maximum likelihood estimation (MLE). Here the phrase
“classical parametric framework” refers to the fact that one uses a single family of
functions (of specified functional form) for the drift and diffusion coefficient functions
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2 C. Calderon

of the diffusion SDE that depends only on a finite number of parameters. I make the
following assumptions about the atomistic system and the parametric diffusion model:

• A small set of order parameters [46, 25] that accurately summarize the full
atomistic system are identified and easily measurable. The term “order pa-
rameter” is used to refer to the observables modeled in the effective diffusion
SDE.

• The parametric model is uniquely identifiable.
• The exact transition density of the parametric model has all of the regularity
properties that make MLE attractive. Namely it is the asymptotically most
efficient estimator in the sense that the properly normalized parameter distri-
bution associated with the procedure converges to a normal distribution with
the smallest asymptotic variance (in “nonergodic” situations this assumption
is relaxed).

• The true parameter value admits a contiguous neighborhood and the process
allows for a quadratic expansion of the log likelihood ratio 1.

• The dynamics of the order parameters can be adequately described by a
diffusion SDE.

• The drift and diffusion coefficient of the effective SDE are suitably smooth
(to be more specific assume the functions are infinitely differentiable with
respect to the parameters and state, but this can be relaxed substantially)
and the drift component of the SDE comes from the gradient of an effective
potential [15, 31]. Even if the order parameter being considered is governed
by a glassy potential (this term is described in section 2), a smooth drift
coefficient function can be used to summarize key features of the free energy
landscape 2.

The first item is extremely important and is an active area of research in our group
[46], but will not be addressed in this article. The next two assumptions allow one to
trust the parameter estimates and allows one hope for checking if some asymptotic
results associated with MLE [28, 48, 50] hold for the sample sizes used. The fifth item
is briefly addressed in the final application of the second part of this paper where I
estimate the parameters of a diffusion approximation of a jump process (the model
of the reduction of nitric oxide on a platinum surface given in [41] is revisited). The
final issue is concerned with “model misspecification” [50], dealing with this issue is
important if the effective model is to be of any practical use. I first obtain parameter
estimates assuming the final item holds, but in section 4.3 classical techniques for
testing this assumption a posteriori are outlined. Some nonparametric goodness-of-
fit tests are better suited for practical implementation [12, 26], but classical tests are
of interest because the tests used quantify how well a transition density approximation
matches the curvature of the true density.

In order to use MLE one must have an approximation of the transition density
of the diffusion process. Unfortunately, for many SDE’s the transition density is not
available in closed-form so one must resort to some approximation of the density. The
estimation techniques presented are intended for application to interesting atomistic
systems (e.g. a time series that comes from a molecular dynamics simulation), but in

1These terms are briefly introduced in section 4, consult van der Vaart [48] chapters 5-8 for a
clear detailed treatment

2For example the global minimum value of the smooth effective free energy surface is the same
as that of the more complicated glassy surface
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this paper toy models are studied in order to systematically study the consequences
of using the transition density expansions of Aı̈t-Sahalia [3, 4] in some large sample
statistics applications. Our research group has had success in applying some of these
ideas to actual atomistic systems, but this paper’s main concern is in determining
exactly how much information can be extracted from the transition density expansions
in controlled examples intended to mimic scenarios encountered in some multiscale
applications.

The remainder of this paper is organized as follows: Section 2 reviews the mul-
tiscale applications that motivated this study. Section 3 lays out the model systems
used. Section 4 outlines the techniques and estimation tools used in the presence of
“contaminated” 3 data and transition densities. Section 5 outlines a simple estimation
procedure that can be used to study multiscale systems that satisfy the assumptions
stated above. Section 6 contains the numerical results and discussion and the final
section gives the conclusion and outlook.

2. Motivation. A situation encountered often in spin glasses [34], protein fold-
ing [25], and zeolites [10] is that of a harmonic “glassy” potential energy surface 4.
That is to say, when one looks at a free-energy surface from a distance, the shape of
the free energy surface is roughly parabolic. When one looks closely at the details of
the surface however, one sees many bumps in the surface (see figure 3.1). In many
applications, it is believed that the order parameter of the process “funnels” its way
down to the global minimum of the free energy surface [25] in the long time limit.
Current computational power does not always allow one to carry out an atomistic
simulation long enough to observe such a phenomena because the order parameter
can get trapped in a local minima. Sometimes one can reach the global free energy
minima by increasing the temperature parameter of the simulation [18, 13]. When
this occurs, the force binding the order parameter to the global minimum still has
a “bumpy” potential associated with it (but the magnitude of the bumps is smaller
because of the new temperature scale). I refer to this hypothetical case as situation
I.

Another commonly encountered scenario is one where the order parameter is
trapped in a free energy well which is not the global minimum of the surface. Many
applications require system information at low temperatures, ruling out the simple
technique mentioned in the previous paragraph . If the temperature of the system is so
low that on the timescale of the atomistic simulation that the order parameter appears
to be approximately bound by a smooth (but not necessarily harmonic) potential in
a neighborhood of the local minima, then I will refer to this case as situation II.

Classic statistical mechanics models usually assume that the noise around the
local minima is state independent. This assumption does not hold in a variety of
interesting systems, [31, 15] so in all models I consider there is state dependent noise
in the process. The estimation techniques presented in this paper deal with both
situations described in the preceding paragraphs.

3This term is used to convey the fact that one knows that the true data does not follow the exact
proposed parametric model

4This estimation strategy was developed in order to accurately measure the curvature of compli-
cated free energy surfaces associated with atomistic simulations. If the location(s) of the dominant
free energy wells are known by theory or simulation methods, then the estimation methods shown
here can be used to measure the curvature at the well minima which can in turn be useful for getting
information about transition pathways [14]. If one also has knowledge of where the saddles are and
a protocol for starting meaningful simulations around the saddle point then the methods presented
can also be used to determine the curvature of the unstable state points.
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3. Model Systems. To idealize situation I and II, data is generated from two
families of SDE’s. This first family is meant to mimic situation I and has the form:

dXt =
(
κ (α−Xt) + β sin

(
(Xt − α)ω2π

))
dt+ σ

√
XtdWt(3.1)

The second family idealizes situation II and takes the form:

dXt =
(
κ (α−Xt) + 4γ (α−Xt)

3
)
dt+ σ

√
XtdWt(3.2)

The parameters are set to α = 20, κ = σ = 4, and ω = 1
3 throughout. The

parameters β and γ take the values (0,15,60,200) and (0, 1
400 ). I refer to these cases

as situations I A-D and situations II A-B respectively. The situation where γ and β

are both zero is known as the Cox-Ingersoll-Ross (CIR) model and is one of the rare
situations where an SDE with nonlinear coefficients has an explicit solution [3]. I use
this example because it illustrates mean reversion, it demonstrates state dependent
noise and most importantly has an exact closed-form transition density which can be
used to help determine why a transition density approximation is failing.

Figures 3.1 and 3.2 plot the potential energy surfaces for the cases studied. In
all cases, sample paths of the above processes are simulated using the explicit Euler
scheme [30] with a step size ∆t = 2−9 given data starting from the invariant density
associated with situation I A. The data is observed every 16th step yielding a constant
observation window spaced by δtobs = 2−5 time units (in Situation I A-C the data
is also sampled every 64th step giving δtobs = 2−3). Each plot and graph that are
grouped together in this paper used the same Brownian trajectories in order to sim-
ulate paths (the only difference between the sample paths is caused by the different
drift coefficients) in order to reduce variation due to random number draws.

For the first part of this paper, the data generated by the SDE’s above is modeled
by the CIR class:

dXt = κ(α−Xt)dt+ σ
√

XtdWt(3.3)

For the second part of this paper, the following parametric family is used:

dXt =
(
a+ b(Xt −Xo)

)
dt+

(
c+ d(Xt −Xo)

)
dWt(3.4)

Where Xo is user specified; the parameter vectors are estimated by techniques asso-
ciated with maximum likelihood in all cases.

The second terms in the drift coefficient of the data generating processes are used
to determine how robust the estimator is against model misspecification [50, 42, 9].
The perturbation terms are not modeled because it assumed that their true (or ap-
proximate) functional form are completely unknown and the interest is primarily in
the smooth noise and mean reversion parameters (α, κ, σ). Of course the presence
of these extra terms affect the estimation of the parameters, it is shown in section 6
that the effects induced by these perturbation parameters affect things consistently
with what a physicist of chemist would intuitively anticipate. The interesting feature
demonstrated in the aforementioned section is quantitatively how the MLE procedure
carried out with various transition density approximations respond to these pertur-
bation parameters in relation to the exact transition density.

The reason for studying the first two idealized model systems stems from a de-
sire to carefully numerically quantify how the MLE procedure with approximated
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Fig. 3.1. Situation I Potential Potential energy function used to determine drift with
β = (0, 15, 60, 200). The inset shows the empirically measured invariant distribution for the
four values of β used (with obvious correspondence between the four cases); the distributions
are shown only to give one an idea of how the different parameter values affect the long-term
dynamics (MLE parameters only depend on the observation frequency).

transition density performs in tasks beyond point parameter estimation. The results
obtained are of course specific to the model and parameter values used, however one
can always obtain the parameters of a parametric diffusion model using observations
from the particular system being studied and then carry out an idealized set of tests
similar to the ones presented here by using established SDE path simulation tech-
niques [30].

The final model presented is one for the reduction of nitric oxide (NO) by hydro-
gen gas on a platinum (Pt) surface. The mechanism is as follows [47]:

NO
k1→ NO†

NO† k2→ NO

H2 +NO† k3→ 1

2
N2 +H2O

(3.5)

NO† represents NO absorbed onto the Pt surface; this mechanism is used with
Gillespie’s Stochastic Simulation Algorithm (SSA) [21] technique in order to construct
stochastic evolution rules for the amount of NO in the system at any given time. This
model is used because it exhibits nonlinear mean reversion with state dependent noise.
The jump process is known to converge weakly to a diffusion with a cubic drift term
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Fig. 3.2. Situation II Potential Potential energy function used to determine drift with
(γ = 0, 1

400
) along with inset of corresponding invariants distributions (the narrower distri-

bution corresponds to the nonlinear perturbation case)

as the system size parameter (denoted by Nmolecules) increases [21, 1]. This yields
another “situation II” type scenario, but now the data generating process is not a
genuine diffusion 5. The parameter k3 is set to a numerical value of 4, the other model
parameters used are given in [41]. In the final part of this paper, the parameters of the
assumed model are extracted in the “small molecule” case (Nmolecules = 3600). This
value is chosen because simple visual inspection indicates that the process has not
yet converged to a diffusion ( δtobs = 2−5) with this molecular population size, so the
exact functional form of the diffusion model is unknown. A “global” 6 estimate of the
diffusion approximation of the actual process is obtained using techniques presented
in the second part of this paper and the invariant density of the obtained nonlinear
diffusion model is compared to that of the actual SSA process in section 6.

5It should be pointed out that some approximations of the above process by a diffusion model [21]
use as many Brownian driving terms as there are elementary reaction steps; our black-box approach
only uses one Brownian term for each state component (in this paper the noise contribution of the
individual reaction events are lumped into a single noise term) .

6Actually one can only estimate the function for state points visited, making global a slight
misnomer (hence the quotes). One is always free to extrapolate the coefficient functions and get a
genuine global diffusion approximation if one somehow knows beforehand that the state points in
the time series are adequately representative of the entire portion of phase space having significant
probability mass in the infinite time limit.
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4. Statistical Tools. In the beginning of this section, some classical statistical
tools relevant to this study are outlined. The tools are only briefly defined, references
are given throughout which comprehensively describe the details of the theory applied.
The tools below are applied to the estimation of the parameters associated with both
stationary and “nonergodic” 7 time series.

MLE’s importance 8 stems from the fact that one needs some kind of generic
metric by which to judge a wide class of parametric models by. In situations where
the underlying transition density satisfies a set of regularity assumptions [48], it is very
appealing because it provides a consistent estimator with the minimum asymptotic
variance. If one has a reliable estimate of the underlying transition density, then
one can sometimes (in the stationary ergodic distribution case [28]) determine the
asymptotic parameter distribution with a simple deterministic integral [24, 38]. One
can also generate test statistics based on output of the MLE procedure which can be
used to asses the goodness-of-fit of the parametric model [50].

Next, an optimal simple hypothesis test is introduced. Specifically, the transition
density expansions are used in order to create the Neyman-Pearson test statistic [8].
A simple hypothesis test is useful when one wants to test the statistical significance
of the magnitude of the changes in effective model parameters when one adds more
features to the underlying atomistic simulation (e.g. one would like to determine if the
changes in the effective model are significant when the parameters are estimated from
the output of atomistic simulations that use a potential with and without electrostatic
interactions).

It is already known that the simple models that are wrapped around the data do
not faithfully represent the exact system dynamics. In section 4.3, methods that can
be used to quantify how closely the proposed parametric models represent the data
are reviewed. In section 4.4, a heuristic method that can be used in the nonergodic
case for obtaining parameter uncertainty estimates is presented.

4.1. Maximum Likelihood Basics. In order to avoid technical complications,
it is assumed throughout that the exact distribution associated with the parametric
model admits a density whose logarithm is well defined almost everywhere and the
logarithm of the density is continuously twice differentiable. The principal of max-
imum likelihood is based on maximizing the following integral with respect to the
parameter θ:

∫

Ω

f(x; θ) log
(
f(x; θ)

)
dQ(4.1)

In the above equation, Q corresponds to the measure of the underlying probability
space, f(x; θ) corresponds to the Radon-Nikodym derivative (consult [32, 50]) of the
law of the random variable x with respect to the underlying probability space and x
corresponds to a discretely sampled time series (of finite length = M). Assume that
if the measure of a set under Q is zero it implies that the measure of the set under
Pθ is also zero (the phrase “Pθ is absolutely continuous with respect to Q” is used

7This term is intended to describe situations where the parameter distribution associated with
an estimation scheme is not asymptotically normally distributed (with a deterministic covariance
matrix); this can occur if the sample size is itself random or if the time series is nonstationary [6].

8In practice one usually deals with a quasi-maximum likelihood estimate. The difference between
the two is described in section 4.3
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to describe this situation). Let Pθ :=
∫
Ω

f(x; θ)dQ. For discrete Markovian models,

f(x; θ) can readily calculated by the following formula [24]:

f(x; θ) = f(x0)

M−1∏

n=1

f(xn|xn−1; θ)(4.2)

In the above equation f(xn|xn−1; θ) represents the conditional probability (tran-
sition density) of observing xn given the observation xn−1. In practice, one usually
takes a finite sample of data and presents this data to a Monte Carlo scheme that
is meant to approximate the integral in equation 4.1 and finds the parameter values
that yield the maximum value. In what follows, the function below is referred to as
the log likelihood function (assume throughout that xo has a Dirac distribution) :

Lθ :=
M∑

i=1

log
(
f(xi|xi−1; θ)

)
(4.3)

Under our assumptions one has 9 the following:

√
M(θ − θ̂)

P
θ̂=⇒ N(0,F−1)

Where in the above θ̂ is the “true” parameter of the model; θ represents the

parameter estimated with a finite time series of length M ;
P
θ̂=⇒ denotes convergence

in distribution [48, 24] under P
θ̂
; N(0,F−1) denotes a normal distribution with

mean zero and covariance matrix F−1. For a correctly specified model, F 10 can
be estimated in a variety of ways [50, 38]. Various conditions can be tested to see
if asymptotic results are relevant for the finite sample sizes used [48, 38]. In this
article sample sizes are moderate, but good agreement with some classical asymptotic
predictions [50] is observed. When a closed-form transition density is in hand one can
deterministically calculate F in the stationary ergodic case 11.

In practice, maximum likelihood does fail spectacularly for some simple models
because of singularities that can be observed with the log likelihood function 12. The
classical example is the following: one assumes that a distribution is a mixture two
Gaussians whose variance ∈ (0,∞). Then the finite sample MLE fails to exist in this
simple case (see [8, 48] for a more in depth discussion) 13.

9This actually holds under less stringent regularity assumptions [48]
10I will adhere to common convention and call this the Fisher information matrix
11In the stationary ergodic case, if one has a time series (x1, ...,xM) then one can ig-

nore the initial distribution in the “infinite M” limit. If the state is n-dimensional, then
one can approximate the Fisher information by a 2 × n dimensional deterministic integral(
F ≈

∫ ∂log(f(x|xo;θ̂))
∂θ

∂log(f(x|xo;θ̂))
∂θ

T

f(x|xo; θ̂)dxdπ(xo)

)
, where dπ(xo) is the invariant distribu-

tion of the process (which in the scalar case can usually be readily calculated in closed-form from
the coefficients of the parametric SDE [26]). The difficulties encountered in the nonstationary time
series situation is analogous to the situation of using the Metropolis algorithm to sample phase space
[18]; in principle a deterministic integral could be evaluated, but with current computational power
quadrature is not possible due to the high dimensionality of the problem

12Recall this term implies a finite sample size approximation to equation 4.1
13In practice, one can partially remedy this situation by finding a local minima using a variant of

the technique outlined in section 4.4, but the new comer to MLE should be aware that some failures
of MLE [37] are not as easy to remedy, especially when one has data that does not come from the
assumed parametric model class
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The aforementioned point brings us to an important observation contained in this
paper. It is well known that the transition density associated with a diffusion SDE
can be solved through a corresponding PDE (via the Kolmogorov equations [4]). One
can often prove that the density of the process has the regularity properties needed
to make exact MLE successful (a priori regularity bounds associated with the log
likelihood function is trickier) via techniques of harmonic analysis [43], but many
useful properties determined by analytic techniques are only applicable to the exact

transition density. Approximations to the transition density are needed in cases where
the transition density is not available in closed-form. The approximations provided
by Aı̈t-Sahalia’s Hermite expansion [3, 4] are useful for obtaining point parameter
estimates, can capture the curvature of the transition density enough to approximate
parameter distributions, and are sometimes accurate enough to create test statistics
needed for some hypothesis tests. However, when one uses derivatives of the expansion
for creating Wald or Rao 14 test statistics [8] it can introduce spurious singularities
which complicates squeezing all of the information that is theoretically possible from
MLE. I use the “Euler” estimator as a crude transition density approximation to
demonstrate some points in this paper 15. It is well known that the Euler estimator
is significantly biased [40], this fact helped to initiate a flood of transition density
approximations in recent years [3, 4, 5, 7, 19, 44] (just to mention a few).

4.2. Optimal Binary Alternative Hypothesis Testing: The Neyman-
Pearson Lemma. In this section it is assumed that one has a data set and two
parameter vectors. Assume that one parameter vector is the “null hypothesis” and the
other parameter vector is the “alternative”. The type I error probability is defined as
the probability of rejecting the null hypothesis when in fact the null is true (classically
denoted by α). The power of a test against the alternative is the probability of
rejecting the null hypothesis when in fact the alternative is true. An optimal test
statistic can be found which for a specified α maximizes the power [8]. To create the

test statistic define the likelihood ratio by L := f(x;θAlt)
f(x;θNull)

;

one rejects the null if L > βNP where βNP is a scalar value that allows the
equality

∫

L>βNP

f(x, θNull)dx = α

In the context of multiscale systems computations, this test is really only practical
for stationary ergodic distributions (or for order parameters that are trapped for the
duration of a simulation in a local free energy minima), but it provides us with
insight as to how well the transition density captures the likelihood ratio of nearby
parameter points. Applications shown later require a highly accurate approximation
of the likelihood ratio.

4.3. Goodness-of-fit and Model Misspecification. It is possible to test if
the log likelihood function is consistent with the proposed model structure by testing

14These test are concerned with using the Fisher information matrix as a normalizing matrix to
create a χ2 statistic. Both tests can be used to construct confidence ellipsoids around parameter
estimates [48, 24, 8]

15This estimator is motivated by the Euler SDE simulation path technique [30]. One assumes
that for a given observation pair (xn,xn+1) that a normal distribution can be used whose standard
deviation is given by the diffusion coefficient evaluated at xn times the square root of the time between
successive observations (

√
δt) and the conditional mean is given by applying the deterministic explicit

Euler scheme to the drift coefficient given xn
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the following condition [50]:

FHessian :=
∂2L
∂θ2

= −FOP

Where the Hessian is evaluated at θ̂ and FOP is defined by:

FOP :=
1

M

M∑

i=1

∂log(f(xi|xi−1; θ̂))

∂θ

∂log(f(xi|xi−1; θ̂))

∂θ

T

In the above, the superscript T denotes the transposition operation, FOP is the “outer
product” matrix. For correctly specified models, both FOP and −FHessian [24] are
valid estimates of F . When a closed-form expansion is in hand, these quantities are
easily computable after the optimal parameter is located.

For real data it is overly optimistic to expect to be able to exactly parameterize
the density of the process with a Euclidean parameter vector. However, in some
situations it is meaningful to attempt to project the data onto the proposed model
structure [9, 50] yielding a Quasi-Maximum Likelihood Estimator (QMLE). When the
true density does not lie in the proposed parametric model class, one can still maximize
the integral in equation 4.1 yielding the estimator that minimizes the Kullbeck-Leibler
distance [32, 42]. Under assumptions laid out in [50], this QMLE converges to a normal
distribution in the infinite sample limit:

√
M(θ − θ̂)

P
θ̂=⇒ N(0, C)

The matrix C (:= F−1
HessianFOPF−1

Hessian) replaces F−1. This fact can be used to test
the goodness-of-fit given the data and the optimal parameter vector via the Rao or
Wald test statistic [50, 8]. The methodology laid out in [50] is comprehensive and pow-
erful, but in order to develop techniques which can be accessed by the diverse audience
involved in multiscale modeling, algorithms available in standard packages/libraries
(MATLAB,IMSL) are employed .

4.4. Le Cam’s Method and Likelihood Ratio Expansions (LAQ). Lucien
Le Cam was a major contributor to a variety of important asymptotic statistics results
[35, 36, 38]; one of his major contributions was concerned with Locally Asymptotic
Quadratic (LAQ) expansions of the log likelihood ratio (llr). Denote the llr symboli-
cally by Λh,M (θ). It is given (for discrete Markovian models) by:

Λh,M (θ) = Lθ+δMh − Lθ

Here M is again the length of the times series ; h is a vector perturbation with the
same dimensionality as θ; δM is a matrix that scales the perturbation and Lθ denotes
the llr evaluated at θ; for later use let hM := δMh. When the assumptions behind LAQ
hold [28, 38], one can asymptotically approximate the above statistical experiment by

a normal limit experiment 16. If one is in a neighborhood of the true parameter (θ̂)
the LAQ conditions imply

Λh,M (θ̂)− (hT
MSM (θ̂)− 1

2
hT
MWM (θ̂)hM )

16See [48, 38] for a clear introduction to this topic, consult [28] for an application to time series
analysis
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converges (in P
θ̂
probability) to 0. In the above expressions, when Λh,M (θ) is

twice differentiable with respect to θ, SM (θ) and −WM (θ) play the role of the first
and second derivative (respectively) of the llr [28] 17 with respect to the parameter
vector.

The contiguity condition is a generalization of the concept of absolute continuity
[23]; it allows one to determine the asymptotic distribution of “nearby” experiments
which is sometimes useful for constructing hypothesis tests. Denote the true param-
eter by θ̂ and let θ̃ be contained in a δM− neighborhood of θ̂. If contiguity exists in
the experiment, it [48] implies the following limit distribution:

Λh,M (θ̃)
P
θ̂=⇒ N

(
− 1

2
hT
MWM (θ̃)hM , hT

MWM (θ̃)hM

)
(4.4)

The llr is of interest to us because it provides a method for taking a classical
parametric model and producing a scalar random variable which has the above limit
distribution in the LAQ case (the practical utility of this theory is realized if the
above normal distribution can be used to reliably approximate the more complicated
distribution of the llr associated with the proposed parametric model for moderate
sample sizes [36] ).

There are many other important implications of LAQ, the method is only used
in this paper to quantify the uncertainty associated with a nonergodic time series. In
the stationary ergodic case the matrix WM (θ̂) coincides with deterministic quantity F
shown earlier, for nonergodic models the matrix is itself a random variable. I repeat
the construction in Le Cam chapter 6 [38] here in order to show how one uses the llr

in order to estimate WM (θ̂) (which can be used to roughly approximate the variance
of the limit parameter distribution). To simplify the situation, assume that one is

already within a δM neighborhood of θ̂ (this neighborhood is centered at θ̃ ) and set
the matrix δM = 1√

M
Id where Id is the identity matrix. Suppose θ ∈ Rk, then one

takes a basis set of Rk (denote this set by {b1, . . . , bk}) and evaluates:

Λh,M (θ̃ + δM (bi + bj))

for i, j = 1, . . . , k; the components of WM (θ̃) are estimated by

WM(θ̃)ij ≈
−[Λh,M (θ̃ + δM (bi + bj))− Λh,M (θ̃ + δM (bi))− Λh,M (θ̃ + δM (bj))]

bibj
(4.5)

Under the LAQ assumptions, one can claim that WM (θ̃)
P
θ̂=⇒ WM (θ̂) as M tends

to infinity . The theory shown here (developed by Le Cam) is purely an asymptotic
one, however if one observes that the relation in equation 4.4 holds, it gives one more
confidence when equation 4.5 is employed to approximate the quadratic expansion
of the llr. In the situation where WM (θ̃) is random (as it will be in some of the
applications presented), one needs to repeat this procedure for a variety of paths
18 and then take expectations in order to get a rough estimate of the asymptotic

17This view is convenient for giving an intuitive interpretation, but a classical Taylor expansion
of Λh,M (θ̃) may fail to exist; however the LAQ “derivative” can still be defined

18In practice one may not have enough paths from an atomistic simulation to realize asymptotic
statistics results. If a diffusion model is truly valid, one is always free to use the parameters obtained
from a small sample in order to simulate additional paths [30], then use this information to create
asymptotic error bounds associated with “perfect” data.
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parameter distribution associated with the collection of sample paths. The estimation
methods that use the LAQ expansions are purely heuristic, the theory developed above
is proved in great detail for independent random variables; asymptotic statements
about the llr associated with general Markov chains are harder to make [36, 45]. The
potential applications of these types of ideas in multiscale applications are merely
shown via numerical results in this paper.

5. Local Polynomial Diffusion Models. Thus far, the main concern has been
approximating the transition density and quantifying the goodness-of-fit of our simple
models to the data. For the remainder of this section assume that the data can
adequately be described by some arbitrary nonlinear effective SDE. Recall, I am
working under the assumption that even if the true underlying potential energy surface
is rugged, a smooth model of the drift and diffusion coefficients can be used to reliably
approximate certain features of the free energy surface. In statistical mechanics,
sometimes a limit theory exists for what the large sample system’s effective dynamics
converge to [20]. Unfortunately, for many interesting systems, the functional form of
the drift and diffusion coefficients are completely unknown. Our research group has
used the label “equation free methods” [29] to describe a set of numerical procedures
that have been designed to deal with a situation where one has a simulation protocol
that is believed to contain useful information and the information in the simulation is
believed to be describable by an effective equation (with smooth coefficients), but the
equation is unavailable in closed form. The early versions of this procedure used least
squares approximation in order to get derivative information. Within the last couple
of years, our group has extended the estimation procedure to match local linear SDE
models (both vector and scalar) to the output of simulation data. The parametric
models proposed are of the type given in equation 3.4. MLE and QMLE are greatly
facilitated by the deterministic likelihood expansions developed by Aı̈t-Sahalia [2, 3, 5]
19.

Conceptually, I am just taking advantage of the fact that the accurate Aı̈t-Sahalia
Hermite expansion allows us to generalize the piecewise-polynomial (pp) concept to
diffusion SDE models. Since I posit the existence of a smooth underlying effective
diffusion model, the drift and diffusion coefficient functions are fit locally to linear
models. One is free to use a fairly broad class of polynomials in the scalar case with a
variant of Aı̈t-Sahalia’s expansion [5], but our future work is concerned with applying
the techniques in this paper to the vector case. In that situation, a higher order poly-
nomial of unknown vector functions is not practical from an estimation standpoint.
Our experience has shown that if one wants to accurately capture the mean reversion
portion of a nonlinear effective model that it usually becomes necessary to model the
state dependence of the noise ( this point is illustrated in section 6.5). In statistical
terms, I am simply just finding the QMLE estimate of the parametric model shown
in equation 3.4. However a variety of practical questions arise:

• How does one determine if the estimated model is meaningful?
• In the case where an approximate transition density is used to estimate pa-

19Deterministic expansions are useful because one can quickly carry out parameter optimization
and can easily evaluate the functionals needed to carry out variations of MLE in situations where MLE
fails [38, 28]. Another obvious advantage is that in the case of stationary ergodic distributions one can
easily carry out a deterministic quadrature and determine the asymptotic parameter distributions in
situations where the parameter distributions converge to a normal random variable
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rameters, how sensitive is the QMLE projection to the quality of the approx-
imation?

• How does one choose the size of the neighborhood where a local linear model
is valid?

• How does one piece together the local models in order to create a global
nonlinear effective diffusion model?

The first issue is readily handled by the theory discussed earlier. The second
issue is concerned with semiparametric estimation and robust statistics. These are
important and active area of research in statistics [9, 48] (and in the future could
make great contributions to multiscale modeling), but results are currently difficult
(for this author) to translate into practical and reliable numerical methods associated
with the ideas laid out here. In section 4.1 it is shown that the true model is not
too sensitive to “contaminated data” and this quality is retained by the expansions
of Aı̈t-Sahalia, however is not by the overly crude Euler estimator.

A simple estimation procedure is well-equipped to handle the third issue. The
method requires the user to obtain a batch of trajectories from a simulation. In order
to carry out a classical estimation procedure, one must create a partition of state space
where a local linear diffusion model is an accurate representation of the underlying
nonlinear diffusion (see figure 5.1). Once the data set is collected, one is free to make
as many partitions as desired. The simple idea is to only present observation pairs
(xn,xn+1) to the log likelihood function that have “xn” within the selected neigh-
borhood. The neighborhood size must be chosen to be small enough that the QMLE
parameters estimates of the pp SDE model are statistically meaningful 20 and large
enough to contain enough samples to obtain the desired parameter accuracy (and
have asymptotic limits remain useful for the sample size). The main difficulty that
the method faces is determining a neighborhood yielding a satisfactory compromise
between the two aforementioned factors. This procedure is greatly facilitated by the
equations of a limit process if one is known. Otherwise one must use numerical exper-
imentation to attempt to determine how smooth the underlying coefficient functions
are (recall the assumption that a simple low-dimensional model exists). In multiscale
modeling we have the convenience of controlling the initial conditions of the (assumed
meaningful) atomistic simulation making this type of pp SDE modeling more practical
(otherwise one can only estimate parameters around state points visited frequently
by the sample path). Note that this method makes the time series length itself a
random variable. In addition, many applications of this idea lead to estimation of
a nonstationary time series. It has already been noted earlier that it is computa-
tionally difficult to calculate the Fisher information matrix in these circumstances.
These facts indicate that the LAQ likelihood ratio approximation might be useful. It
should be noted that optimal tests rarely exist in this type of situation, however in
the estimation literature some heuristic techniques have been recommended [6, 17].
The technical details of these methods require some fairly specialized arguments and
due to this author’s ignorance of both recent developments and the more important
aspects of the theory, goodness-of-fit tests are avoided in this situation 21.

20The goodness-of-fit techniques presented in the previous section can check this, however in
practice this procedure greatly benefits from modern nonparametric techniques [26, 12]

21Before proceeding, I would like to explicitly point out that if one has an initial distribution of
points clustered near each other initially and as time proceeds the ensemble mean slowly “funnels”
its way down to global or local minima, then the problem is slightly easier because one only needs
to determine the boundary of the “right hand end points” of the collection of time series. The point
stressed is that data only needs to be collected once and a statistically analyzed on or off-line (the
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In regards to the final item, I merely present two simplistic methods of piecing
together our local models in section 5. I also demonstrate that the LAQ expansion
can give a useful quantification of parameter uncertainty for our toy models. The
information contained in an LAQ approximation can be used in more sophisticated
“matching” schemes. Again this area is well outside of this author’s research area;
if the problem at hand is of any real significance one should consult [11, 16, 49] for
modern matching techniques, but at some stage one will almost certainly have to
appeal to some form of heuristics (a.k.a., “the art of numerical computation”).

5.1. Relevance to Multiscale Numerical Methods. The details of the tools
used may obscure their utility in multiscale modeling, so the connection is summa-
rized here. The computational load to carry out a full simulation is too great, so a
diffusion approximation is made which hopes to capture the relevant information in
the underlying model. Goodness-of-fit tests are needed to quantify the quality of the
approximation. If the model is found to be statistically acceptable, then one would
be interested in the confidence intervals associated with the estimate. Different state
points have different levels of noise; having a reliable method for theoretically predict-
ing parameter uncertainty as a function of sample size at different state points can
assist one in designing “efficient experiments” because one can allocate computational
resources in an intelligent manor. QMLE is a nice tool for achieving all these tasks,
however it can fail if it is followed “verbatim”, especially when one uses an approx-
imation of the transition density. Estimators based on llr methods are appealing in
situations where standard QMLE fails because they are applicable to a wider class
of problems and the distribution of the llr asymptotically converges to a manageable
distribution for certain model classes [36].

6. Results and Discussion. In order to get MLE (QMLE) parameter estimates
in all of the section to follow, the IMSL Nelder-Mead search algorithm is employed
using the termination criterion of 5 × 10−8 with an initial parameter distribution
dictated by a uniform distribution around the slightly biased (+10%) true parameter
values in the cases of known or approximately known models and from an assumed
limit process in the final application.

6.1. Maximum Likelihood Estimation Results. Tables 6.1 and 6.2 report
the empirically measured mean and standard deviation of the parameter distributions
as well as the asymptotic predictions for the standard deviation for situation I A-D
and situation I A-C (using data spaced δt = 2−5, 2−3 units respectively). We see
that as β increases the estimated mean reversion parameter decreases in magnitude.
This makes sense because the parametric model in equation 3.3 assumes a single free
energy minimum; as the magnitude of the sine wave added to the drift increases, one
experiences a situation where the “well-depths” associated with the local minima of
the glassy potential increase, retarding the rate of mean reversion (centered around
the global minimum). The exact magnitude of this effect depends heavily on several
factors, some of which are: the magnitude of the noise, the frequency of the sine
wave’s perturbation, the amplitude of the sine wave, and the sampling frequency.
The last two effects are quantified in tables 6.1 and 6.2. Inspection of these tables
shows that the when the true density is used, the effective model estimated from the
data is relatively independent of the sampling frequency. Note that as the observation
frequency decreases the quality of the expansion (in time) naturally decreases, but

deterministic expansions of Aı̈t-Sahalia make the former a possibility)
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Fig. 5.1. LAQ Screening Method Illustration Applied to Situation II B Data The circle cor-
responds to a state point where a parametric model was obtained using that particular“Xo”
in the parametric model given in equation 3.4. For smooth models the quality of the linear
approximation depends on the neighborhood size as well as the curvature of the drift and
diffusion coefficients (latter not shown). Once the data is collected, one is free to vary Xo

and/or the neighborhood size where the local SDE is assumed to model the data.

even for relatively “large” times between samples Aı̈t-Sahalia’s expansion remains
accurate. The quality of the Euler expansion is very sensitive to the time between
samples and it introduces a significant bias even when the “perfect data” is presented
to the estimator. I continue to show the results for the Euler estimator despite these
shortcomings because in section 6.4 the estimator demonstrates a redeeming quality
which can be used in conjunction with the transition density estimator of Aı̈t-Sahalia
in situations where the latter fails. The tables also show that the sample size is large
enough to partially realize asymptotic results in most cases. Table 6.3 shows similar
results; the cubic perturbation introduced into the drift results in a higher mean
reversion rate. In section 6.4 it is demonstrated that if one presents “screened” data
(those observation pairs that fall within a small neighborhood centered around the
estimated α parameter) that the bias introduced by the nonlinear drift perturbation
steadily decreases in magnitude as the neighborhood size decreases which intuitively
makes sense given our assumptions. Unfortunately, this simple procedure creates a
more complicated statistical problem in regards to theoretical parameter distribution
predictions because a deterministic approximation of the parameter distribution is
much harder to get using this technique.
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Table 6.1

Situation I Parameter Distributions The data used to obtain the parameter distributions
was N = 2000 sample paths of an SDE sampled over M = 4000 time intervals evenly spaced at
δt = 2−5 taken from the invariant distribution of an Euler path simulation. The empirical mean and
standard deviation of the parameter distributions are reported as well as the asymptotic predictions
of the standard deviation. For correctly specified models (case A) the asymptotic standard deviation
is given by FOP (calculable by a deterministic integral) and for misspecified models the standard
deviation predicted by C is reported

Scenario/ < α > < κ > < σ > σAsymp
α σAsymp

κ σAsymp
σ

Expansion Method
σEmp
α σEmp

κ σEmp
σ

Sit I A 0.40026 0.26975 0.047621
True

20.0052 4.0428 4.0168
0.40152 0.27501 0.047197

Sit I A 0.39938 0.25999 0.047575
Aı̈t-Sahalia

20.0454 3.9628 4.0159
0.40249 0.26681 0.047197

Sit I A 0.40000 0.25298 0.044722
Euler

20.0052 3.7961 3.7869
0.40146 0.24439 0.042119

Sit I B 0.40089 0.27011 0.047769
True

19.9985 4.0148 4.0102
0.39973 0.26831 0.045601

Sit I B 0.3956 0.24097 0.047761
Aı̈t-Sahalia

20.0374 3.9362 4.0093
0.40102 0.26296 0.045592

Sit I B 0.40097 0.23932 0.042992
Euler

19.9985 3.7707 3.7822
0.40052 0.23995 0.041049

Sit I C 0.41654 0.26111 0.047758
True

19.8675 3.7844 3.9277
0.41787 0.27209 0.047093

Sit I C 0.41061 0.23487 0.047743
Aı̈t-Sahalia

19.9016 3.7085 3.9267
0.4196 0.27554 0.047109

Sit I C 0.42007 0.2335 0.043175
Euler

19.8674 3.5374 3.7195
0.41835 0.24537 0.041998

Sit I D 0.49515 0.22916 0.047533
True

19.3406 2.9368 3.581
0.48422 0.27015 0.058569

Sit I D 0.48505 0.21071 0.047373
Aı̈t-Sahalia

19.3614 2.8953 3.5787
0.48679 0.26281 0.050485

Sit I D 0.51899 0.21057 0.0439
Euler

19.3387 2.6775 3.4387
0.48306 0.24238 0.044822

6.2. Optimal Binary Alternative Hypothesis Testing Results. In figure
6.1, the top/right axis corresponds to the Neyman-Pearson critical value versus the
theoretical type I error probability for all three transition density expansions using
the null as the true (known) parameters of situation II A and the alternative as the
parameters obtained using situation II B data with QMLE (using the exact CIR den-
sity). The left/bottom axis shows the analytically calculated cumulative distribution
of rejecting the null under the alternative using the three different transition densi-
ties (plugging in the same alternative parameters estimated by QMLE) as well as the
empirically measured distribution of the likelihood ratio (see caption for additional
details). We see that the sample size is large enough to realize agreement between the
measured and limit distributions. The expansion of Aı̈t-Sahalia provides a very good
approximation of this distribution, whereas the distribution predicted by the Euler
approximation deviates substantially.

6.3. Goodness-of-fit and Model Misspecification Results. Here it is demon-
strated how the various transition densities perform when one tries to use them to
evaluate the derivatives needed to estimate some goodness-of-fit statistics shown in
[50]. Before proceeding, a mildly problematic aspect of the expansion of Aı̈t-Sahalia

is pointed out. To illustrate the problem, the histograms of ∂2Lθ

∂α2 are plotted for 500
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Table 6.2

Situation I Parameter Distributions Same information as table 6.1 except the time intervals
are evenly spaced at δt = 2−3. Note how the parameter distribution quality degrades (as compared
to table 6.1), this is due in part to the failure of the transition density expansion (as evident from
situation I A). Another thing to note is that when the true CIR density is used, the parameters esti-
mated are relatively independent of the sampling frequency (which is a very desirable quality). This
is not the case for the two transition density expansions, however the magnitude of the discrepancy
between this table and the previous is much smaller for the Aı̈t-Sahalia expansion.

Scenario/ < α > < κ > < σ > σAsymp
α σAsymp

κ σAsymp
σ

Expansion Method σEmp
α σEmp

κ σEmp
σ

Sit I A 0.20206 0.16652 0.056847
True

19.9996 4.0296 4.019
0.20085 0.16673 0.057301

Sit I A 0.18208 0.10863 0.055179
Aı̈t-Sahalia

20.1162 3.6394 3.9971
0.22812 0.23505 0.06125

Sit I A 0.20088 0.12692 0.045736
Euler

19.9996 3.1652 3.2323
0.20088 0.10329 0.038508

Sit I B 0.7049 0.4502 0.03758
True

19.9915 4.0095 4.0123
0.20131 0.1659 0.056841

Sit I B 0.76493 0.41996 0.037335
Aı̈t-Sahalia

20.118 3.6523 3.9941
0.22589 0.21442 0.059281

Sit I B 0.30418 0.26104 0.049705
Euler

19.9915 3.1517 3.2306
0.20138 0.10267 0.038656

Sit I C 0.32825 0.29782 0.048524
True

19.8718 3.7377 3.9093
0.20573 0.16222 0.055943

Sit I C 0.33702 0.26354 0.041954
Aı̈t-Sahalia

19.9835 3.4578 3.8975
0.22621 0.21599 0.05993

Sit I C 0.38195 0.24293 0.04877
Euler

19.8717 2.9659 3.1967
0.20574 0.10375 0.03815

Table 6.3

Situation II Parameter Distributions Same information as table 6.1 except M = 4500.

Scenario/ < α > < κ > < σ > σAsymp
α σAsymp

κ σAsymp
σ

Expansion Method
σEmp
α σEmp

κ σEmp
σ

Sit II A 0.37737 0.25432 0.044898
True

19.9877 4.0512 4.0169
0.38691 0.26327 0.04653

Sit II A 0.37654 0.24512 0.044854
Aı̈t-Sahalia

20.0272 3.9695 4.0159
0.38803 0.25535 0.046481

Sit II A 0.37712 0.23852 0.042164
Euler

19.988 3.8045 3.7862
0.38732 0.23417 0.041944

Sit II B 0.30542 0.28151 0.045772
True

19.826 4.9256 4.018
0.31247 0.26417 0.047077

Sit II B 0.29819 0.25567 0.045828
Aı̈t-Sahalia

19.8544 4.8679 4.0186
0.30856 0.25292 0.047127

Sit II B 0.30545 0.24273 0.039965
Euler

19.826 4.5645 3.7382
0.31238 0.22756 0.040756

sample paths using the three expansions. The particular histogram shown using the
Aı̈t-Sahalia expansion had 25 observations that were disregarded because of unusually
high values in the calculated quantities. The expansion of Aı̈t-Sahalia is very accu-
rate, but its functional derivatives can unfortunately introduce spurious singularities
into the transition density approximation. To show a specific example of this, take
the logarithm of the order one Aı̈t-Sahalia CIR expansion 22 and calculate the second
derivative with respect to α and plug in the observation pair (obtained via an Euler

22Mathematica code available from http : //www.princeton.edu/̃yacine/research.htm
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Fig. 6.1. Neyman-Pearson Results The Neyman-Pearson test carried out on situation
II B data using the QMLE parameter estimate as the alternative and the exact (known)
parameters associated with situation II A as the null. The curves represent the determinis-
tic calculation of the type I error probability as a function of the critical value (right axis)
and the theoretical CDF of the likelihood ratio obtained by using the various transition
density expansions assuming ergodic sampling of the invariant distribution (left axis). The
“x’s” correspond to using the actual situation II B data (nonlinear potential) and the “o’s”
correspond to the distribution of the likelihood ratio obtained using the QMLE parameters
estimated to simulate sample paths of the parametric model proposed (plugging in the aver-
age of the QMLE parameter distribution) and then using the exact CIR density to evaluate
the likelihood ratio.

path simulation) [xn, xn−1] = [3.1826960, 3.305275] and set σ = 4, κ = 4, δt = 2−5.
The bottom panel in figure 6.2 plots the resulting function of α. For the particular
model and parameter values shown, this type of situation is only encountered when
calculating functional derivatives. In the transition density associated with the model
given in equation 3.4, sample values where singularities are hit when evaluating the
pure log likelihood function are encountered. A standard method for dealing with this
is to apply a one-step MLE estimator 23. A minor modification of Le Cam’s method
shown in section 4.4 provides one possible construction of a one-step MLE estima-
tor. Many one-step methods require a parameter guess that is within a “reasonable
neighborhood” of the true parameter value (the exact size of the neighborhood can be

23The basic ideas of these procedures is to use a simple restricted parameter set that is “rich” in
the parameter space [9]. An example of this would be to take a discrete mesh of parameter space
and optimize the log likelihood over this finite set. The main idea is to keep the parameter values
away from singularities associated with the finite sample log likelihood. Refer to the literature on
asymptotically centering estimators in [38, 35] for another example of a one-step method.
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Table 6.4

Le Cam LAQ One-Step Test The data used was situation II A with δt = 2−5. The LAQ
motivated one-step expansion was carried out at the point θ = (20.1, 4.5, 4.1), consult Le Cam [38]
chapter 6 for details. The one-step estimate of the parameter results from adding the quantity below
to θ. This type of procedure is necessary when standard MLE misbehaves. The table shows that the
LAQ update gets one close to the true parameter when an extremely accurate approximation of the
transition density is in hand. The Aı̈t-Sahalia order one and Euler updates are not as good, but still
usable. The major problem with these estimators is that the contiguity condition becomes difficult
to verify (a condition that needs to be met before the LAQ expansion can be used with confidence).
The last two columns display -2 times the mean and the variance of the llr measured by evaluating
it at θ̂ and θ̂ + hM where hM = (1.2, 0, 0.12). In the infinite sample limit these two quantities will
be identical (assuming hM is continually scaled properly). For the exact and order four Aı̈t-Sahalia
expansion one observes close results. For the other two expansions this is not the case (see text for
further discussion).

Expansion ∆α ∆κ ∆γ −2µΛ
θtrue

σΛ
θtrue

CIR Exact -0.9507 -0.4791 -0.0931 12.9402 13.8679
Aı̈t-Sahalia Order 4 -0.9507 -0.4791 -0.0931 12.9405 13.8679
Aı̈t-Sahalia Order 1 -1.0065 -0.7499 -0.1208 13.6013 39.0793
Euler -0.9621 -0.7344 -0.3156 41.8144 16.0470

chosen using an approximation of the Fisher information matrix). Table 6.4 illustrates
that if one starts with a slightly perturbed guess of the true parameter that Le Cam’s
method can get fairly close to the true parameter vector if the transition density ap-
proximation is very accurate (the llr expansion was obtained from situation II A data
and the one-step used is outlined in Le Cam [38] chapter 6). The asymptotic likeli-
hood expansions are valuable in parametric estimation; unfortunately this application
requires an extremely accurate transition density approximation 24. Throughout this
paper the first order (in time) Aı̈t-Sahalia expansions have been used; only in table
6.4 do I report results from a higher order expansion (order four). Recall in section
6.1 that the order one Aı̈t-Sahalia expansion provided an accurate approximation of
the likelihood ratio for a simple hypothesis test. The test statistic generated for the
Neyman-Pearson test only required the ratio of one observation pair at two nearby
parameter vectors. The transition density expansion does introduce a systematic bias
into the approximation, and the nature the bias does exhibit a smooth dependence
on the parameter values making the ratio of two nearby probability densities also
exhibit a significant bias and these small errors accumulate as the time series length
grows (see equation 4.3) complicating matters. Some techniques and analysis have
already been developed for approximating the LAQ expansion of random variables
in the case where the density is not known explicitly [28]; most techniques devel-
oped require one to empirically measure the transition density. For our applications,
the empirical distribution techniques are mildly inconvenient (from a computational
standpoint) because one needs to determine an empirical density approximation for
each observation pair.

Now let us return to the goodness-of-fit issue. First, the condition FHessian =

24Instead of applying one-step methods (a full discussion would slightly overload this paper and
distract from the simpler points), in the simple parametric models studied I remedy the singularity
issue by using the Euler approximation to determine when a singularity is hit. It is possible to
distinguish between spurious singularities from log likelihood function singularities in the CIR case
because the true transition density is known. In all of the CIR applications the singularities hit were
in fact spurious. I simply threw out sample paths where the absolute value of the logarithm of the
transition density of the Aı̈t-Sahalia expansion differed from that of the Euler approximation by a
factor of three anywhere along the discretely observed path (this occurred less than 4% in the CIR
studies, in the SSA studies this number increased to roughly 25%).
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Fig. 6.2. Histogram of Diagonal Component of FHessian Corresponding to α for the Three
Transition Density Expansions The histograms all have slightly different shapes indicating
that the curvatures of the three transition densities differ (data taken from situation I C with
δt = 2−5). In the second plot 25 observations were thrown out because there were outliers
caused by spurious singularities in the transition density expansion. The bottom panel gives
one demonstration of how the Aı̈t-Sahalia expansion can introduce spurious singularities into
the log-likelihood function. The data shown is the second derivative of transition density
expansion with respect to α as a function of α for a particular observation (see text for
discussion). The fat tails of the log likelihood function make a simple screening of outliers
(caused by spurious singularities) very difficult if one does not have the true transition density
to reference.
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−FOP it tested. If the condition holds T :=
k∑

i,j=1

F ij
Hessian + F ij

OP should be a mean

zero random variable (the superscripts denote matrix components and k is the number
of parameters estimated). If it is assumed that the classical central limit theorem
(CLT) holds and that the sample sizes used are large enough to appeal to the CLT
and approximate the sample mean by a normal distribution of unknown variance,
then the classical t-test can be employed [8] (more sophisticated tests are proposed
in [50]). Figure 6.3 plots the t-test results for testing if FHessian = −FOP for various
sample sizes (the Aı̈t-Sahalia data is screened by the technique mentioned in footnote
24). The figure shows that as the number of paths grows (the equality tested is valid
in the infinite time series length limit; here the time series length is held fixed), that
it becomes easier to detect discrepancies between the data and the assumed model.
Even when the true transition density is used with the correct model, one observes
that as sample size increases (in paths) that it becomes easier to reject the null.
This is because the equality FHessian = −FOP is an asymptotic result. A finite size
time series can never fully realize asymptotic results; as more paths are analyzed
the departure from the limit becomes easier to detect. One should also note that
as the number of paths increases it also becomes easier to detect the errors in the
transition density expansion. Before proceeding to check for model misspecication in
the presence of an approximated transition density, one should determine if asymptotic
results are valid for “perfect data” using the same time series length, then proceed to
check the accuracy of the expansion by some MC tests (like the ones presented in the
previous section).

For extreme cases (situation I C and D) the t-test safely rejects the null for
small sizes (see figure 6.3 and the inset). This indicates that the data is well outside
the particular parametric model class under study, but one can still test if some
asymptotic QMLE results hold. Figure 6.4 plots the exact probability density of the
χ2(3) random variable as well a test statistic given in [50] (which will be denoted
by HW 25 ) We see that both the approximation and the exact transition density
appear close to the predicted limit distribution indicating that the asymptotic results
approximately hold for the sample sizes used. I quantitatively compare how well
the empirical distributions match the limit distribution by using the Kolmogorov-
Smirnov (KS) test with various sample sizes in the inset of figure 6.4 26. The average
p-value is obtained by applying the one sample KS test [8] using 500 draws (with
replacement) of size Nsamples from the pool of HW random variables associated with
the Nsamples paths using the χ2(3) density as the null. The result of this procedure is
shown in the inset of figure 6.4. We see that the test statistic created using the Aı̈t-
Sahalia expansion is rejected before that associated with the true density indicating
the possibility that the errors in the expansion cause a mildly inflated rejection rate

25HW := Mg(θ)

[
∇g(θ)C(θ)∇g(θ)T

]−1

g(θ)T where g(·) is the gradient (written as a row vector)

of the log likelihood function. If θ ∈ R
k then under conditions stated in [50] this random variable

converges in distribution to a χ2(k) random variable. This statistic was originally proposed by
Halbert White [50].

26In this particular application, we are still significantly away from the limit distribution. The
sample sizes used for estimation are large enough that a test as powerful as the KS would reject
equality of the two distributions with very high certainty if one used all of the data at hand. For this
reason I only present portions of the data to the KS test. In many interesting atomistic simulation
studies, one can only afford to generate a couple hundred sample paths making this type of goodness-
of-fit test useful in practice. An alternative would be to partition the CDF into bins and use the χ2

square goodness-of-fit test [39].
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Fig. 6.3. Model Misspecification t-test Results The left/bottom axis plots the t-statistic
obtained by summing the components of FOP and FHessian for various sample sizes (time
series length is fixed, different Nsamples values correspond to using different sample path
numbers to create the random variables required to generate the sample mean and standard
deviation needed for the t-test ). The right/top axis is to be used with the lines without
symbols; the top axis is the critical value (cv) of the t-test (lowest |t| needed to reject the null
for a given α). Samples were drawn at random, but once a T r.v. was drawn it contributed
to the cumulative average plotted. The solid line corresponds to the theoretical cv of a
sample size =375 and the dashed line corresponds to a sample size =10. The inset plots the
situation I D test which can be rejected quickly with high confidence.

in situation I C.

6.4. Le Cam’s Method and Likelihood Ratio Expansions Results. Table
6.5 presents parameter estimates of the screened data (the neighborhood size used is
given in the captions) from situation II B. We see that as the neighbrohood size
decreases the estimator mean moves closer to that of the “uncontaminated” model
but the variance of the estimator increases. I use Le Cam’s LAQ expansion with
the Aı̈t-Sahalia transition density expansions in order to quantify the uncertainty
in the measurement. One should observe that the LAQ matrix is closely related to
the variance of the parameter distributions (for a more precise description of the
connection consult [28, 6]). The agreement between the estimated and measured
parameter variance is not as sharp as it was in the case of a stationary distribution,
but there one had the convenience of evaluating a deterministic integral (in situation
A). Furthermore the asymptotic results are harder to realize because some observation
pairs are not used to obtain parameter estimates (due to the screening). If one has
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Fig. 6.4. Goodness-of-Fit with Kolmogorov-Smirnov Test The χ2(3) probability density is
plotted along with the empirical distribution of the test-statistic proposed in [50] for situation
I C data. The inset shows a plot of the p-value (minimum α needed to reject the null given the
data) obtained using the one-sample Kolmogorov-Smirnov test versus the number of paths
used to create the test statistic. If the full set of samples were used, the test would have no
problem in rejecting the null. This is due to the fact that asymptotic results are never truly
realized with finite sample sizes. The plot illustrates that the test statistic generated by
the Aı̈t-Sahalia expansion does faithfully capture the average curvature of the log likelihood
function in a misspecified model.

a situation where the neighborhood size is small enough to give “meaningful” QMLE
parameter estimates and the number of observation pairs is large enough to appeal
to asymptotic methods, then the LAQ screening method can be used to define a cost
function which can be used to intelligently choose the screening neighborhood size.

6.5. Local Polynomial Diffusion Models Results. In the first application,
the pp SDE method is applied to data generated by the unperturbed CIR model (γ =
β = 0); I pretend that the functional form of the drift or diffusion coefficient of the
data generating process is unknown and instead use the model in equation 3.4. Five
arbitrary state points denoted by {Ei}i=1,5 (shown as circles in figure 6.5) are chosen
and the parameters of the affine SDE are obtained there. The LAQ expansion is used
in order to obtain parameter uncertainty estimates and the results are compared to
the empirical parameter distribution measured by carrying out QMLE on the screened
data in table 6.6 .

At this point we have in hand, estimates of the constant and linear sensitivities
of the coefficients of the SDE. The “global” drift and diffusion coefficient functions



24 C. Calderon

Table 6.5

Situation II B Parameter Distributions with LAQ Screening The data used to obtain the
parameter distributions was the same as that used in table 6.3 except here only results of using the
Aı̈t-Sahalia expansion are presented using screened data. The base point (Xo) of all of the local
SDE models shown below is 20 which corresponds to the true α parameter and the interval used to
filter the data is given in the first left column. The empirical mean and standard deviation of the
parameters are given along with the LAQ prediction of the parameter uncertainty.

σAsymp
α σAsymp

α σAsymp
κNeighborhood Size < α > < κ > < σ >

σEmp
α σEmp

κ σEmp
σ

0.577 1.079 0.094(16, 24) 19.993 4.080 4.006
0.560 1.008 0.085
0.502 0.780 0.078(15, 25) 20.047 4.228 4.003
0.530 0.802 0.078
0.450 0.629 0.068(14, 26) 20.021 4.365 4.006
0.474 0.627 0.066

Table 6.6

Piecewise Polynomial SDE Parameter Distributions of Situation II B The data used to
obtain the parameter distributions was N = 2000 sample paths of an SDE sampled over M = 4000
time intervals evenly spaced at δt = 2−5 using expansion point Xo with the neighborhood size given
in the second column. The empirical mean and standard deviation of the parameter distributions
are reported as well as the LAQ predictions of the standard deviation.

σAsymp
a σAsymp

b
σAsymp
c σAsymp

dXo Neighborhood < a > < b > < c > < d >
σEmp
a σEmp

b
σEmp
c σEmp

d

1.939 0.696 0.295 0.06716 (11, 22) 15.909 -4.227 15.600 0.534
1.999 0.713 0.278 0.061

1.898 0.6344 0.288 0.06118 (13, 25) 8.226 -4.118 16.987 0.462
1.984 0.667 0.293 0.062

2.408 1.131 0.425 0.08520 (16, 24) -0.021 -3.879 17.862 0.437
2.419 1.157 0.43774 0.088

2.284 0.624 0.334 0.05822.5 (15.5, 29.5) -9.994 -4.064 18.971 0.435
2.490 0.615 0.338 0.0848

3.310 1.092 0.514 0.09125 (21, 29) -20.602 -4.050 19.982 0.391
3.648 1.426 0.598 0.105

can be approximated by the following interpolation procedure:

fj(x) =
wLfL

j (x) + wRfR
j (x)

Z

where j = 1, 2 corresponds to the drift and diffusion coefficients respectively, wL

and wR are the weights associated with the left and right expansion point, fL
j (x)

is the affine approximation to the nonlinear function based on the closest expansion
point whose value is less than or equal to x (similarly for fR

j (x), but use the nearest
expansion point strictly greater than x). The weights were assigned by the ad hoc

rule:

wL(x) =
(σC + σD(x) (x− Ei))

−1 (Ei+1 − x)

Ei+1 − Ei

wR(x) =
(σC + σD(x) (Ei+1 − x))

−1
(x− Ei)

Ei+1 − Ei
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Fig. 6.5. Piecewise Polynomial Approximation of CIR Model The top panels plot the
diffusion (left) and drift (right) function obtained by the interpolation procedure given in
section 6.5. The top left panel plots the first order Taylor expansion (evaluated at Xo = 16)
of the diffusion coefficient from the known function to show how much the true function
deviates from linearity and how well the procedure detects this change. The bottom figures
plot the corresponding relative errors (using the exact known SDE coefficient functions). See
footnote 27 for a discussion on systematic versus random errors.

Z = wL + wR

The results of this simple interpolation procedure are shown as a dotted lines
in figure 6.5 (in the rule above, σC and σD are the empirically measured parameter
standard deviations of the constant and linear term of the diffusion term; the inter-
polation rule for the drift is analogous). Figure 6.5 plots the relative error of using
this procedure using the known SDE coefficient functions as the “truth”. The errors
in the diffusion coefficient function do not indicate a systematic bias in contrast to
the drift coefficient 27.

27I offer an intuitive explanation for this fact; if one naively assumes that the true paths come
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In the final application, the parameters of the model are unknown. The parameter
were obtained with the LAQ screening technique. The SSA process was run until
N sample paths reached approximately “invariant distributions” 28. Then N = 200
paths were used to obtain initial parameter estimates; for expansion points in the tails
of the “invariant distribution” an additional N = 600 paths were simulated in order
to get sharper estimates of the poorly sampled state points 29. Here a B-spline [11]
was used ( MATLAB’s cubic smoothing spline, “spaps” was used) to piece together
the constants (a, c) of the local models in order to smoothly interpolate between
state points. Each point was given the same weight when creating the spline, the
LAQ technique for measuring parameter uncertainty could be used to give different
weights to the measured parameters, but this procedure was not carried out here
because the inherent jump nature of the data complicates matters slightly 30. The
information contained in the linear coefficients (b, d) was not used for interpolation
purposes because the variance of the parameter of the linear terms was much larger
than those of the constant terms in the case studied. However, if one ignores the
linear terms in the local model the constants estimated are significantly affected (see
figure 6.6). One observes significant departure of the SSA model parameters from the
limiting drift function (plotted as a dashed red line). The number of particles in the
SSA system was increased to 2 × 105 and the parameters of the effective model in
the drift were estimated and demonstrate that the limiting drift function is measured
with the estimators used (see inset in figure 6.6). As the system size increases, the
noise decreases, limiting the state points visited (hence the drift function estimated
does not cover as large as a range as the first SSA case considered). The estimated
diffusion function in figure 6.6 demonstrates dependence on the transition density used
(Aı̈t-Sahalia order one and Euler). In this application the Ornstein-Uhlenbeck (OU)
model was also used to demonstrate the importance of accounting for state dependent
noise (note the systematic difference in the constant noise parameter estimated using

from an Euler simulation with Euler step sizes corresponding to the observation frequency then one
is in the “Gaussian case”. In between expansion points, the Taylor expansion of the known diffusion
function consistently over estimates the diffusion function at nearby points ( the diffusion coefficient
is concave). The true transition density of the SDE has a smaller variance (the data generating
process) than the deterministic Taylor series prediction. When one uses the simple Euler density
approximation in QMLE, the magnitude of the mean reversion parameter appears to be larger than
it really is because of the error in the Taylor series approximation of the diffusion function (larger
noise is expected making the deterministic trend appear stronger). The actual situation is much
more complicated due to the fact that the distributions are not Gaussian, a complicated nonlinear
function is used to obtain parameter estimates (QMLE), finite sampling effects, etc.; however figure
6.5 is consistent with this overly simplified intuitive explanation.

28It is known that the free energy surface of this model contains two stable free energy wells and
one saddle; no particles were able to overcome the large free energy barrier for the time series lengths
used, hence the quotes on “invariant distributions”

29Parameters were initially optimized over individual paths in order to estimate the parameter
distribution variance. When parameter were optimized on a pathwise basis, a significant fraction
(≈ 25%) of observation pairs resulted in assumed spurious singularities in the Aı̈t-Sahalia expansion.
To constrain the parameter space explored in the optimization, I found the QMLE parameters with
all of the data (over time and paths). This helped prevent the optimization routine from attempting
to evaluate the log likelihood function at parameter values that cause spurious singularities because
the parameter space explored was reduced because the trial QMLE parameters needed to be good
for all of the paths.

30In practice one could overcome this difficulty by obtaining the QMLE, generate SDE sample
paths with the model parameters obtained, then find the LAQ parameter variance of a genuine
diffusion. In applications where the uncertainty associated with using the local SDE model technique
on imperfect data is desired, the problem is much harder. One should consult the specialized literature
[9, 45, 48] for guidance; this author can not make any sound general recommendations.
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Fig. 6.6. Estimated Nonlinear Drift (Global) The LAQ screening method was used to
obtain the plots shown. The results of three different transition density estimates are shown
(the OU model sets d in equation 3.4 equal to zero). The left panel contains the drift
coefficient corresponding to a SSA simulation containing 602 particles. The thick solid line
corresponds to infinite system size drift function. The dotted line corresponds to the B-spline
of the Aı̈t-Sahalia Expansion. The inset shows the drift coefficient corresponding to a SSA
simulation containing 2× 105 particles. Observe how the drift function convergence towards
the expected limit equation with “larger” systems, however for small particle systems the
results are substantially different. The right panel displays the measured diffusion coefficient
(the infinite sample limit has zero noise)

the three different transition density estimators).

Figure 6.7 plots the “invariant” empirical CDF of the SSA data versus that pre-
dicted by a sample path simulation of our obtained nonlinear diffusion approximation
(constructed from the B-spline interpolation of the estimated local SDE models). The
inset plots the difference between the two empirical CDF’s. Our interest in this ap-
plication was in getting a parametric description of the “invariant” distribution, if
the dynamics of the process are of more interest consult [12] for a useful test which is
made possible if one has an approximation of the transition density.

7. Conclusions and Outlook. In this paper I have demonstrated that the
expansions of Aı̈t-Sahalia can potentially be a useful tool in the parametric estimation
associated with computational studies of multiscale systems. Parameter estimates can
accurately be obtained and the curvature of the model is accurately represented by
the expansion in a variety of applications. These facts can be exploited to estimate
parameter distributions and construct useful inference procedures. The overly simple
Euler expansion behaves poorly in accuracy of the estimate and in the curvature of
the transition density (as shown early on by Lo [40]), but it has the redeeming feature
that it does not introduce any spurious singularities into the transition density (for
the CIR model). In large sample statistics applications, point singularities can usually

be remedied [35, 36, 38] by using likelihood ratio expansions. Unfortunately, many of
these techniques require an extremely accurate estimate of the transition density. For
imperfect transition densities with systematic errors, this becomes mildly problematic
(from a computational standpoint) 31.

I have also demonstrated a heuristic method for locally approximating a nontriv-

31Methods proposed in [5] are applicable to a wider class of models and help the accuracy of the
transition density expansion in the scalar case, but the vector case poses a more challenging problem
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Fig. 6.7. CDF and KS test (Nmolecules = 3600) The CDF of the SSA “invariant distri-
bution” (empirically measured) plotted against that of the piecewise-polynomial (pp) local
SDE model (simulated by long time Euler integration [30]). In addition the (actual) invari-
ant distribution of the OU model obtained is plotted (the model parameters of the local
OU model were measured at the single state point where the drift is zero). This was done
to show what effect neglecting the nonlinear drift and state dependent diffusion has on the
invariant CDF. The inset plots the difference between the “invariant CDF” of the SSA data
and that of the pp SDE model.

ial SDE by a collection of simple local models. The application was inspired by the
need to accurately measure the parameters, quantify the uncertainty and determine
the goodness-of-fit of parametric diffusion models around atomistic data. The pp
SDE technique presented is simple in nature, but it raises many deep questions. In-
sight from the semiparametric, robust and large sample statistics communities would
greatly assist in further developing this type of numerical method. The general method
is appealing because it can be used to estimate nonlinear effective diffusion models
where the effective SDE’s coefficients are smooth, but of unknown functional form.
The resulting parametric model structure (which is typically a complicated function
due to the “matching” used) can then be passed on to diffusion path simulation
methods in order to generate additional data which can be used in order to construct
confidence bands or carry out established inference procedures.

From a practical point of view it would be desirable to apply the techniques in this
paper to Aı̈t-Sahalia’s method in the vector case because many interesting physical
systems depend on a couple of “reaction coordinates” [27, 46, 14]. Unfortunately the
vector version of the expansion usually requires one to use an additional Taylor series
approximation (which increases the chance of spurious singularities and decreases the



Estimating Effective Diffusion Models 29

quality of the curvature estimate); this researcher has been able to use the expansions
in order to get useful parameter estimates, but has not had as much success in pushing
them as far as the scalar expansions. A numerical method which can be used in
conjunction with the expansions of Aı̈t-Sahalia in order to get detailed information
about the log likelihood ratio associated with smooth SDE’s (diffusion and jump
models) is currently being explored by the author.
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