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GRADIENT FLOWS AS A SELECTION PROCEDURE FOR
EQUILIBRIA OF NONCONVEX ENERGIES∗

CHRISTOPH ORTNER†

Abstract. For atomistic material models, global minimization gives the wrong qualitative
behavior; a theory of equilibrium solutions needs to be defined in different terms. In this paper, a
concept based on gradient flow evolutions, to describe local minimization for simple atomistic models
based on the Lennard–Jones potential, is presented. As an application of this technique, it is shown
that an atomistic gradient flow evolution converges to a gradient flow of a continuum energy as the
spacing between the atoms tends to zero. In addition, the convergence of the resulting equilibria is
investigated in the case of elastic deformation and a simple damaged state.
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1. Introduction. This article is concerned with a possible concept for analyzing
elastic energy functionals which do not satisfy the classical coercivity and weak lower
semicontinuity conditions of the calculus of variations. The subject of study is the
one-dimensional atomistic energy

Eatom

(
(yj)

n
j=1

)
=

n∑
j=1

[
J(yj − yj−1) + fjuj

]
,(1.1)

where n ∈ N, and yj are the positions of the atoms with y0 = 0. The family (fj)
represents a linear applied force. We assume that the Lennard–Jones type potential
J = J(z) satisfies

J ∈ C2(0,∞),
J(z) = +∞ if z ≤ 0 and J(z) → +∞ as z → 0,
J ′(1) = 0, J ′′(z) > 0 in (0, z1), and
J is concave, increasing and bounded above in (z1,∞),

(1.2)

with 1 < z1 < +∞. The typical shape is shown in Figure 1.1. Note, that the noncon-
vexity of J is of a much more fundamental type than the geometric nonconvexity of
classical elasticity.

It has been noted previously (see, for example, [24]) that, due to the sublinear
growth of J , the energy in (1.1) should not be analyzed in terms of global minimiza-
tion, as this would give unrealistic material behavior. The most popular example
given is that a material described by (1.1) would break for arbitrarily small loads if
it were to attain its global minimum. We shall describe this in more detail in section
1.1.

In general, for applications in mechanics, it is advantageous to consider metastable
states. The difficulty here is that the number of critical points of Eatom tends to infin-
ity as n → ∞. Thus, we require a selection criterion to pick the “correct” equilibrium
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Fig. 1.1. The shape of natural interaction potentials of Lennard–Jones type.

points. Theoretically, we should consider the natural dynamics of the material and
let time tend to infinity to find its equilibrium state. Here, we take a considerably
easier route and use | · |H1-gradient flow dynamics. Our justification for the gradient
flow is merely to accept it as a simple model for local minimization. Concerning the
choice of the metric, there are also strong mathematical reasons for choosing an | · |H1-
gradient flow evolution which are outlined in sections 2 and 3. Note that we do not try
to analyze a physical evolution. Our aim is to simply demonstrate a concept which
we believe gives better results than the traditional method of global minimization.
The ideas in this paper have also important applications for the numerical analysis
of coarse-graining techniques such as the QC method [17], as they give an indication
how numerical optimization methods can be stabilized [20].

The main goal of the present work is to show that the | · |H1-gradient flow provides
a selection criterion for critical points which results in good qualitative properties
of the resulting equilibrium model. The simplicity of the one-dimensional model
problem makes it possible to give complete results; however, many of the fundamental
techniques applied here carry over to much more complicated settings. The additional
challenges posed by higher dimensions will be discussed in section 5.

As an application of the idea to use gradient flows to analyze equilibrium points
of nonconvex energies, we consider the continuum limit of a rescaled version of the
atomistic functional Eatom as the number of atoms n tends to infinity. The novelty is
that we primarily consider the convergence of the gradient flow evolutions (Theorem
3.1), and obtain the convergence of the equilibria almost as an afterthought (see
Theorem 4.1 for elastic deformations and the discussion in section 4.2 for fracture).
This procedure gives a different and, one might argue, more realistic continuum limit
than previous work; see section 1.2 for a more extensive discussion. In addition,
this shows that there is a strong relationship between the atomistic and continuum
equilibria.

The local minimizers selected by the gradient flow are weak local minimizers, i.e.,
local minimizers with respect to the W1,∞-norm. It is clear from the shape of the
interaction potential (cf. Figure 1.1) and the comments at the end of section 4.1 that
this is in fact the only possibility. In any weaker topology, even the elastic critical
points are not local minimizers of the energy. The same is true for fractured states
but the interpretation of W1,∞ would be more subtle in this case.

If we replace the Lennard–Jones potential by a potential which is smooth at the
origin and therefore J ′ Lipschitz-continuous, then the convergence analysis of the
gradient flow requires only minor modifications of the classical convergence analysis
of Galerkin discretizations. For the approach in this paper, however, convergence of
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the energy is sufficient (cf. Theorem 2.4), which makes a result as general as Theorem
3.1 possible. To achieve this we use some generalizations of ideas in [1, Chapter 4].

For the analysis of equilibria, we use a lim inf condition for the slope of a family
of functionals, whose proof is based on the notion of λ-convexity. This condition was
also used in [23] to analyze the convergence of gradient flows. Using the techniques of
this paper, which has a different aim than the present work, the convergence would
have to be obtained by compactness principles (which are not available in our case)
rather than λ-convexity.

1.1. The failure of global minimization. The Cauchy–Born hypothesis states
that an atomistic body, subjected to a small affine boundary displacement, will fol-
low this displacement in the bulk. Friesecke and Theil demonstrate in [15] a two-
dimensional, mathematical version of this important foundation of continuum me-
chanics by considering global minima of an energy similar to (3.1) but with a quadratic
interaction potential. When the potential has sublinear growth, global minimization
will typically not reproduce this behavior.

Let us consider the atomistic energy Eatom in (1.1) with fi ≡ 0, but apply a
“Dirichlet” boundary condition at the right end of the domain as well. For each
δ > 0, we consider the minimization problem

min
yn=n(1+δ)

Eatom

(
(yj)

n
j=1

)
.(1.3)

Concerning the formulation of the boundary displacement, note that the minimum of
J(z) is attained at z = 1. The choice of boundary displacement we have made here
scales linearly with the number of atoms. An interesting different choice was made in
[6] which we discuss briefly in section 1.2.

Proposition 1.1. There exist constants δ0, C0 > 0, such that, for δ0 > δ >
C0n

−1/2, the affine state yj = (1 + δ)j is not the solution of (1.3).

Proof. Consider the “fractured” deformation yfj = j for j = 0, 1, . . . , n − 1 and

yfn = n(1 + δ). Then,

Ef (δ) = Eatom

(
(yfj )nj=1

)
= (n− 1)J(1) + J(1 + nδ) ≤ (n− 1)J(1) + sup

z≥1
J(z).

The affine state yaj = (1 + δ)j on the other hand has the energy

Ea(δ) = Eatom

(
(yaj )nj=1

)
= nJ

(
(1 + δ)

)
.

The assumptions we have made in (1.2) allow us to estimate J(z) from below by a
quadratic

J(1) + c0(z − 1)2 ≤ J(z) for 1 ≤ z < δ0,

where c0 > 0 and δ0 > 0 are appropriately chosen. Therefore, for δ < δ0, we have
Ea(δ) ≥ n(J(1) + c0δ

2), and we obtain that Ea(δ) > Ef (δ), if

δ2 > n−1
( supz≥1 J(z) − J(1)

c0

)
=: C2

0n
−1.

The proof of Proposition 1.1, which is merely a review of well-known facts, ac-
tually suggests that not only is the Cauchy–Born hypothesis violated, but in fact
any material with a sufficient number of atoms breaks for arbitrarily small boundary
displacements or surface forces, if it were to attain its global energy minimum. This
behavior is in clear contradiction to observations and, therefore, global minimization
should be rejected for models of the type (1.1).
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1.2. Continuum limits of atomistic energies. Continuum limits of atomistic
models have been studied by many authors in the past. Because it is customary, we
consider the case of Dirichlet boundary conditions in this section only. To be able to
compute a continuum limit, we need to first rescale the energy (1.1) to a fixed, finite
domain. The seemingly naive approach is to use a linear scaling of the energy as well
as the boundary condition, which gives

E(1)
n

(
(yj)

n
j=0

)
=

n∑
j=1

1

n
J
(
n(yj − yj−1)

)
, y0 = 0, yn = 1 + δ.(1.4)

If we assume that the body attains its global energy minimum, then for an arbitrarily
small boundary displacement δ, the deformation will not be a continuum state (com-

pare Proposition 1.1). This fact is reflected by the Γ-limit of E
(1)
n as n → ∞ (see, for

example, [4, 5] and references therein) which gives the energy

E(1)(y) =

∫ 1

0

J∗∗(y′) dx, y(0) = 0, y(1) = 1 + δ,

where J∗∗ is the convex envelope of J .
Motivated by an analysis quite similar to Proposition 1.1, it can be seen that if a

different scaling is used, then the Γ-limit becomes more interesting [6]. If we define

E(2)
n

(
(uj)

n
j=0

)
=

n∑
j=1

[
J
(
1 +

√
n(uj − uj−1)

)
− J(1)

]
, u0 = 0, un = δ,

then the Γ-limit turns out to be the Griffiths functional (compare [13])

G(u) = α

∫ 1

0

|u′|2 dx + β�Su, u(0) = 0, u(1) = δ,

where Su is the set of jump-discontinuities of the displacement u, α = 1/2J ′′(1) and
β = limz→∞ J(z)−J(1). The boundary values of the possibly discontinuous functions
u can be interpreted in a meaningful way. While it is interesting that the Griffiths
functional can be obtained in this way, it should be noted that this model is typically
used for crack propagation only, not crack initiation. In one dimension, however, only
crack initiation can be analyzed.

The philosophy adopted in the present work is that the scaling of functional E
(1)
n is

actually the natural one; only the process of passing to the continuum limit is flawed.
It will be shown that, if the continuum limit is analyzed in terms of an appropriate
evolution, then the resulting model is in fact a very realistic candidate.

One of the problems addressed in this paper (see section 4) is to find the stable
equilibrium that the material would “naturally” assume if we started in the reference
configuration yni = xn

i , or a perturbation thereof, and then applied forces. In Theorem
4.1 we show that the resulting equilibria represent the correct elastic behavior. For this
reason we prefer to work with surface forces rather than a prescribed displacement.
This is, however, not a restriction. The entire convergence theory can also be repeated
for Dirichlet conditions applied at both ends of the interval.

Closest in spirit to the approach advocated here is the work by Blanc, Le Bris,
and Lions [3]. Except for the fact that they consider far more complicated atomistic
interactions in three dimensions, their continuum limit is the same. In fact, the present
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work may be seen as a small step towards a rigorous justification of the approach taken
in [3].

From the point of view of numerical analysis, strong connections can be drawn
to the local version of the quasicontinuum method [17]. In this respect, the results of
E and Ming [11] have some similarities to our own.

For results on the continuum manifestation of some further interesting atomistic
effects like finite-range interactions, the reader is referred to [25, 9].

1.3. Outline of the paper. We begin in section 2 by outlining the theoretical
tools for the convergence analysis, a theory of gradient flows based on the notion of
λ-convexity, and a corresponding approximation theory. We also review the notion of
slope which is used to define the concept of critical points.

In section 3, we prove the convergence of an atomistic gradient flow evolution to
the | · |H1-gradient flow of a nonconvex functional defined on H1, giving a new type of
continuum limit for atomistic functionals.

Finally, in section 4, we analyze the resulting equilibrium solutions which are ob-
tained when t → ∞ in the gradient flow. First, we consider the case of small loads and
show that the equilibria obtained are the physically reasonable elastic deformations
and not the “fractured” global energy minima. Then, we give a brief description of
the behavior of the gradient flow evolution in the case when the loads are sufficiently
large to create fracture. We demonstrate that the obtained equilibrium is reasonable
given that we are always assuming perfect crystals and perfect equilibria. However,
these critical points are highly unstable, as is demonstrated also in numerical compu-
tations. We may interpret this instability as the uncertainty of where fracture occurs
in a material.

1.4. Connections to other models. In section 1.2, some connections to the
works of Blanc, Le Bris, and Lions [3] and E and Ming [11] were briefly touched
upon. In both of these works, the concept of global minimization of the energy
is rejected and alternative means are sought to analyze equilibria of elastic energy
functionals. A similar approach is taken by Rieger and Zimmer [22], who use a time-
discrete gradient flow evolution of Young-measures to analyze material damage. In
the slightly different setting of viscoelasticity [21, 2, 14], it is shown that dynamics can
prevent the formation of finer and finer microstructure and therefore the attainment
of a global energy minimum.

The model presented here is not to be confused, however, with quasistatic or rate
independent evolutions (see, for example, [10, 13] for fracture, [8] for plasticity, or [16]
for an abstract analysis). In their time-discrete form, at every timestep an equilibrium
(typically a minimum) of a functional of the form

D(uj−1, u) + E(u)(1.5)

is sought, where D is a so-called dissipation metric. Rather, the gradient flow model
we present here should be understood as a simple mechanism to find the equilibrium
in the quasistatic evolution (1.5).

2. Approximation of gradient flows of nonconvex energies. Let H be
a Hilbert space with inner product (·, ·) and norm ‖ · ‖, let A be a closed convex
subset of H , and let φ : H → (−∞,∞]. If φ is Fréchet differentiable at a point u, we
denote the representation of its derivative, i.e., its gradient, by φ′(u). Second order
derivatives are denoted by φ′′(u; v1, v2). We denote the domain of definition of φ by
D(φ) = {u ∈ H : φ(u) < ∞}. By using the convention +∞ ≤ +∞, we do in fact not



GRADIENT FLOWS AS A SELECTION PROCEDURE 1219

need to make much explicit use of the domain of definition. For example, a functional
φ would then be convex if and only if D(φ) is convex and φ is convex in D(φ).

Naively, we may call a curve u ∈ C1(a, b; H ) a gradient flow of φ, if

u̇(t) = −φ′(u(t)) ∀t ∈ (a, b).(2.1)

Equation (2.1) in infinite-dimensional spaces is usually restated only for convex func-
tionals φ. The natural condition on φ, under which a considerable part of the theory of
gradient flows for convex functionals can be recovered, is the condition of λ-convexity
[1]. We say that φ is λ-convex in A if there exists λ ∈ R such that

φ
(
(1 − t)v0 + tv1

)
≤ (1 − t)φ(v0) + tφ(v1) −

λ

2
t(1 − t)‖v0 − v1‖2

∀v0, v1 ∈ A ∀t ∈ (0, 1).(2.2)

To obtain a better feel for the meaning of λ-convexity, consider the following
simple proposition (for a proof, see [19]).

Proposition 2.1.

(a) The functional φ is λ-convex in A if and only if u �→ φ(u)− λ
2 ‖u‖2 is convex

in A .
(b) One-sided Lipschitz continuity of the gradient: If φ is differentiable at every

point of A and satisfies(
φ′(v1) − φ′(v0), v1 − v0

)
≥ λ‖v1 − v0‖2 ∀ v1, v0 ∈ A ,(2.3)

then φ is λ-convex in A .
(c) Boundedness below of the Hessian: If φ is twice differentiable at every nonex-

tremal point of A and

φ′′(u; v − u, v − u) ≥ λ‖v − u‖2 ∀u, v ∈ A ,(2.4)

then φ is λ-convex in A .
(d) If φ = φ1 + φ2, where φi : A → (−∞,+∞], φ1 is λ1-convex and φ2 is λ2-

convex, then φ is (λ1 + λ2)-convex.
If a functional is λ-convex, then its gradient flows have an alternative characteri-

zation. Suppose that a curve u ∈ C1(a, b; H ) satisfies (2.1), where φ is λ-convex. By
a relatively straightforward energy argument, one can show that u also satisfies the
evolutionary variational inequality

1

2

d

dt
‖u(t) − v‖2 +

λ

2
‖u(t) − v‖2 + φ(u(t)) ≤ φ(v) ∀ v ∈ H ,∀ t ∈ (a, b).

This inequality is the basis for a powerful theory of gradient flows in metric spaces,
then called curves of maximal slope, developed in Chapter 4 of [1]. Note, for example,
that it makes sense to consider u, v ∈ A only, instead of all of H . Theorem 2.2 is
a collection of results in [1] translated to the Hilbert space setting which is sufficient
for our purposes.

Theorem 2.2 (existence and uniqueness). Let A be a closed, convex subset
of a Hilbert space H and let φ : A → (−∞,∞] be (strongly) lower semicontinuous
and λ-convex. For each u0 ∈ D(φ), there exists a locally Lipschitz-continuous curve
u : [0,∞) → A which is the unique solution of

1

2

d

dt
‖u(t) − v‖2 +

λ

2
‖u(t) − v‖2 + φ(u(t)) ≤ φ(v) ∀ v ∈ A for a.e. t > 0,(2.5)
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among all curves v ∈ ACloc(0,∞; A ), satisfying v(0+) = u0.
For the remainder of the paper, we shall use the following definition for a gradient

flow.
Definition 2.3. Let A be a closed, convex subset of a Hilbert space H and

φ : A → (−∞,∞] a lower semicontinuous and λ-convex functional. We say that a
locally Lipschitz-continuous curve u : [0,∞) → A is a gradient flow of φ, if it satisfies
(2.5).

2.1. Approximation of gradient flows. Based on the evolutionary variational
inequality stated above, an abstract convergence theory for gradient flows in a general
metric setting for λ-convex functionals was developed in [19]. Theorem 2.4 below is
one result therein which is relevant for the Hilbert space setting in the present work.
For the sake of completeness, we give a sketch of the proof.

Theorem 2.4. Let A be a closed, convex subset of a Hilbert space H and,
for n ∈ N, let φ, φn : A → (−∞,∞] be functionals defined on A . Let u0 ∈ D(φ)
and u0

n ∈ D(φn) be given initial values, and assume that the following conditions are
satisfied:

(i) Lower semicontinuity: The functionals φ and φn (n ∈ N) are lower semi-
continuous.

(ii) Uniform λ-convexity: There exists λ ∈ R, such that the φn as well as φ are
λ-convex.

(iii) Equicoercivity: There exists a point u∗ ∈ A and ε > 0 such that
infn∈N infv∈A ,‖v−u∗‖≤ε φn(v) > −∞.

(iv) Convergence of the initial data: supn∈N φn(u0
n) < ∞ and ‖u0

n − u0‖ → 0 as
n → ∞.

(v) Consistency: If (wn)n∈N ⊂ A is bounded in H , then there exists a constant
c1 > 0 such that

lim sup
n→∞

(
φ(wn) − φn(wn)

)
≤ 0, and φ(wn) ≤ c1(1 + [φn(wn)]+ + ‖wn‖2).

(vi) Best approximation error: For every n ∈ N, there exists a Borel-measurable
curve vn : (0,∞) → A , so that vn → u in L2

loc([0,∞); H ) and

φn(vn(t)) → φ(u(t)) and φn(vn(t)) ≤ c2(1 + [φ(u(t))]+ + ‖u(t)‖2),

where u is the gradient flow of φ with initial data u0.
Then the gradient flows (in the sense of Definition 2.3) un of φn with initial values
u0
n converge in L∞

loc([0,∞); H ) to the gradient flow u of φ with initial value u0.
Proof. Let u and un, respectively, satisfy

1

2

d

dt
‖u(t) − v‖2 +

λ

2
‖u(t) − v‖2 + φ(u(t)) ≤ φ(v) ∀ v ∈ A , and(2.6)

1

2

d

dt
‖un(t) − vn‖2 +

λ

2
‖un(t) − vn‖2 + φ(un(t)) ≤ φ(vn) ∀ vn ∈ A .(2.7)

We test (2.6) with v = un and choose a recovery sequence vn satisfying (vi) to test
(2.7). Adding (2.6) and (2.7) and some lengthy but relatively straightforward algebra
gives the error estimate

1

2

d

dt
‖u− un‖2 +

λ̃

2
‖u− un‖2 ≤

(
φn(vn) − φ(u)

)
+
(
φ(un) − φn(un)

)
+
|λ|
2
‖vn − u‖2 +

1

2
‖u̇n‖‖vn − u‖,
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where λ̃ = λ − |λ|/2. The λ-convexity can be used to derive an a priori estimate on
the L2(0, T )-norm of ‖u̇n‖ and φ(un). Using Gronwall’s inequality, we obtain

e2λ̃T ‖u(T ) − un(T )‖2 ≤ ‖u(0) − un(0)‖2 +

∫ T

0

e2λ̃t(error terms) dt.

Using Fatou’s lemma, the integral term on the right-hand side can be shown to tend
to zero as n → ∞, given the hypothesis of the theorem.

Next, we state a result from [1], concerning the implicit Euler approximation of
a gradient flow, which we will use frequently in section 4.

Lemma 2.5. Let tj = jτ , for j = 0, 1, . . . , define a partition of [0,∞), with
0 < τ < 1/min(0,−λ). Let u0 ∈ H , and let the family (ui)i=1,2,... be defined by

ui = argminA

[
v �→ ‖v − ui−1‖2

2τ
+ φ(v)

]
.

Let u(t) be the gradient flow of φ with u(0) = u0 and let ūτ (t) be the piecewise constant
interpolant of (ui), i.e.,

ūτ (0) = 0 and ūτ (t) = ui if ti−1 < t ≤ ti.

Then, ūτ (t) → u(t) in L∞
loc([0,∞),H ), as τ → 0.

2.2. The slope. So far we have only described gradient flow evolutions. How-
ever, we are also interested in analyzing the resulting equilibria, which can often be
obtained by letting time tend to infinity. A natural concept of equilibrium, or critical
point, is given by the concept of local slope,

|∂φ|(u) = lim sup
v→u

(φ(u) − φ(v))+

‖u− v‖ .(2.8)

We say that u∗ ∈ H is a critical point of the functional φ, if |∂φ|(u∗) = 0. The
following lemma can be used in certain situations to show that an accumulation point
of critical points of approximate functionals φn must again be a critical point.

Lemma 2.6. Let H be a Hilbert space, let φ, φn : H → (−∞,∞] be λ-convex,
with a uniform λ, and suppose that φn Γ-converges to φ in the strong topology of H ,
i.e.,

vn → v ⇒ φ(v) ≤ lim inf
n→∞

φn(vn)(2.9)

∀v ∈ H ∃(vn)n∈N ⊂ H s.t. vn → v and φ(v) = lim
n→∞

φ(vn).(2.10)

Then, the slopes satisfy the lim inf condition

un → u ⇒ |∂φ|(u) ≤ lim inf
n→∞

|∂φn|(un).(2.11)

Proof. The crucial observation [1, Theorem 2.4.9] is that for λ-convex functionals,
the slope can be rewritten as

|∂φ|(u) = sup
v �=u

[
φ(u) − φ(v)

‖u− v‖ +
λ

2
‖u− v‖2

]+

.
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Let un → u, and for some fixed v �= u let (vn)n∈N be a recovery sequence for v,
satisfying (2.10). Then, we have

[
φ(u) − φ(v)

‖u− v‖ +
λ

2
‖u− v‖2

]+

≤
[
lim infn→∞ φn(un) − limn→∞ φn(vn)

limn→∞ ‖un − vn‖
+

λ

2
lim
n→∞

‖un − vn‖2

]+

≤ lim inf
n→∞

[
φn(un) − φn(vn)

‖un − vn‖
+

λ

2
‖un − vn‖2

]+

≤ lim inf
n→∞

|∂φn|(un).

Taking the supremum over v �= u, we obtain (2.11).

3. Convergence of an atomistic evolution. In section 1.2, it was outlined
that different scalings of the atomistic energy Eatom give rise to different continuum
limits. We have adopted the point of view that a linear scaling of all terms considered
is the most natural choice. For the forces we assume that fn = O(1) and fj = O(1/n)
for 1 ≤ j ≤ n− 1, i.e., fn represents a boundary force. It is then natural to consider
the rescaled energy

En

(
(ynj )nj=1

)
=

n∑
j=1

εn

[
J

(
ynj − ynj−1

εn

)
− fn

j (ynj + ynj−1)/2

]
− gynn ,(3.1)

where εn = 1/n. The family (fn
i )i=1,...,n defines a linear body force, which we assume

is obtained by averaging an L1 function, i.e.,

fn
i = −−

∫ xn
i

xn
i−1

f(x) dx,

where xn
i = i/n, for each i ∈ Z. The scalar g describes a linear surface force. For

technical reasons, we may wish to impose an L∞ bound on the deformations, i.e., we
shall assume that yni ≤ M , where M ∈ (z1,∞].

To rewrite En as an integral functional it is customary to identify the atom-
istic deformation with a piecewise affine function. To this end, we define the set of
“admissible” atomistic deformations to be

An :=
{
v ∈ H1(0, 1) : v(0) = 0, v ≤ M, and v is piecewise affine w.r.t. (xn

i )
}
.

Letting

y′n(x) =
yni − yni−1

εn
if x ∈ (xn

i−1, x
n
i ), and

yn(x) =

∫ x

0

y′n(x) dx,

yn is the piecewise-affine interpolant of (yni ) and y′n is its weak derivative, and we
have in particular that yn ∈ An. Thus, we can rewrite En as

En(yn) =

∫ 1

0

[
J(y′n) − fnyn

]
dx− gyn(1) for yn ∈ An,(3.2)
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where fn is the piecewise constant interpolant of f with

fn(x) = f i
n for x ∈ (xi−1, xi).(3.3)

In the formulation (3.2) it becomes obvious that the nonconvexity is with respect
to the deformation gradient. In order to balance it out with the evolution, we need
to consider the gradient flow with respect to the | · |H1-seminorm, which is in fact a
norm in the spaces An. We shall show below, though it is already quite obvious at
this point, that the functionals En are uniformly λ-convex in the | · |H1-seminorm.
Therefore, from Theorem 2.4, we expect the correct limit energy with respect to the
| · |H1-gradient flow evolution to be

E(y) =

∫ 1

0

[
J(y′) − fy

]
dx− gy(1),(3.4)

defined for y ∈ A :={v ∈ H1(0, 1) : v(0) = 0, v ≤ M}.
While it is possible to consider gradient flows with respect to the full H1-norm as

well, the analysis of equilibria becomes significantly more technical. In addition, the
| · |H1-seminorm seems to be the more natural metric for the gradient flow. All results
can, however, be translated to the H1-norm case [18].

Theorem 3.1 states that the (atomistic) | · |H1-gradient flow of En in An converges
to the (continuum) | · |H1-gradient flow of E in A . We embed An in A by setting
En(y) = +∞ if y ∈ A \ An.

Theorem 3.1. Let y0 ∈ D(E), and let y0
n ∈ An be the piecewise affine interpolant

of y0 with respect to the mesh (xn
i ). Then, the | · |H1-gradient flow yn of En with initial

data y0
n converges in L∞

loc([0,∞); A ) to the | · |H1-gradient flow y of E with initial data
y0.

The convergence proof consists of three steps: first, establishing the λ-convexity
of the functionals; second, estimating the perturbations caused by the discrete forcing
term; and third, constructing a recovery sequence for the solution which satisfies
condition (vi) of Theorem 2.4.

Lemma 3.2. With respect to the norm | · |H1 , the functionals E and En (n ∈ N)
are λ-convex in A , with λ = minz>0 J

′′(z), and lower semicontinuous.
Proof. For the λ-convexity as well as the lower semicontinuity, note that the linear,

continuous terms need not be considered and we assume without loss of generality
that f, g ≡ 0. In the spirit of Proposition 2.1, we define F (z) = J(z) − (λ/2)z2. By
the definition of λ, F ′′(y) ≥ 0 whenever y > 0, hence F is convex in (0,∞). Since
F (z) = +∞ for z ≤ 0, F is convex on R. Therefore, the functional

G(y) =

∫ 1

0

(
J(y′) − λ

2
|y′|2

)
dx =

∫ 1

0

F (y′) dx

is convex as well which implies, by Proposition 2.1, that E is λ-convex. Since
E(y) = G(y) − λ/2|y|2H1 , a sum of a convex and a continuous functional, E is lower
semicontinuous. To see that En is lower semicontinuous, simply note that under the
assumption that f, g ≡ 0, En = E|An

, where An is convex and closed and hence the
proof carries over to En as well.

Lemma 3.3. If f ∈ L1(0, 1), then, for every v ∈ A , we have

∣∣∣ ∫ 1

0

(fn − f)v dx
∣∣∣ ≤ |v|H1‖f − fn‖L1(0,1), and

‖f − fn‖L1 → 0 as n → ∞,
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where fn is defined as in (3.3).
Proof. Hölder’s inequality gives

∣∣∣ ∫ 1

0

(fn − f)v dx
∣∣∣ ≤ ‖v‖L∞‖f − fn‖L1(0,1).

Using v(0) = 0, we also have ‖v‖L∞ ≤ ‖v′‖L1 ≤ |v|H1 , which gives the first result.
The convergence ‖fn − f‖L1 → 0 follows from the fact that fn is the L2-projection of
f onto the piecewise constant functions with respect to the mesh (xn

i ), using also the
density of L2(0, 1) in L1(0, 1).

Lemma 3.4. Let E and En be, respectively, given by (3.4) and (3.2), where
f ∈ L1(0, 1) and fn satisfies (3.3). For every y ∈ A with E(y) < +∞, the piecewise
affine, continuous interpolants vn of y with respect to the mesh (xn

i ) satisfy

|vn − y|H1 → 0, En(vn) → E(y) as n → ∞,

|vn|H1 ≤ |y|H1 , and En(vn) ≤
[
2‖f‖2

L1 + sup
z≥1

J(z)

]
+ E(y) + 2|y|2H1 .

Proof. Let y ∈ A , and let vn be the piecewise affine interpolant with respect to
the mesh (xn

i ). Applying Jensen’s inequality to∫ xn
i

xn
i−1

v′n dx =

∫ xn
i

xn
i−1

y′ dx,

and summing over i, we get ‖v′n‖L2(0,1) ≤ ‖y′‖L2(0,1). It follows from standard in-
terpolation error estimates and a simple density argument that |y − vn|H1 → 0 as
n → ∞.

To compute the bounds on the energy as well and to show its convergence, we
start with the lower-order terms. Jensen’s inequality gives ‖fn‖L1 ≤ ‖f‖L1 and as in
the proof of Lemma 3.3, ‖v(n)‖L∞ ≤ |v(n)|H1 ≤ |v|H1 . Thus, we have

−
∫ 1

0

fnvn dx = −
∫ 1

0

fy dx +

∫ 1

0

[
f(y − vn) + (f − fn)vn

]
dx

≤ −
∫ 1

0

fy dx + ‖f‖L1‖y − vn‖L∞ + ‖f − fn‖L1‖vn‖L∞

≤ −
∫ 1

0

fy dx + ‖f‖L1 |y − vn|H1 + ‖f − fn‖L1 |v|H1(3.5)

≤ −
∫ 1

0

fy dx + 2‖f‖2
L1 + 2|y|2H1 .(3.6)

Using Lemma 3.3 and the fact that vn(1) = y(1) for all n ∈ N, we obtain from (3.5)
and (3.6),

−
∫ 1

0

fnvn dx− gvn(1) → −
∫ 1

0

fy dx− gy(1) as n → ∞, and(3.7)

−
∫ 1

0

fnvn dx− gvn(1) ≤ −
∫ 1

0

fy dx− gy(1) + 2‖f‖2
L2(0,1) + 2|y|2H1 .

To deal with the higher-order terms, let J(z) = J0(z) + J1(z), where J0(z) =

J(z)χ(−∞,1](z). In the interval (xn
i−1, x

n
i ), we have v′n = n

∫ xn
i

xn
i−1

y′ dx and, using
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Jensen’s inequality J0(v
′
n) ≤ n

∫ xn
i

xn
i−1

J0(y
′) dx (note that 1/n is the length of the

interval). If we define

an(x) = n

∫ xn
i

xn
i−1

J0(y
′) dx + sup

z≥1
J(z) for x ∈ (xn

i−1, x
n
i ),

then J(v′n) ≤ an(x) a.e. in (0, 1) and

∫ 1

0

an(x) dx =

∫ 1

0

J0(y
′) dx + sup

z≥1
J(z)=:A.

In particular, we also have∫ 1

0

J(v′n) dx ≤
∫ 1

0

J(y′) dx + sup
z≥1

J(z),

which, together with (3.7) gives

En(vn) ≤
[
2‖f‖2

L1 + sup
z≥1

J(z)

]
+ E(y) + 2|y|2H1 .(3.8)

Since x �→ J0(y
′(x)) ∈ L1(0, 1), we have, by a slightly stronger version of Lebesgue’s

differentiation theorem ([12], section 1.7, Corollary 2),

lim
n→∞

an(x) = J0(x) + sup
z≥1

J(z)

for a.e. x ∈ (0, 1), and similarly, v′n → y′ a.e. in (0, 1).
Using Fatou’s lemma, and the fact that J is continuous in (0,∞), we have

2A− lim sup
n→∞

∫ 1

0

∣∣J(v′n) − J(y′)
∣∣ dx = lim inf

n→∞

∫ 1

0

[
2an − |J(v′n) − J(y′)|

]
dx

≥
∫ 1

0

lim inf
n→∞

[
2an − |J(v′n) − J(y′)|

]
dx

= 2

∫ 1

0

[
J0(y

′) + sup
z≥1

J(z)

]
dx

= 2A,

and hence, using also (3.7), we have E(vn) → E(y) as n → ∞.
We have now assembled all results required to prove Theorem 3.1.
Proof of Theorem 3.1. The result is a straightforward application of Theorem

2.4, using the preparations of this section.
Conditions (i) and (ii) were shown in Lemma 3.2. Condition (iii), the equi-

coercivity, follows from the fact that J is bounded below and the forcing term is
Lipschitz continuous. Condition (iv), the convergence of the initial data, is guaran-
teed by standard interpolation error results as well as Lemma 3.4. Condition (v) is
controlled by Lemma 3.3, since En and E|An

differ only in the forcing term.
Let vn(t) be the piecewise affine interpolant of y(t). Using Lemma 3.4 to obtain

(vi) we only need to show that t �→ vn(t) is Borel measurable. In fact, it is fairly
easy to see that it is even continuous. Since in one dimension, H1(0, 1) is embedded
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in C[0, 1], the mapping t �→ y(t) lies in C(0,∞; C[0, 1]) and hence t �→ y(t, x) is
continuous as well. Since

vn(t, x) =

n∑
j=1

y(t, xn
j )ϕn

j (x),

where the ϕn
j are Lipschitz functions, this shows that v ∈ C(0,∞; H1).

4. Convergence of equilibria.

4.1. Elastic deformation. In this section we show that the gradient flows are
a selection criterion which can be used to recover correct elastic behavior even when
the energies are highly nonconvex.

The convergence result of Theorem 3.1 suggests the following procedure: for
sufficiently small forces, there should be a critical point y∗n, in fact a strict local
minimum, of the atomistic functional En, such that y∗n

′ < z1, i.e., the deformation
gradient lies in the region where J is convex. Hence, the gradient flow for sufficiently
close starting points should converge to y∗n as t → ∞ and the deformation gradient
should remain within the region where J is convex. Since the atomistic gradient
flow converges to the continuum gradient flow, the continuum deformation gradient
should remain in this region as well and therefore converge to a critical point in that
set which should be the limit of the y∗n. By y∗ being a critical point of φ, we mean
that |∂φ|(y∗) = 0, where |∂φ|(y) is the | · |H1-slope of φ at y (see section 2.2).

The main difficulty is to show that the critical points y∗n are “uniform local min-
imizers” in the sense that we do not require perturbations to tend to zero as n → ∞.

Before we start with the suggested program, let us note that it would be quite
easy to show all results for the continuum problem directly. However, we wish to
show here that the elastic critical point of the continuum functional (3.4) arises as
the limit of the elastic critical points of the atomistic functionals (3.2). Furthermore,
it is an interesting feature of the analysis that all information about the continuum
functional can be obtained from the knowledge about the atomistic evolution.

Theorem 4.1. Let (En)n∈N, E be defined, respectively, by (3.2) and (3.4), and
assume that |g| + ‖f‖L1(0,1) < J ′(z1) (compare (1.2)).

(a) There exist critical points y∗n of En in An, such that y∗n
′ < z1. These equilibria

are stable in the sense that any |·|H1-gradient flow yn of En with y′n(0, x) < z1

satisfies limt→∞ yn(t) = y∗n in H1(0, 1).
(b) There exists a critical point y∗ ∈ A of E such that limn→∞ y∗n = y∗ and

limt→∞ y(t) = y∗ in H1, for every | · |H1-gradient flow y of E with y′(0, x) ≤
z1 − ε for some ε > 0.

(c) If, in addition, f ≡ 0, then y∗n = y∗ are affine.
On the one hand, Theorem 4.1 shows that the derived continuum model has the

correct qualitative and quantitative behavior for small loads. On the other hand, it
shows that in this situation, the atomistic model behaves essentially like a contin-
uum. In particular, note that point (c) is the Cauchy–Born hypothesis for the model
presented.

Note also that not all proofs in this section are “optimal.” Particularly, the final
proof of Theorem 4.1 is more technical than it needs to be. The purpose of this
discussion is to show that most of the techniques used here can be applied to far more
general problems and are, in particular, dimension independent.

The proof of Theorem 4.1 requires some preparation in the form of several lemmas
which assemble information about the atomistic gradient flow. Let B be the set of all
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deformations whose gradient remains in the region where J is convex, i.e., we define

Bε = {v ∈ A : v′(x) ≤ z1 − ε for a.e. x ∈ (0, 1)},(4.1)

and B = B0.
Lemma 4.2. Suppose that |g|+ ‖f‖L1(0,1) ≤ J ′(z1 − ε) for some ε > 0; then there

exists a unique critical point y∗n of En in the set Bε. The point y∗n satisfies

y∗n
′(x) = (J ′)−1(Fn

j ) ≤ z1 − ε for xn
j−1 < x < xn

j ,(4.2)

where Fn
j is defined by (4.3).

Proof. We compute the critical point by a change of variables. For yn ∈ An, let
rnj = (ynj − ynj−1)/εn. Then, setting

f̃n
i =

⎧⎪⎨
⎪⎩

1
2f

n
1 if i = 0,

1
2 (fn

i + fn
i+1) if 1 ≤ i ≤ n− 1,

1
2f

n
n if i = n,

we have, using yn0 = 0,

En(yn) =

n∑
j=1

εnJ(rnj ) −
n∑

j=0

εnf̃
n
j y

n
j − gynn

=

n∑
j=1

εnJ(rnj ) −
n∑

j=1

εnf̃
n
j

j∑
i=1

εnr
n
i − g

n∑
i=1

εnr
n
i

=

n∑
j=1

εnJ(rnj ) −
n∑

i=1

εnr
n
i

[
g +

n∑
j=i

εnf̃
n
j

]

=

n∑
j=1

εn
[
J(rnj ) − Fn

j r
n
j

]
,

where

Fn
i = g +

n∑
j=i

εnf̃
n
j = g +

εn
2

(fn
i + fn

n ) +

n−1∑
j=i+1

εnf
n
j .(4.3)

To compute rnj , we differentiate En with respect to rnj , which gives the equation

∂En(yn)

∂rnj
= εn

[
J ′(rnj ) − Fn

j

]
= 0 for j = 1, . . . , n,

or, equivalently, J ′(rnj ) = Fn
j . We estimate Fn

j , using the assumption that ‖f‖L1 +
|g| ≤ J ′(z1 − ε), by

|Fn
j | =

∣∣∣∣∣g +
1

2

∫ xn
j

xn
j−1

f(x) dx +

∫ xn
n−1

xn
j

f(x) dx +
1

2

∫ 1

xn
n−1

f(x) dx

∣∣∣∣∣
≤ |g| +

∫ 1

xn
j−1

|f(x)|dx

≤ |g| + ‖f‖L1(0,1)

≤ J ′(z1 − ε).(4.4)
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In the region {z < z1}, J ′(z) is strictly increasing and hence invertible. Therefore,

rnj = (J ′)−1(Fn
j ) ≤ z1 − ε

describes the unique critical point of En in Bε.
Lemma 4.3. Under the conditions of Lemma 4.2, if yn : [0,∞) → An is an

| · |H1-gradient flow of En with yn(0) ∈ Bε, then yn(t) ∈ Bε for all t > 0.
Proof. Consider the time-discrete approximation (Un(tj))j=0,1,..., as described in

Lemma 2.5, for some fixed, sufficiently small time-step τ . Let Ri
n(tj) be as in the

proof of Lemma 4.2. Then, Rn(tj) minimizes

1

2τ
‖Rn(tj) −Rn(tj−1)‖2

L2 + En(Rn(tj)).(4.5)

As in the proof of Lemma 4.2, we compute the Euler–Lagrange equation in terms of
Ri

n(tj). At the minimum, the equation

1

τ

(
Ri

n(tj) −Ri
n(tj−1)

)
= Fn

j − J ′(Ri
n(tj))

has to be satisfied. For sufficiently small τ , there is a unique solution. Now assume
inductively that Ri

n(tj−1) ≤ z1 − ε. To show that Ri
n(tj) ≤ z1 − ε, assume this is not

true. Then Fn
j −J ′(Ri

n(tj)) < 0, which gives a contradiction. Hence, we have that for

all i = 1, . . . , n and j ∈ N, Ri
n(tj) ≤ z1 − ε. As τ → 0, the discrete solution converges

to the gradient flow yn and hence y′n ≤ z1 − ε a.e. in (0, 1).
Corollary 4.4. Under the conditions of Lemma 4.2, every | · |H1-gradient flow

yn with yn(0) ∈ Bε satisfies the evolutionary variational inequality

1

2

d

dt
|yn − v|2H1 +

α

2
|yn − v|2H1 + En(yn) ≤ En(v) ∀v ∈ Bε,(4.6)

where α = minz≤z1−ε J
′′(z) > 0. In particular, we have

|yn(t) − y∗n|H1 ≤ e−αt|yn(0) − y∗n|H1 .

Proof. We set Ẽn = En|Bε
and show that yn is also a gradient flow for Ẽn

by considering the minimization problem (4.5) again. (Note that this procedure is
equivalent to replacing En outside of Bε by a uniformly convex functional.) Since the
minimizer remains in Bε, it is also the minimizer of

1

2τ
‖Rn(tj) −Rn(tj−1)‖2

L2 + Ẽn(Rn(tj)),

and hence the limit of the time-discretizations must also be the gradient flow of Ẽn.
By arguing as in the proof of Lemma 3.2, we find that Ẽn is α-convex (i.e., λ-convex
with λ = α), and hence yn satisfies (4.6) if we replace En with Ẽn. For v ∈ Bε,
however, the functionals are the same.

On testing (4.6) with v = y∗n, and multiplying the resulting inequality by e2αt,
we obtain

1

2

d

dt

(
eαt|yn(t) − y∗n|H1

)2

≤ eαt
(
En(y∗n) − En(yn(t))

)
≤ 0.

Integrating from 0 to T gives the result.
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Proof of Theorem 4.1. Lemmas 4.2 and 4.3 and Corollary 4.4 immediately imply
item (a) and we only need to establish the facts about the continuum limit. Note
that almost all of the following analysis is independent of the specific structure of the
problem. The only crucial condition which we require is that yn(t) → y(t) as n → ∞,
for every t ≥ 0, and yn(t) → y∗n as t → ∞, uniformly in n.

For item (b), we first need to show that, given an initial condition y(0) for the
“continuum” |·|H1-gradient flow satisfying the assumptions of the theorem, there exist
“atomistic” initial conditions yn(0) which satisfy the assumptions of Lemma 4.3. Let
y′(0, x) ≤ z1− ε for a.e. x ∈ (0, 1). Letting yn(0, x) be the piecewise affine interpolant
of y(0, x), we have

y′n(0, x) =
1

εn

∫ xn
i

xn
i−1

y′(0, x) dx ≤ z1 − ε, x ∈ (xn
i−1, x

n
i ).

Therefore, the atomistic | · |H1-gradient flows with starting point y′n(0, ·) converge
uniformly in n (compare to Corollary 4.4) to the equilibria y∗n, computed in item (a)
or Lemma 4.2. We use this fact to estimate

|y∗n − y∗n′ |H ≤ |y∗n − yn(t)|H + |yn(t) − yn′(t)|H + |yn(t) − y∗n′ |H
≤ 2const.e−αt + |yn(t) − yn′(t)|H ,

thus showing that (y∗n)n∈N is a Cauchy-sequence. We denote its limit in A by y∗. To
see that y(t) → y∗ as t → ∞, consider

|y(t) − y∗|H ≤ inf
n∈N

(|y(t) − yn(t)|H + |yn(t) − y∗n|H + |y∗n − y∗|) ≤ const.e−αt.

We have shown that the “discrete” equilibria y∗n converge to a “continuum” de-
formation y∗ and that y(t) → y∗.

The fact that y∗ is a critical point of E is easily verified by hand, but in fact
this follows from the general theory as well, using the concepts introduced in section
2.2. It is straightforward to show that the functionals En Γ(H1)-converge to E in the
strong H1 topology. We merely note the limsup condition (2.10) is given by Lemma
3.4 while for the lim inf condition (2.9) E and En can be decomposed into a convex,
lower semicontinous part and a continuous, uniformly convergent part (compare to
the proof of λ-convexity in Lemma 3.2).

Since the functionals E and (En)n∈N are also uniformly λ-convex, Lemma 2.6,
shows that

|∂E|(y∗) ≤ lim inf
n→∞

|∂En|(y∗n) = 0,

where |∂E(n)| denotes the | · |H1-local slope of the functionals E(n).
We conclude the discussion of elastic behavior with a remark on the structure

of the elastic critical points. It may not be surprising that the continuum “elastic”
critical point computed in section 4.1 are actually not local minimizers with respect
to the H1-topology. Indeed, let us assume that f ≡ 0 and 0 < g < J ′(z1) and define
the curve s �→ v(s) by

v′(s) = y∗′ +
1

s
χ(1/2,1/2+sk).
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It is straightforward to establish that for k ≥ 2p, v ∈ C0,1/p(0, s0; W
1,p) and E(v(s)) <

E(y∗), where s0 > 0 and C0,1/p denotes the usual space of Hölder continuous functions.
Thus, the critical point y∗ is not an H1-local minimum of the energy E(y). This is
also reflected by the fact that we only allow W1,∞ perturbations in Theorem 4.1.

Why, we should ask ourselves, is this not in contradiction with Theorem 4.1? If
there exists a curve along which the energy decreases, should the gradient flow not
find this curve? The explanation is that the curve v(s), which we have constructed,
is not absolutely continuous in H1(0, 1) and hence is not a candidate for the gradi-
ent flow evolution. An interesting question is whether there actually can exist an
absolutely continuous curve starting in y∗ along which the energy decreases strictly.
Unfortunately, we are unable to answer this question at this point. A negative answer
would lead to an interesting selection criterion for equilibria. It would in particular
imply that the choice of evolution is not so crucial after all, as such equilibria would
be stable under any “sufficiently smooth” evolution.

4.2. Instability and fracture. If the forces f and g are sufficiently strong, then
they will cause the material to break, i.e., the atoms debond. Mathematically, this
means that the deformation gradient of the atomistic or continuum deformation en-
ters the region where J is concave. In dimensions higher than one, though, the model
is unable to describe fracture. There, effects other than debonding of atoms, most no-
tably dislocations, become highly important and cannot be neglected. The discussion
in this section can therefore not be generalized directly to higher dimensions.

If we do not restrict the motion of the material, i.e., if we let M = ∞ (compare
to section 3), then the gradient flows yn(t) and y(t) will not converge to a stationary
point as t → ∞, but diverge. Hence, we restrict the possible deformations by setting
M to be a real number, z1 < M < ∞. We assume throughout this section that f ≡ 0
and g > J ′(z1).

Proposition 4.5. There exists t1 > 0 and α ∈ W1,∞(0,∞) satisfying α̇(t) > 0
if t < t1 and α(t) = M if t ≥ t1, such that the solution of the | · |H1-gradient flow in
A with y(0, x) = x is

y(t, x) = α(t)x.

Proof. We change coordinates to r(t, x) = y′(t, x) to obtain, formally for the
moment, the equation

rt(t, x) = g − J ′(r(t, x)),

which is the same ordinary differential equation for every point x ∈ (0, 1). Further-
more, g − J ′(r(t, x)) > 0 for all x and t, hence α(t) is strictly increasing. Since the
solution we have obtained is Lipschitz continuous in time, it is the required gradient
flow.

When we reach a time t1 for which y(t1, 1) = M , the deformation y will be fixed
at y(1, t) = M for t ≥ t1. To see this, we consider again the time-discretization with
initial value r0 = M . The next timestep is the minimizer of∫ 1

0

[
1

2τ
|r −M |2 + J(r) − gr

]
dx,

subject to (r) :=
∫ 1

0
r dx ≤ M . If (r) < M , then r must satisfy

1

τ
(r −M) + J ′(r) = g.(4.7)
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Fig. 4.1. Snapshots of the deformation gradients of an | · |H1 -gradient flow evolution, showing
the instability of the final state, computed with 51 “atoms.” The new final state (t = ∞) after
instability sets in is not computed but guessed. This figure shows an unstable computation and
should not be mistaken for the exact solution of the model! Note also the different scales in the
respective plots.

Since (r) < m, there must exist a set of positive measure where r ≤ M − ε for some
ε > 0. However, since J ′ is bounded above, (4.7) cannot be satisfied in this set, if τ
is sufficiently small.

By a uniqueness argument, we find that y(t, x) satisfies the partial differential
equation

−y′′t = J ′(y′)′ = J ′′(y′)y′′, y(t, 0) = 0, y(t, 1) = M, y(t1, x) = Mx,

which can be easily seen to be solved by y(x, t) = Mx. Therefore, the evolution
remains in the affine state.

Proposition 4.5 suggests that in our model fracture will never occur. However,
the analytical solution obtained is highly unstable under perturbation as Figure 4.1,
where a numerical computation is shown, demonstrates. In all computations, we
chose J(z) to be strictly increasing for z > z1, i.e., there exists no threshold for the
deformation gradient beyond which there are no internal forces.

In a second experiment we dominate the numerical round-off errors, and thus
the instabilities in the | · |H1-gradient flow computation, by a controlled perturbation
which could be interpreted, for example, as an impurity in the material. At time
t = 7.6, we perturb the position of one node (or atom) by an amount of 10−8. The
effect of this is that the “fracture” occurs exactly at this position; see Figure 4.2 for
the computational results. The instability of the evolution very much conforms with
experimental observation that rupture in many types of materials is a highly unstable



1232 CHRISTOPH ORTNER

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1.0808

1.0808

1.0808
t = 8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.5

2
t = 26

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1.06

1.12

1.18
t = 32

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1
7

14
t = 50

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1
7

14

t = ∞   ?

Fig. 4.2. Snapshots of the deformation gradients of an | · |H1 -gradient flow evolution, computed
with 51 “atoms,” with a controlled perturbation at time t = 7.6 by an amount of 10−8. The final
state (t = ∞) is not computed but guessed. Note also the different scales in the respective plots.

process. No fracture experiment can be reproduced exactly. Thus, the instability of
the evolution could be thought of as representing the uncertainty of where damage
occurs.

5. Remarks on extensions to two and three dimensions. The simple prob-
lem we have investigated here has a fair amount of one-dimensional structure. Al-
though most of the techniques developed here can be readily generalized, the extension
to two and three dimensions, which is of great importance to the modeling of material
behavior, is not entirely trivial.

The first difficulty to notice is that the passage to higher dimensions in a simple
nearest-neighbor system based on the Lennard–Jones potential suffers from a loss of
λ-convexity, since the atomistic deformations do not necessarily have to remain orien-
tation preserving. By cutting off the Lennard–Jones potential at the origin, a process
which is intuitively reasonable but difficult to justify rigorously, the convergence of the
gradient flow can be recovered completely. A more interesting, and mathematically
much more challenging, alternative would be to consider a gradient flow with respect
to a different metric, which may allow the blow-up behavior of the Lennard–Jones
potential, but such a metric seems to be presently unavailable.

To analyze elastic equilibria, it is necessary to obtain L∞ bounds on the defor-
mation gradient. This step poses the biggest challenge in higher dimensions as these
bounds cannot be computed explicitly anymore. One possible avenue to obtain them
would be to use the implicit function theorem, for which uniform bounds can be
constructed with a slightly refined analysis. It would be necessary, however, that
the solution of the linearized system lies in W1,∞(Ω), which can only be obtained in



GRADIENT FLOWS AS A SELECTION PROCEDURE 1233

some very restrictive cases, e.g., with smooth domains and Dirichlet boundary condi-
tions. At re-entrant corners or interfaces between Dirichlet and Neumann boundaries
(for example, a crack tip), the nearest neighbor model is too simple to describe the
material behavior accurately.

While the convergence theory for gradient flows can still be analyzed if finite-range
interactions are added to the energy functional, the analysis of the equilibria seems to
be far more difficult if we consider damaged states, but remains essentially unchanged
for elastic deformation. The case of infinity-range interactions is completely unclear.
For examples of atomistic models with finite-range interactions and their relation to
continuum theories, see [25, 9].

Finally, it should be noted that different evolutions can be analyzed as well. For
example, it is straightforward to extend the convergence result from the gradient flow
evolution to linear viscoelasticity following, for example, the theory developed in [7].
It is more difficult in this setting, however, to analyze the resulting stationary points
in similar detail.
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REFERENCES
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