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A HIGH-ORDER ACCURATE PARALLEL SOLVER FOR

MAXWELL’S EQUATIONS ON OVERLAPPING GRIDS

WILLIAM D. HENSHAW∗

Abstract. A scheme for the solution of the time dependent Maxwell’s equations on composite
overlapping grids is described. The method uses high-order accurate approximations in space and
time for Maxwell’s equations written as a second-order vector wave equation. High-order accurate
symmetric difference approximations to the generalized Laplace operator are constructed for curvi-
linear component grids. The modified equation approach is used to develop high-order accurate
approximations that only use three time levels and have the same time-stepping restriction as the
second-order scheme. Discrete boundary conditions for perfect electrical conductors and for mate-
rial interfaces are developed and analyzed. The implementation is optimised for component grids
that are Cartesian, resulting in a fast and efficient method. The solver runs on parallel machines
with each component grid distributed across one or more processors. Numerical results in two- and
three-dimensions are presented for the the fourth-order accurate version of the method. These results
demonstrate the accuracy and efficiency of the approach.

Key words. Maxwell’s equations, overlapping grids, high-order accurate, symmetric finite
difference

1. Introduction. A numerical scheme is described for the fast and accurate
solution of the time dependent Maxwell’s equations in complex geometry. Maxwell’s
equations are solved as a second-order vector wave-equation rather than the more
common approach of treating the equations as a first-order system. The governing
equations are discretized to high-order accuracy in space and time on domains that
are represented with composite overlapping grids. High-order accurate symmetric
finite difference discretizations of the generalized Laplace operator are devised, for
use on curvilinear grids. High-order accurate centered approximations for boundary
conditions are developed and analyzed. The three-level time stepping scheme is based
on the modified equation approach and achieves high-order accuracy by including
approximations to higher spatial derivatives. The time step restriction, as dictated
by stability, is the same as that used with the second-order version of the method. The
interface between materials with different electric and magnetic properties is treated
using component grids that align with the interface. High-order accurate centered
approximations to the interface jump conditions are developed that maintain the full
accuracy of the scheme at the interface. The numerical approach presented here is
particularly fast and efficient on Cartesian component grids. A typical overlapping
grid for a region Ω will consist of body fitted curvilinear grids near the boundaries
together with one or more background Cartesian grids covering most of the domain.
For sufficiently fine grids, the majority of the grid points will reside on the Cartesian
grids. In this case, the efficiency of the scheme approaches that of a single Cartesian
grid.

The time dependent Maxwell’s equations for linear, isotropic and non-dispersive
materials are

∂tE =
1

ε
∇× H − 1

ε
J,(1.1)

∂tH = − 1

µ
∇× E,(1.2)

∇ · (εE) = ρ, ∇ · (µH) = 0,(1.3)

Here E = E(x, t) is the electric field, H = H(x, t) is the magnetic field, ρ = ρ(x, t)
is the electric charge density, J = J(x, t) is the electric current density, ε = ε(x)
is the electric permittivity, and µ = µ(x) is the magnetic permeability. This first-
order system for Maxwell’s equations can also be written in a second-order form. By
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taking the time derivatives of (1.2) and (1.1) and using (1.3) it follows that (see for
example [3])

εµ ∂2
t E = ∆E + ∇

(
∇ ln ε · E

)
+ ∇ lnµ×

(
∇× E

)
− µ∂tJ,(1.4)

εµ ∂2
t H = ∆H + ∇

(
∇ lnµ · H

)
+ ∇ ln ε×

(
∇× H

)
+ ε∇× (

1

ε
J).(1.5)

It is evident that the equations for the electric and magnetic field are decoupled with
each satisfying a vector wave equation with lower order terms. In the case of constant
µ and ε and no charges, ρ = J = 0, the equations simplify to the classical second-order
wave equations,

∂2
t E = c2 ∆E, ∂2

t H = c2 ∆H(1.6)

where c2 = 1/(εµ). There are some advantages to solving the second-order form of
the equations rather than the first-order system. One advantage is that in some cases
it is only necessary to solve for one of the variables, say E. If the other variable,
H is required, it can be determined by integrating equation (1.2) as an ordinary
differential equation with known E. Alternatively, as a post-processing step H can
be computed from an elliptic boundary value problem formed by taking the curl of
equation (1.1). Another advantage of the second-order form, which simplifies the
implementation on an overlapping grid, is that there is no need to use a staggered
grid formulation. Many schemes approximating the first order system (1.2-1.3) rely
on a staggered arrangement of the components of E and H such as the popular Yee
scheme [41] for Cartesian grids. The development of appropriate boundary conditions
is sometimes cited as a disadvatange of solving the second-order form of the equations.
The second-order continuous formulation requires additional boundary conditions as
discussed in section 2, as well as additional numerical boundary conditions for higher-
order accurate discretizations. A primary purpose of this work is to show how to
define accurate centered-approximations to the boundary conditions that are based
upon compatibility conditions consistent with the governing equations.

There have been a variety of numerical approaches developed for solving the
Maxwell’s equations in the time-domain and there is extensive literature on the sub-
ject including the books by Cohen [6], and Taflove and Hagness [37]. Some references
to the different approaches will now be given. One of the most popular approaches
is the staggered grid scheme of Yee [41], commonly known as the FDTD (finite-
difference time-domain) method. For complex geometry, a stair-step approximation to
the boundary is often used with the scheme. Improvements to the accuracy of the ba-
sic stair-step technique have been considered, by for example, Dey and Mitra [8], and
Ditkowski, Dridi and Hesthaven [9]. The Yee scheme has been extended to curvilinear
grids, see for example, Lee, Palendech and Mittra [27] and to unstructured grids such
as in the DSI (discrete surface-integral) scheme originally developed by Madsen [28]
and extended by Gedney [13]. Finite volume methods have been applied to the so-
lution of Maxwell’s equations as discussed for example in Holland [22]. Jurgens and
Zingg [24] use high-order finite difference approximations on block-structured grids
for the equations written as a first-order system. Schemes based on the finite-element-
method (FEM) have been developed to solve Maxwell’s equations, see for example,
Nedelec [29], Jin [23], and Rodrigue and White [33]. The spectral element method has
been used by a variety of authors including Yang, Gottlieb and Hesthaven [40]. High-
order spectral penalty-methods and discontinuous Galerkin type approaches have also
been successful, see for example, Hesthaven and Warburton [21]. Use of hybrid grids,
part structured and part unstructured, has become increasingly popular. Rylander
and Bondeson [34], for example, present a hybrid FEM-FDTD method that retains
the symmetry of the discrete operators, even at the interface between the FEM and
FDTD methods. Yee, Chen and Chang [42] considered the solution of Maxwell equa-
tions on overlapping grids using a second-order accurate method. Driscoll and Forn-
berg [10, 11] have developed a block pseudo-spectral method for Maxwell’s equations
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on two-dimensional overlapping grids. They solve the equations as a first-order sys-
tem using a high-order difference method on the Cartesian background grid and a
pseudo-spectral method on the boundary fitted curvlinear grids.

The mx computer code developed as part of this work, is built upon the Over-
ture framework [38]. Grid generation is performed with the Ogen [17] overlapping
grid generator which supports the generation of overlapping grids for use with nu-
merical approximations that require wide difference stencils and high-order accurate
interpolation at overlapping grid boundaries. High-order accurate methods for over-
lapping grids have been used previously such as for the shallow water equations by
Browning [4] and the incompressible Navier-Stokes equations [16]. The numerical ap-
proach developed here is not limited to Maxwell’s equations but can potentially be
applied to other systems involving second-order wave operators such as the equations
of elasticity. The high-order accurate symmetric difference approximations and the
techniques presented for developing high-order accurate numerical boundary condi-
tions are applicable more generally.

An overview of the paper now follows. A description of the continuous equations
and boundary conditions are presented in section 2. This is followed by a summary of
the numerical scheme given in section 3. Overlapping grids are discussed in section 4.
In section 5, energy estimates for the second-order formulation are used to motivate
the subsequent development of high-order accurate symmetric approximations to the
Laplace operator on curvilinear grids. The stability and accuracy of the basic scheme
is considered in section 6. In section 7, discrete boundary conditions for material
interfaces are devised. These conditions are analysed in section 8, using the Laplace
transform and mode analysis. Various aspects of the implementation of the method,
including the parallelization of the solver, are considered in section 9. Numerical
results in two- and three-dimensions, for the fourth-order accurate version of the
scheme, are presented in section 10. Some conclusions are given in the final section 11.

2. Governing Equations and Boundary Conditions. The numerical scheme
is based upon the solution of the second-order form of Maxwell’s equations. To begin
with, the material properties ε(x) and µ(x) are assumed to be constant. The case of
multiple materials will be treated in section 7. In three space dimensions, the initial
boundary value problem for Maxwell’s equations is then on a domain Ω is given by

∂2
t E = c2 ∆E, x ∈ Ω,(2.1)

n × E = 0, ∇ · E = 0, x ∈ ∂ΩE , (PEC B.C.’s)(2.2)

BF (E) = 0, ∇ · E = 0, x ∈ ∂ΩF , (far field B.C.’s)(2.3)

E(x, 0) = E(0)(x), Et(x, 0) = E
(0)
t (x), (initial conditions)(2.4)

where E = (Ex, Ey, Ez) and c = 1/
√
εµ. The outward normal to the boundary ∂Ω is

n. At a boundary, ∂ΩE , next to a perfect electrical conductor (PEC), the boundary
condition (B.C.) is that the tangential components of the field are zero, n×E = 0. For
boundaries where the computational domain is truncated, ∂ΩF , appropriate far-field
boundary conditions are applied. The initial conditions should satisfy the constraints

∇ · E(0) = 0 and ∇ · E(0)
t = 0. Note that the second-order formulation requires the

additional boundary condition ∇ ·E = 0. The fact that Gauss’s law, ∇ ·E = 0, holds
everywhere can be seen by noting that the divergence of the electric field, δ = ∇ · E,
satisfies a second order wave equation, δtt = c2∆δ, with zero initial conditions and
zero boundary conditions and thus δ will remain identically zero.

In two space dimensions the so-called TEZ mode (transverse electric mode with
respect to z) is considered. Let w = (u, v, w) = (Ex, Ey, Hz) denote the vector holding
the x- and y-components of the electric field and the z-component of the magnetic
field. In addition let u = (u, v) = (Ex, Ey). The initial-boundary-value problem for
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Maxwell’s equations in this case is

∂2
t w = c2∆w x ∈ Ω,(2.5)

u(x, 0) = u(0)(x), ut(x, 0) = u
(0)
t (x), t = 0, (initial conditions)(2.6)

w(x, 0) = w(0)(x), wt(x, 0) = w
(0)
t (x), t = 0, (initial conditions)(2.7)

n × u = 0, ∇ · u = 0, ∂nw = 0, x ∈ ∂ΩE, (PEC B.C.’s)(2.8)

F(w) = 0, ∇ · u = 0, x ∈ ∂ΩF . (far field B.C.’s)(2.9)

As in three-dimensions, the initial conditions should satisfy Gauss’ law, ∇ · u(0) = 0,

∇ · u(0)
t = 0. In two-dimensions it may be possible to solve for the one component

w = Hz or the two components, u = (Ex, Ey). However, all three components will be
considered here in order to develop the numerical scheme for either case.

3. Summary of the numerical scheme. Consider the second-order wave
equation with a forcing function,

(3.1) utt = c2∆u+ f.

An attractive time stepping method to solve this second-order wave equation is the
modified equation approach based on a Taylor series approximation for utt,

u(x, t+ ∆t) − 2u+ u(x, t− ∆t) = 2
∆t2

2!
∂2

t u+ 2
∆t4

4!
∂4

t u+ 2
∆t6

6!
∂6

t u+ . . . .

Using the wave equation (3.1) to eliminate even numbers of time derivatives in terms
of space derivatives gives

u(x, t+ ∆t) − 2u+ u(x, t− ∆t) = 2
∆t2

2!

(
c2∆u+ f

)
+ 2

∆t4

4!

{
(c2∆)2u+ c2∆f + ftt

}
(3.2)

+ 2
∆t6

6!

{
(c2∆)3u+ (c2∆)2f + c2∆ftt + ∂4

t f
}

+ . . . .

This last expansion can be used to derive an approximation of any order that only
uses three time levels. Letting Un

i ≈ u(xi, t
n) denote a discrete approximation to u

at the grid point xi and time tn = n∆t, a fourth-order accurate approximation is

Un+1
i − 2Un

i + Un−1
i = ∆t2

(
c2∆4hU

n
i + f

)
+

∆t4

12

(
c4(∆2)2hU

n
i + c2∆2hf + ftt

)
,

(3.3)

where ∆mh denotes some mth-order approximation to the Laplace operator ∆ and
(∆2)mh denotes a mth-order approximation to square of the Laplace operator ∆2.
The precise form of these approximations will be given in section 5. Using lower-order
approximations for the higher-derivatives prevents the discrete stencil from becoming
larger while retaining the order of accuracy. The operators ∆4h and (∆2)2h, for
example, can be chosen to be 5 points wide in each direction. A sixth-order scheme is

Un+1
i − 2Un

i + Un−1
i = ∆t2

(
c2∆6hU

n
i + f

)
+

∆t4

12

(
c4(∆2)4hU

n
i + c2∆4hf + ftt

)

+
∆t6

360

(
c6(∆3)2hU

n
i + c4(∆2)2hf + c2∆2hftt + ∂4

t f
)
.

Higher-order approximations follow easily. The modified equation time-stepping ap-
proach is related to the Numerov and Stoermer methods for ODEs [26] and for the the
second-order wave equation has been considered by numerous authors, including the
work of Dablain [7] and Bell and Shubin [35]. Anné et.al. [1] showed that in one space
dimension the time step restriction required for stability is independent of the order
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of accuracy. Gustafsson and Mossberg [15] use a similar approach for the treating the
equations written as a first order system.

High-order accurate finite difference approximations that use wide stencils require
special treatment at boundaries. One common approach for treating approximations
near boundaries is to use one-sided difference approximations. Another approach, the
one primarily taken here, is to use high-order accurate centered approximations to
boundary conditions that use compatibility conditions derived from the continuous
formulation [18, 14]. In particular, appropriate compatibility conditions for a PEC
boundary are now given. The essential boundary conditions for a perfect electri-
cal conductor are given by equation (2.2). By taking 2m-time derivatives of these
boundary conditions and using equations (2.1) it follows that

n × (∆mE)(x, t) = 0, ∇ · (∆mE)(x, t) = 0 x ∈ ∂ΩE ,(3.4)

for m = 0, 1, 2, . . .. In the two-dimensional case, taking 2m-time derivatives of the
Neumann boundary condition for Hz leads to the compatibility conditions

∂n∆mHz(x, t) = 0, x ∈ ∂ΩE ,(3.5)

for m = 0, 1, 2, . . .. Discrete approximations to the compatibility conditions (3.4–3.5)
can be used as numerical boundary conditions. In general, the use of centered bound-
ary conditions such as those based on these compatibility conditions, will be more
stable and more accurate than boundary conditions based on one-sided differences.

In summary, the proposed scheme for Maxwell’s equations uses the modified equa-
tion time-stepping approximation based on (3.2), such as equation (3.3) for a fourth-
order scheme, together with discrete approximations to the boundary conditions (2.2)
and compatibility conditions (3.4) or (3.5). These equations are discretized on an
overlapping grid. Symmetric difference approximations to the equations are devel-
oped in section 5. The solution values at the overlapping grid interpolation points
are obtained using high-order accurate interpolation as described in section 4. On
a Cartesian grid the basic scheme is neutrally stable and non-dissipative. From an
analysis of similar problems [31], it can be expected that such a scheme may develop
some weak instabilities near boundaries of curvilinear grids and near interpolation
points of the overlapping grid. These instabilities are easily dealt with, however, by
the addition of a high-order spatial dissipation. This dissipation does not change the
accuracy of the scheme and can be added locally in regions near boundaries and in-
terpolation points. Computational results show that this dissipation has a negligible
affect on the overall accuracy of the solution, even for long times.

4. Overlapping Grids. The governing equations for Maxwell’s equations are
discretized on an overlapping grid G (see Figures 1 and 11). The overlapping grid
consists of a set of component grids, G = {Gg}. The component grids overlap and
cover the domain Ω. Typically, body fitted curvilinear grids are used near the bound-
aries while one or more background Cartesian grids are used in the remainder of the
domain. Each component grid Gg is a logically rectangular, curvilinear grid in d
space dimensions defined by a smooth mapping x = Gg(r), from parameter space
r ∈ [0, 1]d (the unit-square or unit-cube) to physical space x ∈ R

d. This mapping is
used to define the location of grid points at any desired resolution. Derivatives of the
mapping, ∂x/∂r will appear as coefficients in the discrete approximations, as shown
in section 5. Thus, for higher-order approximations it is important that the mapping
Gg(r) be sufficiently smooth to avoid numerical artifacts such as spurious reflections.

Figure 1 shows a simple overlapping grid consisting of two component grids, an
annular grid and a background Cartesian grid. The top view shows the overlapping
grid while the bottom view shows each grid in parameter space. In this example the
annular grid cuts a hole in the Cartesian grid so that the latter grid has a number
of unused points that are marked as open circles. The other points on the compo-
nent grid are marked as discretization points (where the PDE or boundary conditions
are discretized) and interpolation points. Solution values at interpolation points are
determined by a tensor-product Lagrange interpolant defined in the parameter space
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Ω

∂Ω

physical boundary

i1 = 0 i1 = N1

i
2

=
0

i
2

=
N

2

bc(2,2)

bc(1,2)bc(1,1) bc(2,1)

G1
G2

interpolation
unused
ghost point

Fig. 1. The top view shows an overlapping grid consisting of two structured curvilinear com-
ponent grids. The bottom views show the component grids in the unit square parameter space. Grid
points are classified as discretization points, interpolation points or unused points. Ghost points are
used to apply boundary conditions.

of the donor grid, see below for details. Ghost points are used to simplify the dis-
cretization of boundary conditions. The grid shown in Figure 1 is appropriate for a
second-order method. For a fourth-order approximation with a stencil width of five
points, a double fringe of interpolation points is used.

The classification of points on a grid into discretization, unused and interpolation
is determined by an overlapping grid generator. In the present case the Ogen grid
generator [17] is used. Ogen takes as input a set of overlapping component grids
along with a classification of the boundaries of each grid as a physical boundary, an
interpolation boundary or a periodic boundary. The algorithm automatically com-
putes the unused points, using physical boundaries to mark points exterior to the
domain in a process known as hole-cutting, and then determines the discretization
points and interpolation points. The grid generator can be used to construct grids for
discrete approximations that use wide stencils and that require high-order accurate
interpolation.

Each component grid Gg is logically rectangular grid with Nm grid points in each
coordinate direction, m = 1, 2, ..., d. Let i = (i1, i2, i3) denote a multi-index, and
let xi = G(ri) denote the grid point corresponding to the unit square coordinate
ri = (i1∆r1, i2∆r2, i3∆r3) where im = 0, 1, ..., Nm and ∆rm = 1/Nm. Ghost points
will correspond to im = −1,−2, ... and im = Nm +1, Nm +2, .... Introduce a time step
∆t, and let Un

i denote a grid function at time tn = n∆t, representing an approximation
to Ex(xi, t

n), for example. Introduce the standard forward, backward and centered
divided difference operators in the r1 direction by

D+,r1
Ui = (Ui1+1,i2,i3 − Ui)/(∆r1), D−,r1

Ui = (Ui − Ui1−1,i2,i3)/(∆r1),

D0,r1
Ui = (Ui1+1,i2,i3 − Ui1−1,i2,i3)/(2∆r1) .

Similar definitions hold for difference operators in the other coordinate directions,
D+,rm

, D−,rm
, and D0,rm

for m = 2, 3. On a Cartesian grid, the grid spacings will
be denoted by ∆x, ∆y and ∆z with corresponding difference operators D+,x, D−,y,
D0,z etc.. The difference operators in time are D+t, D−t and D0,t where for example
D+tU

n
i = (Un+1

i − Un
i )/∆t.

The values of the solution at interpolation points (as shown in Figure 1) are
determined by a tensor-product Lagrange interpolant, using w points in each direction.

Let x
(g)
i denote the coordinates of an interpolation point on grid g and let rd =
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(rd
1 , r

d
2 , r

d
3) denote the location of x

(g)
i in the parameter space coordinates of the donor

grid Ggd
(i.e. x

(g)
i = Ggd

(rd)). If j denotes the lower left corner of the interpolation
stencil then the interpolation formula is given by

U
(g)
i =

w−1∑

m1=0

w−1∑

m2=0

w−1∑

m3=0

αmU
(gd)
j+m .(4.1)

where U
(g)
i represents the solution value at the interpolation point on grid Gg and

U
(gd)
j+m the solution values on the donor grid Ggd

. Here m = (m1,m2,m3), and the
interpolation weights αm are given by

αm = Lw
m1

(r̃1) Lw
m2

(r̃2) Lw
m3

(r̃3) ,

r̃m = ri
m∆rm − jm ,

where ∆rm are the parameter space grid spacings on the donor grid and where the
Lagrange polynomials Lw

m are defined in the usual way as

Lw
m(r) =

∏w−1
j=0,j 6=m(r − j)

∏w−1
j=0,j 6=m(m− j)

.

For a pth-order approximation to the second-order wave equation, p = 2, 4, ..., the
width of the interpolation stencil is taken as w = p+ 1, following the analysis in [5].

5. High-order accurate symmetric difference approximations on curvi-

linear grids. In some applications it can be advantageous to use methods that are
both high-order accurate and have low dissipation. To achieve these goals it will be
helpful to use symmetric difference approximations to the discrete operators that are
used in the solution of Maxwell’s equations. Standard finite-difference approximations
to the Laplace operator on curvilinear grids will not, in general, be symmetric. In this
section high-order accurate symmetric difference approximations for general logically
rectangular curvilinear grids will be developed.

To understand the relationship between symmetric approximations and low dis-
sipation schemes, consider the solution of the second order wave equation,

(5.1) wtt = ∇ · (c2∇w),

for the function w = w(x, t) on a periodic domain Ω = [0, 2π]d. Let (u, v) =
∫
Ω
u∗v dx

and ‖u‖ = (u, u)1/2 denote the usual L2 inner product and norm on this domain.
The wave equation (5.1) has no dissipation and there is an “energy” that remains
constant over time. This energy can be determined by multiplying the equation by
wt, integrating over the domain and using integration by parts, giving

1

2
∂t

{
‖wt‖2 + ‖c∇w‖2

}
= 0 .

The “energy” E = ‖wt‖2 + ‖c∇w‖2 is thus constant on a periodic domain. Discrete
approximations to the wave equation (5.1) will not in general have a discrete energy
that remains constant. For stability reasons many approximations will have some
dissipation built into the spatial approximation or into the time stepping method.
There are, however, a class of stable methods with no dissipation. Consider, for
example, the second-order accurate centered approximation

(5.2) D+tD−tW
n
i = (D+,xD−,x +D+,yD−,y)Wn

i ,

for use on a Cartesian grid, where W n
i ≈ w(xi, t

n). Let (U, V )h =
∑

i U
∗
i Vi ∆x1∆x2

and ‖U‖h = (U,U)
1/2
h denote the discrete L2 inner product and norm on the Cartesian

grid where the sum is over the grid points im = 0, 1, ..., Nm − 1. Equation (5.2) has a
discrete “energy” Eh = ‖D−tW

n‖2
h+(D−xW

n, D−xW
n−1)h+(D−yW

n, D−yW
n−1)h,
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that is conserved, as will be shown below. Equation (5.2) is a special case of the more
general discrete approximation

D+tD−tW
n = AWn, n = 2, 3, 4, ...,(5.3)

W 0 = W (0), W 1 = W (1), (initial conditions),(5.4)

where Wn ∈ R
N is the vector of all N grid point values W n

i , and A ∈ R
N×N is the

matrix representing the spatial discretization (including eliminated boundary condi-
tions). The three-level time stepping schemes used in this paper are of this form
(although for solutions on general overlapping grids a high-order dissipation is also
added, section 9.2). The following lemma indicates the conditions on A so that all
solutions to (5.3) remain uniformly bounded in time.

Lemma 5.1. The scheme (5.3) is stable (the solutions remain uniformly bounded
for all n) if and only if A has a complete set of eigenvectors, the eigenvalues λ of A
are real and negative and ∆t satisfies −4 < λ∆t2 < 0 for all λ.

Proof. Suppose that V̂ is an eigenvector of A corresponding to the eigenvalue λ.
Looking for a solution of the form V n = κnV̂ implies that κ satisfies the characteristic
equation κ− 2 + κ−1 = λ∆t2 with

(5.5) κ = 1 +
1

2
λ∆t2 ±

√
(1 +

1

2
λ∆t2) − 1.

When λ = 0 (κ = 1) or λ∆t2 = −4 (κ = −1) there is a double root and the solutions
can grow linearly in time,

V n = (c0 + c1(n∆t))V̂ , for λ = 0,

V n = (−1)n (c0 + c1(n∆t))V̂ , for λ∆t2 = −4.

Therefore in these two cases the solutions will not be uniformly bounded for general
initial conditions. A root, κ, of the characteristic equation will be a simple root and
satisfy |κ| = 1 if and only if λ is real and

(5.6) −4 < λ∆t2 < 0.

In this case the solution will be of the form

V n = (c0κ
n + c1κ

−n)V̂ ,

and will remain uniformly bounded. If λ is not real or λ > 0 or λ∆t2 < −4 there will
be one root with |κ| > 1 and the approximation (5.3) is not uniformly bounded. If
all λ satisfy (5.6) and there is a complete set of eigenvectors then the general solution
can be represented as a linear combination of the eigenvectors and this solution will
remain uniformly bounded. If there is not a complete set of eigenvectors then the
Jordan normal form of A has a Jordan block of size larger than 1. In this case
there are solutions of the form V n = (n∆t)κn and hence the solutions do not remain
bounded in this case. �

The conditions of lemma 5.1 will be satisfied when A is symmetric and the eigen-
values of A are less than zero. In this case a discrete energy estimate can be obtained
as follows. Taking the inner product of W n+1 −Wn−1 with equation (5.3) and rear-
ranging terms gives

1

∆t2
|Wn+1 −Wn|2 − 〈Wn+1, AWn〉 =

1

∆t2
|Wn −Wn−1|2 − (Wn, AWn−1〉.

Therefore the quantity

En
h =

1

∆t2
|Wn −Wn−1|2 − 〈Wn, AWn−1〉(5.7)

=
1

∆t2

〈
D+tW

n−1,
(
I +

∆t2

4
A

)
D+tW

n−1

〉
− 〈Wn− 1

2 , AWn− 1

2 〉(5.8)
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remains constant for all time, where W n− 1

2 := (Wn + Wn−1)/2. It can be seen
from (5.8) that En

h is positive provided ∆t satisfies the bound (5.6) for all eigenvalues
of A (see Kreiss et.al [25] or Cohen [6] for further details).

The above results provide a motivation for developing symmetric difference ap-
proximations for discretizations of Maxwell’s equations. To this end, consider the
generalized Laplace operator, L defined by

(5.9) Lw = ∇ · (k∇w) .

A straight-forward approach to discretize L on a curvilinear grid is to use the mapping
method, as follows. Using the chain rule, the operator L can be written in general
curvilinear coordinates (with summation convention) as

Lw = k(r)
∂rn
∂xi

∂rm
∂xi

∂2w

∂rm∂rn
+
∂rn
∂xi

{
k(r)

∂

∂rn

(∂rm
∂xi

)
+

∂k

∂rn

∂rm
∂xi

} ∂w

∂rm
.(5.10)

The metric terms ∂rm/∂xn are computed from the mapping that defines the grid and
are thus assumed to be known. The derivatives with respect to the parameter space
coordinates rm can be approximated with standard central difference approximations.
For example, a fourth-order approximation to (5.10), denoted by FD4, will use

∂2

∂r2m
≈ D+,rm

D−,rm

(
I − ∆r2m

12
D+,rm

D−,rm

)
,

∂

∂rm
≈ D4,rm

≡ D0,rm

(
I − ∆r2m

6
D+,rm

D−,rm
,
)
,

∂2

∂rm∂rn
≈ D4,rm

D4,rn
(m 6= n).

Finite difference approximations FDm of order m for m = 2, 4, 6, ... can be defined in
this way. The resulting approximations will not, however, be symmetric on general
curvilinear grids. In the remainder of this section, it will be shown how to construct
high-order accurate symmetric approximations to L for arbitrary curvilinear grids.

The operator L can be written in conservation form, or self-adjoint form, in
general curvilinear coordinates as

Lw =
1

J

d∑

m=1

d∑

n=1

∂

∂rm

(
Amn ∂w

∂rn

)
,(5.11)

Amn = kJ

d∑

µ=1

d∑

ν=1

∂rm
∂xµ

∂rn
∂xν

,(5.12)

where J denotes the determinant of the Jacobian matrix [∂xi/∂rj ]. To improve read-
ability in the subsequent discussion let (r, s) = (r1, r2) and (hr, hs) = (∆r1,∆r2).
The discrete inner product on a curvilinear grid is defined as

(5.13) (Ui, Vi)h =
∑

i

U∗
i Vi Ji hrhs .

Consider approximations to the two operators, Lrr = ∂r(a∂r) and Lrs = ∂r(b∂s) that
are representative of the terms appearing in the expression (5.11) for L. The operator
Lrr will be approximated in the discrete form

Lrrw = ∂r(a∂rw) ≈ D+(ãi− 1

2

D−)w(ri),

where D+ ≈ ∂rw(r + hr/2) and D− ≈ ∂rw(r − hr/2) are some appropriately defined
high-order accurate approximations to the derivatives at locations midway between
grid points. To simplify notation let D+ = D+,r and D− = D−,r. An order 2m + 2
approximation for D+ is obtained from the expansion

(5.14)
∂u

∂r
(r + hr/2) = D+

[
1 +

m∑

n=1

αnh
2n
r (D+D−)n

]
w(r + hr/2) + O(h2m+2

r ),
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where the coefficients αi can be determined from equating coefficients in the expression
y = sin(y)

[
1 +

∑∞
n=1 αn(−4 sin2(y))n

]
, (see for example [12] or [14]). The first four

values of αi are given by

α1 = −1

6
, α2 =

3

640
, α3 = − 5

7168
, α4 =

35

294912
.

Assuming that the coefficient a(r) is given at the grid points, ai, approximations to
ai−1/2 will be needed. These approximations can be obtained by interpolation in a
straight-forward fashion and to order m = 2, 4, 6, are given by

a
(2)
i−1/2 =

1

2
(ai + ai−1), a

(4)
i−1/2 =

9

16
(ai + ai−1) −

1

16
(ai+1 + ai−2),

a
(6)
i−1/2 =

75

128
(ai + ai−1) −

25

256
(ai+1 + ai−2) +

3

16
(ai+2 + ai−3),

where a
(m)
i−1/2 = ai−1/2 + O(hm

r ). Note that other forms of interpolation may be

appropriate when the coefficient k is discontinuous. Define D+ and D− as

D± = D±

[
1 +

∞∑

n=1

αnh
2n
r (D+D−)n

]
.

Expanding the expression D+(aD−) in powers of h2
r leads to

∂

∂r

(
a
∂

∂r

)
= D+(a

(m)
i−1/2D−) − h2

r

24

[
D+(a

(m−2)
i−1/2 D+D

2
−) +D2

+D−(a
(m−2)
i−1/2 D−)

]

+
h4

r

242

[
D2

+D−(a
(m−4)
i−1/2 D+D

2
−)

]
+

3h4
r

640

[
D+(a

(m−4)
i−1/2 D

2
+D

3
−) +D3

+D
2
−(a

(m−4)
i−1/2 D−)

]

− 5h6
r

7168

[
D4

+D
3
−(a

(m−6)
i−1/2 D−) +D+(a

(m−6)
i−1/2 D

3
+D

4
−)

]
(5.15)

− 3h6
r

640 · 24
[
D2

+D−(a
(m−6)
i−1/2 D

2
+D

3
−) +D3

+D
2
−(a

(m−6)
i−1/2 D+D

2
−)

]
+O(h8

r)

Note that different orders of approximation for ai−1/2 are used, so that the difference

stencil for amth-order formulation is no larger thanm+1 points wide in each direction.
Equation (5.15) can be used to generate symmetric approximations of order m by
involving terms up to and including those of order hm

r . For example, a fourth-order
symmetric approximation to J−1∂r(a∂r) is

L(4)
rr [a]w :=

1

Ji

{
D+(a

(4)
i−1/2D−) − h2

r

24

[
D+(a

(2)
i−1/2D+D

2
−) +D2

+D−(a
(2)
i−1/2D−)

]}
w,

while a sixth-order symmetric approximation is

L(6)
rr [a]w :=

1

Ji

{
D+(a

(6)
i−1/2D−) − h2

r

24

[
D+(a

(4)
i−1/2D+D

2
−) +D2

+D−(a
(4)
i−1/2D−)

]

+
h4

r

242

[
D2

+D−(a
(2)
i−1/2D+D

2
−)

]
+

3h4
r

640

[
D+(a

(2)
i−1/2D

2
+D

3
−) +D3

+D
2
−(a

(2)
i−1/2D−)

]}
w .

It is easy to show that the approximations, L(4)
rr [a] and L(6)

rr [a] are symmetric since the
adjoint of J−1D+ is −J−1D− and the adjoint of J−1D−1 is −J−1D+ (with respect
to the discrete inner product (5.13)).

The operator Lrs = ∂r(b∂s) for the mixed derivative terms, is approximated using

∂

∂r

(
b
∂

∂s

)
≈ D0r

[
1 +

∞∑

n=1

βnh
2n
r (D+rD−r)

n
]{
bD0s

[
1 +

∞∑

n=1

βnh
2n
s (D+sD−s)

n
]}
,
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Fig. 2. Convergence rates for the errors in computing the Laplacian on a smooth non-orthogonal
grid. FDm denotes the standard finite difference approximations of order m while SDm denotes the
symmetric difference approximations of order m. The estimated convergence rate for each approxi-
mation is indicated in the legend.

where D+r = D+,r1
, D+s = D+,r2

etc.. and where b = bi denotes the value of b at a
grid point. The expression can be expanded as

∂

∂r

(
b
∂

∂s

)
= D0r(bD0s) −

1

6

[
h2

sD0r(bD0sD+sD−s) + h2
rD0rD+rD−r(bD0s)

]

+
1

30

[
h4

sD0r(bD0sD
2
+sD

2
−s) + h2

rD0rD
2
+rD

2
−r(bD0s)

]

+
1

6 · 6h
2
rh

2
s

[
D0rD+rD−r(bD0sD+sD−s)

]

− 1

140

[
h6

sD0r(bD0sD
3
+sD

3
−s) + h6

rD0rD
3
+rD

3
−r(bD0s)

]

− 1

6 · 30
[
h2

rh
4
sD0rD+rD−r(bD0sD

2
+sD

2
−s)

+ h4
rh

2
sD0rD

2
+rD

2
−r(bD0sD+sD−s)

]
+O(h8

r, h
8
s) .(5.16)

In this case the values of b that appear are located at the grid points and no interpo-
lation is needed. From (5.16), a fourth order approximation to J−1∂r(b∂s) is

L(4)
rs [b]w :=

1

Ji

{
D0r(bD0s) −

1

6

[
h2

sD0r(bD+sD−sD0s) + h2
rD0rD+rD−r(bD0s)

]}
w.

This operator is not symmetric, but the combination L(4)
rs [b]+L(4)

sr [b] will be symmetric.
A fourth-order symmetric approximation to L = ∇ · (k∇) denoted by L(4) is thus

L(4) =
d∑

m=1

d∑

n=1

L(4)
rmrn

[Amn] .

where the coefficients Amn are defined by (5.12). The symmetric approximation can
be easily generalized to the case where k(x) is replaced by a symmetric tensor; this
only changes the definition of Amn.

The symmetric approximations have been implemented in two and three space
dimensions for orders m = 2, 4, 6, 8. Figure 2 compares the accuracy of the symmetric
difference operators of order m, denoted by SDm to those of the standard finite
difference operators of order m, denoted by FDm. The errors in computing the
Laplacian of a trigonometric function on a smooth non-orthogonal grid are presented
in the figure for a sequence of grids of increasing resolution. The estimated convergence
rate for each approximation is also indicated. These estimated rates are computed
from a least squares fit to the log of the error versus the log of the grid spacing.
The results show that the symmetric schemes SDm have similar errors to the finite
difference schemes FDm. The convergence rates are reasonably close to the expected
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values. Note that the numerical values of the computed rates are sensitive to small
changes in the data.

To illustrate that the discrete operators SDm are indeed symmetric on arbitrary
logically-rectangular grids, a computation was performed on the grid shown in Fig-
ure 3. The grid for the unit square, with periodic boundary conditions, is obtained by
randomly perturbing the grid points of a Cartesian grid. The grid points are defined
as xi = ((i1 + R(x)/4)∆x, (i2 + R(y)/4)∆y) where R(x) and R(y) are pseudo-random
numbers uniformly distributed in [−1, 1]. Figure 3 shows the results from computa-
tions solving Maxwell’s equations with c = 1 on a two-dimensional perturbed square.
The discrete energy (5.7) for the component Ex (other components are similar) is plot-
ted for different schemes for t ∈ [0, 100]. Let the symmetric time-stepping schemes be
denoted by TnSDm where n is the order of accuracy in time and m is the order of
accuracy in space. Figure 3 presents results for the methods T2SD2, T4SD4, T2SD6
and T2SD8. The scheme T4SD4 is given by equation (3.3). The schemes T2SDm use
second-order accurate time stepping with an mth order accurate approximation to the
Laplacian, Un+1

i − 2Un
i + Un−1

i = ∆t2c2∆mhU
n
i . The discrete energy is essentially

constant over the computation (to within a relative error of about 10−10 in 64 bit
double precision) for all schemes that use the symmetric operators. By comparison,
schemes using the standard finite difference approximations, denoted by TmFDn are
not energy preserving. These schemes are not stable for this grid without the addition
of some dissipation. Figure 3 also shows the corresponding results for a perturbed
three-dimensional box.
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Fig. 3. The computation of Maxwell’s equations on a randomly perturbed Cartesian grid using
the symmetric approximations. The discrete energy remains almost constant (to a relative error of
about 10−10 in double precision) using the symmetric difference approximations, even on a non-
smooth, non-orthognal grid. Results for a perturbed grid for a square and a perturbed grid for a box
are shown for the various schemes TmSDn of order of accuracy n in time and m in space.

6. Analysis of the scheme. In this section the stability of the fourth-order
accurate time stepping scheme and boundary conditions is analyzed for a model
problem. The analysis considers the solution to Maxwell’s equations on the unit
square, Ω = (0, 1)2, with PEC boundary conditions at x = 0 and x = 1 and pe-
riodic boundary conditions in y. A Cartesian grid is introduced with mesh points
xi = (xi, yj) = (i∆x, j∆y), where i = (i, j) and i = −2, 1, 0, 1, 2, ..., N1, N1 +1, N1 +2
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with ∆x = 1/N1, and j = 0, 1, 2, ..., N2 − 1, with ∆y = 1/N2. Two lines of ghost
points have been introduced outside the boundaries at x = 0 and x = 1. Discrete ap-
proximations to Ex(xi, t

n) and Ey(xi, t
n) are given by Un

ij and V n
ij , respectively, with

Un
i = (Un

i , V
n
i ). For this two-dimensional example the discretization for the magnetic

field will not be presented since it is the same as the discretization for Ex. The interior
equations (2.5) are discretized in a fourth-order manner using the modified equation
approximation (3.3)

Un+1
i − 2Un

i + Un−1
i = (c∆t)2∆4hUi +

(c∆t)4

12
∆2

2hUi,(6.1)

for i = 0, 1, ..., N1, j = 0, 1, .., N2 − 1.

Here ∆4h is a fourth-order approximation to ∆ and ∆2
2h is a second-order approxi-

mation to ∆2 given by

∆4h ≡ D+,xD−,x

(
1 − ∆x2

12
D+,xD−,x

)
+D+,yD−,y

(
1 − ∆y2

12
D+,yD−,y

)
,

∆2
2h ≡

(
D+,xD−,x +D+,yD−,y

)2
.

The divided difference operators D+,x, D−,x, D0x etc. were defined in section 4. The
boundary conditions at x = 0 (i = 0) and x = 1 (i = N1) are discretized as

Vi = 0, for i = 0, N1,(6.2)

D0x

(
1 − ∆x2

6
D+,xD−,x

)
Ui = 0, for i = 0, N1,(6.3)

D+,xD−,x

(
1 − ∆x2

12
D+,xD−,x

)
Vi = 0, for i = 0, N1,(6.4)

D0xD+,xD−,xUi = 0, for i = 0, N1,(6.5)
(
D+,xD−,x

)2
Vi = 0, for i = 0, N1,(6.6)

where three additional numerical boundary conditions have been introduced. The
boundary conditions (6.2-6.6) are, respectively, approximations to Ey = 0, fourth-
order approximations to ∇ · E = 0, ∆Ey = 0, and second-order approximations to
∇ · ∆E = 0 and ∆2Ey = 0. The latter three equations arise from the compatibility
conditions (3.4). The scheme is completed by specifying initial values for two time
levels, for example,

U0
ij = E(0)(xij),(6.7)

U1
ij = E(0)(xij) + ∆tE

(0)
t (xij) +

∆t2

2
∆2hE

(0)(xij) +
∆t3

3!
∆2hE

(0)
t (xij).(6.8)

Lemma 6.1. The solution to the discrete approximation to the vector wave equa-
tion (6.1) with boundary conditions (6.2-6.6) is stable (the solutions remain uniformly
bounded) provided

(6.9) ∆t < c−1

(
1

∆x2
+

1

∆y2

)−1/2

.

Proof. Making the ansatz Ũn
i = κn cos(πmxi)e

i2πnyj and Ṽ n
i = κn sin(πmxi)e

i2πnyj

it follows that Ũn
i , and Ṽ n

i satisfy equations (6.1) and boundary conditions (6.2-6.6)
provided κ satisfies the characteristic equation

κ− 2 + κ−1 = −4G(6.10)

where

G = λ2
xσx[1 +

1

3
σx] + λ2

yσy[1 +
1

3
σy] − 1

3
[λ2

xσx + λ2
yσy]2,

σx = sin2(ξx/2), σy = sin2(ξy/2),

λx = c
∆t

∆x
, λy = c

∆t

∆y
, ξx = πm∆x, ξy = 2πn∆y,

m = 0, 1, 2, ..., N1, n = 0, 1, 2, ..., N2 − 1.
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The two roots of the characteristic equation (6.10) are κ± = (1−2G)±
√

(1 − 2G)2 − 1
where κ+ = κ−1

− . The roots will satisfy |κ±| = 1 and the solutions will remain
uniformly bounded provided 0 < G < 1 (following the argument in the proof of
lemma 5.1). Letting γ = λ2

xσx + λ2
yσy it follows that G can be written in the form

G = γ − 1

3
γ2 +

1

3
(λ2

xσ
2
x + λ2

yσ
2
y),

≤ γ − 1

3
γ2 +

1

3
(λ2

xσx + λ2
yσy) = γ +

1

3
γ(1 − γ).

The function G is always positive for 0 < γ < 1. The function G̃(γ) = γ+ 1
3γ(1−γ) is

less than 1 for 0 < γ < 1 and thus 0 < G < 1 provided γ < 1. Therefore the condition
that Ũn

i and Ṽ n
i remain uniformly bounded is

λ2
xσx + λ2

yσy ≤ λ2
x + λ2

y < 1,(6.11)

Let κm,n and Gm,n denote the values of κ+ and G as functions of m and n. The
general solution can be written as

Un
i =

∑

m

∑

n

(Am,nκ
n
m,n +Bm,nκ

−n
m,n) cos(mxi)e

inyi ,

V n
i =

∑

m

∑

n

(Cm,nκ
n
m,n +Dm,nκ

−n
m,n) sin(mxi)e

inyi ,

where the values of Am,n, Bm,n, Cm,n and Dm,n are determined by the initial condi-
tions. The solution will be stable provided 0 < Gm,n < 1 for all permissible m, n. It
follows from the stability condition (6.11) and the definitions of λx and λy that the
solution to the model problem is stable provided the time step satisfies (6.9). �.

Note that

κmn = 1 + ik∆t+
1

2
(ik)2 +

1

3!
(ik)3 +

1

4!
(ik)4 +O(∆th4,∆t3h2,∆t5)

where h =
√

∆x2 + ∆y2, k =
√
k2

x + k2
y, kx = πm, and ky = 2πn. This shows that

κmn is a fourth-order accurate approximation to eik∆t. The discrete eigenfunctions
Ũn

i and Ṽ n
i are thus fourth-order accurate approximations to the eigenfunctions of

the continuous problem, and it is apparent that the discrete approximation to the
model problem is fourth-order accurate.

In three dimensions an argument similar to that used for the two-dimensional
case shows that the stability condition is

(6.12) ∆t < c−1

(
1

∆x2
+

1

∆y2
+

1

∆z2

)−1/2

.

7. Boundary conditions at material interfaces. In this section the propa-
gation of electromagnetic waves through different dielectric (insulating) materials will
be considered. The domain Ω is partitioned into a set of sub-domains, Ω =

⋃
k Ωk,

with each Ωk representing a region with different material properties,

ε(x) = εk, µ(x) = µk, for x ∈ Ωk.

The assumption is made that ε and µ are constant within each sub-domain (although
this restriction is not essential). The boundaries of each sub-domain, ∂Ωk, are assumed
to be sufficiently smooth so that normal and tangent vectors to the interface can be
defined. Overlapping grids will be used to discretize each sub-domain separately. The
sub-domain boundaries will be represented with boundary fitted grids (see for example
Figure 10). Maxwell’s equations in second-order form are discretized in each sub-
domain using the high-order accurate difference approximations discussed in previous
sections. Ghost points are used on the grids on both sides of the interface as shown in
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the one-dimensional overlapping grid of Figure 4. Boundary conditions at the interface
are required for the numerical approximation. These boundary conditions are used to
determine the solution values at the ghost points. As in the case of the PEC boundary,
centered numerical boundary conditions are developed from compatibility conditions
consistent with the governing equations. The compatibility conditions are based on
interface jump conditions derived from the first order form of Maxwell’s equations.
For ρ = 0, with variable ε and µ these are

ε(x)Et = ∇× H, µ(x)Ht = −∇× E,(7.1)

∇ · (ε(x)E) = 0, ∇ · (µ(x)H) = 0.(7.2)

Under the assumption that E and H remain bounded, the basic jump conditions at
a material interface I are derived by integrating each of the equations (7.1-7.2) over
an appropriate control volume that spans the interface, (see for example [2]), and the
result is

[εn · E]I = 0, [µn · H]I = 0,(7.3)

[τm · E]I = 0, [τm · H]I = 0.(7.4)

Here [f ]I denotes the jump in f across the interface, n = n(x) is the unit normal vector
to the interface and τ m = τm(x) is a unit tangent vector to the material interface.
Since there are two linearly independent tangents in three-dimensions, there will be
two linearly independent conditions [τ m · E] = 0, m = 1, 2 (or just one condition
in two-dimensions). Jump conditions on the first spatial derivatives of the solution
follow directly from equations (7.2), and also by taking one time derivative of (7.4)
and combining with equations (7.1),

[∇ · E]I = 0, [∇ · H]I = 0,(7.5)

[µ−1
τm · ∇ × E]I = 0, [ε−1

τm · ∇ × H]I = 0.(7.6)

Note that [∇· (εE)]I = 0 can be replaced by [∇·E]I = 0 since ∇·E is identically zero
on either side of the interface. A similar remark applies to the condition [∇·H]I = 0.
Additional compatibility conditions can be derived by taking an even number of time
derivatives of the four conditions (7.3-7.6) and using the vector wave equation (1.6)
to transform the time derivatives into space derivatives. This gives the complete set
of interface conditions

[εn · ∆nE/(εµ)n]I = 0, [µn · ∆nH/(εµ)n]I = 0,(7.7)

[τ · ∆nE/(µε)n]I = 0, [τ · ∆nH/(µε)n]I = 0,(7.8)

[∇ · (∆nE)]I = 0, [∇ · (∆nH)]I = 0,(7.9)

[µ−1
τ · ∇ × ∆nE/(µε)n]I = 0, [ε−1

τ · ∇ × ∆nH/(µε)n]I = 0,(7.10)

for n = 0, 1, 2, 3, . . .. These interface jump conditions impose constraints on each
spatial derivative of the solution.

Discrete versions of the jump conditions are used as numerical boundary con-
ditions in the following manner. First consider the case of a second-order accurate

approximation that uses one ghost line on each side of the interface. Let U
(k)
i denote

the discrete approximation to the electric field where k = 1, 2, denotes the solution
on each side of the material interface. The dependence of the solution on time is
suppressed for this discussion. To be specific, let the interface correspond to the value

of i1 = 0 and the ghost line values correspond to i1 = −1. The values U
(1)
−1,i2,i3

and

U
(2)
−1,i2,i3

of the solution on the ghost lines, (one ghost line value on each side of the
interface) are determined by imposing the following centered interface conditions at
i1 = 0,

[εn · ∆2hU
(k)
i /(εµ)]I = 0, [τm · ∆2hU

(k)
i /(µε)]I = 0,(7.11)

[∇2h · (U(k)
i )]I = 0, [µ−1

τm · ∇2h × U
(k)
i ]I = 0.(7.12)
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Here ∇2h·, ∇×2h, and ∆2h are some appropriate second-order accurate centered dif-
ference approximations. Equations (7.11-7.12) implicitly specify that the time deriva-
tives of the jump conditions (7.3-7.4) are zero (to second-order accuracy). Therefore,
by imposing the conditions (7.11-7.12) the basic jump conditions (7.3-7.4) should also
be be approximately satisfied (assuming they are satisfied at the initial time). There-
fore it may not be essential to explicitly impose the conditions (7.3-7.4). In practice,
however, the solution values on the interface itself are constrained to satisfy the basic
jump conditions,

[εn · U(k)
i ]I = 0, [τm · U(k)

i ]I = 0.(7.13)

by setting the solution values on the side of the interface with the larger value of ε in
terms of the values on the other side. For example, if ε2 ≤ ε1 then

(7.14) U
(1)
0,i2,i3

=
ε2
ε1

(n · U(2)
0,i2,i3

)n +

2∑

m=1

(
τm · U(2)

0,i2,i3

)
τm.

A fourth-order accurate approximation will use two ghost lines on each side of the
interface. The values at the ghost points are determined using fourth-order accurate
approximations to the interface conditions for the first and second derivatives,

[εn · ∆4hU
(k)
i /(εµ)]I = 0, [τm · ∆4hU

(k)
i /(µε)]I = 0,(7.15)

[∇4h · (U(k)
i )]I = 0, [µ−1

τm · ∇4h × U
(k)
i ]I = 0,(7.16)

together with second-order accurate approximations to the interface conditions for
the third and fourth derivatives,

[(∇ · ∆)2h(U
(k)
i )]I = 0, [µ−1

τm · (∇× ∆)2hU
(k)
i /(εµ)]I = 0,(7.17)

[εn · (∆2)2hU
(k)
i /(εµ)2]I = 0, [τm · (∆2)2hU

(k)
i /(εµ)2]I = 0.(7.18)

The fourth-order approximation will also impose equations (7.13). The accuracy and
stability of these conditions for a model problem is considered in section 8.

A complicating factor in applying these interface boundary conditions is that the

discrete equations couple the unknown values of U
(k)
i at all ghost points on both

sides of the interface. Therefore, the solution to these equations requires the solution
of a system of equations with number of unknowns proportional to the number of
points on the interface. In practice, it has been found that these equations can be
approximately solved using an iterative technique (see section 9.3 for further details).

ε1, µ1, c1 ε2, µ2, c2a 0 b

U
(1)
−1 U

(1)
0 U

(1)
1

· · · U
(1)
M−1 U

(1)
M U

(1)
M+1

U
(2)
−1 U

(2)
0 U

(2)
1 U

(2)
2

· · · U
(2)
N U

(2)
N+1

Fig. 4. The overlapping grids for a one-dimensional material interface located at x = 0. Ghost
points are introduced on the two grids at the interface.

8. Analysis of the Material Interface Conditions. The accuracy and sta-
bility of the centered boundary conditions for material interfaces is considered in this
section. A semi-discrete one-dimensional model problem is studied using the Laplace
transform in time and mode-analysis in space. Second-order accurate and fourth-
order accurate interface conditions are analyzed. A one-dimensional model problem
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for u = u(x, t) and v = v(x, t) on the interval [a, b] with a material interface at x = 0,
a < x < b, is

ε(x)utt = uxx, ε(x)vtt = vxx,(8.1)

[εu]I = 0, [v]I = 0,(8.2)

[ux]I = 0, [vx]I = 0,(8.3)

where ε(x) = ε1 for x < 0 and ε(x) = ε2 for x > 0. The variable u represents the
normal component of the field (say, Ex), while the variable v represents one of the
tangential component of the field (say Ey). Note that for this model problem, the
equations for the normal and tangential components are decoupled.

Introduce a one-dimensional overlapping grid as shown in Figure 4. A (formally)
second-order accurate semi-discrete approximation is

ε1U
(1)
tt = D+D−U

(1)
j , ε1V

(1)
tt = D+D−V

(1)
j , for j = M,M − 1,M − 2 . . .(8.4)

ε2U
(2)
tt = D+D−U

(2)
j , ε2V

(2)
tt = D+D−V

(2)
j , for j = 0, 1, 2, . . .(8.5)

with interface conditions

D0U
(1)
M = D0U

(2)
0 , D0V

(1)
M = D0V

(2)
0 ,(8.6)

D+D−U
(1)
M = D+D−U

(2)
0 , D+D−V

(1)
M /ε1 = D+D−V

(2)
0 /ε2.(8.7)

Here U
(k)
i (t) and V

(k)
i (t) denote the approximations to u and v on the grids while

D+ = D+x, D− = D−x, and D0 = D0x The grid points are denoted by x
(k)
i . Ap-

proximations to the jump conditions [uxx]I = 0 and [vxx/ε]I have been imposed in
place of (8.2); these follow from equations (8.1-8.2). The interface equations (8.6) and

(8.7) can be solved for the values at the ghost points, U
(1)
M+1, U

(2)
−1 in terms of interior

values,

U
(1)
M+1 = U

(2)
1 + (U

(1)
M − U

(2)
0 ) = U

(2)
1 + (ε2/ε1 − 1)U

(2)
0(8.8)

U
(2)
−1 = U

(1)
M−1 − (U

(1)
M − U

(2)
0 ) = U

(1)
M−1 − (1 − ε1/ε2)U

(1)
M(8.9)

V
(1)
M+1 =

2ε1
ε1 + ε2

V
(2)
1 +

ε2 − ε1
ε1 + ε2

(
2V

(1)
M − V

(1)
M−1

)
(8.10)

V
(2)
−1 =

2ε2
ε1 + ε2

V
(1)
M−1 +

ε1 − ε2
ε1 + ε2

(
2V

(2)
0 − V

(2)
1

)
(8.11)

The interface boundary conditions have the useful property that when ε1 = ε2, the
solution to the interface problem is the same as if there were no interface at all.

The stability of the discrete approximations to the interface problem will now
be analyzed. A necessary condition for stability is the Godunov-Ryabenkii condition
which requires that there be no solutions to following eigenvalue problem for Re(s) >
0,

ε1s
2W

(1)
j = D+D−W

(1)
j , for j = M,M − 1,M − 2 . . .,(8.12)

ε2s
2W

(2)
j = D+D−W

(2)
j , for j = 0, 1, 2, . . .,(8.13)

D0W
(1)
M = D0W

(2)
0 , (D+D−W

(1)
M )/εα1 = (D+D−W

(2)
0 )/εα2 ,(8.14)

‖W (1)‖h <∞, ‖W (2)‖h <∞.(8.15)

Here α = 0 corresponds to the problem for the normal component U
(k)
i while α = 1

corresponds to the problem for the tangential component V
(k)
i . The discrete norms

of the grid functions are defined from ‖W (1)‖2
h =

∑M
j=−∞ |W (1)

j |2 h and ‖W (2)‖2
h =

∑∞
j=0 |W

(2)
j |2 h. If this problem (8.12-8.15) were to have a solution then there would

be a solution to equations (8.4-8.7) of the form U
(k)
i (t) = estW

(k)
i that would grow

arbitrarily fast in time as h→ 0, and the scheme would not be stable.
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Lemma 8.1. The second-order accurate interface approximation (8.4-8.7) satis-
fies the Godunov-Ryabenkii condition.

Proof. The solution to the eigenvalue problem (8.12-8.15) is of the form

W
(1)
j = AκM−j

1 , W
(2)
j = Bκj

2,

where κk = 1 + sk/2−
√
sk

√
1 + sk/4 are roots of the characteristic equation κ− 2 +

κ−1 = sk, with sk = εks
2h2, for k = 1, 2. The branch of the square root is taken so

that |κ1| < 1 and |κ2| < 1 for Re(s) > 0. Applying the interface conditions (8.8) and
(8.9) implies

A(κ−1
1 − κ1) = B(κ2 − κ−1

2 ),

A(κ−1
1 − 2 + κ1)/ε

α
1 = B(κ2 − 2 + κ−1

2 )/εα2 .

For the case α = 0 the determinant condition for nontrivial solutions is

(κ−1
1 − κ1)(κ2 − 2 + κ−1

2 ) = (κ2 − κ−1
2 )(κ−1

1 − 2 + κ1),

which simplifies to κ1κ2 = 1. This contradicts the fact that |κ1κ2| < 1 and thus there
can be no non-trivial solutions. For α = 1 it follows that A = B and for a nontrivial
solution,

−(κ1 − κ−1
1 ) = κ2 − κ−1

2 .

From the definitions of κ1 and κ2 it follows that

√
s1

√
1 + s1/4 = −√

s2
√

1 + s2/4.

The solution to the last equation is s1 = −s2 − 4 (the other possible solution s1 = s2
is on the wrong branch of the square root) which implies

s = ±i/(h
√
ε1 + ε2).

This contradicts the assumption that Re(s) > 0 and thus there are no nontrivial solu-
tions for α = 1. It thus follows that the Godunov-Ryabenkii condition is satisfied �.

The accuracy of the approximation can be determined by examining the problem

for the error, E
(k)
i = U

(k)
i − u(x

(k)
i , t),

ε1s
2E

(1)
j = D+D−E

(1)
j + h2F1, for j = M,M − 1,M − 2 . . .,

ε2s
2E

(2)
j = D+D−E

(2)
j + h2F2, for j = 0, 1, 2, . . .,

D0E
(1)
M −D0E

(2)
0 = h2G1, (D+D−E

(1)
M )/εα1 − (D+D−E

(2)
0 )/εα2 = h2G2,

where the terms h2F1, h
2F2, h

2G1 and h2G2 are the truncation errors. In the usual
manner (for example, see [14]), by subtracting out a solution to the Cauchy problem
it may be assumed that F1 = F2 = 0. The solution to the error equations is then of
the form

E
(1)
j = AκM−j

1 , E
(2)
j = Bκj

2

and applying the interface conditions gives the equations that determine A and B,

[
(κ−1

1 − κ1)/(2h) −(κ2 − κ−1
2 )/(2h)

ε1−α
1 s2 −ε1−α

2 s2

] [
A
B

]
=

[
h2G1

h2G2

]

Using κk − κ−1
k = −2

√
sk

√
1 + sk/4, the solution solution for A and B can be deter-

mined and is

A =
ε1−α
1 sG1 + ε

1/2
2 G2

ε1−α
1 (ε

1/2
1 + ε

1/2
2 )s2

h2 +O(h4), B =
ε1−α
1 sG1 − ε

1/2
1 G2

ε1−α
1 (ε

1/2
1 + ε

1/2
2 )s2

h2 +O(h4).
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Therefore the solution to the semi-discrete problem is second-order accurate.

Now consider the fourth-order accurate approximation

ε1U
(1)
tt = D+D−(1 − h2

12
D+D−)U

(1)
j , for j = M,M − 1,M − 2 . . .,(8.16)

ε2U
(2)
tt = D+D−(1 − h2

12
D+D−)U

(2)
j , for j = 0, 1, 2, . . .,(8.17)

D0(1 − h2

6
D+D−)U

(1)
M = D0(1 − h2

6
D+D−)U

(2)
0 ,(8.18)

D+D−(1 − h2

12
D+D−)U

(1)
M /εα1 = D+D−(1 − h2

12
D+D−)U

(2)
0 /εα2 ,(8.19)

D0D+D−U
(1)
M /ε1 = D0D+D−U

(2)
0 /ε2,(8.20)

(D+D−)2U
(1)
M /ε1+α

1 = 0(D+D−)2U
(2)
0 /ε1+α

2 .(8.21)

where α = 0 corresponds to the interface conditions for the normal component and
α = 1 the conditions for the tangential component. Two ghost points have been
added to the grids on each side of the interface. Appropriate initial conditions are
also required to complete the specification of the problem; their precise form is not
germane to the following discussion. When ε1 = ε2, the solution to the interface
problem reduces to the solution of the equations with no interface present since in

this case U
(1)
M+m = U

(2)
m and U

(2)
−m = U

(1)
M+m for m = 1, 2.

The Godunov-Ryabenkii condition, necessary for the stability of solutions to these
difference equations, requires that there be no solutions with Re(s) > 0 to the eigen-
value problem

ε1s
2W

(1)
j = D+D−(1 − h2

12
D+D−)W

(1)
j , for j = M,M − 1,M − 2 . . .,

ε2s
2W

(2)
j = D+D−(1 − h2

12
D+D−)W

(2)
j , for j = 0, 1, 2, . . .,

D0(1 − h2

6
D+D−)W

(1)
M = D0(1 − h2

6
D+D−)W

(2)
0 ,

D+D−(1 − h2

12
D+D−)W

(1)
M /εα1 = D+D−(1 − h2

12
D+D−)W

(2)
0 /εα2 ,

D0D+D−W
(1)
M /ε1 = D0D+D−W

(2)
0 /ε2,

(D+D−)2W
(1)
M /ε1+α

1 = 0(D+D−)2W
(2)
0 /ε1+α

2 ,

‖W (1)‖h <∞, ‖W (2)‖h <∞.

Lemma 8.2. The fourth-order accurate interface approximation (8.16-8.21) sat-
isfies the Godunov-Ryabenkii condition for sh� 1.

Proof. For Re(s) > 0 the bounded solutions may be written as

W
(1)
j = A1κ

M−j
1 +B1κ̃

M−j
1 , W

(2)
j = A2κ

j
2 +B2κ̃

j
2,

where κk are the roots approximating the solution to the continuous problem and κ̃k

are the spurious roots. These are roots of the characteristic equation

sk = (κ− 2 + κ−1)(1 − 1

12
(κ− 2 + κ−1)) = sk,

where sk = εks
2h2. In particular

κk = 1 + zk/2 −√
zk

√
1 + zk/4, κ̃k = 1 + z̃k/2 −

√
z̃k

√
1 + z̃k/4,

zk = 6(1 −
√

1 − sk/3), z̃k = 6(1 +
√

1 − sk/3),
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where the branch of the square root is chosen so that |κk| < 1 and |κ̃k| < 1 for
Re(s) > 0. For sh� 1, these roots take the form

κk = 1 −√
εksh+ εk(sh)2/2 − (

√
εksh)

3/6 + (
√
εksh)

4/24 +O((sh)5),

κ̃k =
1

7 + 4
√

3
+O(sh).

It can be seen that κk is a fourth-order approximation to e−
√

εksh. Substitution of

W
(1)
j and W

(1)
j into the four boundary conditions implies

(8.22)




D1(κ1) D1(κ̃1) D1(κ2) D1(κ̃2)
s1/ε

α
1 s1/ε

α
1 −s2/εα2 −s2/εα2

D3(κ1)/ε1 D3(κ̃1)/ε1 D3(κ2)/ε2 D3(κ̃2)/ε2
D4(κ1)/ε

1+α
1 D4(κ̃1)/ε

1+α
1 −D4(κ2)/ε

1+α
2 −D4(κ̃2)/ε

1+α
2







A1

B1

A2

B2


 = 0

where D1(κ) = 1
2 (κ − κ−1)(1 − 1

6 (κ − 2 + κ−1)), D3(κ) = 1
2 (κ − κ−1)(κ − 2 + κ−1),

and D4(κ) = (κ− 2 + κ−1)2. Let M denote the matrix appearing in equation (8.22).
Note that κk − κ−1

k = −2
√
zk

√
1 + zk/4 and κk − 2 + κ−1

k = zk which can be used to
simplify the entries in M. For stability there should be no values of s with Re(s) > 0
when the determinant of M is zero. This condition is difficult to prove for general
values of sh. For sh� 1, corresponding to the resolved modes in the discrete solution,
the elements of the determinant can be expanded in powers of sh and one finds that
for sh→ 0,

det(M) ∼ −2933
√

3(ε
−1/2
1 + ε

−1/2
2 ) (sh)3, for α = 0,(8.23)

det(M) ∼ −2833
√

3
1

ε21ε
2
2

(ε
1/2
1 + ε

1/2
2 )(ε1 + ε2) (sh)3, for α = 1.(8.24)

Therefore there are no unstable modes for sh � 1 with Re(s) > 0. This proves the
lemma �.

To gain some confidence that there are no unstable modes for larger values of
sh one can graph the surface S(sh) = |det(M(sh))| as a function of the complex
number sh and look for places where S(sh) = 0 for Re(sh) > 0. Figure 5 shows a
plot of S(sh) for ε1 = 1, ε2 = 16, and for α = 0, 1. The figure also shows plots of
S(sh), along the line Im(sh) = 0, compared to the asymptotic forms (8.23-8.24). The
asymptotic forms agree with the computed values of the determinant. Although the
surface S(sh) has a local minimum for .4 < Re(sh) < .5, the values are still far from
zero. These graphical results support the conjecture that the determinant of M is
never zero for Re(s) > 0; it is therefore likely that the fourth-order discrete scheme
always satisfies the Godunov-Ryabenkii condition, at least for the values of ε1 and ε2
that have been investigated.

9. Implementation of the scheme. Some aspects of the implementation of
the discrete approximations to the differential operators and boundary conditions will
be considered in this section. The intent of these remarks is to give a basic outline of
the implementation, a more detailed description is left for a future report. In typical
cases the majority of grid points on an overlapping grid belong to Cartesian grids
where the discrete approximations are straight-forward to implement. The Cartesian
grid approximations are very fast to evaluate and use little memory. The majority of
the programming effort, however, is concerned with implementing the approximations
to the boundary conditions and material interface conditions on curvilinear grids.

9.1. Solving the PEC boundary conditions. The solution of the discrete
approximations to the boundary conditions for a perfect electrical conductor are based
upon the boundary conditions n×E = 0 and ∇·E = 0, together with the compatibility
conditions (3.4). In order to simplify the implementation, some approximations are
made that do not seem to affect the overall accuracy, as evidenced by the numerical
results from section 10. In general curvilinear coordinates the divergence of E can be
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Fig. 5. Top: a plot of the surface S(sh) = | det(M(sh))| for the fourth-order accurate discrete
interface problem with ε1 = 1, ε2 = 16 and α = 0 (left) and α = 1 (right). Stability of the discrete
approximation requires that S > 0 for Re(sh) > 0. Bottom: A comparison of S to the asymptotic
forms (8.23-8.24) along the line Im(sh) = 0 for α = 0 (left) and α = 1 (right).

written as

∇ · E =
1

J

d∑

m=1

∂

∂rm
(am · E),

am = J∇xrm = J(∂xrm, ∂yrm, ∂zrm) .

For a PEC boundary, corresponding to the parameter space line r1 = 0, the bound-
ary condition ∇ · E = 0 becomes a condition relating the r1-derivative of a1 · E =
−J‖∇xr1‖n · E to tangential derivatives of the components a2 · E2 and a3 · E,

∂r1
(a1 · E) = −∂r2

(a2 · E2) − ∂r3
(a3 · E) .

For an orthogonal grid, a2 · E(0, r2, r3) = 0 and a3 · E(0, r2, r3) = 0 on the boundary
since a2 and a3 are in the tangent plane. In addition, a1 · E is (always) proportional
to the normal component of E, and thus the ∇ · E = 0 boundary condition reduces
to a normal derivative of this component

∇ · E = ∂r1
(a1 · E), for r1 = 0 (orthogonal grid).

For general grids a2 ·E2 and a3 ·E are not zero. A second-order accurate approx-
imation to the boundary conditions at i1 = 0 is

τm · Ui = 0,(9.1)

D0,r1
(a1 · Ui) = −D0,r2

(a2 · Ui) −D0,r3
(a3 · Ui),(9.2)

τm ·D+rD−rUi = 0, .(9.3)

where τm, m = 1, 2 are tangent vectors to the boundary (there is only one in two-
dimensions). The equations (9.2-9.3) determine the solution on the ghost point,
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U−1,i2,i3 . Equation (9.3) approximates the more accurate compatibility condition
τm · ∆E = 0. These equations can be solved without iteration since the terms ap-
pearing on the right hand side of equation (9.2) involve known values on the boundary
once equation (9.1) is applied.

Let D
(4)
rm = D0,rm

(1 − 1
12∆r1

2D+,rm
D−,rm

) denote the fourth-order accurate ap-
proximation to ∂/∂rm. A fourth-order accurate approximation to the boundary con-
ditions at i1 = 0 is

τm · Ui = 0,(9.4)

D(4)
r1

(a1 · U)i = −D(4)
r2

(a2 · Ui) −D(4)
r3

(a3 · Ui),(9.5)

τm · (∆4hUi) = 0,(9.6)

D0,r1
(a1 · ∆2hUi) = 0,(9.7)

(D+,r1
D−,r1

)2(τm · Ui) = 0.(9.8)

Equations (9.5-9.7) will determine the solution at the two ghost lines, U−1,i2,i3 and
U−2,i2,i3 . Condition (9.8) is an approximation to the more accurate compatibility
condition ∆2

2h(τm · Ui) = 0. ∆4h is the fourth-order accurate FD4 approximation,
and ∆2h is the second-order accurate FD2 approximation to the Laplacian as defined
in section 5. Equations (9.6-9.7) couple the unknown values at the ghost points with
neighbouring points. These equations can be solved by iterating on the unknown
values using an appropriate initial guess, only one or two iterations are normally
required.

9.2. Numerical dissipation. A high-order dissipation is added to the scheme
to stabilize the approximation from weak, high-frequency, instabilities that may de-
velop near interpolation points and boundaries. At the continuous level the dissipation
of the second-order wave equation takes the form utt = c2∆u−α h2p(−∆)put, where
h is a measure of the local grid spacing. For the fourth-order accurate scheme a
fourth-order dissipation with p = 2 is typically used,

Un+1
i − 2Un

i + Un−1
i = (c∆t)2∆4hUi +

(c∆t)4

12
(∆2)2hUi(9.9)

− αd(c∆t)
2

d∑

m=1

(∆rm)4(D+rm
D−rm

)2(Un
i − Un−1

i )/∆t.

The coefficient αd is typically chosen to be about 1. The scheme remains fourth-order
accurate provided αd = O(1). It is also possible to use a sixth-order dissipation with
the fourth order scheme, but this does not seem to provide any significant advantage.

9.3. Material interfaces. The boundary conditions for material interfaces have
been implemented in two-dimensions. Both second- and fourth-order approximations
have been developed, see section 10.5 for a sample fourth-order accurate computation.
The implementation is currently restricted to the case when the grids that meet at the
interface have matching grids points (as shown, for example, in the grid in Figure 10).

The solution of the fourth-order accurate approximations in two-dimensions will
be discussed here, the second-order accurate case is similar. Assume, as in section 7,
that the interface corresponds to the line i1 = 0, with the unknown ghost point values

being U
(k)
−m,i2,i3

, for the ghost lines m = 1, 2, on the two sides of the interface, k = 1, 2.
As a first step, the basic jump conditions (7.3–7.4) for the electric field are imposed.

These conditions are used to assign the values of the electric field U
(k)
0,i2,i3

for the side
of the interface with the larger value of ε. The interface compatibility conditions are
given by equations (7.15–7.18). The solution to these equations will determine the
values at the ghost points on both sides of the interface. Approximations for ∆4h,
∇4h (∇ · ∆)2h etc. are obtained with the mapping method (section 5). Three of the
conditions (7.15,7.17,7.18) cause the equations to be coupled between adjacent points
along the boundary, although on an orthogonal grid only the higher-order correction
conditions (7.17,7.18) lead to coupling. At the start of the iteration the values on the
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ghost points on both sides of the interface are given initial values by extrapolation.
Then, at each step in the iteration, a small system of equations is solved at each point,

(0, i2) along the boundary, for the 8 unknown values U
(k)
−m,i2,i3

, m = 1, 2, k = 1, 2
using the 8 equations (7.15–7.18). There will be 12 unknowns and 12 equations in
three-dimensions. When solving these equations the values at adjacent points are
kept fixed at their most recent values. In practice it seems that one or two iterations
is sufficient to solve these interface equations.

9.4. Parallel implementation. The algorithms described here have been im-
plemented in the computer code mx. The mx solver is implemented at a high level
in C++. It is based upon the Overture class library [38]. Most of the numerically
intensive kernels are written in Fortran77. The overhead in using C++ is found to be
negligible for any reasonable size problem (see section 10.6). The computer code mx

runs on both serial and distributed memory parallel computers.

In a distributed parallel computing environment, the grid functions on each com-
ponent grid (representing the solution variables such as Ex, Ey, Ez, etc.) are repre-
sented as multi-dimensional arrays. These arrays can be distributed across one or more
processors. The grid functions are implemented using parallel distributed arrays from
the P++ array class library [30]. Each P++ array can be independently distributed
across the available processors. The distributed array consists of a set of serial arrays,
one serial array for each processor. Each serial array is a multi-dimensional array that
can be operated on using array operations. The data from the serial array can also
be passed to a Fortran function, for example. When running in parallel, the serial
arrays contain extra ghost lines that hold copies of the data from the serial arrays
on neighbouring processors. P++ is built on top of the Multiblock PARTI parallel
communication library [36], which is used for ghost boundary updates and copying
blocks of data between arrays with possibly different parallel distributions.

A special parallel overlapping grid interpolation routine has been developed for
updating the points on grids that interpolate from other grids (the interpolation points
are shown, for example, in Figure 1). Overlapping grid interpolation is based on
a multi-dimensional tensor product Lagrange interpolant, defined in section 4. In
parallel, the Lagrange formula is evaluated on the processor that owns the data in
the stencil (the donor points), the resulting sums are collected into a message and
then sent to the processor that owns the interpolation points. There is at most one
message that needs to be sent between any two processors. In this way, the number
of messages and the size of the messages that need to be passed between processors
is quite small.

Figure 6 shows some results from solving Maxwell’s equations with the mx solver
on a distributed memory Linux cluster (with 2.4 Ghtz Zeon processors). The equations
are solved to fourth-order accuracy. In these examples the number of grid points
remains fixed as the number of processors is increased. The figure compares two-
dimensional results for a square with 10242 (1.1e6) grid points to that of a circle-in-
channel overlapping grid with 3.8e6 grid points. The parallel scaling is very good in
two-dimensions for these problems since the number of computational points is large
compared to the number of points where communication is required. Also shown are
three-dimensional results for a box with 2563 (1.78e7) grid points compared to a grid
for a pill-box with about 3.2e6 grid points (the pill-box appears in Figure 11). In the
three-dimensional cases, there are relatively many more points where communication
is required since for N3 grid points in three-dimensions there are O(N 2) points on the
inter-processor boundaries. The parallel scaling is still reasonable with the results for
the overlapping grid being comparable to that for the box.

10. Numerical results.

10.1. The method of analytic solutions. The method of analytic solutions
is an extremely useful technique for constructing exact solutions to check the accu-
racy of a computer program. This method, also sometimes known as the method
of manufactured solutions [32], or twilight-zone forcing [5] adds forcing functions to
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Fig. 6. Parallel results for the fourth-order accurate Maxwell solver. Left: speedup for a square
with 10242 (1.1e6) points compared to a two-dimensional circle-in-a-channel grid with 3.8e6 grid
points. Right: speedup for a box with 2563 (1.78e7) grid points, compared to a pill-box grid with
3.2e6 grid points. Computations were performed on a Linux cluster.

the governing equations and boundary conditions. These forcing functions are de-
termined so that some given functions, Etrue(x, t), will be the exact solution to the
forced equations. With this approach, the error in the discrete solution can be easily
determined. Two common choices for exact solutions are low degree polynomials or
trigonometric functions. The polynomial solutions are useful for checking that the
fourth-order scheme can exactly solve a problem on a Cartesian grid when the degree
of the polynomials is less than or equal to four. The trigonometric functions will be
used in the convergence results given in this section. The exact solutions are chosen
to be divergence free. In two- and three-dimensions the functions are

(Etrue
x , Etrue

y , Htrue
z ) =

(1

2
cxcy,

1

2
sxsy, cxsy

)
cos(πt),

(Etrue
x , Etrue

y , Etrue
z ) =

(
cxcycz,

1

2
sxsycz,

1

2
sxcysz

)
cos(πt),

where cx = cos(πx), sy = sin(πx), etc. Define the error in the discrete approximation
Un

i to Ex at a given time tn by

(10.1) eEx

i = Un
i − Etrue

x (xi, t
n) ,

with similar definitions for e
Ey

i , eEz

i and eHz

i Define the discrete max-norm by

(10.2) ‖Un
i ‖∞ = max

i
|Un

i | ,

where the maximum is taken over all valid points in the overlapping grid.
Table (2) shows convergence results for a two-dimensional cylinder in a channel.

The coarse grid, G1, for this case consists of a Cartesian grid for the square [−2, 2]2

with 61×61 grid points, and an annular grid centered at the origin with inner radius 1
2 ,

outer radius 3
4 and containing 81×5 grid points. The grids G2 and G4 are, respectively,

two and four times finer in each direction. PEC boundary conditions are taken on all
boundaries. The results in the table show that the solution is converging at a rate
close to 4 in the maximum norm. The non-dimensionalized divergence in E, defined
as δE = ‖∇ · E‖∞/‖∇E‖∞, is small and also converging at a rate close to 4. The
convergence rate σ was estimated by assuming an error of the form E = Chσ and
making a least squares fit for σ to the equation log(E) = σ log(h) + log(C).

Table (2) shows convergence results for solutions computed on a sphere in a box
domain. The coarse grid, G1, in this case consists of three grids. A Cartesian grid
covers the cube [−2, 2]3 with 413 grid points. The sphere of radius 1

2 is covered with
two overlapping orthographic patches, each with 33 × 33 × 13 grid points. The grids
G2 and G4 are, respectively, two and four times finer in each direction. The fine
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grid ‖eEx‖∞ ‖eEy‖∞ ‖eHz‖∞ δE
G1 9.1e−5 6.4e−5 1.3e−4 1.7e−4
G2 4.2e−6 4.5e−6 8.1e−6 1.1e−5
G4 2.2e−7 2.9e−7 5.1e−7 7.8e−7

rate σ 4.40 3.93 4.02 3.94
Table 1

Convergence rates for a two-dimensional cylinder in a channel grid. The maximum errors in
Ex, Ey, Hz and δE = ‖∇ · E‖∞/‖∇E‖∞ are shown at t = 1. for a trigonometric exact solution.
The estimated convergence rate, E ∝ hσ, is also indicated.

grid G4 has about 6.4 million grid points. PEC boundary conditions are taken on
all boundaries. The results in the table show the maximum errors and estimated
convergence rates. The convergence rates for the errors in E are close to 4. The
convergence rate for δE is approximately 3.5 which is still reasonable considering that
this quantity is derived from derivatives of the computed variables.

grid ‖eEx‖∞ ‖eEy‖∞ ‖eEz‖∞ δE
G1 1.1e−3 6.0e−4 1.4e−3 3.0e−3
G2 4.8e−5 1.9e−5 6.0e−5 2.1e−4
G4 3.7e−6 1.6e−6 4.6e−6 2.4e−5

rate σ 4.12 4.26 4.11 3.47
Table 2

Convergence rates for a three dimensional sphere in a box domain. The maximum errors in
Ex, Ey, Ez and the non-dimensionalized divergence δE are shown at t = 1. for a trigonometric
exact solution. The estimated convergence rate, E ∝ hσ, is also indicated.

Ex Ey

Fig. 7. The computed solution for the eigenmode (n, p, k) = (2, 3, 3) of a cylindrical cavity at
t = 1. The electric field components Ex and Ey are shown. The block boundaries of the component
grids are also shown.

10.2. Eigenfunctions of a cylindrical cavity. The eigenfunctions of Maxwell’s
equations for a three-dimensional cylindrical cavity can be used to test the accuracy
of the numerical scheme. Consider a cylindrical cavity, C(d) of length d, and radius
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1, C(d) = {x | x2
1 + x2

2 < 1 , 0 < x3 < d}. The eigenfunctions of the domain C(d) are

Ex
p,n,k(r, θ, z, t) = − (kπ/d)

λ2
p,n

{
Ap,n cos(θ) +Bp,n sin(θ)

}
sin(kπz/d) cos(ωp,nt),

Ey
p,n,k(r, θ, z, t) = − (kπ/d)

λ2
p,n

{
Ap,n sin(θ) −Bp,n cos(θ)

}
sin(kπz/d) cos(ωp,nt),

Ez
p,n,k(r, θ, z, t) = Jn(λp,nr) cos(nθ) cos(kπz/d) cos(ωp,nt),

Ap,n = λp,nJ
′
n(λp,nr) cos(nθ), Bp,n =

n

r
Jn(λp,nr) sin(nθ),

n = 0, 1, 2, 3, . . . , p = 1, 2, 3, . . . , k = 1, 2, 3, . . .

where λp,n are the zeros of the Bessel function, Jn(λp,n) = 0, and the values of

frequencies in time are ωp,n,k =
√

(kπ
d )2 + λ2

p,n.

grid ‖eEx‖∞ ‖eEy‖∞ ‖eEz‖∞ δE
G1 2.5e−2 2.5e−2 1.2e−1 1.1e−1
G2 1.4e−3 1.4e−3 7.5e−3 4.2e−3
G4 1.1e−4 1.1e−4 5.1e−4 4.9e−4
G8 7.4e−6 7.4e−6 3.3e−5 3.5e−5

rate σ 3.89 3.89 3.94 3.78
Table 3

Maximum errors at t = 1 and estimated convergence rate in computing eigen-mode (2, 3, 3) of
a three-dimensional cylindrical cavity.

The three-dimensional vector wave equation for E is solved in the cylindrical
cavity. The coarse grid, G1, for this region consists of a cylindrical shell of inner
radius 4

10 and outer radius 1 with 7 points in the radial direction, 53 points in the
circumferential direction, and 21 points in the axial direction. The refined grids G2, G4

and G8 increase the grid resolution by a factor of 2 in each case. The radial width of the
cylindrical grid is reduced as the mesh spacing is refined so that the number of points
in the radial direction on the cylindrical grid is nearly constant. All boundaries are
taken as PEC boundaries. The initial conditions are taken to be the exact solution
at times t = 0 and t = −∆t. The solution is integrated to time t = 1. Table 3
present convergence results for computing the eigenfunction with (n, p, k) = (2, 3, 3).
The maximum errors in the solution and the maximum value of δE are given. The
estimated convergence rates are close to 4, as to be expected for the fourth-order
approximation. Figure 7 shows the computed solution at time t = 1 for this mode
(n, p, k) = (2, 3, 3).

10.3. Scattering by a PEC cylinder. The scattering of a plane wave by a
two-dimensional metallic cylinder of radius a is considered. For an incident field

EI
x = 0 , EI

y = −
√
µ

ε
ei(kx−ωt), HI

z = ẑei(kx−ωt),

the scattered field for Hz (from which the electric field can be easily determined) is
given by HS

z (x, t) = Re(HS(x, ω)e−iωt) where the complex valued HS is given by [39],

HS = −
∞∑

n=0

εni
n J ′

n(ka)

H
(1)′
n (ka)

H(1)
n (kr) cos(nθ) .

Here (r, θ) are the usual polar coordinates variables, Jn and Yn are the Bessel functions

of first and second kind, H
(1)
n (z) = Jn + iYn is the Hankel function of the first kind

and ε0 = 1, εn = 2, n = 1, 2, . . .. The known incident field can be subtracted out,
leaving the solution to the scattered field, ES and HS

z , to be determined. The initial
conditions for t = −∆t and t = 0 are taken as the exact solution for the scattered field.
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EX Ey

Ex Ey

Fig. 8. Scattering of a plane wave by a conducting cylinder of radius a. Top: scattered field
Ex, Ey and Hz for ka = π Bottom: total field Ex, Ey for ka = 4π.

A PEC boundary condition is imposed on the cylinder. This boundary condition is
adjusted to account for the removal of the incident field. Since E = EI +ES it follows
that n×ES = −n×EI on the PEC boundary. To avoid issues with far-field boundary
conditions, the exact solution is imposed on the outer boundaries of the domain. The
solution is integrated to time t = 3.

The coarse grid, G1, for the computational domain consists of a Cartesian grid
for the square [−2, 2]2 with 121× 121 grid points and an annular grid centered at the
origin with inner radius a = 1

2 , outer radius 3
4 and with 161× 9 grid points. Grids G2

and G4 are refined by factors of 2 and 4 in each direction compared to G1.
Table 4 presents the maximum errors and estimated convergence rates for the

scattering by a incident wave with k = 2π (ka = π). The results in the table indicate
that the E and Hz fields are converging at rates close to 4. Figure 8 shows the solution
for two different incident wave numbers, ka = π and ka = 4π.

grid ‖eEx‖∞ ‖eEy‖∞ ‖eHz‖∞ δE
G1 4.0e−4 6.0e−4 1.3e−4 7.8e−4
G2 2.7e−5 4.1e−5 8.3e−6 6.3e−5
G4 1.8e−6 2.7e−6 5.2e−7 4.5e−6

rate σ 3.93 3.91 4.01 3.74
Table 4

Maximum errors in the scattered field for the scattering of a plane wave by a two-dimensional
PEC cylinder with ka = π. The maximum errors in Ex, Ey and Hz are given at t = 3 along with
the estimated convergence rate. δE is a non-dimensionalized divergence.
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Ex Ey

Fig. 9. Scattering of a plane wave by a perfectly conducting sphere. The scattered fields for Ex

and Ey are shown.

10.4. Scattering by a PEC sphere. The three-dimensional computation of
the scattering of a plane wave by a sphere of radius a is considered in this section. For

an incident plane wave traveling in the x-direction, EI =
(
ei(kx−ωt), 0, 0

)
, the total

field in spherical polar coordinates (r, θ, φ) is given by the series expansion [39]

Er =
i cos(φ)

(kr)2

∞∑

n=1

(−i)n(2n+ 1)
[
ψn(kr) − bnζ

(1)
n (kr)

]
P 1

n(cos(θ)) e−iωt,(10.3)

Eθ =
cos(φ)

kr

∞∑

n=1

(−i)n 2n+ 1

n(n+ 1)

[
An

P 1
n(cos(θ))

sin(θ)
+ iBn∂θP

1
n(cos(θ))

]
e−iωt,(10.4)

Eφ = − sin(φ)

kr

∞∑

n=1

(−i)n 2n+ 1

n(n+ 1)

[
An∂θP

1
n(cos(θ)) + iBn

P 1
n(cos(θ))

sin(θ)

]
e−iωt,(10.5)

where P 1
n are the Legendre polynomials and

An = ψn(kr) − anζ
(1)
n (kr) , Bn = ψ′

n(kr) − bnζ
(1)′

n (kr),

jn(z) =

√
π

2z
Jn+1/2(z), h(1)

n (z) =

√
π

2z
Hn+1/2(z),

ψ(z) = zjn(z), ζ(1)
n (z) = zh(1)

n (z), an =
ψn(ka)

ζ
(1)
n (ka)

, bn =
ψ′

n(ka)

ζ
(1)′
n (ka)

.

The computed solution corresponds to the real part of equations (10.3-10.5).
As for the case of scattering of a plane wave by a cylinder, the known incident

field can be subtracted out, leaving the solution to the scattered field, ES to be
determined. A PEC boundary condition is imposed on the surface of the sphere,
taking into account the incident field that has been removed. The initial conditions
are taken as the exact solution for the scattered field at times t = −∆t and t = 0.
The exact solution is imposed on the outer boundaries of the domain. The solution
is integrated to time t = 3. The grids, G1, G2 and G4 used for the sphere in a box
are the same as those described in section 10.1. Table 5 presents the maximum errors
and estimated convergence rates. The computed values of E are converging at rates
close to 4. Figure 9 shows the scattered field for an incident wave with ka = π.

10.5. Scattering of a plane wave by a dielectric cylinder. The two-dimensional
computation of a plane wave hitting a dielectric (insulating) cylindrical disk possess-
ing different material properties is used to test the accuracy of the material interface
conditions presented in section 7. Consider a plane wave that is incident upon a
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grid ‖eEx‖∞ ‖eEy‖∞ ‖eEz‖∞ δE
G1 1.3e−2 8.1e−3 6.7e−3 3.9e−3
G2 9.3e−4 5.8e−4 4.8e−4 4.2e−4
G4 6.2e−5 3.9e−5 3.2e−5 5.4e−5
rate σ 3.86 3.86 3.85 3.09

Table 5

The maximum errors at t = 3 for the computation of a plane wave scattering from a perfectly
conducting sphere.

Ex Ey

Hz Grid closeup

Fig. 10. Scattering of a plane wave by a dielectric cylinder for ka = 4π. The field components
Ex, Ey and Hz are shown for the solution computed on grid G4. A closeup of the grid G2 near the
interface is shown.

dielectric cylinder of radius a,

EI
x = 0 , EI

y =
ω

k
ei(kx−ωt) , HI

z = ei(kx−ωt) .

Let εi be the electric permittivity for the region interior to the cylinder, εo the electric
permittivity for the region outside the cylinder and m =

√
εi/εo = co/ci the relative

index of refraction for the dielectric. (The magnetic permeability µ is assumed to
be the same in both materials). The solution for the magnetic field in terms of the
incident, scattered field and dielectric field is of the form (see for example Balanis [2]
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or van de Hulst [39]),

HI
z =

∞∑

n=−∞
inJn(kr)einθ e−iωt, (incident plane wave),(10.6)

HS
z =

∞∑

n=−∞
inanHn(kr)einθ e−iωt, (scattered field for r > a),(10.7)

HD
z =

∞∑

n=−∞
inbnJn(mkr)einθ e−iωt, (dielectric field for r < a),(10.8)

where Hn = H
(2)
n = Jn − iYn is the Hankel function of the second kind. Imposing

the interface jump conditions [Hz] = 0 and [(Hz)r/ε] = 0 at r = a determines the
coefficients an and bn

an =
[
Jn(ka) J ′

n(mka) −mJ ′
n(ka) Jn(mka)

]
/dn,

bn = m
[
Jn(ka) H ′

n(ka) − J ′
n(ka) Hn(ka)

]
/dn,

dn = mH ′
n(ka) Jn(mka) −Hn(ka) J ′

n(mka) .

The computed solution corresponds to the real part of equations (10.6-10.8). A closeup
of the grid used in this computation is shown in Figure 10. The coarse grid, G1, for
this domain consists of four component grids. A Cartesian grid covers the domain
[−1, 1]2 with 81 × 81 grid points. An annular grid of inner radius a = 1

2 , radial
width .0875 and and 102 × 6 grid points covers the region immediately adjacent and
exterior to the circle of radius 1

2 , centered at the origin. A second annular grid with
the same radial width and grid spacing covers the region just inside the circle and a
second Cartesian grid lies in the central region. The refined versions of the grids are
G2 and G4. The width of the annular grids are decreased by the same factor of 2 as
the grids are refined so that there remain 6 grid points in the radial direction. The
initial conditions at t = 0 and t = −∆t are taken as the exact solution. The boundary
condition on the outer boundaries is also taken as the exact solution.

Table 6 shows convergence results for the scattering of a plane wave by the di-
electric cylinder for an incident wave number of ka = 4π. The fourth-order accuracy
of the method is evident. The solution is shown in Figure 10.

grid ‖eEx‖∞ ‖eEy‖∞ ‖eHz‖∞ δE
G1 1.4e−1 2.9e−1 3.0e−1 6.7e−2
G2 1.0e−2 2.1e−2 2.2e−2 4.5e−3
G4 6.8e−4 1.4e−3 1.4e−3 2.9e−4

rate σ 3.86 3.87 3.88 3.92
Table 6

Maximum errors at t = 1 in computing the scattering of a plane wave by a dielectric cylinder.
The incident wave number was ka = 4π,with ε = 1/4 inside the cylinder and ε = 1 in the region
exterior to the cylinder.

10.6. Serial performance and memory usage. The performance of the mx

solver on two problems, one two-dimensional and one three-dimensional, is given in
table 7. The two-dimensional problem is for a circle in a channel grid, similar to the
grids used in section 10.3. The three-dimensional problem considered the computation
in the pill-pox geometry shown in Figure 11. The table indicates the amount of time
that is spent in various parts of the code. In the two-dimensional case, close to 70%
of the time is spent in the Fortran kernel that advances the solution on the interior
points of the Cartesian grid. Advancing the solution on the curvilinear grids takes
about 14% while applying the boundary conditions on all grids takes about 11%.
These results show that the overall performance of the code is approaching that of
a purely Cartesian grid solver, provided a sufficiently high percentage of the grids
points are Cartesian grid points.
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In three-dimensions, the advancement of the curvilinear grids takes the most
time at about 48% with the Cartesian grids taking 28% and boundary conditions and
interpolation taking a total of about 22%. In three-dimensions the cost of advancing
the curvilinear grid with a fourth-order approximation is on the order of 10 times
slower per grid point than for a Cartesian grid. As the grids are refined the percentage
of Cartesian grid points will increase since the number of Cartesian grid points scales
like N3 while the number of curvilinear grids points grows like N 2 (assuming that the
curvilinear boundary fitted grids retain a fixed number of grid points in the normal
direction as the grids are refined). Thus for sufficiently fine grids in three-dimensions
it can be expected that the time will be dominated by the work done on Cartesian
grids.

2D cylinder 3D pill-box
s/step % s/step %

advance Cartesian grids 1.24 71.4 4.23 28.2
advance curvilinear grids .242 14.0 7.18 47.8

boundary conditions .184 10.6 2.23 14.8
interpolation .008 0.46 1.01 6.8

other .056 3.4 0.35 2.4
total 1.73 100 15.0 100

Table 7

CPU time (in seconds) per step for various parts of the code and their percentage of the total
CPU time per step. Results for the two-dimensional cylinder in a channel problem (3.8 million grid
points) are given in the two left columns. Results for the three-dimensional pill-box problem (10.2
million grid points) are given in the two right-most columns. Computations were performed on a
desktop with a 2.2 GHz Zeon processor.

Table 8 gives the computer memory usage of the mx code for solving Maxwell’s
equations, to fourth-order accuracy, on the three-dimensional pill-box example of
Figure 11. The table indicates the amount of memory required in MBytes for a double
precision (64 bit) computation and the number of double precision floating point
numbers required per grid point, denoted by reals/point. The number of reals/point
for this computation was about 12.6. Only the E field was computed in this case.
About 18% of the memory was dedicated to the storage of the overlapping grid (grid
metrics, masks etc.). To put these numbers in context, note that if the Cartesian
grids were treated as general curvilinear grids then the storage of the Jacobian matrix
∂x/∂r on the entire grid would itself require 9 reals/point. The mx solver is therefore
seen to be quite memory efficient.

Memory Usage, Pill-box Problem
Mbytes reals/pt %

Overlapping grid 175. 2.3 17.8
Grid functions 779. 10.0 79.4
Other 26. 0.3 2.8
Total 980. 12.6 100.0

Table 8

Memory usage for the three-dimensional pill-box problem solved in double precision with the
fourth-order accurate approximation. The grid for this problem contained about 10.2 million grid
points with about 4.2e5 interpolation points. The number of double precision floating point numbers
required per grid point was about 12.6 (reals/pt). About 17.8% of the memory was dedicated to the
storage of the overlapping grid (grid metrics, masks etc.).

11. Conclusions. A scheme has been presented for the solution of the time-
dependent Maxwell equations in complex geometries. The approach uses overlapping
grids with a typical grid consisting of one or more background Cartesian grids overlap-
ping body fitted curvilinear grids. Maxwell’s equations are solved as a second-order
vector wave equation. A three-level time stepping scheme is used that can be used
to generate methods of order 2, 4, 6, .... High-order accurate symmetric finite differ-
ence approximations to the generalized Laplace operator have been developed. These
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Pill-box Grid

Ey at t = .4 Ey at t = .8

Fig. 11. Propagation of a pulse in a pill-box cavity. Top left: the pill-box geometry. Top-right:
the overlapping grid for the geometry (coarse grid version). Bottom: the electric field component
Ey at two times. Contours of the field are plotted on planes that cut through the computational
domain. The block-boundaries of the the grids are shown for reference.

approximations are symmetric on arbitrary logically rectangular curvilinear grids.
Implementations of these operators in two- and three-dimensions for orders 2, 4, 6
and 8 were shown to give energy preserving results when solving Maxwell’s equations
on a square and a box with randomly perturbed grid points. High-order accurate
centered boundary conditions for perfect electrical conductor (PEC) boundaries have
been devised. High-order accurate centered boundary conditions were also developed
for material interfaces that separate regions with constant values of the material prop-
erties. The interfaces were represented with overlapping grids, using boundary fitted
grids on each side of the interface. These centered boundary conditions are based
on compatibility conditions derived from the governing equations. The stability and
accuracy of the fourth-order accurate PEC approximations were analyzed for a model
problem on a periodic strip. The stability of the material interface conditions were
analyzed for a one-dimensional model problem for a second- and fourth-order approx-
imation.

The approach has been implemented for computations on distributed memory
multi-processor machines. The arrays holding the solution variables and grid metrics
etc. on each component grid are distributed across one or more processors. An efficient
parallel interpolation scheme has been developed for communicating the interpolation
information where component grids overlap. Results from parallel computations show
that the algorithm scales well.

Numerical results for a number of two- and three-dimensional problems were used
to verify the accuracy of the fourth-order accurate version of the method. In all cases
the accuracy, in the maximum norm, was shown to be close to four. The method
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of analytic solutions was used to generate exact solutions to the forced equations
and verify the convergence rates. The eigenmodes of a three-dimensional cylindrical
cavity were computed and compared to the known eigenmodes. The scattering of
a plane wave by a two-dimensional cylinder and a three-dimensional sphere were
computed and compared to the exact series solutions. The material interface boundary
conditions were tested in two-dimensions for the scattering of a plane wave by a
dielectric cylinder, and compared to the exact solution. Statistics presented from some
representative computations showed that the method is very efficient in both speed
and memory, especially when the overlapping grid for the domain consists mainly of
Cartesian grid points. In that case the performance of the method can approach that
of a Cartesian grid solver.

The mx Maxwell solver has been implemented using the Overture framework.
Overture has support for adaptive mesh refinement, moving grids and fast multigrid
solvers for elliptic equations[20, 19]. These capabilities of Overture may be useful
for future extensions of the the Maxwell solver. Far-field boundary conditions for
boundaries of the computational domain that have been artificially truncated are
an important consideration. The treatment of these far-field boundary conditions in
conjunction with the present approach is left to a future publication.

Acknowledgments: The author would like to thank Professor Heinz-Otto Kreiss
for many useful discussions.
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