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AN EXACT EQUATION FOR THE FREE SURFACE OF A FLUID IN
A POROUS MEDIUM∗

WILLIAM ARTILES† AND ROBERTO A. KRAENKEL†

Abstract. We study the problem of the evolution of the free surface of a fluid in a saturated
porous medium, bounded from below by a flat impermeable bottom, and described by the Laplace
equation with moving-boundary conditions. By making use of a convenient conformal transformation,
we show that the solution to this problem is equivalent to the solution of the Laplace equation on
a fixed domain, with new variable coefficients, the boundary conditions. We use a kernel of the
Laplace equation which allows us to write the Dirichlet-to-Neumann operator, and in this way we
are able to find an exact differential-integral equation for the evolution of the free surface in one space
dimension. Although not amenable to direct analytical solutions, this equation turns out to allow
an easy numerical implementation. We give an explicit illustrative case at the end of the article.
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1. Introduction. In this work we shall address a conceptually simple, yet until
now not fully solved, question: given a fluid totally contained in a homogeneous,
saturated, porous medium, bounded from below by a flat impermeable bottom and
with a free deformable surface above, write down the evolution equation for the free
surface in the case where the fluid can be considered two-dimensional and unbounded
in the horizontal direction.

This is a classical problem. It is mathematically expressed by the Laplace equa-
tion in two dimensions, with boundary conditions on an unknown, time-dependent,
boundary. As will be clear from the equations in the next section, its solution corre-
sponds to the determination of a Dirichlet-to-Neumann operator. The usual way to
tackle it is by a perturbative approach. Small parameters are introduced, measuring
the relative amplitude of the motion and the longness of the perturbation:

α =
a

h0
, β =

(
h0

λ

)2

,(1.1)

where a is the amplitude of the surface displacement, h0 is the unperturbed depth,
and λ is the typical wavelength of the perturbation. When β � 1 we have the
Dupuit approximation, corresponding to the physical assumption of hydrostatic mo-
tion. Its use, together with the Darcy law, leads through an asymptotic expansion to
the Boussinesq equation for the total thickness of the fluid [1], which in convenient
nondimensional variables (see below) reads simply

ht = (hxh)x.(1.2)
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620 WILLIAM ARTILES AND ROBERTO A. KRAENKEL

Equation (1.2) has been widely studied, not only in the context of porous media
dynamics, but in such areas as high temperature gas dynamics [2] or convective in-
stabilities [3]. Although not an integrable equation, its long-time behavior is known,
being dominated by the self-similar solution, for localized initial data [4]. These self-
similar solutions exhibit shocks, that is, propagating regions where the first derivative
is singular. One speaks of diffusive waves to characterize these solutions.

Extensions of the Boussinesq equation have been proposed, in the same perturba-
tion theoretic spirit, by several authors, encompassing higher order expansions in the
longness parameter [5, 6, 7] together with a small α [8]. Still other works introduce a
new perturbative parameter, the steepness α

√
β [9]. For localized initial conditions,

the above-mentioned shocks become smoothed out, and we have propagating fronts.
A great analogy exists between the present problem and the determination of the

evolution of a free surface of an inviscid fluid, the water-wave problem with the same
two-dimensional geometry. Again, one studies the two-dimensional Laplace equation
with a free boundary, but with different boundary conditions, and the determina-
tion of the evolution of the free surface is again equivalent to the determination of
a Dirichlet-to-Neumann operator. Perturbative expansions have been widely used,
dating back to the nineteenth century [10]. The same parameters α and β as above
come into play. Assuming α � 1 and β � 1 with O(α) ≈ O(β) results in the asymp-
totic theory named long waves in shallow water and described by the Boussinesq
system of equations, or the Benney–Luke equations [11], or the Korteweg–de Vries
equation (for waves in a given direction) and its asymptotic equivalents, like the
Kaup–Boussinesq [12] or the Benjamin–Bona–Mahoney–Peregrine equations [13, 14].
Alternatively, one can also directly expand the Dirichlet-to-Neumann operator in a
Fourier series (due to a result on the analyticity of the Dirichlet-to-Neumann operator
given in [15]), leading to numerically efficient integration schemes [16, 17]. So-called
fully dispersive waves, where no assumption on β is made, have been obtained by
making use of properties of harmonic functions, which is natural in the context of the
two-dimensional Laplace equation, in [18]. Extensions to waves over variable topogra-
phy have been obtained in [19] by using results on an analytical representation of the
Dirichlet-to-Neumann operator given in [20]. All these results explore the smallness
of one or two parameters in order to obtain an approximate expression for evolution
of the free surface. On a different path, an important nonperturbative result was
obtained in [21], where an exact integral-differential equation for the evolution of the
free surface was obtained after the introduction of convenient conformal mappings.
This equation was numerically studied by an FFT pseudospectral method in [22].

In the present work we will present an exact integral-differential equation for the
evolution of a free surface in a porous medium which is analogous to the results ob-
tained in [21, 22] for the water-wave problem, although we will follow some different
steps from these papers. We will take advantage of a conformal map, mapping the
region filled with fluid to a straight strip, thus transforming the free surface problem
to a fixed domain problem for the Laplace equation, but with transformed bound-
ary conditions, which, however, will be explicitly solvable. Although not promptly
amenable to analytical calculations, the equation will lend itself to the implementation
of an efficient numerical method.

The study of free surface dynamics in a porous medium finds its main applications
in the investigations of groundwater oscillations in unconfined aquifers in coastal re-
gions. In such regions, the fluctuations of the sea surface, in the form of either surface
waves or tidal oscillations, induce watertable oscillations. These oscillations, in turn,
affect the environmental dynamics in the region. Many works have addressed this
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FREE SURFACE OF A POROUS MEDIUM 621

question [5, 6, 7, 8, 9, 23] on the theoretical side, providing equations to be used in
larger integrated models for coastal environments. In particular, we should mention
the effect caused by the periodic, tidal-induced, variation of the sea level, which is to
induce a watertable over height with respect to the mean sea level. Our numerical
calculations at the end of this article will illustrate this point.

2. Governing equations. The formulation of the problem is standard and can
be found in textbooks [1, 24]. We place ourselves in a two-dimensional plane geometry.
Let us call y the vertical axis, defined by gravity’s direction, and x the perpendicular,
horizontal, direction. Consider a fluid filling a porous medium, lying over a flat
impermeable bottom, up to a total height limited by a free surface given by a curve
described by y = h(x). The relevant dynamical variable is the piezometric head
Φ(x, y, t), defined as

Φ =
P

γ
+ y,

where P is the pressure and γ = ρg the specific weight. We assume Darcy’s law;
that is, we suppose that the seepage velocity is proportional to the gradient of the
piezometric head, i.e,

u = −K∇φ,

where K is the permeability of the medium. Darcy’s law is valid for the situation we
have in mind, which is the flow of water percolating in rocks and soils. Theoretically it
can be obtained from Stokes flow together with asymptotic expansions in a parameter
measuring the ratio of microscopic (pores) length scales to macroscopic ones. Non-
Darcian effects would typically arise if the flow in pores became turbulent (e.g., in
high-rate gas wells).

Supposing the validity of Darcy’s law and taking the flow as incompressible, we
come to our dynamical equation

Φxx + Φyy = 0, 0 < y < h(x, t),(2.1)

with the boundary conditions at the free surface given by

Φ = h− h0 at y = h(x, t),(2.2)

ht −
K

n e
Φxhx +

K

n e
Φy = 0 at y = h(x, t),(2.3)

where ne is the effective porosity and the displacement surface h−h0 is an integrable
function. At the bottom, we have a Neumann condition:

Φy = 0, y = 0.(2.4)

The problem is posed with an initial condition for the free surface, h(x, 0) = ϕ(x).
The reader will appreciate here that the above equations are directly connected to
the Dirichlet-to-Neumann operator. In rescaled variables, (2.3) says that the time-
derivative of h(x, t) is proportional to the normal derivative of Φ(x, y, t) at the surface
y = h(x, t). We have thus the Laplace equation with a Dirichlet condition at the free
boundary, (2.2) (in terms of the unknown function h(x, t)), and we have to find the
normal derivative of the solution at this boundary (again in terms of h(x, t)) to insert
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622 WILLIAM ARTILES AND ROBERTO A. KRAENKEL

it into (2.4), implying an evolution equation for the free surface, h(x, t). Therefore,
the solution to our problem goes through a Dirichlet-to-Neumann operator. We will,
however, avoid explicitly introducing it here, for the sake of simplicity and as we would
not really gain much in doing so. Let us also point out here that the main difference
between the equations governing the classical water-wave problem and those that
govern the porous medium problem under consideration can be seen in (2.2), which
in the last case is much simpler than in the former case, where it involves time-
derivatives and nonlinear terms.

Our strategy to broach the problem will be the following: (i) first introduce
nondimensional variables; (ii) next, define a conformal transformation from the strip
�× (0, h(x)) to �× (0, μ), where μ is a constant to be defined below; (iii) this trans-
formation eliminates the free-boundary problem, replacing it by a Laplace equation
with new boundary conditions, involving the Jacobian of the transformation; (iv) we
then solve the Laplace equation, with mixed Neumann-Dirichlet conditions, in terms
of the unknown function describing the free surface, resulting in an equation for this
surface, in conformal coordinates; (v) once this equation is obtained, we will develop
an asymptotic analysis in a parameter measuring the longness of the wave with re-
spect to the depth and obtain classical results on the problem; (iv) we close the paper
with some numerical results on the full equations for the free surface.

3. Nondimensional equations and conformal transformation. We first
write (2.1)–(2.4) in a nondimensional form. To do so, we introduce the following
nondimensional variables:

x = λ x′, y = λ y′, h = h0h
′(x′, t′),

Φ = h0Φ
′, t =

ne

K

λ2

h0
t′,

where λ is the typical wavelength of the free-surface perturbation and h0 is the undis-
turbed depth of the fluid. In these new variables, we come to the following system of
equations:

ΔΦ = 0, 0 < y < μh(x, t),(3.1)

Φ = h− 1, y = μh(x, t),(3.2)

0 = ht − Φxhx +
1

μ
Φy, y = μh(x, t),(3.3)

Φy = 0, y = 0,(3.4)

where all primes have been omitted for notational convenience. A dimensionless pa-
rameter appears in these equations, μ = h0/λ. This would be the usual perturbative
parameter for long-wave asymptotics (Dupuit approximation), where μ � 1, meaning
that the wavelength is much larger than the depth. We will not make this approx-
imation from the beginning. Instead, we will obtain an exact equation for the free
surface and only then take μ � 1 in order to rederive previously known equations.

Further, we should note that we used a nondimensional variable so as to preserve
the Laplacian, a fact of which we will make good use in what follows.

The crucial step in our procedure is the introduction of a conformal mapping.
Consider a strip in the w-plane, w = ξ + iζ, given by � × [0, μ]. A mapping of this
strip to the undulated strip in the z-plane, z = x+ iy, given by �× [0, μh(x(ξ, μ), t)],
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FREE SURFACE OF A POROUS MEDIUM 623

is defined as a harmonic function, given as the solution of the Dirichlet problem

yξξ + yζζ = 0, 0 < y < μh(x(ξ, μ), t),(3.5)

y(ξ, μ) = μh(x(ξ, μ), t),(3.6)

y(ξ, 0) = 0(3.7)

if we suppose that we know the function x(ξ, μ) in the time t.
Time t plays the role of a parameter in these equations: for each t we have different

functions x(ξ, ζ) and y(ξ, ζ). Equations (3.5)–(3.7) can be solved explicitly. Indeed,
the solution is given by the imaginary part of

z(w) =
1

2

∫ ∞

−∞
tanh

[
π

2μ
(w − ξ′)

]
h(x(ξ′, μ), t)dξ′.(3.8)

Equation (3.5) is verified trivially, as well as (3.7). To show that (3.6) is also satisfied,
we first obtain explicitly the imaginary part of (3.8). This is easily done with the help
of the trigonometric identity

tanh

[
π

2μ
(w − ξ′)

]
sinh[πμ (ξ − ξ′)] + i sin[πμζ]

cosh[πμ (ξ − ξ′)] + cos[πμζ]
,(3.9)

which implies that

y(w) =
1

2

∫
�

sin[πμζ]h(ξ′, t)

cosh[πμ (ξ − ξ′)] + cos[πμζ]
dξ′.(3.10)

We now use the fact that the convolution between two functions is equal to the inverse
Fourier transform of the product of their Fourier transform, F−1[F(f)�F(g)] = f �g,
and obtain that, after some algebra,

y(w) = μ

∫
�

sinh[2πkζ]

sinh[2πkμ]
F [h]e2πiκξdκ

= μ

∫
�

sinh[2πkζ]

sinh[2πkμ]
F [h− 1]e2πiκξdκ + ζ.

(3.11)

Evaluated at ζ = μ, (3.11) gives (3.6) immediately. Therefore, we now have trans-
formed our physical space, moving-boundary, domain to a fixed one through a time-
dependent conformal mapping which is explicitly given by either (3.10) or (3.11).

4. Transformed equations and their solution: Free-surface evolution.
Although the conformal transformation introduced in the last section leaves the
Laplacian in (3.1) invariant, this is not so for the boundary conditions. In the
new coordinates (ξ, ζ) the system given by (3.1)–(3.4) takes, nevertheless, a sim-
ple and convenient form. If we use that, at the upper surface, y = μh(x(ξ, μ), t),
∂ζ = xξ (∂y − μhx∂x), which follows from the Cauchy–Riemann conditions, xξ = yζ
and xζ = −yξ and (3.6), we come to the transformed equations

ΔΦ = 0, 0 < ζ < μ,(4.1)

Φ = h− 1, ζ = μ,(4.2)

0 = ht +
Φζ

μxξ
, ζ = μ,(4.3)

Φζ = 0, ζ = 0.(4.4)
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624 WILLIAM ARTILES AND ROBERTO A. KRAENKEL

This is now a system of equations defined on a fixed domain, with a coordinate-
dependent coefficient in (4.3). The system of equations formed by (4.1), (4.2), (4.4)
may now be seen as a Laplace equation to be solved with a Neumann condition at
ζ = 0 and a Dirichlet condition at ζ = μ, where h − 1 is the prescribed boundary
value of Φ(ξ, ζ). A solution to this problem reads

Φ(ξ, ζ, t) =

∫ ∞

−∞
F [Φ(ξ, μ, t)]

cosh[2πκζ]

cosh[2πκμ]
e2πiκξdκ,(4.5)

where F [Φ](κ, μ, t) is the Fourier transform of the piezometric head Φ at the surface
ζ = μ, given in terms of h− 1.

Equation (4.5) solves (4.1), (4.2), (4.4). We may use it to obtain a relation between
Φζ and Φ at the surface (having thus implicitly constructed a Dirichlet-to-Neumann
operator):

Φζ(ξ, μ, t) =

∫ ∞

−∞
2πκ tanh[2πκμ]F [Φ] e2πiκξdκ(4.6)

=

∫ ∞

−∞
−i tanh[2πκμ]F [Φξ] e

2πiκξdκ ≡ T∂ξ[Φ],(4.7)

where T[−] is an integral operator defined by the above equation. It will be quite
useful in the numerical calculations. For the moment, it is introduced for notational
convenience. Inserting the above equation into (4.3) gives

ht +
1

μxξ
T∂x[h] = 0,(4.8)

where use was made of the fact that hξ = Φξ at ζ = μ. Equation (4.8) gives the time
evolution of the free surface in the conformal coordinates (ξ, ζ). We should, however,
note that xξ, which can be derived from (3.8), depends also on h(x, t), making (4.8)
nonlinear.

We can see the system formed by (3.8) and (4.8) as determining the time evolution
of the free surface exactly. Let us, however, write it in a more compact form. If we
note that the real part of (3.8) may be expressed as

x(ξ, ζ) = −iμ

∫ ∞

−∞

cosh[2πκζ]

sinh[2πκμ]
F [h]e2πiκξdκ

= −iμ

∫ ∞

−∞

cosh[2πκζ]

sinh[2πκμ]
F [h− 1]e2πiκξdκ + ξ,

(4.9)

where we again used (3.9) and the properties of the Fourier transform of the convo-
lution of two functions, we can obtain xξ in the limit ζ → μ:

xξ = μ

∫ ∞

−∞
2πκ coth[2πκμ]F [h]e2πiκξdκ(4.10)

or

xξ = −μT−1∂ξ[h].(4.11)

The evolution equation for the free surface is thus given in the conformal coordi-
nates by

ht =
1

μ2

T∂ξ[h]

T−1∂ξ[h]
= 0.(4.12)
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FREE SURFACE OF A POROUS MEDIUM 625

The above equation displays the time evolution of the free surface elegantly, although
one could object that it could be difficult to use it in actual analytical calculations.
We will, therefore, go further and show two distinct developments originating from
(4.12): asymptotics and numerics.

5. Long-wave asymptotics. The theory of long-wave perturbation for a fluid
in a porous medium is a classical subject, which has been extensively studied in many
different aspects. Here we will systematically rederive this approximation from the
exact equation (4.12), or equivalently, from (4.8), (4.11). It corresponds to the limit
μ � 1.

To proceed, we note first the identities

T∂ξ[h] =

∫ ∞

−∞
2πκ tanh[2πκμ]F [h] e2πiκξdκ = − tan(μ∂ξ)∂ξ[h],(5.1)

T−1∂ξ[h] = −
∫ ∞

−∞
2πκ coth[2πκμ]F [h]e2πiκξdκ = − cot(μ∂ξ)∂ξ[h],(5.2)

where the tan and cot are defined by their series. Equations (4.8), (4.11) become
respectively

μhtxξ − tan(μ∂ξ)∂ξ[h] = 0,(5.3)

xξ = μ cot(μ∂ξ)∂ξ[h].(5.4)

Introduce now expansions up to order μ2 of both equations. This implies

0 = htxξ − hξξ −
μ2

3
hξξξξ + · · · ,(5.5)

xξ = h− μ2

3
hξξ + · · · .(5.6)

The derivatives hξ may be rewritten iteratively as terms of hx in an asymptotic sense:

hξ = hxxξ = hxh− μ2

3
hxhξξ + O(μ4),(5.7)

and then

hξξ = (hxh)ξ −
μ2

3
(hxhξξ)ξ + O(μ4)(5.8)

= (hxh)xxξ −
μ2

3
(hxhξξ)xxξ + O(μ4),(5.9)

hξξξξ = (hξξξ)xxξ + O(μ2),(5.10)

from which we obtain, by substituting into (5.5), the following:

ht = (hxh)x − μ2

3
(hxhξξ)x +

μ2

3
(hξξξ)x + · · ·

= (hxh)x +
μ2

3
[−hxhξξ + hξξxxξ]x + · · ·

= (hxh)x +
μ2

3
[−2hxhξξ + hxhξξ + hξξxh]x + · · ·

D
ow

nl
oa

de
d 

01
/1

5/
14

 to
 1

86
.2

17
.2

34
.9

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



626 WILLIAM ARTILES AND ROBERTO A. KRAENKEL

= (hxh)x +
μ2

3
[−2hxhξξ + (hξξh)x]x + · · ·

= (hxh)x +
μ2

3
[−2hx(hxh)xh + ((hxh)xh

2)x]x + · · ·

= (hxh)x +
μ2

3
[−2hxh(hxh)x + (hxxh

3)x + (h2
xh

2)x]x + · · · .

Thus, to order μ2, we have the equation

ht = (hxh)x +
μ2

3
[hxxh

3]xx + · · · ,(5.11)

which had been derived in [7]. It is quite evident that we could consistently continue
the expansion to any desired order. Also, one notes that the approximation of small
amplitude fluctuations was not made, but could consistently be introduced, as long
as we previously state the order relations between μ2 and the order of magnitude of
the amplitude fluctuations. A further point here is to again mention the analogous
problem for water waves. Equation (5.11) shows us that the problem at hand is, phe-
nomenologically speaking, intrinsically diffusive. The first term in (5.11) represents a
nonlinear diffusion, as if the diffusion coefficient were proportional to h, and the next
terms are higher order and nonlinear diffusion ones. Water waves offer a comparison
if one exchanges diffusion for dispersion.

6. The linear problem. In the last section we saw that it is possible to obtain
a perturbative expansion in the wavelength parameter μ, giving rise to a nonlinear
partial differential equation, even in the lowest order. In this section we will explore
another possibility, which is to leave μ free, and obtain a new expansion based on the
smallness of the amplitude of the surface elevation. The corresponding lowest order
equation is a linear partial integro-differential equation, whose solution we will also
present.

Let us go back to (4.12), and let us write h = 1 + η, where η is the displacement
of the free surface from its undisturbed position. In the case where η � 1, as a first
approximation we can obtain a differential equation for η by noting that

ηt = − 1

μ

T[ηξ]

1 − μT−1[ηξ]

= − 1

μ
T[ηξ] − T[ηξ]T

−1[ηξ] + · · · ,
(6.1)

and thus that the lowest order linear equation reads

ηt = − 1

μ
T[ηξ].(6.2)

In order to give the solution of (6.2) in a compact way, define the dispersion
relation as

wk =
2πk

μ
tanh[2πkμ],(6.3)

and the function G(ξ, t) as the inverse Fourier transform of e−wkt,

G(ξ, t) =

∫
�
e−wkt e2πikξdk,(6.4)

where G satisfies limt→0 G(ξ, t) = δ(ξ).

D
ow

nl
oa

de
d 

01
/1

5/
14

 to
 1

86
.2

17
.2

34
.9

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



FREE SURFACE OF A POROUS MEDIUM 627

This allows us to write the solution of (6.2), for ξ ∈ �, as

η(ξ, t) =

∫
�
e−wktF [ϕ] e2πikξdk

=

∫
�
Gt(ξ − ξ′)ϕ(ξ′) dξ′,

(6.5)

where F [ϕ] is the Fourier transform of the initial free surface position η(ξ, 0) = ϕ(ξ).
In the case μ → 0 then wk = (2πk)2, Gt(ξ) is the Gaussian exponential, and the
solution for η is

η(ξ, t) =
1

2
√
πt

∫
�
e−

(ξ−ξ′)2
4t ϕ(ξ′) dξ′,(6.6)

a well-known formula for the small amplitude long-wave approximation. From the last
two sections, it is clear that (4.8) may be used as starting point for other perturbative
expansions involving relations between two perturbative parameters. As an example,
one can substitute h = 1 + η into (5.11), write η = εη with ε � 1, and have a
two-parameter asymptotic expansion.

7. Numerics. In this section we will briefly describe a pseudospectral numerical
method used to integrate (4.12) and display an example calculation for the classical
problem of the tide-induced over-height in unconfined aquifers.

A very important point is that we were able to reduce the dynamics of a bi-
dimensional boundary problem with a free surface to a one-dimensional problem given
by a differential-integral equation in an exact way. Although (4.12) is somewhat odd
for analytical calculations, it is quite convenient for numerical implementation. We
do not need tools like, for instance, boundary integral methods involving singular
operators. The Fourier-like transforms that appear in the integral operators are by
no means a problem, as they can be easily managed by FFTs, resulting in a method
with spectral accuracy. Let us now give a definite example of implementation of
the method. We shall solve (4.12) with a periodic boundary condition h(0, t) = 1 +
α sin(wt) at x = 0. This simulates the effect of ocean tides in contact with groundwater
in a coastal aquifer, through an idealized vertical beach. We take hx(L, t) = 0 when
L 
 h0. This last condition allows us to make a periodic extension to the interval 2L
by introducing an adjunct forced boundary condition as

h(0, t) = 1 + α sin(wt) and h(2L, t) = 1 + α sin(wt)

and, consequently, allowing the use of Fourier transform methods. In this model the
parameter α gives a measure of the nonlinearity of the problem. As initial condition
we take h(x, 0) = 1.

At each time step, the periodic functions (x, xξ, h) are expanded as discrete
Fourier series in ξ using the FFT, and the T-transform is computed in Fourier space.
For example, T[hξ] of a function can be found via FFT after multiplying the Fourier
coefficients of h by 2πκ tanh[2πκμ], as it follows from (4.7). In a similar way we may
compute T−1[hξ]. After evaluating nonlinear terms in physical space, we advance the
solution of (4.12) in time with a 4th order Runge–Kutta method.

We have worked with 516, 512, or 1024 spatial points. The spatial step size is
chosen in a range between 0.01 and 0.1. Usually we work with the time step Δt = 0.01.
We do not need a high-pass filter.
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Fig. 7.1. Different profiles for the free surface when t → ∞ and phase wt = 0, π
2
, π, 3π

2
.

In Figure 7.1 we plot the surface profile for distinct values of α and μ. The figure
presents the numerical solution for a combination of two values of α and three values
of μ when t → ∞, and for four values the phase wt = 0, π

2 , π,
3π
2 .

We see the free surface displacement decaying with the distance from the bound-
ary x = 0, while oscillating in both space and time. The decay rate is of the same
order of magnitude of the parameter μ, and the free surface elevation for large x is of
the order of α.

8. Conclusions. We have introduced a new differential-integral equation exactly
describing the evolution of a free surface of a fluid totally immersed in a saturated
porous medium and bounded from below by an impermeable bottom. Our equation,
(4.12), is a porous-media analogue of the exact equation found for water waves in [21]
and numerically studied in [22]. We have also shown that the asymptotic long-wave
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expansion for this equations leads to known equations [7, 8]. The numerical imple-
mentation of (4.12) is easy, and we have provided a simple example.

The method that we have used is based on properties of harmonic functions and
makes full use of a conformal transformation. Generalization to the case of an uneven
bottom may follow quite easily and will be the object of future work. This should
allow implementing calculations for more realistic cases of interaction of aquifers and
tides through sloping beaches. A less evident generalization would be the extension
of the results of this work for three-dimensional problems.
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