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Abstract. For a vector function coded without branches or loops, a code for the Jacobian
is generated by interpreting Griewank and Reese’s vertex elimination as Gaussian elimination and
implementing this as compact LU factorization. Tests on several platforms show such a code is
typically 4 to 20 times faster than that produced by tools such as Adifor, Tamc, or Tapenade, on
average significantly faster than vertex elimination code produced by the EliAD tool [Tadjouddine
et al., in Proceedings of ICCS (2), Lecture Notes in Comput. Sci. 2330, Springer, New York, 2002]
and can outperform a hand-coded Jacobian. The LU approach is promising, e.g., for CFD flux
functions that are central to assembling Jacobians in finite element or finite volume calculations
and, in general, for any inner-loop basic block whose Jacobian is crucial to an overall computation
involving derivatives.
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1. Introduction. Automatic differentiation (AD) is now a standard technology
for computing derivatives of a (vector) function f(x) defined by a computer code, such
as sensitivities with respect to design parameters, Jacobians for use in Newton and
related iterations, Taylor series generation, etc. This article is concerned with first
derivatives, i.e., with the Jacobian matrix J = J(x) = f ′(x) of f .

Especially for large industrial problems, the preferred approach is source-to-source
translation, where the code for f is preprocessed to produce Jacobian code, i.e., code
for f ′. With current compilers, such a code generally runs an order of magnitude
faster than the alternative of generating derivatives by operator overloading.

For functions defined by straight-line code, this paper shows that the vertex elim-
ination (VE) method of Griewank and Reese [9] is a form of Gaussian elimination
and sets it in the framework of sparse matrix factorization as described, e.g., in Duff,
Erisman, and Reid [5]. In the experiments presented here we have implemented it as
a compact LU factorization (usually named after Crout or Doolittle). Standard VE
implementations, e.g., [6], produce a code with many short statements, while the LU
style produces fewer, longer statements of inner-product form. Each affected entry in
the extended Jacobian is changed just once, with a statement cij = cij +

∑
k∈K cikckj

if updating an original local derivative or cij =
∑

k∈K cikckj if creating fill-in. The
structure of a LU-style Jacobian code makes it easy to do certain optimizations locally
that standard VE cannot do without a more global code analysis.

In the graph viewpoint, an entry cij labels the edge from vertex j to vertex i, K is
the set of vertices k such that there is a 2-edge path j → k → i, and each affected edge
j → i is updated/created by collapsing such paths into it. Researchers into vertex
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1660 JOHN D. PRYCE AND EMMANUEL M. TADJOUDDINE

elimination AD have mainly thought in terms of manipulating the computational
graph (Griewank [8] and Naumann [11]). They acknowledge the linear algebra but see
it as secondary. Our approach is hard to devise without taking a linear algebra view.

As with other sparse factorizations, the pivot order is important and is chosen
with the aim of controlling fill-in. Following Naumann’s work on VE, e.g., [12], we
have used in our tests the classic Markowitz local algorithm, Naumann’s vertex low-
est relative (VLR) variant of Markowitz, simple forward and reverse ordering, and
“preelimination” versions of these where all intermediate vertices in the computa-
tional graph (CG) that have a single successor are used first. Preelimination was
recommended by Naumann in [12], and in earlier tests of VE with the EliAD tool
[16, 17] it gave promising results.

The functions that originally interested us in this work were flux “kernels” for
finite element or finite volume calculations in CFD. These are at most a few hundred
lines of code, and typically a resulting Jacobian routine will be called hundreds of
thousands of times, or more, in a CFD calculation while assembling a large sparse
Jacobian from pieces. In such applications, algorithms for choosing the pivot order
are a negligible part of the overall cost, and we have not paid any attention to their
efficiency; our Markowitz-style methods are slow for large systems. From the sparse
matrix mainstream, work such as Amestoy, Li, and Ng [1], and references therein,
presents asymptotically faster Markowitz-like algorithms that would be useful if our
present work proves relevant to Jacobians of lengthy functions.

Our performance tests show that a code produced by LU methods usually ran
faster than other VE-style code produced by the EliAD tool; it was generally compa-
rable with hand coding and much faster than code from other tools such as Tapenade.

The material is structured as follows. Section 2 describes the standard approach
to VE, and the linear algebra viewpoint leading to the LU approach. Section 3 out-
lines our code generation method. Section 4 describes our performance comparisons
between Jacobian codes produced by various methods for a number of functions and
a number of platforms. Section 5 draws conclusions.

2. Vertex and edge elimination.

2.1. Code lists. The calculation of f will be described by a code list [8], equiv-
alent to static single-assignment form [4]. It is a sequence of equations

vi = ϕi(relevant previous vj)(2.1)

for i = 1, . . . , p + m. The ϕi are given elementary functions and “relevant previ-
ous vj” denotes those variables vj that are the actual arguments of ϕi—necessarily
all having j < i. Here, v1−n, . . . , v0 are aliases for f ’s input variables x1, . . . , xn,
while vp+1, . . . , vp+m are aliases for f ’s output variables y1, . . . , ym, and v1, . . . , vp are
intermediate variables. That is, there are n inputs, p intermediates, and m outputs.

A code list describes the values calculated by a single execution-trace through
the program code of f . This paper does not study how a Jacobian code for functions,
whose code contains branches and loops, may be generated. For standard VE this
has been implemented in EliAD; see [16].

2.2. A simple AD example. The sparse linear algebra view of computing a
Jacobian by AD will be illustrated by a simple function y = f(x) with three inputs
and two outputs. The left column of (2.2) below shows a code list for f , written
in Matlab-like notation. On the right the code list variables, written in normal
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AD JACOBIANS BY COMPACT LU 1661

mathematical notation, are shown as functions of the inputs x1, x2, and x3.

function [y1,y2] = f(x1,x2,x3)

v1 = x1*x2 v1 = x1x2

v2 = sin(v1) v2 = sin(x1x2)
v3 = 2*v2 v3 = 2 sin(x1x2)
v4 = v3-x1 v4 = 2 sin(x1x2) − x1

y1 = x3*v4 y1 = x3 (2 sin(x1x2) − x1)
y2 = 3*v4 y2 = 3 (2 sin(x1x2) − x1).

(2.2)

The inputs are x1, x2, and x3; the dependents are y1 and y2; and the inter-
mediates are v1, v2, v3, and v4. We wish to generate a code to calculate J =
∂(y1, y2)/∂(x1, x2, x3), comprising ∂y1/∂x1, ∂y1/∂x2, etc.

The basic linear relations of AD are obtained by differentiating line by line:

v1 = x1*x2 dv1 = x2 dx1 + x1 dx2

v2 = sin(v1) dv2 = cos(v1) dv1

v3 = 2*v2 dv3 = 2 dv2

v4 = v3-x1 dv4 = dv3 − dx1

y1 = x3*v4 dy1 = x3 dv4 + v4 dx3

y2 = 3*v4 dy2 = 3 dv4.

(2.3)

The d’s mean derivatives with respect to whatever parameters in which we are in-
terested. Eliminating intermediate dvk to get the dyi as linear combinations of the
dxj ,

dyi =
∑
j

Jij dxj ,

and one obtains J = [Jij ], the desired Jacobian matrix.
One way of computing J is by classical forward AD. Here, d means gradient

with respect to the input variables. In our example, d = (∂/∂x1, ∂/∂x2, ∂/∂x3). The
process is shown in (2.4) below.

Initialize with
dx1 = (1 0 0)
dx2 = (0 1 0)
dx3 = (0 0 1)

and continue
dv1 = x2 dx1 + x1 dx2 = (x2 x1 0)
dv2 = cos(v1) dv1 = (cos(v1)x2 cos(v1)x1 0)
dv3 = 2 dv2 = . . .
dv4 = dv3 − dx1 = . . .

ending with
dy1 = x3 dv4 + v4 dx3 = . . .
dy2 = 3 dv4 = . . .

(2.4)

(formulas for entries in the last four rows omitted). This of course is done numerically
at run time, not in the symbolic way suggested in (2.4). The process amounts to
eliminating the dvk by forward substitution.
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1662 JOHN D. PRYCE AND EMMANUEL M. TADJOUDDINE

2.3. A linear algebra viewpoint.
The equations in matrix form. The relations in (2.3) form a sparse linear system

n = 3 p = 4 m = 2⎡⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎦

x2 x1 0 −1 0 0 0 0 0

p=4 0 0 0 cos(v1) −1 0 0 0 0

0 0 0 0 2 −1 0 0 0

−1 0 0 0 0 1 −1 0 0

m=2 0 0 v4 0 0 0 x3 −1 0

0 0 0 0 0 0 3 0 −1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dx1

dx2

dx3

dv1

dv2

dv3

dv4

dy1

dy2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 0.(2.5)

The system illustrated by (2.5) may be written in general as

n p m[ ]
p B L− I 0
m R T −I

⎡⎣ dx
dv
dy

⎤⎦ = 0.(2.6)

This is part of the extended Jacobian [8, p. 22] of Griewank, namely, C0 − I, where
C0 is the square matrix

C0 =

n p m[ ]n 0 0 0
p B L 0
m R T 0

.

The nonzeros of C0 are the local derivatives cij of the code list. With rows and columns
indexed (1−n), (2−n), . . . , (p+m)—to match the aliased names for the input and
output variables—we have

cij =
∂ϕi

∂vj
, 1 ≤ i ≤ p+m, 1−n ≤ j ≤ p+m,(2.7)

where ϕi is regarded as a function of all the vj , taking cij as zero if vj is not one of
the variables on which ϕi depends.

The bottom right block of the matrix is shown as −I in (2.6). This is not so
when some output yk is used in the definition of another output yi. To eliminate such
cases, introduce an extra intermediate that is a copy of yk. We assume that this has
been done. Then all required data are contained in the (p+m) × (n+p) matrix

C =

n p[ ]
p B L̃
m R T

,(2.8)

where L̃ = L− I. Thus B holds the (local) derivatives of the intermediates w.r.t. the
inputs, and so on. Following C0’s numbering, the rows are numbered 1, . . . , p+m and
the columns 1−n, . . . , p, so the −1’s on the diagonal of L̃ are in positions (k, k), k =
1, . . . , p. Submatrix L is strictly lower triangular because each variable depends only
on previous ones. Thus L̃ is nonsingular, being triangular with a nonzero diagonal.
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The Jacobian J is a function purely of the entries of C. Solving (2.6) we find

dy = (R− T L̃−1B) dx, and thus J is given by

J = J(C) = R− T L̃−1B,(2.9)

the Schur complement of L̃ in C. This was noted in Griewank [8].
Vertex and edge elimination. Griewank and Reese’s presentation of vertex

elimination [9] and Naumann’s of forward and backward edge elimination [11, 12] are
in terms of the computational graph. A key feature of them is that they transform
the graph, equivalently C, by successive steps that keep J(C) invariant. This can be
seen as “obvious” because they transform the underlying linear equations in a way
that does not change the relation between the input and output variables. However,
it seems useful to give a matrix proof of it with Lemma 2.2 below.

From the linear algebra viewpoint, vertex and edge elimination are sequences of
row or column operations on C as follows. The simple row operation on C whereby
αi times row k is added to row i, followed by multiplying row k by αk �= 0, amounts
to premultiplying C by the (p+m) × (p+m) matrix that is the identity with its kth

column replaced by (α1, . . . , αn)
T
. A simple column operation on C postmultiplies C

by an (n+p) × (n+p) matrix with the transposed shape.
A forward (resp., backward) edge elimination step is such a row (column) opera-

tion that pivots in an intermediate row (column) with αk = 1 and only one other αi

(resp., αj) nonzero, its value chosen to zero the (i, k) (resp., (k, j)) entry of C.
A VE step can be described symmetrically by either a row or a column operation.

As a row operation it removes multiples of an intermediate row k (k = 1, . . . , p) of
C from other rows, to zero all of column k below the pivot. It is a standard step of
Gaussian elimination (GE) where the update cij = cij − cikckj/ckk can be simplified
because always ckk = −1:

cij = cij + cikckj for i with cik �= 0 and j with ckj �= 0;

cik = 0 for i > k;

all other entries of C unchanged.

⎫⎬⎭(2.10)

Regarded as a column operation, it does the same except that the second line reads
ckj = 0 for j < k. The k row and column are irrelevant to subsequent elimination
steps and may be ignored—or deleted, which makes the row and column versions have
identical effects.

A complete vertex elimination (CVE) consists of p steps (2.10), using all pivots
ckk = −1 (k = 1, . . . , p), in some order specified by the pivot order, a permutation
π = (π1, . . . , πn) of 1, . . . , p.

To justify that CVE thus defined is indeed equivalent to GE, whatever the pivot
order, we need to show that (i) no VE step alters any pivots from the value −1,

and (ii) the lower triangular structure is preserved. These follow because L̃ is lower
triangular, so line 1 of (2.10) only affects the block to the left of and below (k, k), i.e.,
i > k and j < k. The foregoing implies the following.

Proposition 2.1. CVE is equivalent to doing a symmetric permutation of the
intermediate rows and columns into pivot order (thus keeping the −1’s on the diagonal

of L̃) and then eliminating the intermediate variables by GE without interchanges.
Equivalence is in the sense that GE and CVE do identical arithmetic operations.

In inexact arithmetic, even the roundoff errors are the same.
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1664 JOHN D. PRYCE AND EMMANUEL M. TADJOUDDINE

2.4. An example elimination. For our example (2.2), the following traces the
effect of elimination in pivot order (3 2 1 4). Nonzeros with a known constant value are
shown by their value in a circle. Other nonzeros are marked •, except that a value just
created is marked ×+ if it updates an existing entry (thus requiring one multiplication
and one addition to compute) or × if it fills in a previously zero position (requiring
one multiplication only). The about-to-be-used pivot is shown in bold -1. The used
pivot rows and columns are blanked out.

[
B L̃
R T

]
=

x1 x2 x3 v1 v2 v3 v4⎡
⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎦

v1 • • 0 −1 0 0 0
v2 0 0 0 • −1 0 0
v3 0 0 0 0 ©2 −1 0
v4 ©-1 0 0 0 0 ©1 −1

y1 0 0 • 0 0 0 •
y2 0 0 0 0 0 0 ©3

.

Step 1: Subtract multiples of v3 row from rows below.

x1 x2 x3 v1 v2 v3 v4⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦

v1 • • 0 −1 0 0
v2 0 0 0 • −1 0
v3

v4 ©-1 0 0 0 ©2 −1
y1 0 0 • 0 0 •
y2 0 0 0 0 0 ©3

.

Step 2: Subtract multiples of v2 row from rows below.

x1 x2 x3 v1 v2 v3 v4⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦

v1 • • 0 −1 0
v2

v3

v4 ©-1 0 0 × −1
y1 0 0 • 0 •
y2 0 0 0 0 ©3

.

Step 3: Subtract multiples of v1 row from rows below.

x1 x2 x3 v1 v2 v3 v4⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦

v1

v2

v3

v4 ×+ × 0 −1
y1 0 0 • •
y2 0 0 0 ©3

.

Step 4: Subtract multiples of v4 row from rows below.

x1 x2 x3 v1 v2 v3 v4⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦

v1

v2

v3

v4

y1 × × •
y2 × × 0

.
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At the end J occupies the R block. The above sequence requires 1 addition and 7
multiplications: compare 9 additions and 21 multiplications by forward AD if done as
in (2.4) treating the dvi as full 3-vectors. This may seem an unfair comparison, but
even such a modern AD tool as Tapenade uses full rather than sparse calculation in
its “vector” mode, which is its most natural way to compute Jacobians.

2.5. VE preserves the Jacobian. Any product of simple row (resp., column)
operations that pivot in a row (column) belonging to an intermediate variable has a
matrix of the form

U =

p m[ ]
p W 0
m X I

,

⎛⎜⎜⎝resp., V =

n p[ ]
n I 0
p Y Z

⎞⎟⎟⎠ ,(2.11)

where W and Z are nonsingular. Direct calculation verifies the following, which is
actually a general property of Schur complements; see (2.9).

Lemma 2.2.

(i) Given C in (2.8), the Jacobian J(C) is unchanged by simple row (column)
operations on C that pivot in an intermediate row (column), i.e., by any
transformation C = UCV with U and V as in (2.11).

(ii) Hence, any sequence of such operations that reduces T L̃−1B to zero leaves
J(C) in the lower left block (the R block) of C.

A VE step, whether as a row or a column operation, satisfies the conditions of
Lemma 2.2. Any CVE reduces the T block to zero. Hence, by the lemma, at the end
J occupies the R block of C.

2.6. The LU approach. In the graph view, a VE step amounts to creating,
or updating, edges from one of vertex k’s predecessors to one of its successors and
then deleting vertex k. CVE is a sequence of atomic VE steps, each of which, by the
lemma, keeps J invariant. The LU approach cannot be interpreted as steps that keep
J invariant because the operations, though identical at the level of individual updates
cij = cij +cikckj , are in a different order. This may be why it has not been considered
by AD workers who are more comfortable with the graph view.

For what follows, we permute the intermediate variables to pivot order, swap the
first and second column blocks, and index the right-hand column block as is then
natural: p + 1, . . . , p + n instead of 1 − n, . . . , 0. This replaces C in (2.8) by

C∗ = (c∗ij) =

p n[ ]
p (PLPT − I) PB
m TPT R

=

p n[ ]
p L B
m T R

,(2.12)

say. Here P is the permutation matrix representing π. Matrix L is not lower triangular
in general, but the pivots remain on its main diagonal: c∗kk = −1 (k = 1, . . . , p). The
Jacobian is still the Schur complement of the p× p block, J = R− T L−1B.

Since CVE is a partial GE, it is equivalent to an LU factorization. This equiva-
lence, and various approaches to LU for sparse matrices, are discussed in [5, sections
3.5–7]. The discussion there is for square matrices but holds for the present case,
too. In the following algorithm the “partial” behavior, in the sense that elimination
is taken only as far as rows and columns 1 to p, is implemented by the upper bound
of the sum being min{i−1, j−1, p} instead of the usual min{i−1, j−1}.
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1666 JOHN D. PRYCE AND EMMANUEL M. TADJOUDDINE

Algorithm 2.1 (LU on C∗
).

For i = 2, . . . , p+m, j = 2, . . . , p+n, and i �= j, in a suitable order

set c∗ij = c∗ij +

min{i−1, j−1, p}∑
k=1

c∗ikc
∗
kj .

At the end, J is in the bottom right block of C∗.

The first row and column are unchanged. An order is “suitable” provided at each stage
those quantities required on the right-hand side are already computed. Alternative
orders and their memory access patterns are described in [5, section 3.7]. In our tests
we used a Crout order, which computes the (not already found) entries of the second
row and column, then of the third row and column, and so on.

The computational schemes we have tested are based on Algorithm 2.1. For
a given pivot order, the floating point operation counts (“op counts”) of the CVE,
GE, and LU methods are identical, given they exploit sparsity equally. When one
outperforms another it will be mainly due to the code making better use of registers
and cache. LU also allows some useful optimizations at code-generation time.

3. Tools used in the experiments. This section describes the tool used to
generate Jacobian code for the experiments in section 4 and also a tool for generating
“random functions.”

3.1. Jacobian code generation tool.
Summary. First, an example illustrates the kind of Jacobian code that is gener-

ated. The entries of C are represented by simple variables rather than array elements.
Our convention is that, e.g., the (v13 row, x5 column) entry is the variable cv13x5.

A complete procedure to calculate J at a given input x consists of three parts.
The first is the code of f , augmented by statements to compute the local derivatives by
AD. For instance, a statement v17 = v15*x6 in the code list, i.e., v17 = v15x6, would
be augmented by cv17v15 = x6 and cv17x6 = v15 representing ∂v17/∂v15 = x6 and
∂v17/∂x6 = v15. For statement-level mode (described in subsection 4.1) the local
derivatives were produced by AD reverse mode on each individual statement.

The second part of J is the elimination code, which is the topic of this paper.
The final part packs up the variables that comprise J . For instance, in our simple
example J is the collection

J =

[
cy1x1 cy1x2 cy1x3

cy2x1 cy2x2 0

]
.

One must take care of structural zeros in J , such as J23 here.
We have to generate code for a sequence of assignments of the form

cij = cij +
∑
k∈K

cikckj ,(3.1)

where we only include terms cikckj for which both factors are (potentially) nonzero. In
AD applications, a large proportion of the original entries are constants, independent
of run-time problem data. For example, the local derivatives for x± y are 1,±1; that
for ax, where a is a constant, is a. If one propagates knowledge of constant cij values
as the elimination proceeds, the Jacobian code can be much shortened.

GE-style elimination comprises assignments of the form cij = cikckj (fill-in) or
cij = cij+cikckj (update), possibly altering a cij several times. A possible pseudocode
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//Input: local derivatives

//cv1x1,cv1x2,cv2v1,cv3v2,cv4x1,

//cv4v3, cy1x3, cy1v4, cy2v4

//eliminate v3

cv4v2 = cv4v3*cv3v2

//eliminate v2

cv4v1 = cv4v2*cv2v1

//eliminate v1

cv4x1 = cv4x1 + cv4v1*cv1x1

cv4x2 = cv4v1*cv1x2

//eliminate v4

cy1x1 = cy1v4*cv4x1

cy2x1 = cy2v4*cv4x1

cy1x2 = cy1v4*cv4x2

cy2x2 = cy2v4*cv4x2

//Input: non-constant elem derivs

// cv1x1, cv1x2, cv2v1, cy1x3, cy1v4.

//Use cv3v2=2, cv4x1=-1, cv4v3=1, cy2v4=3

cv4v1 = 2*cv2v1

cv4x1 = -1 + cv4v1*cv1x1

cv4x2 = cv4v1*cv1x2

cy1x1 = cy1v4*cv4x1

cy2x1 = 3*cv4x1

cy1x2 = cy1v4*cv4x2

cy2x2 = 3*cv4x2

Fig. 3.1. Generation of Jacobian code for the simple example. On the left: GE-style, not
exploiting known constants. On the right: LU-style, exploiting constants.

for the simple example (2.2), not exploiting constant values, is shown on the left side
of Figure 3.1. It follows the steps shown graphically in subsection 2.4.

LU-style code generation for this example, with the entries generated in the order
suggested earlier, and exploiting constants, yields the code on the right side of Fig-
ure 3.1. The problem is too simple to show the “fewer, longer statements” feature.
Each assignment has the form (3.1) where cij on the right is omitted if it is currently
zero. K = K(i, j) is the set of indices k in the unreordered C that correspond to
k = 1, . . . ,min{i− 1, j − 1, p} in the reordered matrix C∗ of (2.12).

Implementation outline. The LU-style Jacobian code (“Jcode”) generation tool
was written in Matlab, which proved convenient because of its object-oriented pro-
gramming features, high-level syntax, and support for sparse matrices. The tool takes
as input (a) a file specifying the CG of the function f , (b) a specification of a heuristic
(such as “Markowitz”) for choosing the pivot sequence, and (c) a specification of the
overall approach such as “LU” or “GE.” It produces the same Jcode that a production
tool might produce (only more slowly).

Separately, code to compute f ’s local derivatives (“LDcode”) is generated. A com-
plete Jacobian subroutine is made of the LDcode followed by the Jcode, embedded in
the template code of subroutine header and closing statements. For f given by preex-
isting Fortran code the CG file, LDcode, and template code were generated by process-
ing f ’s Fortran file with the EliAD tool. For f generated by the “random function”
tool of subsection 3.2, that tool produced the CG file, LDcode, and template code.

One can use a simple data structure that avoids the complexity of general com-
piler techniques. A combined numerical/symbolic elimination is done that can be
summarized as follows:

Repeatedly, do (3.1) for a suitable sequence of triples i, j, and K.

The sequence of i, j,K’s is determined during elimination by the overall elimination
strategy (pivot order, GE or LU style, Crout, or some other order of operations) and
the resulting fill-in. This is a version of the “loop-free code” approach to sparse matrix
factorization described in [5, section 9.6].
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The operation representing (3.1) acts on a “partially eliminated sparse matrix” ob-
ject that knows which of its entries are compile-time constants and which are run-time
values. Each call to the operation updates this matrix and may output a statement of
Jacobian code. The following scheme works well in Matlab. Numerical elimination
is done on a sparse array C that initially holds the local derivatives cij in (2.7). At
each stage, cij either holds a finite numeric value, meaning that constant value, or
holds not a number (NaN), meaning a value unknown until run time. The rules of
operations on NaN, plus care to avoid the operation NaN×0, imply that this remains
true throughout.

A code is generated for each occurrence of (3.1) that has least one NaN multiplied
by a nonzero value, doing obvious simplifications. For instance, suppose i = 12, j = 3,
and K = {4, 7, 8, 11}, representing the assignment

c12,3 =
=−1

c12,3 +
=−1

c12,4 ∗c4,3+
=1

c12,7 ∗
=1

c7,3 +c12,8 ∗ c8,3 + c12,11∗
=3.75

c11,3 ,

where known values are marked above the relevant crs. Suppose, say, indices 3, 4,
7, 8, and 11 are intermediate variables, and 12 is an output variable y1. Then when
simplified using the known values it gives the line of code

cy1v3 = -cv4v3 + cy1v8*cv8v3 + cy1v11*3.75.

If the right side simplifies to the existing value of cij or to a constant, then (except
for an entry in the final Jacobian) no code is generated.

Aliasing. Tests on our examples showed that a large proportion of the statements
generated by this process were simple copies cij = crs or cij = −crs. To eliminate
these, a table records equivalence classes of the cij under the relation cij = σcrs,
where σ = ±1. One member of the equivalence class is chosen as the “alias” of each
other member and replaces it everywhere. If, in the above example, the table shows
that c8,3 has −c4,3 as its alias, then the generated code changes to

cy1v3 = -cv4v3 - cy1v8*cv4v3 + cy1v11*3.75.

On the flow in channel (FIC) problem reported below, aliasing removed over 500
statements to leave just 244 statements—one per nonzero entry in J . For the random
functions in our experiments it typically removed over 20% of statements.

Comments. This implementation was intended for modest-sized functions where
most or all of the variables used fit within the cache of current machines. In particular
storing the Jacobian entries as simple variables gives no control over how they are
laid out in main memory.

When this works well, standard sparse matrix considerations of optimizing data
transfer between CPU and main memory are not very important. Below, we also test
what happens as the functions get “larger” and data transfer begins to dominate.

3.2. Random function tool. To enable rapid and extensive testing, we wrote
another Matlab tool that allows us to generate a “random function” f by selecting its
numbers n,m, and p of inputs, outputs, and intermediate variables, respectively, plus
a random number seed for reproducibility purposes. Each code list statement does
one arithmetic operation +,−,×, or ÷, selected using the Matlab random number
generator with probabilities reflecting a typical numerical code. The tool outputs (a)
the CG for use by the other tool, (b) a Fortran file that computes just f , and (c) a
Fortran file that computes the local derivatives, into which a code such as produced
by our tool is inserted to make a complete subroutine.
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Table 4.1

Platforms.

(a) Processors
Platform Processor CPU speed L1-Cache L2-Cache

AMD AMD Opteron 2.2 GHz 32KB 1 MB
Intel Pentium D 2.99 GHz 32KB 2 MB
DELL Pentium M 1.7 GHz 64KB 512 KB

(b) Compilers
Platform OS Compiler Options

AMD G95 Linux/Centos G95 version 0.9 -O3 -r8

Intel G95 Windows XP G95 version 0.9 -O3 -r8

DELL G95 Windows XP G95-MinGW version 0.9 -O3 -r8

DELL Salford Windows XP Salford FTN95 /optimise/p6/dreal

/silent/fpp
DELL Absoft Windows XP Absoft f95 Pro 10 -w -O2 -N113

4. Experiments. We compared the speed of a Jacobian code produced by the
LU approach with that produced by (a) other vertex elimination techniques, (b)
conventional AD tools Adifor, Tamc, or Tapenade, (c) hand-coded Jacobian where
available, and (d) finite-differencing (FD). This is carried out for several test problems
on five different platforms (processor and compiler) described in Table 4.1.

We include FD because this is often used in applications where an exact J is
not essential, such as in a Newton iteration to solve equations. FD can compete if it
computes J faster than does AD (sufficiently to outweigh a slower overall convergence).
This is almost never the case in the results we present, however.

We first present in detail performance data on two test cases for eight LU-style
codes, preceded by results for other methods, cited from Forth et al. [6]. Then, we
draw some observations which we further investigate using several examples, most of
which were randomly generated.

In the tables f ′ denotes (the code for) the Jacobian of f . For each technique,
we give (i) W (f ′)/W (f), the ratio of the nominal number of floating-point operations
within the generated Jacobian code to those in the function code, and (ii) the cor-
responding ratios CPU(f ′)/CPU(f) of CPU times for each platform. The W (f ′) and
W (f) counts were obtained using a Perl script to count the number of operations in ex-
ecutable statements. Each of *, + , -, and / counts as one operation. They are inaccu-
rate estimates, since on the one hand, each elementary function such as sqrt is counted
as one operation, as does raising to a power **. On the other hand, they do not take
account of optimizations performed by the compiler: at the chosen optimization levels,
the compilers perform constant value propagation and evaluation [7, p. 32] to avoid
unnecessary operations, though the timings suggest that this is not always well done.

For each test problem, a driver program was written to execute and time different
Jacobian evaluation techniques. To check that the Jacobians were calculated correctly,
we compared each to one produced by the hand-coded routine if available and by the
Adifor or Tapenade routine otherwise. Except for the FD results, discrepancies
were always at the round-off level.

To improve consistency of timings, a number Nd (problem-dependent but typically
several hundred) of sets of input data was generated for a given problem using the
Fortran intrinsic routine random number. The code for each technique was run Nd

times, once for each data set (if the same data were used repeatedly, the cache might
not be flushed, and a clever compiler might notice the reuse and “optimize out”
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evaluations after the first). The total time was divided by Nd to give the CPU time
estimate for that code. The process was repeated several times and results computed
for each repetition. The results for each repetition were nearly identical, showing that
the rankings are not due to vagaries of measurement in a multitasking system.

4.1. Initial tests. The first tests present data for the same compiler on three
machines, for the same machine with three compilers, and for a fairly large number
of ways of generating Jacobian code. This illustrates that the performance varies
strongly between compilers and between machines, as well as between codes gener-
ated by the same overall algorithm with slightly different heuristics. We use the two
following examples. The distinction between statement-level (SL) and code-list (CL)
is explained in the last paragraph of this page.
ROE. The 5× 10 dense Jacobian of the Roe flux function [14], consisting of around

180 lines of Fortran 77 source code. A SL differentiation of the input code
yields a sparse 67×72 matrix C with 198 nonzeros, while its CL differentiation
leads to a sparse 213 × 218 matrix C with 344 nonzeros. Results are in
Table 4.2.

FIC. The 32 × 32 Jacobian of the FIC problem from the MINPACK test set [3].
This is sparse, with 244 out of a possible 1024 nonzeros. A SL differentiation
of the code yields a sparse 712 × 712 matrix C with 1276 nonzeros, while its
CL differentiation leads to a sparse 1360×1360 matrix C with 1924 nonzeros.
Results are in Table 4.3.

The FIC function uses loops heavily (nesting four deep), and this is reflected
in some of the Jacobian codes. To apply the VE/LU methods, the FIC function
code was loop-unrolled into straight-line form. We give figures for the code (marked
“unrolled”) that result from unrolling some of the Jacobian code produced by other
tools. In addition to the op-count and CPU-time ratios described above, we give the
Jacobian object code file size in kilobytes (Kb) (on AMD/g95). For FIC this shows,
for instance, that the hand-coded, Tapenade, and Tamc-R Jacobians, coded using
loops, are short but slow. The unrolled hand-coded version is the fastest, or close to
it, on all the platforms, but now of comparable length to the (loop-free) VE and LU
codes. Even for loop-free code, shorter is not always faster.

For each platform, the entry corresponding to the AD technique with the smallest
ratio of CPU times is highlighted in bold, and any entry with a ratio that is nearly
as small is underlined.

The first rows are for the established tools Adifor, Tamc, and Tapenade, for
a hand-coded Jacobian in the FIC case, and for approximation by one-sided finite
differences. Various versions of VE follow, produced by the EliAD tool, and finally
the LU methods. For VE and LU the mnemonics F, R, Mark, and VLR denote
ways of choosing the pivot order: forward order, reverse order, the order given by the
Markowitz algorithm, and Naumann’s [12] VLR variant on Markowitz. P stands for
preelimination: all vertices that have only one successor are eliminated first (working
from the output end of the graph to the input), and then F, R, Mark, or VLR is
applied to the remaining vertices.

SL means that the computational graph to which methods are applied is that of
the original statements of the function code; CL means it is the graph resulting from
breaking each statement into constituent elementary operations. For instance, the
statement c = sqrt(a*a + b*b) generates one vertex of the SL graph1 but four of the
CL graph. Depth-first traversal (DFT) of the Jacobian code [17] is a postprocessing

1The local derivatives of a statement are computed by local reverse mode, as in Adifor.
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Table 4.2

Tests on Roe flux.

CPU(f ′)/CPU(f) by platform

Technique
W (f ′)

W (f)

f ′ obj
Kb(AMD)

AMD
G95

Intel
G95

Dell
G95

Dell
Salford

Dell
Absoft

ADIFOR 15.95 17.0 17.01 15.76 9.37 6.96 13.29
TAPENADE 16.50 8.0 13.58 14.93 11.95 8.56 12.23
TAMC-F 21.18 10.1 22.06 25.26 13.58 12.96 15.94
TAMC-R 12.69 13.9 17.80 30.10 9.26 9.96 13.53
FD 12.14 – 12.83 15.28 14.53 10.52 12.41
VE-SL-F 8.89 30.9 45.19 44.68 26.16 7.87 13.23
VE-SL-R 7.32 25.6 42.27 43.21 24.79 7.30 11.23
VE-CL-F 12.85 27.5 41.35 42.08 25.32 16.48 13.77
VE-CL-R 9.50 26.1 42.26 45.33 24.47 13.52 11.29
VE-SL-P-F 7.85 27.3 6.77 9.56 4.47 4.61 5.41
VE-SL-P-R 6.78 22.7 5.78 9.21 4.05 4.22 5.00
VE-CL-P-F 8.35 26.8 6.36 10.27 4.32 5.57 5.24
VE-CL-P-R 7.28 23.2 5.64 9.09 4.05 5.09 4.29
VE-SL-P-F-DFT 7.85 26.0 7.20 10.57 5.00 5.26 5.59
VE-SL-P-R-DFT 6.78 21.6 6.22 8.08 4.63 4.96 4.65
VE-CL-P-F-DFT 8.35 25.4 6.42 10.98 4.58 8.61 5.24
VE-CL-P-R-DFT 7.28 21.0 5.72 8.56 4.58 8.39 4.41
VE-SL-P-Mark 7.35 25.8 6.44 11.27 4.47 4.39 5.00
VE-SL-P-VLR 6.60 22.9 5.92 8.68 4.21 4.13 4.35
VE-CL-P-Mark 7.86 26.1 6.08 11.27 4.53 5.17 5.12
VE-CL-P-VLR 7.11 22.9 5.62 9.21 4.26 4.96 4.29
VE-SL-P-Mark-DFT 7.35 23.9 6.37 8.97 5.16 4.87 5.18
VE-SL-P-VLR-DFT 6.60 20.7 5.99 7.79 4.53 4.70 4.59
VE-CL-P-Mark-DFT 7.86 23.5 6.30 9.26 4.53 8.35 5.06
VE-CL-P-VLR-DFT 7.11 19.8 5.34 7.85 3.95 8.22 4.12
SL-F-LU 4.25 23.8 7.30 6.85 5.11 4.35 5.71
SL-R-LU 3.66 21.2 6.13 6.85 4.37 3.78 5.24
SL-Mark-LU 3.56 21.1 6.28 6.67 4.37 4.04 5.06
SL-VLR-LU 3.43 19.1 5.80 5.61 4.53 3.74 4.35
SL-P-F-LU 3.78 22.0 6.49 6.55 4.89 4.17 5.35
SL-P-R-LU 3.44 19.9 5.79 6.14 4.32 3.74 4.88
SL-P-Mark-LU 3.54 20.9 6.24 7.03 4.47 4.00 5.59
SL-P-VLR-LU 3.36 18.7 5.34 6.02 4.05 3.74 4.29

Mean f evaluation time (μs) .19 .25 .48 .53 .43

phase devised by Reid, where the statements are reordered aiming to place each
assignment “v = . . . ” close to the statements that use v.

For each platform we give the mean time for one f evaluation, CPU(f), at the
end of the table. For the Roe case, the variation in CPU(f ′)/CPU(f) ratios is due
only slightly to differences in function time but mainly to differences in Jacobian
time. For FIC, the CPU(f) times for the three Dell compilers are in the wide ratio
of G95 : Absoft : Salford ≈ 1 : 2 : 3, which distorts the figures—what look like very
good ratios for Salford are due to its having a comparatively slow function.

The difference between platforms is striking. Those between different compilers
on one machine suggest that they use very different methods to optimize code.2 Note,
for instance, on the FIC problem, comparing the Dell results, VE-CL-P-R-DFT is 4.4
times faster with Absoft than Salford, while ADIFOR-unrolled is 3.5 times faster

2Absoft support told us optimization level -O2 was suitable: higher levels made no appreciable
speed difference to this kind of code while increasing the length of the binary. For G95, -O3 seemed
best for similar reasons. Salford only has one optimization level; i.e., it is either “off” or “on.”
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Table 4.3

Tests on FIC problem.

CPU(f ′)/CPU(f) by platform

Technique
W (f ′)

W (f)

f ′ obj
Kb(AMD)

AMD
G95

Intel
G95

Dell
G95

Dell
Salford

Dell
Absoft

Hand-coded 1.91 1.4 6.29 6.72 5.92 2.83 4.22
Hand-coded unrolled 1.91 31.0 2.52 5.47 2.65 1.51 3.26
ADIFOR unrolled 34.42 51.5 95.07 107.67 94.90 19.43 67.95
TAPENADE 35.99 2.1 106.36 102.13 94.49 31.51 68.98
TAMC-F unrolled 35.99 50.4 88.79 98.01 84.49 20.38 68.98
TAMC-R 44.64 2.5 106.47 110.21 90.75 33.59 73.19
FD unrolled 33.73 – 133.93 111.40 99.80 47.74 76.04
VE-SL-F 3.49 34.3 2.76 4.77 2.99 4.15 3.26
VE-SL-R 2.25 34.5 2.70 4.61 2.92 2.83 3.29
VE-CL-F 4.44 38.0 3.21 10.01 4.49 6.60 16.20
VE-CL-R 2.75 33.2 2.66 5.65 3.27 4.34 2.81
VE-SL-P-F 2.25 34.5 2.67 4.62 2.92 2.83 3.07
VE-SL-P-R 2.25 34.5 2.65 4.62 2.92 2.83 3.10
VE-CL-P-F 2.75 33.2 2.65 5.90 3.27 4.53 2.78
VE-CL-P-R 2.75 33.2 2.66 5.80 3.20 4.34 2.81
VE-SL-P-F-DFT 2.25 28.8 3.12 3.52 2.72 3.96 2.36
VE-SL-P-R-DFT 2.25 28.8 3.12 3.56 2.72 4.15 2.40
VE-CL-P-F-DFT 2.75 27.4 2.89 4.66 2.72 7.92 1.82
VE-CL-P-R-DFT 2.75 27.4 2.91 4.62 2.72 7.74 1.76
VE-SL-P-Mark 2.25 34.5 2.65 4.60 2.92 2.83 3.10
VE-SL-P-VLR 2.25 34.5 2.65 4.59 2.92 2.83 3.16
VE-CL-P-Mark 2.75 33.2 2.66 5.87 3.20 4.34 2.81
VE-CL-P-VLR 2.75 33.2 2.66 5.88 3.27 4.15 2.72
VE-SL-P-Mark-DFT 2.25 28.8 3.12 3.57 2.72 4.15 2.40
VE-SL-P-VLR-DFT 2.25 28.8 3.11 3.56 2.65 4.15 2.36
VE-CL-P-Mark-DFT 2.75 27.4 2.91 4.67 2.72 7.74 1.79
VE-CL-P-VLR-DFT 2.75 27.4 2.89 4.69 2.79 7.74 1.79
SL-F-LU 1.72 30.8 2.47 5.57 2.99 2.26 3.10
SL-R-LU 1.72 30.8 2.45 5.73 2.99 2.26 3.07
SL-Mark-LU 1.72 30.9 2.45 5.45 2.99 2.26 3.10
SL-VLR-LU 1.72 30.8 2.48 5.48 2.99 2.26 3.13
SL-P-F-LU 1.72 30.8 2.46 5.64 2.92 2.08 3.07
SL-P-R-LU 1.72 30.8 2.44 5.61 2.92 2.26 3.10
SL-P-Mark-LU 1.72 30.8 2.45 5.53 2.99 2.26 3.13
SL-P-VLR-LU 1.72 30.8 2.45 5.50 2.99 2.26 3.10

Mean f evaluation time (μs) 0.61 0.81 0.92 3.3 2.0

with Salford than Absoft, a “discrepancy ratio” of 4.4 × 3.5 = 15.4. This is the most
extreme of many similar discrepancies.

We believe that the variation between different machines with the same compiler is
mainly due to how they manage the memory hierarchy. The processors we used have a
cache-based memory hierarchy with the time to load data into the arithmetic registers
increasing from the level-1 cache through the level-2 cache to the main memory.
Arithmetic registers are limited, typically 32 or 64. Optimizing compilers usually
seek to maximize performance by minimizing redundant calculations as well as the
memory traffic between registers and cache. Stalls arise when an instruction calls
for a value not yet loaded into registers causing the processor to wait. Some of the
processors such as the AMD or Intel in our study feature out-of-order execution, in
which the processor maintains a queue of arithmetic operations so that if the one at
the head of the queue stalls, it can switch to an operation in the queue that is able to
execute. More details on such issues may be found in [7]. We do not at present have
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any way to predict the performance of one of our VE/LU techniques, though some
work in this direction is presented in [15]. This included the study of assembler code
and register usage. Because we were unable, so far, to find clear patterns emerging,
we do not present such data here.

For both Roe and FIC problems, on all five platforms, all the VE/LU-style meth-
ods vastly outperform the standard tools and can even outperform “hand-coded un-
rolled.” For the Roe problem, one of the LU methods gives best or nearly best
performance on all platforms. For FIC, it is remarkable that 244 entries of f ′ are
computed in such a small multiple of the time to compute only f . This must be
because FIC’s f is in fact a linear function. For FIC, the LU methods are strikingly
better than other VE methods on the Dell/Salford platform (hand-coded unrolled
is even better), significantly worse than VE methods postprocessed by DFT on In-
tel/G95, and comparable with other VE methods on the other platforms. We have
not tried postprocessing an LU-style code by DFT, but the results suggest it could
be useful.

What is clear is that the LU results are far less sensitive to the pivot heuristic
used than are the other VE results. In all our experiments, on all five platforms,
the LU methods’ performance varied only modestly over these eight pivot heuristics.
Assuming this is true more generally it is a significant reason to prefer LU to other
VE methods.

4.2. Further tests. Subsection 2.4 mentioned that for the widely used AD tool
Tapenade the simplest way to generate Jacobian code is vector mode, which does
not exploit sparsity unless one uses separate methods such as Jacobian compression
[8, Chapter 7]. One should thus expect the LU approach to outperform it, at least
provided the problem is not so large that the LU code is dominated by data transfer.
To investigate this further, the following examples compare it to Tapenade and to
finite-differencing, on a number of problems of increasing size until the LU approach
clearly runs into difficulties.

First we use the problems:
PLEI. The 28× 28 Jacobian of the Pleiades problem from the initial value problem

test set [10]. This is sparse, with 210 out of a possible 784 nonzeros. Using
for example, the CL differentiation, the corresponding C matrix is of size
630 × 630 with 994 nonzeros (sparsity 0.25%).

RC1. The 300 × 300 Jacobian of a function randomly generated by our Matlab

tool by setting n=300,m=300, and p=1450. This has 4635 nonzero entries
out of a possible 90, 000. This is already in CL form, and its corresponding
C matrix is of size 1750 × 1750 with 994 nonzeros.

RC2. The 122 × 255 Jacobian of a function randomly generated by our Matlab

tool by setting n=255,m=122, and p=2650. This has 7366 nonzero entries
out of a possible 31, 110. This is already in CL form, and its corresponding
C matrix is of size 2672 × 2905 with 5544 nonzeros.

RC3. The 300 × 222 Jacobian of a function randomly generated by our Matlab

tool by setting n=222,m=300, and p=3250. This has 14,569 nonzero entries
out of a possible 66, 600. This is already in CL form and its corresponding C
matrix is of size 3550 × 3472 with 7099 nonzeros.

For completeness, Table 4.4 gives nominal flop-counts, lines of code and function-
time statistics for the above test cases (but not those used for Figure 4.1).

The Tapenade vector mode treats the jth column of the Jacobian J as the
directional derivative (ej · ∇) f , where ej is the jth unit vector, and computes these
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Table 4.4

Nominal floating-point operations counts W (f), lines of code (l.o.c.), and CPU times for test
problem functions.

W (f) Function CPU time(μs)

Problem (Flops) L.o.c.
AMD
G95

Intel
G95

Dell
G95

Dell
Salford

Dell
Absoft

ROE 222 139 .19 .25 .48 .53 .43
FIC 1266 759 .61 .81 .92 3.3 2.0
PLEI 735 238 .70 .86 13. 3.9 9.3
RC1 1750 1750 3.0 5.2 7.5 9.0 10.
RC2 2772 2772 4.8 7.5 13. 50. 13.
RC3 3550 3550 6.1 8.8 – 21. 20.

Table 4.5

Tests on PLEI and random problems. For reasons of space, the names of the LU methods
are abbreviated, e.g., P-VLR has the meaning of SL-P-VLR-LU in the previous tables. A runnable
program for RC3 could not be created on Dell/G95.

CPU(f ′)/CPU(f) by platform

Technique
W (f ′)

W (f)

AMD
G95

Intel
G95

Dell
G95

Dell
Salford

Dell
Absoft

PLEI problem
HAND-CODED 1.25 1.40 1.57 2.29 1.50 1.36
TAPENADE 12.3 8.55 10.2 19.0 8.87 7.82
FD 5.29 29.5 29.9 31.6 30.0 26.3
LU best 2.83 2.23 2.78 4.92 2.70 1.85

Achieved by P-Mark R P-VLR F P-VLR
RC1 problem, (n,m, p) = (300, 300, 1450) with 4635 nonzeros

TAPENADE 331. 7760. 3980. 2810. 2240. 589.
FD 301. 483. 517. 460. 362. 272.
LU best 4.12 488. 332. 426. 341. 147.

Achieved by P-VLR VLR P-Mark P-Mark P-VLR
RC2 problem, (n,m, p) = (255, 122, 2650) with 7366 nonzeros

TAPENADE 636. 7280. 4310. 3440. 3990. 450.
FD 256. 284. 203. 298. 94.5 297.
LU best 6.86 111. 51. 52.8 10.0 51.2

Achieved by P-Mark VLR F F F
RC3 problem, (n,m, p) = (222, 300, 3250) with 14,569 nonzeros

TAPENADE 554. 6550. 6310. – 1240. 1030.
FD 223. 293. 271. – 259. 190.
LU best 7.68 326. 310. – 99.2 104.

Achieved by VLR VLR P-Mark P-R

in a loop one column at a time. The unit vectors are the columns of the n × n
identity matrix, which is input to the process as a “seed matrix.” (For a general
n × q seed matrix S, the output is JS: this can be exploited, e.g., by Jacobian
compression methods.) The vector mode also uses optimization techniques such as
common subexpression elimination and some code motion. However, it may perform
useless calculations such as multiplying by or adding to zero.

Results are shown in Table 4.5. For the random functions, the flop-counts of LU-
style codes are dramatically less than those of the corresponding Tapenade code.
This is because these represent sparse computations and the LU approach can exploit
the sparsity. The LU-style codes run roughly 4 to 20 times as fast as the Tapenade

ones. However, FD (though of course inaccurate) provides run times similar to and
occasionally faster than the LU-based approach for the random functions.

To investigate this observation, we applied these techniques on more codes gen-
erated by our random function tool. Figure 4.1 shows the behavior with increasing
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Fig. 4.1. Performance on random functions of sizes (n,m, p) = (15i+1, 15i+6, 113i) for i =
1, 2, . . . , 20 (largest size in figure is (301, 306, 2260)). The number of statements (each an elementary
operation) in f is m + p, the size of the Jacobian is n × m, and FD calls the function n + 1 times
to compute the Jacobian. The sparsity of the Jacobian decreases fairly uniformly from 58% for the
smallest to 10.3% for the largest.

size, graphically. Random functions of sizes (n,m, p) = (15i + 1, 15i + 6, 113i) for
i = 1, 2, . . . , 20 were generated. The figure shows the CPU(f ′)/CPU(f) ratios of
Tapenade, FD, and the best and worst of the eight LU methods. In this test, clearly
the latter are quite insensitive to the choice of heuristic; as problem size increases
Tapenade is progressively slower than them, while FD is catching up. The anoma-
lous peak and trough in the Tapenade results with Salford are genuine: repeated
runs gave almost identical results.

It seems that the key factor is not the length of code but the size, or probably the
number of nonzero entries, of the Jacobian. On the AMD and Intel platforms, above
a certain size, FD is faster than the LU techniques—probably because the Jacobian
entries cannot fit into the cache and data transfer is dominating the computation.
The level-1 cache holds about 4,000 double-precision values on the AMD and Intel
machines, and about 8,000 on the Dell.

How important is the pivot order? In the Roe example, VE with simple forward
and reverse order, both at the statement and at the code-list level, was far worse
than the other VE/LU-style methods on all the platforms, but combining them with
pre-elimination gave orders competitive with the other methods. In the FIC case the
different orders for VE and LU, with and without DFT postprocessing, were far more
similar to each other with the exception of “outliers” such as the bad time for VE-CL-
F on Intel/G95 and the fact that VE-CL-P-R-DFT was the best on Dell/Absoft but
nearly the worst VE/LU-style method on Dell/Salford. For the random functions,
we only have different LU-style methods to compare: again, the pivot order does not
make a dramatic difference in the tests shown.

We have also tried randomly generated pivot orders. They always gave perfor-
mance far worse than the ones presented in this paper. Thus, the order matters, but
at present we have no way to tell which order will be best for a given platform.

5. Conclusions. The VE approach to calculating the Jacobian J of a vector
function f is usually described in terms of the computational graph. Earlier work,
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e.g., [6], using the EliAD tool, showed the potential speedup of VE-style methods
compared with other AD tools for generating Jacobian code. We have shown how
VE is equivalent to a (partial) Gaussian elimination or LU factorization of a sparse
matrix. This view offers different ways to sequence the operations that are not obvious
in the graph approach.

For f with a straight-line code, we have used source transformation to generate a
straight-line Jacobian code using an order of operations derived from a Crout compact
LU factorization. For the previous VE work with EliAD, elimination pivot orders
had been generated by Markowitz-style and other heuristics. For each such order a
corresponding LU code was produced. On all platforms tried, the best LU version
was always nearly as fast as the best VE version and often significantly faster; the
LU codes were less sensitive to the choice of pivot heuristic. Both VE and LU are
usually many times faster than codes generated by tools such as Adifor, Tamc, and
the more recent Tapenade. For the FIC problem an LU version was significantly
faster than a hand-coded Jacobian on three out of the five platforms used.

These initial problems were small enough for all the values in the computation
to fit in the cache of current machines. The large performance variation between
platforms, and between different VE/LU methods on the same platform, is therefore
mainly due to differences in pipeline, register, and cache scheduling on different sys-
tems. We believe that a deeper understanding of these issues will lead to significant
further speedups by reordering the operations involved in factorization and that, for
problems of this size, data transfer from and to main memory is less important.

Cache usage will be improved by minimizing the active set of computed values at
any stage that need to be used in the future. The DFT approach (subsection 4.1) tried
to do this with uncertain success; many sparse matrix methods as in Duff, Erisman,
and Reid [5, Chapters 7–10] describe approaches whose matrix access patterns are
in a sense intermediate between Gaussian elimination and compact LU factorization
and might be used to “tune” the active set.

Implementing AD directly within the compiler, as the CompAD project of Nau-
mann et al. [13] is doing with the numerical algorithms group (NAG) compiler, is a
new development that is likely to lead to just such improvements in low-level opti-
mization of AD.

The pivot order matters, but at present we have no way to tell which order will be
best for a given platform. To get near-best performance of VE/LU-style Jacobians,
one may follow the methods of the Automatically Tuned Linear Algebra Software
(ATLAS) project [2] to generate and run alternative codes automatically and choose
the one that runs fastest on a given platform.

We then examined “larger” functions, using randomly generated functions of in-
creasing size, to see what happens when there are too many values to fit into cache,
with the LU codes eventually becoming slower than FD. We believe that the number
of nonzeros in the final Jacobian has more effect than the number of intermediate val-
ues in the computation. For these larger problems, main memory traffic is obviously
key, and the approach of storing matrix entries as simple variables should be replaced
by one that gives control over memory arrangement and data structure. Standard
sparse factorization techniques [5] then become far more relevant.

In summary, our results indicate that a Jacobian code based on LU factorization
should be used in such cases as:

• a heavily used function of moderate length that can be coded up without
loops, such as the Roe flux and similar flux functions whose Jacobians are
needed repeatedly for assembling global Jacobians in CFD, or
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• a basic block within a larger section of code, in cases where a compiler can de-
termine, or be told, that this basic block is crucial to the overall performance
of the program.
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A. Griewank, L. Hascoët, and U. Naumann, eds., Springer, New York, 2001, pp. 241–246.

[13] U. Naumann, B. Christianson, J. Riehme, and D. Gendler, Differentiation Enabled For-
tran Compiler Technology, University of Aachen, Germany, University of Hertfordshire,
UK, and Numerical Algorithms Group Ltd., UK. See http://www.nag.co.uk/nagware/
research/ad overview.asp.

[14] P. L. Roe, Approximate Riemann solvers, parameter vectors, and difference schemes, J. Com-
put. Phys., 43 (1981), pp. 357–372.

[15] M. Tadjouddine, F. Bodman, J. D. Pryce, and S. A. Forth, Improving the performance of
the vertex elimination algorithm for derivative calculation, in AD2004: Proceedings of the
4th International Conference on Automatic Differentiation, Lect. Notes Comput. Sci. Eng.
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