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CONVEX PROGRAMS FOR TEMPORAL VERIFICATION OF
NONLINEAR DYNAMICAL SYSTEMS∗

STEPHEN PRAJNA† AND ANDERS RANTZER‡

Abstract. A methodology for safety verification of continuous and hybrid systems using barrier
certificates has been proposed recently. Conditions that must be satisfied by a barrier certificate can
be formulated as a convex program, and the feasibility of the program implies system safety in the
sense that there is no trajectory starting from a given set of initial states that reaches a given unsafe
region. The dual of this problem, i.e., the reachability problem, concerns proving the existence of
a trajectory starting from the initial set that reaches another given set. Using insights from the
linear programming duality appearing in the discrete shortest path problem, we show in this paper
that reachability of continuous systems can also be verified through convex programming. Several
convex programs for verifying safety and reachability, as well as other temporal properties such as
eventuality, avoidance, and their combinations, are formulated. Some examples are provided to
illustrate the application of the proposed methods. Finally, we exploit the convexity of our methods
to derive a converse theorem for safety verification using barrier certificates.
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1. Introduction. Consider a continuous-time dynamical system of the form

ẋ(t) = f(x(t)),

where x(t) is the state of the system, taking its value in the set X ⊆ R
n. Also given

are the set of possible initial states X0 ⊆ X , the set of “bad” states Xu ⊆ X , and the
set of “good” states Xr ⊆ X . In this paper, we will be concerned with methods for
verifying or proving temporal properties of the system such as the following:

• safety : all trajectories of the system starting from X0 will never reach Xu;
• avoidance: at least one trajectory of the system starting from X0 will never

reach Xu;
• eventuality : all trajectories of the system starting from X0 will reach Xr in

finite time;
• reachability : at least one trajectory of the system starting from X0 will reach

Xr in finite time.
They will be defined more precisely later in the paper. In addition, we will look at
more complex temporal properties, which are the combinations of the above, and will
also consider systems with uncertain time-varying disturbance inputs.

When the system under consideration is a discrete transition system, such as
a finite automaton, the problem described above has been studied extensively in the
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computer science literature, and has applications, e.g., in the verification of correctness
of computer protocols, algorithms, and software. See [8, 10, 12, 18]. The methods
that have been proposed fall into two mainstream approaches: model checking [8]
and deductive verification (or theorem proving) [18]. Model checking performs an
exhaustive exploration of all possible system behaviors in a fully automated way, but
is applicable only to finite state systems. Deductive verification, on the other hand,
verifies system properties through formal deduction based on a set of inference rules.
It is applicable to infinite state systems, but has a drawback in the sense that guidance
from users is often needed in the process.

Uncountable state space and continuous dynamics are introduced when we con-
sider applications in control, since they usually involve physical plants whose dynamics
is governed by differential equations. Here the need for temporal verification arises
as the complexity of the system increases, especially in safety-critical applications
such as air traffic management [29], automated highway systems [11], and life support
systems [9]. For such systems, exact verification cannot be performed through simu-
lation, due to the infinite number of possibilities taken by the continuous state and
also the uncertainties of the system.

The success of model checking techniques in verification of discrete, finite state
transition systems has prompted the development of analogous approaches for con-
tinuous and hybrid systems. These approaches (see, e.g., [1, 2, 3, 5, 7, 15, 16, 30, 31])
require explicit computation of the states reachable from the initial set, which, for
example, is performed by propagating the set of states. Unfortunately, although they
allow us to compute an exact or nearly exact approximation of reachable sets, it is very
difficult to perform such a computation due to the uncountability of the state space,
especially when the system is nonlinear and uncertain. Note also that most of the
existing literature focuses on the verification of safety property, although some of their
techniques can be used to verify other temporal properties stated at the beginning of
this paper.

In a different vein, a deductive method for safety verification that does not require
explicit computation of the reachable sets, but instead is based on functions of states
termed barrier certificates, has been recently proposed in a work by the first author
[21]. The idea here is to study properties of the system without the need to compute
the flow explicitly. Our conditions for safety can be stated as follows. Suppose that
the vector field f(x) is continuous and that there exists a continuously differentiable
function B : R

n → R such that the inequalities

B(x) ≤ 0 ∀x ∈ X0,(1.1)

B(x) > 0 ∀x ∈ Xu,(1.2)

∂B

∂x
(x)f(x) ≤ 0 ∀x ∈ X(1.3)

are satisfied. Then the safety property is verified, namely, there is no trajectory
x(t) of the system ẋ = f(x) such that x(0) ∈ X0, x(T ) ∈ Xu for some T ≥ 0, and
x(t) ∈ X for all t ∈ [0, T ]. The function B(x) here is called a barrier certificate.
When f(x) is polynomial and the sets X , X0, Xu are semialgebraic, a polynomial
barrier certificate B(x) can be efficiently searched using sum of squares programming
[22]—a convex optimization framework based on sum of squares decompositions of
multivariate polynomials [20] and semidefinite programming [6]. Because of this, our
method appears to be more scalable than many other methods. The method has also
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been extended to handle hybrid, uncertain, and stochastic systems [21], and successful
application to a NASA life support system, which is a nonlinear hybrid system with
6 discrete modes and 10 continuous state variables, has been reported [9]. To the best
of our knowledge, all other verification methods that can handle nonlinear hybrid
systems are practically limited to about 5 continuous state variables.

The above method is analogous to the Lyapunov method for stability analysis
[14]. Contrary to stability analysis, however, no notion of equilibrium, stability, or
convergence is required in temporal verification. For example, the system does not
need to have an equilibrium, and also for the eventuality and reachability properties
the system is not required to stay in Xr once the set is reached. Our method is also
related to the viability theory [4], the smallest invariant set [13], and the invariant
generation [26, 27, 28] approaches to safety verification. However, one of the distinc-
tive features of our approach is that we use convex programming to verify properties
of interest, which gives benefit in terms of computation and in terms of its inherent
duality structure.

In the present paper, we use insights from the linear programming duality ap-
pearing in the discrete shortest path problem [19] and the concept of density function
[23, 24] to formulate a convex program for proving reachability. In fact, not only
safety and reachability, but also other temporal properties such as eventuality, avoid-
ance, and their combinations can be verified through convex programming. Several
convex programs for this will be formulated. Similar to before, when the description
of the system is polynomial and the sets are semialgebraic, polynomial solutions to
these programs can be searched using sum of squares programming. In addition to
this, we will exploit strong duality to prove a converse theorem for safety verification
using barrier certificates.

The outline of the paper is as follows. In section 2, we give an intuitive illustration
of some main ideas by addressing the verification of a simple discrete transition system.
The convex programs for verification of continuous-time systems are presented and
proven in section 3. In section 4, some examples will be presented to illustrate the
applications of the proposed method. A converse theorem for barrier certificates will
be stated and proven in section 5, and we offer some conclusions in section 6.

2. Discrete example. Let us consider the verification of a simple discrete tran-
sition system, shown in Figure 2.1. The system has four states, labeled 1 through 4,
and three transitions between states, represented by the directed edges in the graph.
We assume that node 1 is the initial state and node 4 is the bad/unsafe state.

For verifying the safety property, conditions analogous to (1.1)–(1.3) that must
be satisfied by a barrier certificate can be formulated. One way to find a barrier
certificate which proves safety is by solving the linear program (LP)1

max sTB

subject to ATB ≤ 0,

where B � col(B1, B2, B3, B4) ∈ R
4 is the decision variable of the LP (i.e., the barrier

1Here we assume that there are only one initial state and one unsafe state. A generalization
of this can be formulated by considering a bigger graph obtained by augmenting an extra “source”
node and edges that connect it to all initial states, as well as an extra “sink” node and edges that
connect all unsafe states to it.
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Fig. 2.1. Verification of a simple discrete transition system. The nodes represent the states of
the system, while the directed edges represent transitions between states. Node 1 is the initial state
and node 4 is the unsafe state.

certificate); A is the incidence matrix of the graph, in this case given by

A =

⎡
⎣−1 1 0 0

0 −1 1 0
0 −1 0 1

⎤
⎦
T

;

and s is a 4 × 1 column vector whose ith entry is equal to 1 if the ith node is the
unsafe state, and equal to −1 if the ith node is the initial state. This formulation
is similar to the continuous case. Analogous to (1.3), we ask that Bj ≤ Bi if there
is a directed edge from node i to node j. The objective function of the LP is just
the difference between the values of B at the unsafe state and at the initial state. If
there is a feasible solution to the above LP such that the objective function is strictly
positive, then the safety property can be inferred; i.e., we prove that there is no path
going from node 1 to node 4.

The dual of the above LP is as follows:

min 0

subject to Aρ = s,

ρ ≥ 0,

where ρ � col(ρ12, ρ23, ρ24) ∈ R
3 is the dual decision variables, whose entries corre-

spond to the edges in the graph. The dual decision variable ρij can be interpreted as
the transportation density from node i to node j. The equality constraints basically
state that conservation of flows holds at each node, namely, that the total flow into
a node is equal to the total flow out. In addition, the first and third equality con-
straints indicate that there exist a unit source at node 1, i.e., the initial state, and a
unit sink at node 4, i.e., the unsafe state. This duality interpretation has been studied
extensively in the past; see, e.g., [19] and the references therein.

The existence of a feasible solution to the dual LP implies the existence of a path
from the initial state to the unsafe state. This can be shown using the facts that the
flows are conserved and that there are a unit source and a unit sink at the initial state
and unsafe state, respectively. Hence, solving the dual LP can be used for verifying
reachability. As a matter of fact, we obtain a linear programming formulation of the
shortest path problem if we also add the objective function

∑
ρij to the dual LP. In
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this case, the nonzero entries corresponding to any optimal vertex solution to the LP
will indicate a shortest path from the initial node to the unsafe node [19].

This duality argument can also be used to prove that the existence of a barrier
certificate is both sufficient and necessary for safety. For this, suppose that there exists
no barrier certificate for the system, which is equivalent to the maximum objective
value of the primal LP being equal to zero. This objective value is attained by, e.g.,
Bi = 0 for all i. The linear programming duality [6] implies that there exists a feasible
solution to the dual LP, from which we can further conclude the existence of a path
from the initial state to the unsafe state, as explained in the previous paragraph. In
the continuous case, a strong duality argument will also be used to prove a converse
theorem for barrier certificates later in this paper.

For the above example, the optimal objective value of the primal LP is equal to
zero, and hence the safety property does not hold. The unique feasible solution to the
dual LP is given by ρ12 = 1, ρ23 = 0, ρ24 = 1, which shows the path from node 1 to
node 4. If the direction of the edge from node 2 to node 4 were reversed, for example,
the optimal objective value of the corresponding primal LP would be ∞, and there
would be no feasible solution to the dual LP.

Other properties of this discrete transition system such as eventuality and avoid-
ance can also be verified by solving some appropriate LPs. We will not state them
here, but instead we will now proceed to discuss the corresponding convex programs
for continuous systems.

3. Continuous systems. We denote the space of m-times continuously differ-
entiable functions mapping X ⊆ R

n to R
p by Cm(X,Rp). When p = 1, we will simply

write Cm(X), and for continuous functions (m = 0), we will omit the superscript.
The solution x(t) of ẋ = f(x) starting from x(0) = x0, if unique, is denoted by φt(x0).
For a set Z, we define φt(Z) � {φt(x) : x ∈ Z}.

The divergence of a vector field f ∈ C1(X,Rn) is denoted by ∇ · f(x). Finally,
let cl(X) denote the closure of a set X, and let ∂X denote the boundary of X.

The following version of Liouville’s theorem (from [23]) will be used in the proofs
of the main theorems.

Lemma 3.1. Let f ∈ C1(D,Rn), where D ⊆ R
n is open, and let ρ ∈ C1(D,R) be

integrable, i.e.,
∫
D
ρ(x)dx is finite. Consider the system ẋ = f(x). For a measurable

set Z, assume that φτ (Z) is a subset of D for all τ between 0 and T . Then

∫
φT (Z)

ρ(x)dx−
∫
Z

ρ(z)dz =

∫ T

0

∫
φτ (Z)

[∇ · (fρ)] (x)dxdτ.(3.1)

3.1. Safety and reachability verification. At this point, we are ready to
state and prove the first pair of convex programs that verify safety and reachability
for continuous systems. The first convex program was proposed in [21] but will be
repeated here for completeness.

Theorem 3.2. Consider the system ẋ = f(x) with f ∈ C(Rn,Rn). Let the
sets X ⊆ R

n, X0 ⊆ X , and Xu ⊆ X be given. Suppose that there exists a function
B ∈ C1(Rn) satisfying

B(x) ≤ 0 ∀x ∈ X0,(3.2)

B(x) > 0 ∀x ∈ Xu,(3.3)

∂B

∂x
(x)f(x) ≤ 0 ∀x ∈ X .(3.4)
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Then the safety property holds; i.e., there exists no trajectory x(t) of the system such
that x(0) ∈ X0, x(T ) ∈ Xu for some T ≥ 0, and x(t) ∈ X for all t ∈ [0, T ].

Proof. Our proof is by contradiction. Assume that there exists a barrier certificate
B(x) satisfying conditions (3.2)–(3.4), while at the same time the system is not safe;
i.e., there exist a time instance T ≥ 0 and an initial condition x0 ∈ X0 such that a
trajectory x(t) of the system starting at x(0) = x0 satisfies x(t) ∈ X for all t ∈ [0, T ]
and x(T ) ∈ Xu. Condition (3.4) implies that the derivative of B(x(t)) with respect to
time is nonpositive on the time interval [0, T ]. A direct consequence of this (which,
for example, can be shown using the mean value theorem) is that B(x(T )) must be
less than or equal to B(x(0)), which is contradictory to (3.2)–(3.3). Thus the initial
hypothesis is not correct: the safety property must hold.

We will next present a convex program for verifying reachability. It can be viewed
as a continuous-time version of the dual LP in section 2. The decision variable ρ(x)
in this convex program is termed density function and has an interpretation as the
stationary density of a substrate that is generated and consumed in various parts of
the state space, and that is transported according to the vector field of the system.
It has been previously used in an almost global stability criterion in [23].

Theorem 3.3. Consider the system ẋ = f(x) with f ∈ C1(Rn,Rn). Let the sets
X ⊂ R

n, X0 ⊆ X , and Xr ⊆ X be given. Assume that the sets are bounded and that
X0 has a nonempty interior. If there exists a function ρ ∈ C1(Rn) satisfying

∫
X0

ρ(x)dx ≥ 0,(3.5)

ρ(x) < 0 ∀x ∈ cl(∂X \ ∂Xr),(3.6)

∇ · (ρf)(x) > 0 ∀x ∈ cl(X \ Xr),(3.7)

then the reachability property holds; i.e., there exists a trajectory x(t) of the system
such that x(0) ∈ X0, x(T ) ∈ Xr for some T ≥ 0, and x(t) ∈ X for all t ∈ [0, T ].

Proof. Let X ⊆ X0 be an open set on which ρ(x) ≥ 0. We will first prove that
there must be an initial condition x0 ∈ X whose flow φt(x0) leaves X \ Xr in finite
time. In fact, the set of all initial conditions in X whose flows do not leave X \ Xr in
finite time is a set of measure zero. To show this, let Y be an open neighborhood of
X \ Xr such that ∇ · (ρf)(x) > 0 on cl(Y ). Now define

Z =
⋂

i=1,2,...

{x0 ∈ X : φt(x0) ∈ Y ∀t ∈ [0, i]} .

The set Z is an intersection of countable open sets and hence is measurable. It
contains all initial conditions in X for which the trajectories stay in Y for all t ≥ 0.
That Z is a set of measure zero can be shown using Lemma 3.1 as follows. Since
φt(Z) ⊂ Y , Y is bounded, and ρ(x) is continuous, the left-hand side of

∫
φt(Z)

ρ(x)dx−
∫
Z

ρ(x)dx =

∫ t

0

∫
φτ (Z)

[∇ · (fρ)] (x)dxdτ

is bounded for all t ≥ 0. Therefore, for the above equation to hold, we must have∫
φτ (Z)

[∇ · (fρ)] (x)dx → 0 as τ → ∞, or, equivalently, the measure of φτ (Z) converges

to zero as τ → ∞. Suppose now that Z has nonzero measure. We have a contra-
diction since limt→∞

∫
φt(Z)

ρ(x)dx = 0, whereas limt→∞
∫ t

0

∫
φτ (Z)

[∇ · (fρ)] (x)dxdτ +
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∫
Z
ρ(x)dx is strictly positive, as implied by (3.5) and (3.7). Using this argument, we

conclude that Z has measure zero. Since X \ Xr ⊂ Y , it follows immediately that
the set of all initial conditions in X whose flows stay in X \ Xr for all time is a set of
measure zero.

Now take any x0 ∈ X whose flow leaves X \ Xr in finite time; we will show that
such a flow must enter Xr before leaving X . Suppose to the contrary that the flow
φt(x0) leaves X without entering Xr first. Let T > 0 be the “first” time instant
φt(x0) leaves X . By this we mean that either φt(x0) ∈ X \ Xr for all t ∈ [0, T ) and
φT (x0) /∈ X , or φt(x0) ∈ X \ Xr for all t ∈ [0, T ] and φT+ε(x0) /∈ X for any ε > 0.
From conditions (3.6)–(3.7), it follows that for a sufficiently small neighborhood U of
x0 we have

ρ(x) ≥ 0 ∀x ∈ U,

ρ(x) < 0 ∀x ∈ φT (U),

∇ · (ρf)(x) > 0 ∀x ∈ φt(U), t ∈ [0, T ].

Apply Lemma 3.1 again to obtain a contradiction. According to the above, the left-
hand side of

∫
φT (U)

ρ(x)dx−
∫
U

ρ(x)dx =

∫ T

0

∫
φτ (U)

[∇ · (fρ)] (x)dxdτ

is negative, while the right-hand side is positive. Thus there is a contradiction, and
we conclude that for x(0) = x0 there must exist T ≥ 0 such that x(T ) ∈ Xr and
x(t) ∈ X for all t ∈ [0, T ].

Remark 3.4. Modulo the following modification on the assertion of Theorem 3.3,
the conclusion will still hold even when the sets are not bounded. In particular, we
need to add the condition that ρ(x) is integrable on X (i.e.,

∫
X ρ(x)dx is finite) and

replace (3.7) by

∇ · (ρf)(x) ≥ ε ∀x ∈ (X \ Xr)

for a positive number ε.
Notice that all the conditions presented in the above theorems (as well as in the

theorems that will be presented later) form convex programming problems, as the
sets of B(x)’s satisfying (3.2)–(3.4) or ρ(x)’s satisfying (3.5)–(3.7) are convex. This
just follows from the definition of convexity. For example, if B1(x) and B2(x) satisfy
(3.2)–(3.4), then for any α ∈ [0, 1], the function αB1(x)+(1−α)B2(x) also satisfies the
conditions. The convexity of the programs opens the possibility of computing B(x)
and ρ(x) using convex optimization. For systems whose vector fields are polynomial
and whose set descriptions are semialgebraic (i.e., described by polynomial equalities
and inequalities), a computational method called sum of squares programming can
be utilized if we use a polynomial parameterization for B(x) or ρ(x). The method
is based on the sum of squares decomposition of multivariate polynomials [20] and
semidefinite programming [6]. Software tools [22] are helpful for this purpose. See
[21] for details.

When we set Xu = Xr, the convex programs in Theorems 3.2 and 3.3 form a pair of
weak alternatives: at most one of them can be feasible. Nevertheless, strictly speaking
it should be noted that these convex programs are not pairs of Lagrange dual problems
[6] in the sense of convex optimization. We deliberately do not use Lagrange dual
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problems to avoid computational problems when we postulate B(x) or ρ(x) as poly-
nomials. For example, the Lagrange dual problem of the safety test in Theorem 3.2
will require ∇ · (ρf)(x) to be zero on X \ (X0 ∪ Xu) (cf. section 5). Although useful
for theoretical purposes, this will hinder the computation of ρ(x) through polynomial
parameterization and sum of squares programming. In this regard, some interesting
future directions would be to see if a pair of Lagrange dual problems can be formu-
lated so that both problems can be solved using sum of squares programming, or,
more importantly, to see if the dual infeasibility certificate of one convex program can
be interpreted directly as a feasible solution to the dual convex program.

3.2. Eventuality and avoidance verification. We will now present two other
convex programs for verifying the eventuality and avoidance properties. Analogous
to what we have in the previous subsection, when Xu = Xr these programs form a
pair of weak alternatives.

Theorem 3.5. Consider the system ẋ = f(x) with f ∈ C(Rn,Rn). Let X ⊂ R
n,

X0 ⊆ X , and Xr ⊆ X be bounded sets. If there exists a function B ∈ C1(Rn) satisfying

B(x) ≤ 0 ∀x ∈ X0,(3.8)

B(x) > 0 ∀x ∈ cl(∂X \ ∂Xr),(3.9)

∂B

∂x
(x)f(x) < 0 ∀x ∈ cl(X \ Xr),(3.10)

then the eventuality property holds; i.e., for all initial conditions x0 ∈ X0, the trajec-
tory x(t) of the system starting at x(0) = x0 satisfies x(T ) ∈ Xr and x(t) ∈ X for all
t ∈ [0, T ] for some T ≥ 0.

Proof. Consider any point x0 ∈ X0, for which B(x0) ≤ 0, and let x(t) be a
trajectory of the system starting at x(0) = x0. The trajectory x(t) must leave X \Xr

in finite time, since the derivative inequality (3.10) holds and B(x) is bounded below
on X . Now, suppose that x(t) leaves X without entering Xr first, and consider the
“first” time instant t = T at which it happens. Similar to the proof of Theorem 3.3, by
this we mean that either x(t) ∈ X \Xr for all t ∈ [0, T ) and x(T ) /∈ X , or x(t) ∈ X \Xr

for all t ∈ [0, T ] and x(T + ε) /∈ X for any ε > 0. From (3.10) and B(x0) ≤ 0, it
follows that B(x(T )) is nonpositive, which is contradictory to (3.9). Thus we conclude
that for any trajectory x(t) starting at x(0) = x0 there must exist T ≥ 0 such that
x(T ) ∈ Xr and x(t) ∈ X for all t ∈ [0, T ]. Since x0 is an arbitrary point in X0, the
conclusion of the theorem follows.

Remark 3.6. Similarly to before, with some modifications to the assertion of the
theorem, the conclusion of Theorem 3.5 will still hold even when the sets are not
bounded. In particular, we need to add the condition that B(x) is bounded below on
X and replace (3.10) by

∂B

∂x
(x)f(x) ≤ −ε ∀x ∈ (X \ Xr)

for a positive number ε.

Theorem 3.7. Consider the system ẋ = f(x) with f ∈ C1(Rn,Rn). Let X ⊆ R
n,

X0 ⊆ X , and Xu ⊆ X be some given sets, with X0 having a nonempty interior. If
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there exist an open set X̃ and a function ρ ∈ C1(Rn) such that X ⊆ X̃ and

∫
X0

ρ(x)dx ≥ 0,(3.11)

ρ(x) < 0 ∀x ∈ Xu,(3.12)

∇ · (ρf)(x) ≥ 0 ∀x ∈ X̃ ,(3.13)

then the avoidance property holds; i.e., for some initial condition x0 ∈ X0, there
exists no T ≥ 0 such that trajectory x(t) of the system starting at x(0) = x0 satisfies
x(T ) ∈ Xu and x(t) ∈ X for all t ∈ [0, T ].

Proof. From (3.11), it follows that there exists an open set X ⊆ X0 on which
ρ(x) ≥ 0. Take any x0 in X—we will show that the trajectory starting from this
point will never reach Xu. Suppose to the contrary that there exists a T ≥ 0 such
that φT (x0) ∈ Xu and φt(x0) ∈ X for t ∈ [0, T ]. Then it follows from (3.12)–(3.13)
that for a sufficiently small neighborhood Z of x0 we have

ρ(x) ≥ 0 ∀x ∈ Z,

ρ(x) < 0 ∀x ∈ φT (Z),

∇ · (ρf)(x) ≥ 0 ∀x ∈ φt(Z), t ∈ [0, T ].

Now apply Lemma 3.1 to obtain a contradiction. Use a bounded but sufficiently large
D ⊂ R

n such that φt(Z) ⊂ D for all t ∈ [0, T ]; then ρ(x) is integrable on D. According
to the above, the left-hand side of

∫
φT (Z)

ρ(x)dx−
∫
Z

ρ(x)dx =

∫ T

0

∫
φτ (Z)

[∇ · (fρ)] (x)dxdτ

is negative and the right-hand side is nonnegative. Hence there is a contradiction and
the proof is complete.

In applications where the system has stable equilibrium points, it is often conve-
nient to exclude a neighborhood of the equilibria from the region where the divergence
inequality (3.13) must be satisfied, since the inequality is otherwise impossible to sat-
isfy without a singularity in ρ(x). This does not make the conclusion of the theorem
weaker, as long as the excluded set does not intersect Xu and is entirely surrounded
by a region of positive ρ(x).

Similarly, the Lie derivative inequality (3.10) is impossible to satisfy when the
system has equilibrium points in X \Xr. In this case, a neighborhood of the equilibria
should also be excluded from the region where the inequality is to be satisfied. The
conclusion of the theorem is still valid as long as the excluded set is entirely surrounded
by a region of positive B(x).

3.3. Some extensions. Whereas the convex programs for safety and reacha-
bility as well as eventuality and avoidance are related since they form pairs of weak
alternatives, the safety property is also related to avoidance, and eventuality to reach-
ability, via replacing the universal quantifier with an existential quantifier. As a
consequence, reachability and avoidance verification can also be performed using the
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barrier certificate B(x). The conditions are similar to those in Theorems 3.5 and 3.2,
respectively, but with conditions (3.8) and (3.2) replaced by∫

X0

B(x)dx ≤ 0,

where we also ask that X0 has a nonempty interior. The proof is similar to the proofs
of Theorems 3.5 and 3.2, noting that B(x) will then be less than or equal to zero in
some open set contained in X0.

A modification of the convex program involving ρ(x) in Theorem 3.7 can also be
used to verify the safety property. For this, we need to replace (3.11) by

ρ(x) ≥ 0 ∀x ∈ X̃0,

where X̃0 is an open set containing X0. Note that in this case X0 no longer needs to
have a nonempty interior.

On the other hand, an analogous modification of Theorem 3.3 can only be used to
verify the eventuality property in the weak sense: that almost all trajectories of the
system starting from X0 will reach Xr in finite time. This is stated in the corollary
below.

Corollary 3.8. Consider the system ẋ = f(x) with f ∈ C1(Rn,Rn). Let the
sets X ⊂ R

n, X0 ⊆ X , and Xr ⊆ X be given. Assume that the sets are bounded, and
let X̃0 be an open set containing X0. If there exists a function ρ ∈ C1(Rn) satisfying

ρ(x) ≥ 0 ∀x ∈ X̃0,(3.14)

ρ(x) < 0 ∀x ∈ cl(∂X \ ∂Xr),(3.15)

∇ · (ρf)(x) > 0 ∀x ∈ cl(X \ Xr),(3.16)

then the weak eventuality property holds; i.e., for almost all 2 initial conditions x0 ∈
X0, there exists T ≥ 0 such that the trajectory x(t) of the system starting at x(0) = x0

satisfies x(T ) ∈ Xr and x(t) ∈ X for all t ∈ [0, T ].
Proof. Using an argument similar to the proof of Theorem 3.3, it can be shown

that for almost all initial conditions x0 ∈ X̃0, there exists T ≥ 0 such that the
trajectory x(t) of the system starting at x(0) = x0 satisfies x(T ) ∈ Xr and x(t) ∈ X
for all t ∈ [0, T ]. Since X0 ⊆ X̃0, the corollary follows.

Example 3.9. To show that the weak eventuality property mentioned above
cannot in general be strengthened to eventuality, consider the system ẋ = x, with X =
(−5, 5) ⊂ R, X0 = (−1, 1), Xr = (−5,−4) ∪ (4, 5). The function ρ(x) = 1 satisfies all
the conditions that guarantee weak eventuality; hence almost all trajectories starting
from X0 will reach Xr in finite time. The only exception in this case is the trajectory
x(t) = 0.

Let us now consider the verification of a system with disturbance input ẋ =
f(x, d), where f ∈ C(Rn+m,Rn); the disturbance signal d(t) is assumed to be piece-
wise continuous, bounded on any finite time interval, and take its value in a set
D ⊆ R

m. Then solving the convex program in Theorem 3.2 with the Lie derivative
inequality (3.4) replaced by

∂B

∂x
(x)f(x, d) ≤ 0 ∀(x, d) ∈ X ×D

2This is in the sense that the set of initial conditions which do not satisfy the property is a set
of measure zero.
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will prove safety under all possible disturbances d(t). Also, solving the convex program
in Theorem 3.5 with the Lie derivative inequality (3.10) replaced by

∂B

∂x
(x)f(x, d) ≤ −ε ∀(x, d) ∈ (X \ Xr) ×D

for some positive ε will prove eventuality under all possible disturbances d(t). Sim-
ilar adaptations can be applied to the convex programs that verify reachability and
avoidance using B(x).

At present, it is unclear how a similar worst-case analysis for systems with time-
varying disturbance can be formulated using ρ(x). However, as pointed out in [23],
the density function ρ(x) seems to have a better convexity property that is more
beneficial for controller design. For a system ẋ = f(x) + g(x)u(x), where u(x) is the
control input (assumed to be in a state feedback form), the inequalities (3.5)–(3.6)
and

∇ · [ρ(f + ug)](x) > 0 ∀x ∈ cl(X \ Xr)

(and similarly for (3.11)–(3.13)) are certainly convex conditions on the pair (ρ, ρu).
It is therefore natural to introduce ψ = ρu as a search variable and use convex
optimization to find a feasible pair (ρ, ψ), then recover the control law as u(x) =
ψ(x)/ρ(x). Some results along this direction are available in [25].

While one may argue that the reachability and avoidance properties can be shown
by running a numerical simulation of ẋ = f(x) starting from a properly chosen
x0 ∈ X0, the merit of the convex programming tests presented before is twofold.
First, a solution to the convex programs for reachability or avoidance will automati-
cally indicate a set from which all points (or almost all points) can be chosen as the
initial state. Second, the use of these convex programs allows us to also consider the
verification of systems with disturbance (which obviously cannot be performed using
simulation), or even the controller design problem, as we have seen above.

3.4. Other temporal properties. It is clear that the convex programs in the
previous subsections can also be extended to prove combined temporal properties such
as reachability–safety:

there exists a trajectory x(t) such that x(0) ∈ X0, x(T ) ∈ Xr for
some T ≥ 0, and x(t) /∈ Xu, x(t) ∈ X for all t ∈ [0, T ];

and eventuality–safety3 (or weak eventuality–safety):

for all (or almost all) initial states x0 ∈ X0, the trajectory x(t) start-
ing at x(0) = x0 will satisfy x(T ) ∈ Xr for some T ≥ 0 and x(t) /∈ Xu,
x(t) ∈ X for all t ∈ [0, T ].

Note that for the above temporal specifications, the system can reach Xu after it
reaches Xr first.

For instance, convex programs for verifying the eventuality–safety and weak
eventuality–safety properties are stated in the following corollaries.

Corollary 3.10. Consider the system ẋ = f(x) with f ∈ C(Rn,Rn) and let
X ⊂ R

n, X0 ⊆ X , Xu ⊆ X , Xr ⊆ X be bounded. Suppose that there exists a function

3In linear temporal logic (LTL), for example, this property corresponds to the “until” operator.
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B ∈ C1(Rn) satisfying

B(x) ≤ 0 ∀x ∈ X0,(3.17)

B(x) > 0 ∀x ∈ cl(∂X \ ∂Xr) ∪ Xu,(3.18)

∂B

∂x
(x)f(x) < 0 ∀x ∈ cl(X \ Xr).(3.19)

Then the eventuality–safety property holds; i.e., for all initial states x0 ∈ X0, the
trajectory x(t) starting at x(0) = x0 will satisfy x(T ) ∈ Xr for some T ≥ 0 and
x(t) /∈ Xu, x(t) ∈ X for all t ∈ [0, T ].

Corollary 3.11. Consider the system ẋ = f(x) with f ∈ C1(Rn,Rn) and let
X ⊂ R

n, X0 ⊆ X , Xu ⊆ X , Xr ⊆ X be bounded. If there exist an open set X̃0

containing X0 and a function ρ ∈ C1(Rn) satisfying

ρ(x) ≥ 0 ∀x ∈ X̃0,(3.20)

ρ(x) < 0 ∀x ∈ cl(∂X \ ∂Xr) ∪ Xu,(3.21)

∇ · (ρf)(x) > 0 ∀x ∈ cl(X \ Xr),(3.22)

then the weak eventuality–safety property holds; i.e., for almost all initial states x0 ∈
X0, the trajectory x(t) starting at x(0) = x0 will satisfy x(T ) ∈ Xr for some T ≥ 0
and x(t) /∈ Xu, x(t) ∈ X for all t ∈ [0, T ]. In this case, the safety property holds also
for trajectories that do not reach Xr in finite time.

4. Examples. We will now consider some examples to illustrate the application
of the proposed methods. The MATLAB m-files for solving these examples can be
found at http://www.cds.caltech.edu/∼prajna/files/PraR06.

4.1. Successive safety and reachability refinements. Consider the two-
dimensional system

ẋ1 = x2,

ẋ2 = −x1 +
1

3
x3

1 − x2,

and let the set of states be X = [−3.5, 3.5] × [−3.5, 3.5] ⊂ R
2. Furthermore, define

X0 = [−3.4, 3.4] × [3.35, 3.45], X2 = [−3.5, 3.5] × {−3.5},

X1 = {3.5} × [−3.5, 3.5], X3 = {−3.5} × [−3.5, 3.5].

In this example, we will investigate the reachability of X1, X2, X3 from X0. Such facet-
to-facet analysis is encountered when constructing a discrete abstraction of continuous
or hybrid systems, or when analyzing a counterexample found during the verification
of such an abstraction [1].

The convex programs in Theorems 3.2 and 3.3 will be used for our analysis.
Since the vector field is polynomial and the sets are semialgebraic, we use polynomial
parameterization for B(x) and ρ(x), and then utilize sum of squares programming to
compute them. A degree bound equal to 8 is imposed on B(x) and ρ(x). Because
of this, we might not be able to find a single B(x) or ρ(x) that proves safety or
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[−3.4,3.4]; (?)

[−3.4,0]; (?) [0,3.4]; (?)

[−3.4,−1.7]; (S) [−1.7,0]; (R)

(a) X0 → X1

[−3.4,3.4]; (?)

[−3.4,0]; (?) [0,3.4]; (S)

[−3.4,−1.7]; (?) [−1.7,0]; (S)

[−3.4,−2.55]; (?) [−2.55,−1.7]; (S)

[−3.4,−2.975]; (R)

(b) X0 → X3

Fig. 4.1. Proving the reachability of X1 and X3 from X0 in the example of section 4.1. At each
node we indicate the range of x1 in X0 for which safety and reachability are tested. If neither is
verified (denoted by ?), then the x1-interval is divided into two and the tests are applied to the smaller
sets. The annotation S (respectively, R) indicates that B(x) (respectively, ρ(x)) is found. Breadth-
first search starting from the leftmost branch is used. The verification of X0 � X2 terminates at
the top node, since a barrier certificate B(x) can be found directly.

reachability for the whole X0. If neither B(x) nor ρ(x) can be found, we divide the
interval of x1 in X0 into two parts and apply the tests again to the smaller sets. A
set is pruned if B(x) is found, and this process is repeated until a ρ(x) is found or
the whole X0 is proven safe.

The result is as follows.
• We prove that the set X1 is reachable from X0. The verification progress is

shown in Figure 4.1(a).
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(b) X0 � X2
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(c) X0 → X3

Fig. 4.2. Possible transitions from X0 to X1, X2, and X3 in the example of section 4.1. In (a)
and (c), dashed curves are the zero level sets of ρ(x)’s that certify reachability. In (b), the dashed
curve is the zero level set of B(x) that certifies safety; trajectories starting from X0 cannot cross
this level set to reach X2. Thick solid lines at the top of the figures are the initial sets for which the
certificates are computed. Some trajectories of the system are depicted by solid curves.

• It can be proven directly that X2 is not reachable from X0.
• It is proven that the set X3 is reachable from X0. See Figure 4.1(b).

For proofs of the corresponding reachability and safety, see Figure 4.2.

Obviously, the above bisection algorithm is just a simple, straightforward ap-
proach to refine and prune the initial set, and other algorithms that are more efficient
can be proposed in the future.

4.2. Van der Pol oscillator. Consider the van der Pol oscillator with distur-
bance input:

ẋ1 = x2,

ẋ2 = x2(1 − x2
1) − x1 + d,

where d is the disturbance input, taking its value in D = [−0.25, 0.25] ⊂ R. Let
X = {x ∈ R

2 : 0.5 ≤ ‖x‖2 ≤ 5}. In addition, let
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Fig. 4.3. Verifying temporal properties of the van der Pol oscillator with disturbance. It is to be
verified that under all possible disturbance input, if the system starts in XA, then both XB and XC

are reached in finite time, but XC will not be reached before the system reaches XB. The nominal
trajectory of the system (i.e., for d = 0) starting at x = (0, 2) is depicted by the solid curve.

XA = {x ∈ R
2 : (x1)

2 + (x2 − 2)2 ≤ 1},

XB = {x ∈ R
2 : (x1 − 2)2 + (x2)

2 ≤ 1},

XC = {x ∈ R
2 : (x1)

2 + (x2 + 2)2 ≤ 1}.

These sets are depicted in Figure 4.3, where a nominal trajectory of the system starting
at x = (0, 2) is also shown. Our objective in this example is to verify that under all
possible piecewise continuous and bounded disturbances d(t), if the system starts in
XA, then both XB and XC are reached in finite time, but XC will not be reached
before the system reaches XB .

To verify this temporal specification, we will search for two barrier certificates
B1(x) and B2(x) satisfying the following conditions:

⎧⎪⎪⎨
⎪⎪⎩

B1(x) ≤ 0 ∀x ∈ XA,

B1(x) > 0 ∀x ∈ ∂X ∪ XC ,

∂B1

∂x f(x, d) ≤ −ε ∀(x, d) ∈ (X \ XB) ×D,

⎧⎪⎪⎨
⎪⎪⎩

B2(x) ≤ 0 ∀x ∈ XA,

B2(x) > 0 ∀x ∈ ∂X ,

∂B2

∂x f(x, d) ≤ −ε ∀x ∈ (X \ XC) ×D

for some positive ε. Using sum of squares programming, polynomials B1(x) and B2(x)
of degree 10 can be found, and thus the temporal specification is verified.

5. A converse theorem. In this section, we will prove a converse theorem for
safety verification using barrier certificates by exploiting the convexity of the problem
formulation. The main result of the section can be stated as follows.
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Theorem 5.1. Consider the system ẋ = f(x) with f ∈ C1(Rn,Rn). Let X ⊂ R
n,

X0 ⊆ X , Xu ⊆ X be compact sets, and suppose that there exists a function B̃ ∈ C1(Rn)

such that ∂B̃
∂x (x)f(x) < 0 for all x ∈ X . Then there exists a function B ∈ C1(Rn)

that satisfies

B(x) ≤ 0 ∀x ∈ X0,(5.1)

B(x) > 0 ∀x ∈ Xu,(5.2)

∂B

∂x
(x)f(x) ≤ 0 ∀x ∈ X(5.3)

if and only if the safety property holds, i.e., if there exists no trajectory x(t) of the
system such that x(0) ∈ X0, x(T ) ∈ Xu for some T ≥ 0, and x(t) ∈ X for all
t ∈ [0, T ].

Notice that in the theorem we have used a seemingly strong assumption that

there exists a function B̃ ∈ C1(Rn) such that ∂B̃
∂x (x)f(x) < 0 for all x ∈ X . Later in

the section we will show that in many cases of interest the existence of such B̃(x) is
actually guaranteed.

Our proof of the converse statement in Theorem 5.1 consists of two parts, given in
Lemmas 5.2 and 5.4 below. In the first lemma, we use the Hahn–Banach theorem to
show that the nonexistence of a B(x) satisfying the conditions in Theorem 5.1 implies
the existence of measures ψ0, ψu, ρ satisfying some appropriate conditions. Then in
Lemma 5.4 we show that the existence of such ψ0, ψu, ρ actually implies that there
exists an unsafe trajectory of the system.

Lemma 5.2. Let f ∈ C1(Rn,Rn), and let X ⊂ R
n, X0 ⊆ X , Xu ⊆ X be compact

sets. Suppose there exists a function B̃ ∈ C1(Rn) such that ∂B̃
∂x (x)f(x) < 0 for all

x ∈ X . Then there exists no B ∈ C1(Rn) satisfying (5.1)–(5.3) only if there are
measures of bounded variation ψ0, ψu, ρ (each defined on R

n) such that ψ0, ψu, ρ are
nonnegative on R

n and equal to zero outside X0, Xu, and X , respectively; and

∫
X0

dψ0 = 1,

∫
Xu

dψu = 1,

∇ · (ρf) = ψ0 − ψu,

where ∇ · (ρf) is interpreted as a distributional derivative.
Proof. Let us consider the convex optimization problem

sup Bu −B0

subject to B(x) −B0 ≤ 0 ∀x ∈ X0,

B(x) −Bu ≥ 0 ∀x ∈ Xu,

∂B

∂x
(x)f(x) ≤ 0 ∀x ∈ X ,

with the supremum denoted by γ, and taken over all B0 ∈ R, Bu ∈ R, and B ∈
C1(Rn). Since B0 = 0, Bu = 0, and B(x) = 0 satisfy the constraint, γ must be greater
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than or equal to zero. In addition, since the objective function and the constraints are
all linear, the value of γ is either zero or ∞. There exists no B ∈ C1(Rn) satisfying
(5.1)–(5.3) if and only if the value of γ is equal to zero.

Now suppose that γ = 0. Let K = R × (C(X ))3, B = R
2 × C1

0 (Rn), and define
K1, K2 as follows:

K1 =

{
(z, h0, hu, h) ∈ K : h0 = B0 −B, hu = B −Bu, h = −∂B

∂x
f on X ;

z = Bu −B0; and (B0, Bu, B) ∈ B
}
,

K2 = {(z, h0, hu, h) ∈ K : z ≥ 0, h0 ≥ 0 on X0, hu ≥ 0 on Xu, h ≥ 0 on X}.

Then both K1 and K2 are convex sets, and K2 has a nonempty interior in K. Fur-
thermore, since γ = 0, it follows that the first component in K1 is less than or equal
to zero when the second, third, and fourth components are greater than or equal to
zero, and therefore K1 ∩ int(K2) = ∅. Now, by the Hahn–Banach theorem [17], there
exists a nonzero k∗ = (a, ψ̃0, ψ̃u, ρ̃) ∈ K∗ = R × (C(X )∗)3 such that

sup
k1∈K1

〈k∗, k1〉 ≤ inf
k2∈K2

〈k∗, k2〉,(5.4)

where C(X )∗ in this case is the set of measures on X with bounded variation. The
right-hand side of the inequality can be expanded as follows:

inf
k2∈K2

〈k∗, k2〉 = inf
(z,h0,hu,h)∈K2

az + 〈ψ̃0, h0〉 + 〈ψ̃u, hu〉 + 〈ρ̃, h〉

=

⎧⎪⎪⎨
⎪⎪⎩

0 if a ≥ 0; ψ̃0, ψ̃u, ρ̃ ≥ 0; and

ψ̃0, ψ̃u are zero outside X0,Xu, respectively;

−∞ otherwise.

Now denote the extension of ψ̃0, ψ̃u, ρ̃ to the whole R
n by ψ0, ψu, ρ, which are

obtained by letting them be equal to zero outside of X . Then, for the left-hand side
of (5.4), we have the following equality:

sup
k1∈K1

〈k∗, k1〉 = sup
(B0,Bu,B)∈B

a(Bu −B0) + 〈ψ0, B0 −B〉

+ 〈ψu, B −Bu〉 +

〈
ρ,−∂B

∂x
f

〉

= sup
(B0,Bu,B)∈B

(
−a +

∫
dψ0

)
B0 +

(
a−

∫
dψu

)
Bu

+ 〈−ψ0 + ψu + ∇ · (ρf), B〉

=

⎧⎪⎪⎨
⎪⎪⎩

0 if
∫

Rn dψ0 = a,
∫

Rn dψu = a, and

−ψ0 + ψu + ∇ · (ρf) = 0;

∞ otherwise,
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where ∇ · (ρf) is interpreted as a distributional derivative. Thus, for the supremum
to be less than or equal to the infimum, we must have a nonzero (a, ψ0, ψu, ρ), where
ψ0, ψu, ρ are measures of bounded variation on R

n, such that a ≥ 0; ψ0, ψu, ρ are
nonnegative; ψ0, ψu, ρ are equal to zero outside X0, Xu, and X , respectively; and

∫
Rn

dψ0 = a,

∫
Rn

dψu = a,

∇ · (ρf) = ψ0 − ψu.

We will next show that because of the assumption that there exists a B̃ ∈ C1(Rn)

such that ∂B̃
∂x (x)f(x) < 0 for all x ∈ X , we must have a > 0. For this, let L = (C(X ))3,

and define

L1 =

{
(h0, hu, h) ∈ L : h0 = B0 −B, hu = B −Bu, h = −∂B

∂x
f on X ;

and (B0, Bu, B) ∈ B
}
,

L2 = {(h0, hu, h) ∈ L : h0 ≥ 0 on X0, hu ≥ 0 on Xu, h ≥ 0 on X}.

Note in particular that due to the above assumption and the compactness of X0,
Xu, X , we have L1 ∩ int(L2) �= ∅ . Now consider k∗ = (a, ψ̃0, ψ̃u, ρ̃) that we have
before. Suppose that a = 0 and substitute this to (5.4). Then we have a nonzero
(ψ̃0, ψ̃u, ρ̃) ∈ (C(X )∗)3, such that

sup
�1∈L1

〈(ψ̃0, ψ̃u, ρ̃), 
1〉 ≤ inf
�2∈L2

〈(ψ̃0, ψ̃u, ρ̃), 
2〉.

This implies that L1 ∩ int(L2) = ∅, which is contradictory to the above. Thus a must
be strictly positive. Without loss of generality, assume that k∗ is scaled such that
a = 1. This completes the proof of our lemma.

Next, we will show that the existence of ψ0, ψu, ρ in the conclusion of Lemma 5.2
implies that there exists an unsafe trajectory of the system. Since in this case we have
a density function ρ which is in fact a measure, we need a version of the Liouville
theorem which applies to measures.

Lemma 5.3. Let f ∈ C1(D,Rn), where D ⊆ R
n is open. For a measurable set

Z, assume that φt(Z) is a subset of D for all t between 0 and T . If ρ is a measure
of bounded variation on D such that ρ has a compact support and the distributional
derivative ∇ · (ρf) is also a measure of bounded variation with compact support, then

∫
φT (Z)

dρ−
∫
Z

dρ =

∫ T

0

∫
φt(Z)

d(∇ · (ρf))dt.

Proof. Choose ρ1, ρ2, . . . ∈ C∞
0 (D) such that ρk → ρ in the (weak) topology

of distributions. Then also ∇ · (ρkf) → ∇ · (ρf) in the sense of distributions. In
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particular

lim
k→∞

∫
X

d|ρk − ρ| = 0,

lim
k→∞

∫
X

d|∇ · (ρkf) −∇ · (ρf)| = 0

for every X ⊂ D. The lemma (cf. Lemma 3.1) was proven for the case of smooth ρ
in [23], i.e.,

∫
φT (Z)

ρk(x)dx−
∫
Z

ρk(x)dx =

∫ T

0

∫
φt(Z)

[∇ · (ρkf)(x)]dxdt.

So the desired equality is obtained in the limit as k → ∞.
Lemma 5.4. Consider the system ẋ = f(x) with f ∈ C1(Rn,Rn), and let X ⊂ R

n,
X0 ⊆ X , Xu ⊆ X be compact sets. Suppose there exist measures of bounded variations
ψ0, ψu, ρ such that ψ0, ψu, ρ are nonnegative on R

n and equal to zero outside X0, Xu,
and X , respectively; and

∫
X0

dψ0 = 1,
∫
Xu

dψu = 1, ∇ · (ρf) = ψ0 − ψu. Then there

exists a T ≥ 0 and a trajectory x(t) of the system such that x(0) ∈ X0, x(T ) ∈ Xu,
and x(t) ∈ X for all t ∈ [0, T ].

Proof. Let X1, X2, . . . ⊆ R
n be a sequence of open sets such that X0 ⊆ Xi for all

i and limi→∞ Xi = X0. In addition, define the measurable sets

Zi =
⋃

x0∈Xi

{x ∈ R
n : x = φt(x0) for some t ≥ 0} for i = 1, 2, . . . .

By the assertions of the lemma, both ρ and ∇ · (ρf) are measures with bounded
variation and compact support, so we can use Lemma 5.3 and ∇ · (ρf) = ψ0 − ψu to
obtain the relation ∫

φt(Zi)

dρ−
∫
Zi

dρ =

∫ t

0

∫
φτ (Zi)

d(ψ0 − ψu)dτ

for all t ≥ 0. Since ρ ≥ 0 and φt(Zi) ⊆ Zi for all t ≥ 0, the left-hand side of
the above expression is less than or equal to zero. It follows from

∫
X0

dψ0 = 1 and

ψ0 ≥ 0 that Xu ∩ Zi �= ∅ for all i = 1, 2, . . . , for otherwise the right-hand side of the
expression can be made strictly greater than zero by taking some t > 0, and we obtain
a contradiction. Since the sets X0 and Xu are closed, we conclude that φT (x0) ∈ Xu

for some T ≥ 0 and x0 ∈ X0. For our purposes, let T be the first time instance such
that φT (x0) ∈ Xu.

The case in which T = 0 is trivial since X0 ⊆ X . Consider now the case in which
T > 0. We will show that φt(x0) ∈ X for all t ∈ [0, T ] by a contradiction. Suppose
to the contrary that there exists T̃ ∈ (0, T ) such that φT̃ (x0) /∈ X . Then, for a
sufficiently small open neighborhood U of x0, we have

φT̃ (U) ⊂ R
n \ (X ),

φt(U) ∩ Xu = ∅ ∀t ∈ [0, T̃ ].

Using Lemma 5.3 again we obtain

∫
φT̃ (U)

dρ−
∫
U

dρ =

∫ T̃

0

∫
φτ (U)

d(ψ0 − ψu)dτ.
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Since ρ = 0 on R
n \ (X ), the first term on the left is equal to zero, and therefore the

left-hand side is nonpositive, which leads to a contradiction since the right-hand side
is strictly greater than zero. This lets us conclude that φt(x0) ∈ X for all t ∈ [0, T ],
thus finishing the proof of the lemma.

We are now ready to present the proof of the main theorem.
Proof of Theorem 5.1.
(⇒): This has been proven in Theorem 3.2.
(⇐): This follows from Lemmas 5.2 and 5.4.

5.1. Some remarks. The result stated in Theorem 5.1 uses the assumption that
the following Slater-like condition [6] is fulfilled: there exists a function B̃ ∈ C1(Rn)

such that ∂B̃
∂x (x)f(x) < 0 for all x ∈ X . While in the discrete case strong duality holds

(and hence so does the necessity of barrier certificates) without such an assumption,
its proof depends on a special property of polyhedral convex sets, which does not
carry over to the continuous case. Eliminating this condition in the continuous case
will presumably require a different proof technique than the one presented in this
paper. Nevertheless, there are cases in which the condition is automatically fulfilled—
for instance, when the trajectories of the system starting from any x0 ∈ X leave a
neighborhood of X at least once, as shown in the following proposition.

Proposition 5.5. Consider the system ẋ = f(x) with f ∈ C1(Rn,Rn) and let
X ⊂ R

n be a compact set. Suppose there exist an open neighborhood X̃ of X and a
time instant T > 0 such that for all initial conditions x0 ∈ X , we have the flow φt(x0)
outside of cl(X̃ ) for some t ∈ [0, T ]. Then there exists a function B̃ ∈ C1(Rn) such

that ∂B̃
∂x (x)f(x) < 0 for all x ∈ X .

Proof. Let Y be an open neighborhood of X such that its closure is contained
in X̃ . In addition, let ξ ∈ C1(Rn) be a nonnegative function such that ξ(x) = 1 for
all x ∈ Y and ξ(x) = 0 for all x /∈ X̃ ; also let ψ ∈ C1(Rn) be a function such that
ψ(x) > 0 for all x ∈ X and ψ(x) = 0 for all x /∈ Y. Now consider the differential
equation ẋ = ξ(x)f(x). Denote the flow of ẋ = ξ(x)f(x) starting at x0 by φ̃t(x0).
Modulo a time reparameterization, the flows φ̃t(x0) and φt(x0) are identical up to
some finite time. Next define

B̃(x0) =

∫ ∞

0

ψ(φ̃t(x0))dt.

For all x0 in a neighborhood of X , the flow φ̃t(x0) is outside of Y for large t and thus
by its construction ψ(φ̃t(x0)) is equal to zero for large t and for all such x0. It follows
that B̃(x) is well defined on a neighborhood of X . The function B̃(x) is continuously
differentiable on X since both ψ(x) and φ̃t(x) are also continuously differentiable.
Taking the total derivative of B̃(x) with respect to time, we obtain

∂B̃

∂x
(x)ξ(x)f(x) = −ψ(x),

which is strictly less than zero, on X . Finally, recall that on X we have ξ(x) = 1.
This completes the proof of the proposition.

While the above Slater-like condition excludes the possibility of applying Theo-
rem 5.1 when there is, e.g., an equilibrium point in X , analysis can still be performed
by excluding a neighborhood of the equilibrium point from X in the condition (3.4).
If the excluded region is either backward or forward invariant, and does not intersect
X0 and Xu, then the safety criterion (5.1)–(5.3) will still apply in terms of the original
sets.
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Finally, note also that when all the connected components of R
n \ X are either

forward or backward invariant, an even stronger safety criterion can be obtained, as
in the following proposition.

Proposition 5.6. Let the system ẋ = f(x) with f ∈ C1(Rn,Rn) and the compact
sets X0 ⊂ R

n, Xu ⊂ R
n be given, with 0 /∈ X0∪Xu. Suppose that the origin is a globally

asymptotically stable equilibrium of the system with a global strict Lyapunov function
V (x).4 Let ε1 = minx∈X0∪Xu V (x) and ε2 = maxx∈X0∪Xu V (x). Then there exists a
function B ∈ C1(Rn) satisfying

B(x) ≤ 0 ∀x ∈ X0,(5.5)

B(x) > 0 ∀x ∈ Xu,(5.6)

∂B

∂x
(x)f(x) ≤ 0 ∀x ∈ {x ∈ R

n : ε1 ≤ V (x) ≤ ε2}(5.7)

if and only if there exists no trajectory x(t) of the system such that

x(0) ∈ X0,(5.8)

x(T ) ∈ Xu for some T ≥ 0.(5.9)

Proof. Define X = {x ∈ R
n : ε1 ≤ V (x) ≤ ε2}. In this case, the existence of a

function B̃ ∈ C1(Rn) such that ∂B̃
∂x (x)f(x) < 0 for all x ∈ X is guaranteed by Proposi-

tion 5.5, and even the Lyapunov function V (x) can be used as B̃(x). By Theorem 5.1,
there exists a function B ∈ C1(Rn) satisfying (5.5)–(5.7) if and only if there exists
no trajectory x(t) of the system such that x(0) ∈ X0, x(T ) ∈ Xu for some T ≥ 0, and
x(t) ∈ X for all t ∈ [0, T ].

Since the connected components of R
n \ X are either forward or backward in-

variant, however, there can be no trajectory x(t) of the system and time instants
T1, T2, T3 such that T1 < T2 < T3, x(T1) ∈ X , x(T2) ∈ R

n \ X , and x(T3) ∈ X . This
combined with the fact that X0,Xu ⊆ X implies that the set of trajectories satisfying
x(0) ∈ X0, x(T ) ∈ Xu for some T ≥ 0 and x(t) ∈ X for all t ∈ [0, T ] is the same
as the set of trajectories satisfying (5.8)–(5.9), and therefore the statement of the
proposition follows.

6. Conclusions. In the previous sections, we have used insights from the linear
programming duality appearing in the shortest path problem and the concept of
density function to formulate a convex program for reachability, which together with
a convex program for safety verification using barrier certificates proposed in an earlier
work form a pair of weak alternatives for safety and reachability verification. We have
additionally shown that other temporal properties such as eventuality and avoidance
can also be verified via convex programming and have presented convex programs to do
so. This opens the possibility of performing the verification using convex optimization.
In particular, sum of squares programming can be used for this purpose when the
vector field of the system is polynomial and the sets are semialgebraic.

We have further commented on the use of this methodology for worst-case veri-
fication or controller synthesis. It was pointed out that the convex programs can be
combined to verify properties such as reachability–safety and eventuality–safety. Some

4That is, V ∈ C1(Rn) is radially unbounded, V (x) > 0 for all x �= 0, and ∂V
∂x

(x)f(x) < 0 for all
x �= 0.
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examples have been presented for illustration. At the end of the paper, a converse
theorem in safety verification using barrier certificates was proven.

Even though the present tests are aimed for continuous systems, they are useful
for constructing discrete abstractions of hybrid systems. In addition, we expect that
all of them can also be extended to handle hybrid systems directly, using an approach
similar to the one presented in [21].
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