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Abstract

In this paper, we study upscaling for two-phase flows in strongly heterogeneous porous
media. Upscaling a hyperbolic convection equation is known to be very difficult due to
the presence of nonlocal memory effect. Even for a linear hyperbolic equation with a shear
velocity field, the upscaled equation involves a nonlocal history dependent diffusion term,
which is not amenable to computation. By performing a systematic multiscale analysis,
we derive coupled equations for the average and the fluctuations for the two-phase flow.
The homogenized equations for the coupled system are obtained by projecting the fluctu-
ations onto a suitable subspace. This projection corresponds exactly to averaging along
streamlines of the flow. Convergence of the multiscale analysis is verified numerically.
Moreover, we show how to apply this multiscale analysis to upscale two-phase flows in
practical applications.

1 Introduction

The understanding and modeling of flow through porous media is an important issue in
several branches of engineering. In petroleum engineering, for instance, one wishes to
model the “enhanced oil recovery” process, whereby water or steam is injected into an
oil saturated porous media in an attempt to displace the oil so that it can be collected.
In groundwater contaminant studies the transport of dissolved material, such as toxic
metals or radioactive waste, and how it affects drinking water supplies, is of interest.

Modeling such flows are difficult and a principal source of the difficultly is the pres-
ence of widely different length scales in the problems. In modeling an oil reservoir, for
example, geological data will be gathered over an area extending hundreds of meters, if
not kilometers. Large scale geological features will be present, such as “faults” or the
well pipes, as well as very small scale features such as layers created by sedimentation.
When using traditional numerical methods we need to use spatial discretizations that are
capable of resolving all these length scales. Even with improving computer technologies
this is a formidable task for most data sets, both in terms of memory and computational
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time. However, for the most part, the resolution required for the smallest scale is greater
than that needed for engineering purposes. Average properties of the flow, such as the
total amount of oil produced, are often of more importance.

To address both these issues, various “upscaling” schemes have been proposed. In
an upscaling scheme, one solves only for the average flow features and the effect of the
small scale features is modeled. Since capturing average quantities requires less grid
resolution, the schemes should use less computer memory and CPU time. The goal
of research in this area is to make practical simulation available on limited computer
resources. However, the existing upscaling methods often have limitations. Most methods
do not have a very firm mathematical basis, and some rely heavily on experience. Other
methods make very restrictive assumption on the nature of the small scale features and
are therefore applicable only in a limited range of data sets. A common assumption is
that the magnitude of the small scale features is small, which often does not hold.

The purpose of this study is to develop a systematic framework for developing upscal-
ing schemes. We take a particular, simplified model for the porous media flow problem,
which is derived in Section 2. This model retains the essential difficulty of the problem,
namely the presence of multiple scales, and moreover it is one that is used practically.
The model consists of an elliptic equation for the fluid pressure and velocity field, and
a non-linear hyperbolic transport for the oil-saturation in the porous media. Upscaling
a hyperbolic convection equation is known to be very difficult due to the presence of
nonlocal memory effect [24]. Even for a linear hyperbolic equation with a shear velocity
field, the upscaled equation involves a nonlocal history dependent diffusion term, which
is not amenable to computation. We remark that homogenization of transport equations
has been studied before, see e.g. [24, 22, 15, 8].

In this paper, we derive the homogenized equation for the hyperbolic saturation equa-
tion and develop an upscaling method for the two-phase flow in heterogeneous porous
media. We perform a multiscale analysis by introducing a small length scale ε and small
scale variable y = x/ε, where x is the large scale variable. To facilitate the initial analysis
we assume that there exist only the two distinct length scales outlined above, and that all
functions of y are periodic, i.e. the small scale features are periodic. The multiscale anal-
ysis for the elliptic pressure equation is known. The multiscale analysis for the hyperbolic
transport part is a new result and this, along with the numerical results, are the main
contribution of this work. We perform a multiscale analysis to derive coupled equations
for the average and the fluctuations. The homogenized equations for the coupled system
are obtained by projecting the fluctuations onto a suitable subspace. It turns out that
this projection corresponds exactly to averaging along streamlines of the flow. In this
subspace, the system becomes closed.

Once these multiscale equations have been derived, we consider the numerical im-
plementation in Section 4. We develop a novel approach to sampling the fluctuations
in order to compute the small-scale large-scale interaction terms. This is done by using
what we call a coarse-grid sub-grid method. We first discretize at the coarse level, using a
sufficient number of grid points to resolve average features. Then, within each grid block
we solve the equations for the fluctuations at a set number of points. These fluctuations
are then used for computing the interaction terms. The resulting system for the transport
part is a coupled hyperbolic system of equations with source terms. In order to solve the
pressure equation on such a grid configuration, we make use of a variant of the multiscale
finite element method developed by Hou and Wu [13]. It turns out that this complements
perfectly the scheme for the transport part.
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The numerical method for the hyperbolic part is then tested using a prescribed ve-
locity field and we demonstrate that the average is computed with first-order accuracy.
Similarly, we demonstrate the efficacy of MsFEM in capturing the velocity field. We then
test the method for the case where the geological data (the permeability) is of the form
described above, i.e. with small scale features that are periodic. The results demonstrate
that the method captures the average with first order accuracy.

A method for extending the results to the case where permeability does not have
scale separation is then described. We then use this in demonstrating that our method
is applicable for practical examples. We present a number of numerical experiments in
Section 5, and compare the resulting solutions with those obtained by averaging resolved
simulations. Our method captures this average very well. In addition, we compare the
computational costs for our method versus resolved computations.

The rest of the paper is organized as follows. In Section 2, we describe the two-
phase flow model. In Section 3, we present our multiscale analysis for the two-phase flow
equations. The numerical implementation issues and convergence study will be discussed
in Section 4, and numerical results with realistic data will be presented in Section 5.
Some concluding remarks are made in Section 6.

2 Modeling Two-Phase Flows

In a porous media flow simulation, we are interested in modeling the displacement, within
a porous media, of either oil, water or some gas. In this paper, we will mainly look at
the case of water-oil simulations. However, for the moment we will stay with the more
general case where one of the fluids (but not both) could be a compressible gas. By
porous media, we mean a solid with many small voids, or pores, potentially connected,
through which fluid may flow. The volume fraction of the pores as a total of the whole
volume is known as the porosity. Since it is typical to view the pores as a microscale
feature, this porosity is a macroscale feature, given pointwise. We usually consider one of
the fluids to be displacing the other, as in the case of a oil-water flow where the water is
pumped in so as to displace the oil. While the displacing fluid may be immiscible with the
fluid being displaced, the displacement does not take place as a piston like process with
a sharp interface between the two-fluids. Rather, simultaneous flow of the immiscible
fluids takes place within the porous media.

In considering this simultaneous flow we assume, for the present, no mass transfer
between the fluids. Mass transfer could potentially occur if there was a chemical reaction
taking place between the fluids. Typically, one of the fluids wets the porous media more
than the other; we refer to this as the wetting phase fluid (and identify it using the
subscript w), and we refer to the other as the non-wetting phase fluid (and use the
subscript n). Wettability describes the relative preference of a rock (from which the
porous media is formed) to be covered by a certain phase. In a water-oil system, water is
most often the wetting phase; in a oil-gas system, oil is the wetting phase. The saturation,
Sk, of a phase k (k = w, n) is defined as the fraction of the void volume of the porous
medium filled by that phase. Since the two fluids jointly fill the void space, we have

Sn + Sw = 1 . (1)

In order to model flows in porous media, it is vital to be able to model the velocity field
for the flow. It is standard to use Darcy’s law as the model for this [23]. For a single
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phase of fluid in the porous media, Darcy’s law relates the fluid velocity v to the pressure
p, viscosity µ, density ρ, permeability K, via

v = −
K

µ
∇p . (2)

We take this law as an empirical fact [23]. Darcy’s law can be thought of a viscous limit
of the Navier-Stokes equation, which of course makes sense given how slowly fluid can
flow within the porous media. In this equation, we have the permeability which, along
with the porosity, is a basic property which characterizes the ease by which fluid can flow
in the media. Low permeability characterizes regions where fluid cannot easily penetrate,
high permeability where fluid can penetrate.

2.1 Simplified Model Problem

To make definite our mathematical formulation we simplify the model with the following
assumptions: the porosity φ is constant throughout the media; the effects of compress-
ibility can be ignored; capillary effects can be ignored; and gravitational effects can be
ignored. In this case, the governing equations for pressure and saturation become, re-
spectively, [23]

∇ · (λ(S)K∇p) = 0 , (3)

∂S

∂t
+ ∇ · (vf(S)) = 0 . (4)

where v = −λ(S)K∇p is the total velocity, λ is the total mobility, and S is the saturation
of the wetting phase. Henceforth, we will refer to these equations as the pressure equation
and the saturation equation respectively. The saturation equation (4) was first derived
by Buckley and Leverett [4] and is therefore often referred to as the “Buckley-Leverett”
equation. In order to complete the description of the model problem we must provide
the forms for the functions λ and f in (3) and (4) and also provide appropriate initial
and boundary conditions for the problem. The form of λ and f would in general be
determined by experiment. However, for two-phase flow, a good model for λ(S) and f(S)
is given by

λ(S) = S2 +m(1 − S)2 , (5)

f(S) =
S2

S2 +m(1 − S)2
. (6)

This model is widely used. Here m is the mobility ratio, which is a number between 0
and 1 that indicates the relative ease by which the non-wetting phase can flow. In our
case m will generally be less than 1 since oil does not flow as easily as water within the
porous medium.

The special case of single phase, or “tracer” flow can be derived more easily, and
described in the same framework. The analysis gives us [23]

λ(S) = 1 , f(S) = S. (7)

One-phase flow is a useful model for the case of solute transport in groundwater flows. In
this case contaminated and uncontaminated water, say, will be the two “phases” within
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the porous media. We now wish to solve the problem (3) and (4) for the evolution of the
saturation. In general the permeability will be given as input data and this is gathered
using some geological survey or seismic imaging. Therefore, we will have to solve the
system numerically.

In addition to the variation of the solution S(x1, x2, t) with space and time, measures
of the overall reservoir performance are usually calculated as well. An important char-
acteristic is the so-called fractional flow which measures the fraction of oil produced at
the production well with time. This is most easily computed in the case of the core-plug
model, which will be described in the section on numerical results. In that case, the
fractional flow is defined as

Ψ(t) = 1 −

∫ 1

0
S(1, x2, t)n · v(1, x2, t)dx2

∫ 1

0
n · v(1, x2, t)dx2

(8)

where n = (1, 0) is the outward pointing normal at the edge x1 = 1. At t = 0 we have
Ψ = 1 since initially the domain is oil saturated. After some time however, we will have
Ψ < 1. This time is the breakthrough time corresponding to the first time that water
reaches the production well. Accurate determination of breakthough times is also of
interest in the performance of the reservoir. Note that instead of time we plot Ψ against
pore-volumes injected (PVI). This is a non-dimensional quantity that gives the volume
of injected fluid (water in our case) as a fraction of the total pore volume. Since we are
assuming constant porosity in our simulations, we have

PVI(t) =

∫ t

0

∫ 1

0
n · v(1, x2, t)dx2dt. (9)

2.2 Previous Work on Upscaling

The study of upscaling techniques is by no means new and there have been many con-
tributions to this area. Many of these are relevant to our study here and our discussion
will be limited to those closest. Most of the approaches to upscaling are designed to
generate some coarse grid description which is approximately equivalent to the underly-
ing fine grid description. Essentially, the upscaling problem for the whole system can be
split into upscaling for the elliptic pressure/velocity equation (which we denote by PVE
for short hereafter) and upscaling for the hyperbolic transport equation. For the PVE
equation, there have been several upscaling methods developed. Since the permeability
data is the principal source of the small scale features, much effort has been devoted
to methods for upscaling this quantity. Durlofsky [7], has attempted to find effective
permeability properties by dividing the domain into coarse grid blocks, then solving flow
problems within each of these. By averaging the resulting flow field within the coarse
grid block one can obtain an effective permeability for this grid block. The full PVE is
then solved in the domain with the resulting coarse grid effective permeabilities. The
limitation of this approach is that boundary conditions must be imposed for the solution
of the flow problem within each coarse cell. Since the global flow field is not known apri-
ori, the boundary conditions imposed may not correspond well with the actual boundary
conditions, and the resulting effective permeability is dependent on the choice of these
boundary conditions chosen.
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The multi-scale finite element (MsFEM) is a very promising alternative to upscaling
the permeability. In this method, coarse grid basis functions are specially constructed
which sub-grid features which accurately capture the fine-scale fluctuations. MsFEM has
been used successfully to solve the PVE ([13, 14, 12, 11, 6]). Indeed, in the upscaling
scheme that we will develop we will be using variant of this method, whereby basis
functions are only updated selectively. This leads to a great saving in the amount of
computation required.

Less satisfactory progress has been made in developing useful upscaling schemes for
the transport equation. The methods that exist can be roughly categorized by whether
they use a stochastic framework or a deterministic framework. The first approach entails
a stochastic formulation of the equations, whereby the velocity and saturation field are
assumed to have a random component, corresponding to the small scale fluctations. The
resulting flow equation for the average saturation then incorporates the expected value
and higher statistical moments of these. Langlo and Espedal [19] used this approach to
upscale the saturation equation.

Efendiev et al. [10, 9], used a hybrid formulation, whereby the upscaled model for
the saturation was developed within a fully deterministic framework but the higher order
moments of the velocity field were modeled emprically. This was found to be successful
in range of cases, though there did exist some serious limitations. The principal difficulty
with their scheme was the fact that in developing the model, fluctuations in all quantities
were assumed to be small.

The approach in this work is similar to that of Efendiev et al. [10]. The main emphasis
of this work is to develop an effective scheme for upscaling the saturation equation. We
will initially use a fully deterministic framework to develop an understanding of the effect
of the small scale fluctuations upon the average. This will be done at first within the
restrictive assumption that all the fine scale fluctuations are periodic. After developing
the model in this way, and presenting a numerical implementation to demonstrate it’s
validity, we will make some minor modifications that will allow us to consider the more
general case where the fluctuations are non-periodic.

3 Multiple Scale Analysis

In this section we will present the framework for upscaling the porous media flow problem.
We perform a multiple-scale analysis for the problem under the assumption that there
exists two length scales within the problem: a large scale that captures features at the
size of the domain, and a small scale which captures the features within the permeability
field. By doing such an analysis, with some assumptions on the nature of the small scale
features, we are able to develop equations that model the large scale features and quantify
how these are affected by the small scales. From these equations, a numerical scheme for
the evolution of the average saturation can be derived easily.

We split up this section in a manner consistent with the overall solution strategy.
First, we define some conventions and set up a framework in which to work. Then,
we consider the multiple-scale solution for the pressure/velocity equation. After deriving
results for the multiple-scale velocity field, we use this as a starting point for the multiple-
scale analysis of the saturation equation. The results for the saturation equation, and
their numerical implementation, form the main contribution of this paper. We develop a
coupled set of equations for both the average and the fluctuation. The desirable features
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of these equations are that they capture all of the important features of the original
equation and are closed. The closure property is often lacking in previous results, or else
is taken care of by making overly restrictive assumptions on the nature of small scales.
We achieve this closure by means of a special projection, which we show is equivalent to
averaging along streamlines of the flow.

3.1 Formulation of Multiple Scale Model

Consider first the principal source of the small scales in the porous media flow, namely
the form of the permeability K. We assume that K is strongly heterogeneous and is
characterized by two scales. The first is a large length scale, on the order of the size
of the domain, i.e. O(1) and which we denote by x. The second is small length scale,
of the order ε, with 0 < ε � 1. To model features at this length scale, we introduce
the “fast” spatial variable y = x/ε. Note that we assume that the two length scales are
always distinct. This assumption may not necessarily hold for all types of permeability
but it is useful in developing our initial models. With the above length scales defined,
the permeability is then given by K(x,y). Furthermore, we may write

K(x,y) = K(x) +K ′(x,y) (10)

where K(x) represents an “average” of K and K ′(x,y) is a fluctuation around this
average. In general, K(x) is understood as being the weak limit of K in the limit of
ε→ 0. We assume that K is a scalar, though in general it could be a tensor.

For our analysis we make the assumption that all functions of the fast variable y

are periodic with period Y and that they all lie within the space of square integrable
functions. This space will be denoted in the usual way by L2

Y . For convenience, we will
always scale ε so that Y is the unit square [0, 1] × [0, 1]. Note that L2

Y is a Hilbert space
if we use the scalar product

(u, v)0 = (u, v)L2

Y

:=

∫

Y

u(y)v(y)dy (11)

and the corresponding norm ‖u ‖0=
√

(u, u)0. Often in the sections that follow we will
drop the use of the subscript 0 when writing this norm. We also introduce the related
Sobolev spaces Hm

Y which consists of the set of all functions u in L2
Y which possess weak

derivatives ∂α
y u in L2

Y for all |α| ≤ m. For the most part, we will only be interested in
the case of m = 1, since our equation (25) does not involve higher order derivatives.

Since we will often using the concept of an average quantity, we make this definite by
defining, for a function φ(x,y), the average

φ(x) =
1

|Y |

∫

Y

φ(x,y)dy . (12)

Note that this is a particular form of the expression for the weak limit of φ. The fluctu-
ating part of φ will be denoted by φ′ and is defined in the natural way as

φ′(x,y) = φ(x,y) − φ(x) . (13)

This has clearly zero average, i.e. φ′ = 0. The average (12) can be thought of as a
smoothing or spatial “filtering” of the small scales (c.f. Beckie et al [1]).

7



3.2 Upscaling for the Pressure/Velocity Equation

Consider the elliptic pressure equation (4). We make the assumption (which will later be
justified) that S consists of an average and a periodic fluctuating part. Then, we have
a = λ(S)K, with a = a(x)+a′(x,y). Within the framework described above, the form of
the solution can be determined using the analysis given in [2]. We look for an asymptotic
expansion of the pressure in the form

pε = p(x,y) + εp1(x,y) + ε2p2(x,y) +O(ε3) (14)

where each of the functions pi is periodic in y. By using a multiscale expansion for pε,
we can derive the homogenized equation for pressure as follows:

∂

∂xi

(

a∗ij(x)
∂p

∂xj

)

= 0 (15)

where a∗ is a diagonal tensor with

a∗ij(x) =
1

|Y |

∫

Y

a(x,y)

(

1 −
∂χj

∂yi

)

dy (16)

and χj is the solution of the following cell problem

∂

∂yi

(

a(x,y)
∂χj

∂yi

)

=
∂a

∂yj
, (17)

with periodic boundary condition in y. Moreover, the first order corrector p1 is given by

p1(x,y) = −χj ∂p

∂xj
+ p̃1 . (18)

Thus, (15), (16) and (18) define equations for the first two terms in the expansion for
the pressure (14). Note that the dependence on the fast variable y appears only at O(ε).
We can obtain an expression for the velocity field by substituting this pressure expansion
into Darcy’s law. Doing this we obtain

vε = −(a+ a′)

(

∂

∂xi
+

1

ε

∂

∂yi

)

(p(x) + εp1(x,y) + ε2p1(x,y) + . . . ) (19)

= −(a+ a′)(∇xp+ ∇yp1) +O(ε) . (20)

Thus, vε has the expansion
vε = v + v

′ + εv1 (21)

with

v = a∇xp+ a′∇yp′ (22)

v
′ = a∇yp

′ + a′∇xp+ a′∇yp
′ − a′∇yp′. (23)

The expression for v1 and higher order terms can also be derived. The analysis shows
us that if we start with a permeability field with O(1) fluctuations then the resulting
velocity field will also have fluctuations which are O(1). As mentioned in the previously,
since the mobility λ depends on S, the velocity field is not steady but will change as the
S changes throughout the domain.
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Note further that the averaged velocity field v retains the divergence free property,
i.e. ∇ · v = 0 to O(ε). To see this note that

(

∇x +
1

ε
∇y

)

·
(

v + v
′
)

= 0 . (24)

Equating terms with the same power of ε, at O(ε−1) we get ∇y · v
′ = 0. At O(1) we

have ∇x · (v + v
′) = 0. Averaging this equation over Y gives ∇x · v = 0 and hence

also ∇x · v′ = 0. Therefore, we see that spatial averaging preserves the divergence-free
properties.

3.3 Upscaling for the Saturation Equation

We now consider the problem of homogenization for the hyperbolic saturation equation

∂Sε

∂t
+ vε · ∇f(Sε) = 0 (25)

in 2-dimensions. The incompressible velocity field vε was shown, in the previous section,
to have an O(1) oscillatory component.

In the same way as for the pressure equation, we will confine our analysis the case
where the functions of the “fast” variable y = x/ε are periodic. Within this framework
we will derive a closed, coupled system of equations for the average S and the O(1)
fluctuations S ′. Closure is obtained making use of a special streamline average that
eliminates higher-order fluctuations. After developing these expressions we will propose
some approximations that allow the methodology to be applied to more general flows for
which the oscillations are not necessarily periodic with respect to the fast variable. In
our case, where we are looking at flows more complex than shear flows, we will again see
that the nature of the streamlines plays a very important role in determining the effective
equation.

We first apply the standard multiple-scale analysis of looking for a formal expansion
of the saturation of the form

Sε = S(x, t) + S ′(x,y, t) + εS1(x,y, t, τ) +O(ε2) . (26)

Thus, S consists of an average, S, modified by a fluctuating part S ′. We have also
introduced in this expansion a possible dependence on a fast time scale τ = t/ε, which
appears at the O(ε) level. The justification for such an expansion will be probed further
in section 3.6. As before, with the expansion for the velocity field, all the terms except
S have zero mean. The flux function f(S) is expanded in a similar manner

f(Sε) = f(x, t) + f ′(x,y, t) + εf1(x,y, t, τ) +O(ε2) (27)

where again we have that f ′, f1, . . . are periodic in y and f ′ has with zero mean, i.e.
f ′ = 0. This expansion is determined solely from the (prescribed) form of f and Sε, with

f + f ′ = f(S + S′) , (28)

f1 = fSS1 , (29)

f2 = fSS2 +
1

2
fSSS

2
1 (30)
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where fS = df
dS

|S+S′ , and similarly for the higher-order terms. Note that f1, f2 and higher
order terms do not necessarily have mean zero.

We again use that fact that for a function φ(x,x/ε, t, t/ε) we must expand the partial
derivatives as

∇ = ∇x +
1

ε
∇y , (31)

∂

∂t
=

∂

∂t
+

1

ε

∂

∂τ
. (32)

Substituting our expansions into the saturation equation and gathering together terms
with the same power of ε we obtain the following hierarchy of equations:

ε−1 : (v + v
′) · ∇yf

′ = 0 (33)

ε0 :
∂S

∂t
+
∂S′

∂t
+
∂S1

∂τ

+ (v + v
′) · ∇xf + (v + v

′) · ∇xf
′ + (v + v

′) · ∇yf1 = 0 (34)

ε1 :
∂S1

∂t
+
∂S2

∂τ
+ (v + v

′) · ∇xf1 + (v + v
′) · ∇yf2 = 0 . (35)

To facilitate the analysis, we now introduce some subspaces of L2
Y and then several

Lemmas, which build a framework for multiscale analysis. We introduce the following
spaces in L2

Y :

N = {u ∈ H1
Y : v · ∇yu = 0} , (36)

W = {v · ∇yu : u ∈ H1
Y } (37)

here v is our velocity field as computed from the pressure equation, so that ∇y · v = 0.
We now also assume that v is bounded and that vi ∈ L2

Y . With these spaces, we have
the following orthogonal decomposition of L2

Y :

Lemma 3.1

L2
Y = N ⊕W . (38)

Proof. In order to prove this lemma we need the following theorem [26]:

Theorem 3.1 Let H be a Hilbert space and M ⊂ H be a closed subspace. Then, any
element x ∈ H has the unique decomposition x = y + z, with y ∈ M, z ∈ M⊥, where
M⊥ denotes the orthogonal complement of M. Furthermore,

‖x− y‖= min
ν∈M

‖x− ν ‖ (39)

where ‖·‖ is the associated norm of H.

Thus, to prove Lemma 3.1 we show that N and W are orthogonal complements in L2
Y .

To do this, first note from their definitions that N and W are clearly subspaces of L2
Y

(we need to take the closure of W since this is not a closed space). Now consider u such
that (u,v · ∇yw) = 0 is satisfied for each w ∈ H1

Y . This implies that (v · ∇yu,w) = 0 for
each w ∈ H1

Y and hence u ∈ N . Since v · ∇yw ∈ W we therefore we have W ⊥ N in L2
Y .

Because L2
Y is a Hilbert space all the hypotheses of Theorem 3.1 are satisfied and thus

Lemma 3.1 follows.
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In Theorem 3.1, the element y ∈ M is called the orthogonal projection of x onto M
and the abstract form of the projection is given by (39). To derive a more explicit form
for the projection in our case, consider using M = W in the theorem. Then, from the
definition (37) for W, for a given u ∈ L2

Y the projection Q : L2
Y 7→ W is the defined as

the solution of the minimization problem

‖u−Q(u)‖= min
θ∈H1

Y

‖u− v · ∇yθ‖ (40)

where ‖ · ‖ is the L2
Y norm. If we had an orthonormal basis for W (or its restriction

to a finite dimensional subspace) then we could use a least-squares approximation to
determine the solution to this problem. In the absence of possessing such a basis we use
the following lemma:

Lemma 3.2 For u ∈ H1
Y the projection Q : H1

Y 7→ W is uniquely given by Q(u) = v ·∇yθ
where θ ∈ H1

Y is the solution of the degenerate elliptic PDE

∇y · (A∇yθ) = v · ∇yu (41)

with periodic boundary conditions where A is the 2×2 matrix with components Aij = vivj.

Proof. First expand the norm in (40) via

‖u− v · ∇yθ‖
2 =

∫

Y

(u− v · ∇yθ)
2 dy

=

∫

Y

(

u2 + 2θvi
∂u

∂yi
+ vivj

∂θ

∂yi

∂θ

∂yj

)

dy

where we have used integration by parts and ∇y · v = 0. Defining

a(ψ, φ) =

∫

Y

vivj
∂ψ

∂yi

∂φ

∂yi
dy , h(u, φ) =

∫

Y

φvi
∂u

∂yj
dy (42)

then the minimization problem (40) is equivalent to finding the minimum of

J(θ) :=
1

2
a(θ, θ) + h(u, θ) (43)

over H1
Y . It is easy to see that a(ψ, φ) is a symmetric semi-positive bilinear form, i.e.

a(ψ,ψ) ≥ 0 for all ψ ∈ H1
Y . a(ψ,ψ) is not positive since we can see from its definition

that it is zero for ψ ∈ N ∩H1
Y . However, for φ ∈ H1

Y −N , φ 6= 0 we have a(φ, φ) > 0. It
is easy to show that J(θ) attains its minimum over H 1

Y at θ if and only if

a(θ, φ) = h(u, φ) (44)

for all φ ∈ H1
Y , and that this minimum is unique up to a function in N . Note that A has

eigenvalues λ = 0, v2
1 + v2

2 and therefore (41) is a degenerate elliptic equation.
Integration by parts of (44) and using the fact that ∇y · v = 0 gives

∫

Y

φ
∂

∂yi

(

vivj
∂θ

∂yj

)

dy =

∫

Y

φvi
∂u

∂yi
dy (45)

for all φ ∈ H1
Y , from which equation (41) follows. Returning to (40) we see that v · ∇yθ

is the unique minimizer over H1
Y , which proves the Lemma.

With the projection Q defined, we immediately have from Lemmas 3.1 and 3.2 the
following corollary:

11



Corollary 3.1 For u ∈ H1
Y the projection P : H1

Y 7→ N is uniquely given by P(u) =
u−Q(u).

It is clear that P and Q are linear. We remark that the projection P from H 1
Y to N

has also been used in [8]. In order to make full use of the projections, we now present
several simple but useful Lemmas.

Lemma 3.3 For w ∈ W we have Q(w) = w.

Proof. Since w ∈ W then w = v · ∇yu for some u ∈ H1
Y . Then, from Lemma 3.2 we have

Q(w) = v · ∇yθ where θ is the periodic solution of

∇y · (A∇yθ) = v · ∇yw

= v · ∇y (v · ∇yu)

= ∇y · (A∇yu) .

Thus, using the analysis in Lemma 3.2, θ = u uniquely up to function in N . Then,

Q(w) = v · ∇yθ = v · ∇yu = w . (46)

Lemma 3.4 For u ∈ N we have Q(u) = 0.

Proof. Consider v = u+ w where w ∈ W. Then, taking the Q projection gives

Q(v) = Q(u) + Q(w) = Q(u) + w (47)

using Lemma 3.3. Then, subtracting this from v = u+ w and rearranging gives

v −Q(v) − u = −Q(u) . (48)

Since v − Q(v) ∈ N and u ∈ N the left hand side is in N . But Q(u) ∈ W and since
N ∩W = {0} we must therefore have Q(u) = 0.

Corollary 3.2 For u ∈ N we have P(u) = u.

Corollary 3.3 For w ∈ W we have P(w) = 0.

Lemma 3.5 For each u ∈ H1
Y , we have

P(u) = u . (49)

Proof. Using the expression for P(u) = u−Q(u) we have

P(u) = u−Q(u) = u−Q(u) .

Using the expression for the projection Q(u) and the definition for the average gives

Q(u) =

∫

Y

Q(u)dy =

∫

Y

v · ∇yθdy = 0,

since ∇y · v = 0 and thus (49).

Lemma 3.6 If u,w ∈ N then uw ∈ N .
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Proof. This is simply proved by expanding

v · ∇y(uw) = w(v · ∇yu) + u(v · ∇yw) = 0 . (50)

Lemma 3.7 For each u ∈ H1
Y , v ∈ N we have

(P(u), v) = (u, v) . (51)

Proof. From Lemma 3.1 and Lemma 3.1 we have u = P(u) + w with w ∈ W. Then

(u, v) = (P(u) + w, v) = (P(u), v) + (w, v) = (P(u), v) (52)

since W ⊥ N .

Lemma 3.8 If w ∈ N , then P(wv) = wP(v) for each v ∈ H 1
Y .

Proof. For any u ∈ H1
Y we have

(P(wv), u) = (P(wv),P(u)) = (wv,P(u)) = (v, wP(u)) . (53)

Since wP(u) is also in N by Lemma 3.6, we have

(v, wP(u)) = (P(v), wP(u)) = (wP(v),P(u)) = (wP(v), u), (54)

where we have used again Lemma 3.6 to show that wP(v) is in N . Thus, (P(wv), u) =
(wP(v), u) for any u ∈ H1

Y and the lemma follows.

Lemma 3.9 P(u) and Q(u) are unchanged if multiply the velocity field v by ψ ∈ N ,
ψ 6= 0.

Proof. We have Q(u) = v · ∇yθ where θ is the periodic solution of (41). Then, consider
the projection with velocity field u = ψv, i.e. Q∗(u) = ψv · ∇yθ

∗ where θ∗ satisfies

ψv · ∇y (ψv · ∇yθ
∗) = ψv · ∇yu . (55)

Since ψ ∈ N , ψ 6= 0 this gives

v · ∇y (v · ∇y(ψθ
∗)) = v · ∇yu . (56)

Therefore, ψθ∗ = θ up to a function in N . But then ψv · ∇yθ
∗ = v · ∇y(ψθ

∗) = v · ∇yθ
so that Q∗(u) = Q(u). Since P(u) = u−Q(u) this is also unchanged.

Lemma 3.10 For v, w ∈ H1
Y we have

(Q(v),v · ∇yw) = (v,v · ∇yw) . (57)

Proof. By simple substitution we have

(Q(v),v · ∇yw) = (v −P(v),v · ∇yw)

= (v,v · ∇yw) − (P(v),v · ∇yw)

= (v,v · ∇yw) (58)

since P(v) ∈ N , v · ∇yw ∈ W and W ⊥ N .
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Lemma 3.11 If u ∈ N then

(Q(∂xi
u),v · ∇yw) = − (u, (∂xi

v) · ∇yw) (59)

and
(Q(∂tu),v · ∇yw) = − (u, (∂tv) · ∇yw) (60)

holds for all w ∈ H1
Y .

Proof. In Lemma 3.10 let v = ∂u
∂x1

, where u ∈ N . By definition, we have v ·∇yu = 0, and

∂

∂x1
(v · ∇yu) =

∂vi

∂x1

∂u

∂yi
+ vi

∂2u

∂x1∂yi
= 0 . (61)

Thus, we have
∂vi

∂x1

∂u

∂yi
= −vi

∂2u

∂x1∂yi
. (62)

Now using (62) and Lemma 3.10 with Q(∂x1
u) we get

(

Q

(

∂u

∂x1

)

,v · ∇yw

)

=

(

∂u

∂x1
,v · ∇yw

)

=

(

∂u

∂x1
,∇y · (vw)

)

= −

∫

Y

viw
∂2u

∂x1∂yi
dy

=

∫

Y

w
∂vi

∂x1

∂u

∂yi
dy.

Integration by parts on this gives us

−

∫

Y

u
∂

∂yi

(

w
∂vi

∂x1

)

dy = −

∫

Y

u

[

∂vi

∂x1

∂w

∂yi
+ w

∂

∂x1

(

∂vi

∂yi

)]

dy (63)

= −

∫

Y

u

(

∂vi

∂x1

∂w

∂yi

)

dy (64)

using the fact that ∇y ·v = 0. Thus we obtain the Lemma. The other results are derived
in an exactly similar manner.

Lemma 3.11 is very useful since it provides an alternative means of calculating the
quantity Q(∂tu), which can be seen from the following lemma:

Lemma 3.12 For u ∈ H1
Y the projection Q(∂tu) can be uniquely determined by Q(∂tu) =

v · ∇yφ where φ is the solution of the degenerate elliptic PDE

∇y · (A∇yφ) = −
∂v

∂t
· ∇yu (65)

with periodic boundary conditions where A is the 2×2 matrix with components Aij = vivj.
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Proof. From the proof of Lemma 3.2 we know that the equation (65) has a solution which
is unique up to a function in N . For all w ∈ H1

Y we have, using the definition for φ that

(v · ∇yφ,v · ∇yw) =

∫

Y

vivj
∂φ

∂yi

∂w

∂yj
dy

= −

∫

Y

w
∂

∂yi

(

vivj
∂φ

∂yj

)

dy

=

∫

Y

w
∂vi

∂t

∂u

∂yi
dy

=

∫

Y

w
∂

∂yi

(

u
∂vi

∂t

)

dy

= −

∫

Y

u
∂vi

∂t

∂w

∂yj
dy

= − (u, (∂tv) · ∇yw) .

From Lemma 3.11 we also have that

(Q(∂tu),v · ∇yw) = − (u, (∂tv) · ∇yw) (66)

holds for all w ∈ H1
Y . Since v · ∇yw spans W, we therefore have that Q(∂tu) = v · ∇yφ

uniquely determines the projection.
An exactly similar result holds for the projection Q(∂xi

u). From the above lemma,
we see that Q(∂tu) can be found without explicitly calculating ∂tu. This will be useful
in the development of a numerical scheme later on.

3.4 An Alternative Derivation for the Projection

Another, more intuitively meaningful, form of the projection P can be derived. From
Lemma 3.1 and equation (41) we have P(u) = u−v ·∇yθ where θ is the solution of (41).
In this equation the matrix A is symmetric and therefore we can write it in the diagonal
form A = TDT T where T is an orthonormal matrix

T =
1

√

v2
1 + v2

2

(

v1 v2
v2 −v1

)

, D =

(

v2
1 + v2

2 0
0 0

)

. (67)

Note that A is singular and hence D has only a single no-zero diagonal element. Now
introduce a new set of coordinates ỹ such that ∇ỹ = T∇y. Then, equation (41) can be
written using the ỹ variables as

∇ỹ ·
(

D∇ỹθ̃
)

= v ·
(

T−1∇ỹũ
)

(68)

where θ̃(ỹ1, ỹ2) = θ(y1, y2) and similarly for ũ. Expanding and simplifying the right-hand
side and also using the form of the matrix D we obtain the much simpler equation

∂

∂ỹ1

[

(v2
1 + v2

2)
∂θ̃

∂ỹ1

]

=
√

v2
1 + v2

2

∂ũ

∂ỹ1
(69)

which contains only the ỹ1-derivatives. Solving for θ̃ from this gives

θ̃ =

∫ ỹ1

0

1

v2
1 + v2

2

∫ η

0

√

v2
1 + v2

2

∂ũ

∂ỹ1
dξdη + c

∫ ỹ1

0

1

v2
1 + v2

2

dη + d (70)
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where c = c(ỹ2, t) and d = d(ỹ2, t) are to be determined, and η is the dummy variable for
ỹ1 in the integration. From Lemma 3.2, the projection is computed as Q(u) = v · ∇yθ.
and in the new coordinates (ỹ1, ỹ2), using (70) this gives

Q(u) =
√

v2
1 + v2

2

∂θ̃

∂ỹ1
=

1
√

v2
1 + v2

2

∫ ỹ1

0

√

v2
1 + v2

2

∂ũ

∂ỹ1
dη +

c
√

v2
1 + v2

2

. (71)

The constants in (70) are determined from the boundary conditions.
Now consider a particular fluid particle on the streamlines z(τ), i.e. a Lagrangian

description, with coordinates (ỹ1, ỹ2). In view of the fact that ỹ1 is the arc-length along
a streamline this means that we must have

dỹ1

dτ
=
√

v2
1 + v2

2 . (72)

If we further assume that
√

v2
1 + v2

2 is slowly varying in τ , which is reasonable since the
veloctity field and streamlines are slowly varying with time. After some algebra, we can
derive the following equivalent definition of the projection P (see [25] for more detailed
derivations):

Lemma 3.13 The projection P : H1
Y 7→ N is uniquely given by

P(u)(x,y, t) = lim
T→∞

1

T

∫ T

0
u(x,Θ(s), t, s)ds (73)

where Θ(x, t, τ ;y) is the flow map defined by

dΘ

dτ
= v, Θ(0) = y . (74)

The interpretation of the projection P(u) is now obvious. It is the average of the quantity
u along the streamlines and we therefore will refer to it as the streamline averaging. It is
the natural complement to the spatial average for this problem: the spatial average elimi-
nates dependence on the fast-spatial scales; the streamline average eliminates dependence
on the fast-time scales.

3.5 Derivation of the Upscaling Equation for Saturation

We are now ready to derive the upscaling equation for the transport equation for sat-
uration. Consider again our set of equations from the multi-scale expansion. From the
O(ε−1) equation

v · ∇yf
′ = 0 (75)

we have f ′ ∈ N . Recalling that f ′ is determined from f ′ = f(S + S′) − f and that f(S)
is smooth and f is independent of y we have

v · ∇y

[

f(S + S′) − f
]

= fSv · ∇yS
′ (76)

where

fS =
df

dS

∣

∣

∣

∣

S+S′

. (77)
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Thus, from this we see that we have S ′ ∈ N provided that fS 6= 0. From (6) f(S) is

given by f(S) = S2

S2+a(1−S)2
with a > 0 so that

df

dS
=

2aS(1 − S)

(S2 + a(1 − S)2)2
. (78)

From this we see that (77) is zero for S + S ′ = 0, 1 only. However, note that if S = 1
then this implies that S ′ ≡ 0 in the cell and therefore v ·∇yS

′ = 0. Similarly for the case

of S = 0. If S 6= 0, 1 and S + S ′ = 1 then we must clearly have ∂S′

∂y1
= 0 and ∂S′

∂y2
= 0

(since it is a maximum) and hence v · ∇yS
′ = 0. The same argument holds for the case

where S+S ′ = 0 and where S ′ must be a minimum. Thus, we can conclude that S ′ ∈ N
everywhere.

Equation (76) only provides a constraint that S ′ ∈ N but S′ cannot be solved for
directly from this equation. In order to determine S ′ we will need to develop a second
equation that describes its evolution in time.

Now consider the O(ε0) equation. Taking the spatial average of this equation and
using that fact that all fluctuating terms have mean zero gives us, upon rearrangement:

∂S

∂t
+ v · ∇xf = −∇x · v′f ′ . (79)

This equation is basically similar to our original equation (25) since we have ∇x · v = 0
and so the homogeneous part gives a conservation law for S. The right-hand side term
corresponds to the interaction of the small scale fluctuations upon the large scale average.
The overall nature of this equation is not immediately clear without knowledge of the
flux fluctuation f ′. The essence of the upscaling problem is how to accurately compute
this term without computing the actual fluctuations S ′ at all points. Towards this end,
we first derive the equation for S ′. Subtract (79) from equation (34) to obtain:

∂S′

∂t
+ v

′ · ∇xf + (v + v
′) · ∇xf

′ +
∂S1

∂τ
+ (v + v

′) · ∇yf1 −∇x · v′f ′ = 0 . (80)

We now apply the P projection to this equation. Consider each of the terms: for the first
term we have

P

(

∂S′

∂t

)

=
∂S′

∂t
−Q

(

∂S′

∂t

)

. (81)

The second term on the right-hand side is computable without having to evaluate ∂S′

∂t
if

we use Lemma 3.12 since S′ ∈ N (only knowledge of S ′ and ∂S′

∂t
is needed). This is useful

since we obtain the time derivative in explicit form. Next, using ∂f
∂xi

∈ N (since it has no
y-dependence) and Lemma 3.8 we have

P
(

v
′ · ∇xf

)

= P
(

v
′
)

· ∇xf (82)

where P (v′) = (P(v1),P(v2)). Similarly, we have

P
(

∇x · v′f ′
)

= ∇x · v′f ′ . (83)

since there is no y-dependence. The projection of the other terms in the equation are
more complicated to evaluate. First consider the third term of (80)

P
(

(v + v
′) · ∇xf

′
)

= P
(

v · ∇xf
′
)

+ P
(

v
′ · ∇xf

′
)

. (84)
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For the first of the term in (84),

P
(

v · ∇xf
′
)

= v · P
(

∇xf
′
)

(85)

= v · ∇xf
′ − v · Q

(

∇xf
′
)

. (86)

For the second term in (84) we have

P
(

v
′ · ∇xf

′
)

= P
((

P(v′) + Q(v′)
)

· ∇xf
′
)

(87)

= P
(

P(v′) · ∇xf
′
)

+ P
(

Q(v′) · ∇xf
′
)

. (88)

For the first term in (88) we use Lemma 3.8 to obtain

P
(

P(v′) · ∇xf
′
)

= P(v′) · P
(

∇xf
′
)

= P(v′) · ∇xf
′ −P(v′) · Q

(

∇xf
′
)

and for the second term in (88) we have

P
(

Q(v′) · ∇xf
′
)

= P
(

Q(v′) ·
(

P
(

∇xf
′
)

+ Q
(

∇xf
′
)))

= P
(

Q(v′) · P
(

∇xf
′
))

+ P
(

Q(v′) · Q
(

∇xf
′
))

= P
(

Q(v′) · Q
(

∇xf
′
))

.

Thus, we obtain

P
(

(v + v
′) · ∇xf

′
)

=
(

v + P(v′)
)

·∇xf
′−
(

v + P(v′)
)

·Q
(

∇xf
′
)

+P
(

Q(v′) · Q
(

∇xf
′
))

.
(89)

Now consider the projection of the remaining terms which involve the fast time τ :

P

(

∂S1

∂τ
+ (v + v

′) · ∇yf1

)

. (90)

From (29) we have f1 = fSS1. Note that v · ∇yfS = 0 since fS = df
dS

|S+S′ and therefore
v · ∇yS

′ = 0 (fSS = 0 only at values of S less than the shock height) Thus,

∂S1

∂τ
+ (v + v

′) · ∇yf1 =
∂S1

∂τ
+ fS(v + v

′) · ∇yS1 . (91)

If we project the right-hand side of this equation onto streamlines z̃ defined the velocity
field fSv, then this becomes the total derivative dS1

dz̃
. By Lemma 3.9, the projection P

is unchanged by multiplying the velocity field by a function g ∈ N . Therefore, using the
alternative form of the projection, with fSv instead of v we get

P

(

∂S1

∂τ
+ fS(v + v

′) · ∇yS1

)

= lim
T→∞

1

T

∫ T

0

dS1

dz̃
dτ

= lim
T→∞

S1(T ) − S1(0)

T
= 0,

if S1 is bounded.
Combining the above results, we obtain the following theorem:
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Theorem 3.2 For the ansatz (26), S and S′ satisfy the following closed, coupled system
of equations

∂S

∂t
+ v · ∇xf + ∇x · v′f ′ = 0 , (92)

∂S′

∂t
+
(

v + P(v′)
)

· ∇xf
′ + P

(

v
′
)

· ∇xf −∇x · v′f ′ = G(x,y, t) (93)

where

G(x,y, t) =
(

v + P(v′)
)

· Q
(

∇xf
′
)

−P
(

Q(v′) · Q
(

∇xf
′
))

+ Q

(

∂S′

∂t

)

. (94)

Furthermore, for each fixed y the system is hyperbolic with respect to variables x and t.

Proof. Combining the previous results gives us the form of the equations. We therefore
only need to demonstrate that the system is hyperbolic in the variables x and t (note
that the fast spatial variable y now appears only as a parameter in the above system and
also that the fast time τ has been completely eliminated). Hyperbolicity has been proved
in [25].

Note that the our system (92) and (93) is not in conservation form, even though the
original equation (25) defines a conservation law. This is due to the fact that the original
saturation has been split as Sε = S + S′ +O(ε).

3.6 Justification for the Asymptotic Expansions

In our analysis we have been deliberately vague with the choice of initial conditions for
the terms in the expansion of the saturation. This is due to the fact that terms involving
the fast time scale τ appear in the analytic solution do not generally appear if we start
from smooth initial data (i.e. the initial saturation is a function of the large scale x only).
To see this, we write the solution of (25) as Sε = Ŝ(x,y, t)+ S̃(x,y, t, τ), i.e. an “average”
with respect to the fast time plus a fluctuation about this average. Then, substituting
into (25), using (31) and (32) and gathering terms with the same power of ε gives at
O(ε−1)

∂S̃

∂τ
+ v · ∇yS̃ + v · ∇yŜ = 0 . (95)

If Sε is initially smooth then v · ∇yŜ will be zero and S̃ = 0. Hence S̃ will be identically
zero for all subsequent times and hence no fast time scales appear in the solution. Note
that this is also the case if Ŝ ∈ N initially (this provides the constraint on the initial
form of the fluctuations S ′). If Ŝ has any component in W then S̃ will be non-zero and
hence the fast time scale appears. In our problems, the initial saturation will always be
smooth. However, in the course of numerical computations, at steps beyond the first,
we are in effect solving (25) with oscillatory initial data and due to numerical errors this
may not exactly lie in the space N . Therefore, it is important to show that if this is the
case, these errors do not grow.

To show that this is indeed the case, we need to show that S1 remains bounded as
τ → ∞. To do this, we derive the equation for S1. Taking (93) as our given equation for
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S′, we subtract it from the fluctuation equation (80) to obtain, upon simplification,

∂S1

∂τ
+ fSv · ∇yS1 = − Q(v′) ·

[

∇x(f + f ′)
]

−
(

v + P(v′)
)

· Q(∇xf
′)

+ P
(

Q(v′) · Q
(

∇xf
′
))

−Q

(

∂S′

∂t

)

. (96)

If we project this onto the streamlines defined by fSv then the left-hand side becomes a
total derivative. To show that S1 remains bounded, we must estimate how fast the terms
on the right-hand side decay along the streamline. Suppose first that the streamlines
reconnect. Then, by Lemma 3.9, since the projection P is invariant if we multiply v

by g ∈ N , the integral of right-hand side over one such period is exactly PP(RHS),
where as before P is the length of the path the streamlines traverse before reconnecting.
Taking the P projection of these terms and using the fact that P(Q(u)) = 0 and the
other properties of P these become

−P
(

Q(v′) · ∇xf
′
)

−P
(

P(v′) · Q(∇xf
′)
)

+ P
(

Q(v′) · Q
(

∇xf
′
))

. (97)

Using Lemma 3.8 the second term is zero. Then, combining the other terms

−P
(

Q(v′) · ∇xf
′
)

+ P
(

Q(v′) · Q
(

∇xf
′
))

= P
[

Q(v′) ·
(

∇xf
′ −Q

(

∇xf
′
))]

= P
[

Q(v′) · P(∇xf
′)
]

= P
(

Q(v′)
)

· P(∇xf
′)

= 0 .

Thus, PP(RHS) = 0. Hence S1 is periodic and bounded over this interval P .
If the streamlines do not reconnect, then we still have that the average of the right-

hand side terms approach zero as T → ∞. Thus, we have S1(T )/T → 0 as T → ∞ which
shows that S1 at least grows sub-linearly.

4 Numerical Implemetation

In this section, we describe how to take the analysis given in the previous sections and
translate this into a scheme for computing upscaled numerical solutions to our two-phase
flow problem.

The results of the analysis given in Section 3 lead to the upscaled equations (15) for
the pressure equation, and (92) for the saturation. As mentioned, both retain the original
character of the problem (3), (4), i.e. the upscaled pressure equation remains elliptic and
the upscaled saturation equation remains hyperbolic. From now on, when we refer to
the “saturation” equation we mean the upscaled equation (92) and when we refer to the
“pressure” equation we mean (15). The multiple scale analysis was sequential, in that
period fluctuations in the permeability give rise to period fluctuations in the velocity and
this then gives rise to periodic fluctuations in the saturation. The numerical method
we employ is similarly sequential, in the same way that the resolved computations were
(an IMPES scheme). We solve the pressure equation (15) via an implicit, ellptic method
and then use the resulting velocity field to explicitly update the saturation (92). These
equations are solved on coarse grids. However, as was noted, in both equations we need
to compute fluctuating quantities (from (16) for the pressure equation and (93) and the
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velocity fluctuations for the saturation equation). Thus, in addition to the coarse grid,
we also define sub-grids within each of the coarse grid cells that enable us to compute
these quantities.

Recall our set of equations for the evolution of the average and fluctuation of the
saturation

∂S

∂t
+ v · ∇xf = −∇x · v′f ′ , (98)

∂S′

∂t
+
(

v + P(v′)
)

· ∇xf
′ + P

(

v
′
)

· ∇xf = ∇x · v′f ′ +G(x,y, t) , (99)

S being the spatial average of the multiscale solution Sε (the solution of our original
system (3), (4)) and S′ the O(1) fluctuation about this average. The terms are G given
by (94) and note that we have now moved the small-scale large-scale interaction terms
∇x · v′f ′ to the right-hand side of both equations, where they are now treated as source
terms. v and v

′ are the average and fluctuation of the velocity field. Note that the
fluctuation equation (99) has dependence on the fast-spatial variable y but that this
appears only as a parameter. The strategy we use for solving such a system when coupled
with the source terms what is often called a fractional-step or operator-splitting method
[21].

For the hyperbolic part, we can take advantage of the well developed theory that
exists for solving such systems numerically. Further, the fluctuations in the saturation
will develop steep gradients and shocks, consistent with the original scalar problem.
Therefore, the numerical scheme must be able to handle these features of the solution.
Finite-volume schemes are perfectly suited to handle these issues and we choose to use
the class of schemes known as wave-propagation methods, developed by LeVeque [21].
These are implemented via the freely available package CLAWPACK [20]. The updating
of the source terms is done using a second order Runge-Kutta method. We refer to [25]
for more discussion on the implementation details.

4.1 Computation of Streamline Projection

From the section on the multiscale analysis, we see that the streamline projection P
is a fundamental component of the upscaling scheme since it eliminates the fast-time
dependence. In numerically computing this quantity we have the option of using the two
different forms: via (41) and Corollary 3.1, or else via (73) and (74). Whilst the second
of these is useful for interpretation, it was found that using this form to numerically
compute the projection was cumbersome. Thus, to compute the projections P and Q we
use (41) and Corollary 3.1. Recall that in order to obtain Q(u) we must solve

∇y · (A∇yθ) = v · ∇yu (100)

with periodic boundary conditions where A is the 2 × 2 matrix with components Aij =
vivj . Then, Q(u) = v · ∇yθ. P(u) is then obtained via P(u) = u−Q(u). The equation
(100) is degenerate because A is singular, having eigenvalues 0 and v2

1 + v2
2 . Because

of this, solving this equation is more difficult than a standard elliptic equation, where
most solution methods rely on A be positive-definite. For example, we had no success
in using finite-element methods to try to solve (100) numerically. As noted in Section 3,
the solution of (100) is unique only up to a function in N .
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Because of the difficulties associated with A being singular, to solve (100) we instead
consider the related equation

∂g

∂µ
= ∇y · (A∇yg) − v · ∇yu (101)

with periodic boundary conditions, where µ is an “artifical time”. The steady state
solution of this equation is clearly a solution of (100). Thus, the idea is to solve (101) to
a steady state using time stepping, starting from an initial guess of the solution. To do
this we employ a semi-implicit discretization,

gn+1 − gn

∆µ
= α∇2gn+1 + ∇y · (A∇yg

n) − α∇2gn − v · ∇yu (102)

where α is a constant, chosen to improve the rate of convergence to the steady state.
Rearranging terms in this equation gives

(

1 − α∆µ∇2
)

gn+1 =
(

1 − α∆µ∇2
)

gn + ∆µ∇y · (A∇yg
n) − ∆µv · ∇yu (103)

so that at each time step, we solve a constant coefficient elliptic equation for gn+1. This
is easily accomplished on a uniform Cartesian grid and fast-Fourier transforms (FFT).
The grid corresponds exactly to the subgrid ykl described above. In addition, all deriva-
tives were calculated using the FFT. This method of solution is similar to that used by
Ceniceros and Hou [5].

Using (103) with ∆µ = 1/K we marched to a steady state, which was when ‖gn+1 −
gn ‖l2 was less than a specified tolerance (usually 10−6). The initial guess was taken simply
to be g = 0 everywhere (note that it would have been better to use the g computed from
the previous time step of the hyperbolic solver, but that this would have required too
much memory). The convergence rate was generally found to be rather slow, particularly
for velocity fields v with complicated features. Several experiments were done to try to
determine an optimal value for α that would give both a decent convergence rate and
also be robust enough so that the scheme converged over a wide range of velocity fields.
The value of α that seemed to work best was

α ≈ 0.7max
Y

√

v2
1 + v2

2 , (104)

with the maximum taken over the sub-grid in each coarse cell (i.e. a different α is used
in each coarse grid cell). Figure 1 shows the log-log plot of the convergence rate of the
scheme for the particular velocity field given by (105) and (106) with x1 = 0.5, x2 = 0.5
and when taking the projection of the v ′1 component of it. These are computed using
32 × 32 and 64 × 64 points for the sub-grid. The important property of the projection
is that it returns a function p ∈ N , i.e. with v · ∇yp = 0. Our numerical results show
that to within a reasonable degree, our computed p lies in N . The l2-norm of this error
is 0.001839.

4.2 Consistency and Convergence of our Scheme

It is important that we evaluate each part of the numerical scheme separately to ensure
that it behaves as our analysis predicts. Therefore, since we have completely described
the numerical implementation of the hyperbolic part of the scheme, we present some
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Figure 1: Log-log convergence plot of l2-norm of the update in the projection computations,
using 32 × 32 and 64 × 64 grids.

results that demonstrate the method works. We compare the results for our upscaling
scheme with resolved computations, computing error norms.

To avoid the issues involved in computing the velocity field numerically, we prescribe
an analytical form for the velocity. We choose one such that the divergence-free property
holds and also has fluctuations with a periodic structure. Any such velocity should be
“realistic” in that it should mimic features that are typically seen in porous media flows.
For instance, the fluctuations should be O(1) and have a sufficiently complicated structure
so that the streamline projection is not trivial to compute e.g. shear flows. The following
velocity field provides a reasonable model upon which to test the scheme:

v(x) = (4 + cos(6πx2), 0) (105)

v
′(x,y) =

2

3
π sin(4(x1 + x2)) cos(2π(y1 + y2))(1,−1) + (sin(2πy1), 0) . (106)

Numerical computations show that the streamlines are close to that for a shear flow, but
there are small fluctuations in the vertical directions due to the multiscale velocity field.

We use the unit domain, (0 ≤ x1 ≤ 1 and 0 ≤ x2 ≤ 1) for all our computations.
We need to prescribe an initial saturation for the problem. For this we use an initially
smooth (i.e. with no spatial fluctuations) function S0 given by:

S0 =











1 x1 <
(

b− δ
4

)

1
2

[

1 − sin
(

2π(x1−b)
δ

)]

|x1 − b| < δ
4

0 x1 >
(

b− δ
4

)

(107)

This initial saturation corresponds to a jump centered at x1 = b mollified by the param-
eter δ.

We perform a convergence analysis for the scheme using the setup described above.
Although the velocity field is given analytically, an analytical form for the evolution sat-
uration is hard to determine. Therefore, as is often done in the evaluation of numerical
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schemes for homogenization, we take well resolved computations to be our “exact” solu-
tion. The scheme is tested with different coarse-grids, which for simplicity will always be
uniform with an equal number of grid blocks in the x1- and x2-directions. We keep the
number of grid points for the cell problems alway the same. By analysis similar to that
described in the evaluation of the streamline projection, we determined that 32× 32 grid
points were sufficient to accurately compute the fluctuations.

We compare the results for the both the homogenized solution, i.e. S and also S+S ′,
which, by our multiscale analysis, should give the exact solution Sε to within O(ε). Note
that since we have prescribed the form of the velocity field analytically, the value of the
small-scale parameter ε does not actually appear anywhere in the computations (all the
evaluations for the cell problem are scaled so that ε does not appear explicitly). However,
in comparing with the exact solution we must choose a particular value for ε. We choose
ε = 1/128 which is much smaller than the mesh size of the largest coarse-grid. We choose
this value since it allows us to more easily reconstruct the solution S + S ′, which we will
refer to as the “multiscale reconstruction”. We do not, however, take any advantage of
the fact that this ε is rational.

We compute solutions on the coarse-grids N ×N , with N = 16, 32, 64. The “exact”
solution is computed on a 2048 × 2048 grid. For the resolved computations, we compute
a homogenized solution by taking the numerical spatial average. For both S and S + S ′

we compute discrete error norms. We compute the l2-norm and the infinity norm, which
are given, respectively, by

‖ U − Uh ‖l2=

(

∑

k

∫

k

(U − Uh)2dx

)
1

2

, ‖ U − Uh ‖∞= max
k

|U − Uh|

where k is a grid block and K is the set of grid blocks over the domain. Here we take U to
be the resolved saturation (or average) and Uh the corresponding saturation computed via
our upscaling scheme. For the “exact” average saturation we compute the average of the
resolved solution using a numerical quadrature, with the area of integration corresponding
to exactly one oscillation cell. This was done at points corresponding to the centers of
the coarse grid used in the upscaled calculations.

We first show the results for the more simple case of single-phase flow (f(S) = S in
the saturation equation). Figure 2 shows the resulting solution at time t = 0.1. This
time is sufficient to allow the fluctuations in the saturation to form whilst maintaining
the whole front to remain within the domain. From the figure we can see the saturation
“fingers” that develop.

Figure 3 shows the corresponding solutions computed from our upscaling scheme.
Comparing with the resolved computations we see that the scheme accurately captures
the overall profile and the fluctuations. Indeed, the results on the 64 × 64 coarse-grid
appear almost identical.

Tables 2 and 1 show the errors in the homogenized solution and the multiscale re-
construction for the single-phase case. We see that the scheme is first-order accurate as
expected since the updating of the source terms is first-order.

If we ignore the interaction terms in the average equation (92) then the average
saturation is not captured correctly. We investigate this numerically by comparing the
average saturation contours for the upscaling method above and in the case when the
interaction term ∇ · v′f ′ is ignored. We show that if the interaction terms are ignored,
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Figure 2: Contour plot for the “exact” solution for the saturation in the single-phase case,
resolved solution and average.

Figure 3: Multiscale reconstruction of the saturation from the upscaling scheme for the single-
phase case using 32 × 32 and 64 × 64 coarse-grids.
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Figure 4: Average saturation from the upscaling scheme for the single-phase case using 32×32
and 64 × 64 coarse-grids.

N l
2 error max error

16 0.0276 0.3012
32 0.0140 0.1541
64 0.0069 0.0686

Table 1: Errors in the multiscale reconstruction in the single-phase case using different grids.

N l
2 error max error

16 0.0144 0.0460
32 0.0070 0.0233
64 0.0034 0.0071

Table 2: Errors in the homogenized solution in the single-phase case using different grids.
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N l
2 error max error

16 0.0697 0.7007
32 0.0524 0.6959
64 0.0467 0.6811

Table 3: Errors in the multiscale reconstruction in the two-phase case using different grids.

N l
2 error max error

16 0.0723 0.0354
32 0.0433 0.0251
64 0.0275 0.0212

Table 4: Errors in the homogenized solution in the two-phase case using different grids.

N l
2 error max error

16 0.0184 0.1120
32 0.0095 0.0764
64 0.0049 0.0461

Table 5: Errors in the multiscale reconstruction in the two-phase case using different grids,
before shock forms.

N l
2 error max error

16 0.0270 0.0831
32 0.0148 0.0495
64 0.0076 0.0264

Table 6: Errors in the homogenized solution in the two-phase case using different grids, before
shock forms.

we do not get the right amount of “spreading” of the average saturation front, see [25]
for more discussion.

We next show the results for the two-phase flows. We again use the same velocity
field and same initial data for the tests. In addition, we use exactly the same grids for
both the coarse and sub-grids. Tables 4 and 3 show the errors in the solution. We again
see that the upscaled calculations capture the solution well.

In this case, we see that the error convergence is less than first-order, being approx-
imately 0.4 for the reconstructed solution and approximately 0.7 for the homogenized
solution. This is due to the fact that a shock has already formed in the solution by this
time and so the formal convergence rates no longer apply. To check that the scheme
has first-order rate of convergence, we computed the solution before the shock forms, at
t = 0.05. The corresponding errors are shown in Tables 6 and 5 show clearly that the
scheme is first-order.
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4.3 Numerical Upscaling Method for the Pressure/Velocity
Equation

We now turn to the problem of developing a numerical upscaling scheme for the pres-
sure/velocity equation (PVE) (3). The multiscale analysis of section 3.2 shows us that
for permeability fields with O(1) oscillations (in the fast variable y) we can expect that
the velocity field (needed in the saturation equation) will also have oscillations which are
O(1).

The goal of the upscaling scheme is of course to be able to solve (3) on a coarse-grid.
Moreover, infact, we wish to use the same coarse-grid that is used for the saturation
scheme. Should we wish to get only the solution at coarse-grid points, i.e. only the
average v, then we would look to solve the homogenized equation (15) with either an
approximation for the “equivalent” permeability a∗(x, t) or else use expression (16) which
is valid in the case of periodic oscillations. As mentioned in Chapter 1, there have
been several attempts to calculate equivalent permeabilities for different flow situations.
However, in our scheme for the saturation equation, we see that we need to have not
only the average velocity but also the fluctuations v

′, e.g. in equation (92) where we
need to evaluate the interaction term ∇x · v′f ′. Therefore, the scheme must be capable
of providing both. At first this may appear a contradictory goal: we wish to upscale,
i.e. solve the equation on a coarse-grid, and yet get be able to get fine scale information
within the same scheme. This contradiction can be resolved if we realize that may be able
to somehow interpolate the coarse-grid solution, using only locally computed quantities,
to get fine scale information within the interior of coarse-grid cells. We are fortunate that
such a method with this philosophy already exists and incorporating it into our scheme
is just a matter of effective implementation. This method is the multiscale finite element.
The method is special in the sense that it can be viewed as an upscaling method, and
yet they also provide a handle to fine scale information. This latter feature is sometimes
referred to as downscaling.

We give a description of these methods in the sections that follow.

4.4 Multiscale Finite Element Method

The multiscale finite element (MsFEM) for elliptic problems is fully described in [13, 14,
11]. We will give an outline of the method and then describe the adaptations needed to
use it efficiently in our scheme.

Consider our elliptic pressure equation (3)

−∇ · (a(x, t)∇p) = f (108)

where, as in the section on multiscale analysis, we have written a = λ(S)K. Since a
depends on the saturation it is actually time dependent. However, since we are advancing
the numerical solution to (3), (4) by alternately solving each seperately, we can consider
t as a parameter when solving the pressure equation. In our case, the source term f will
be zero everywhere unless there exist source or sinks within the domain. However, for
generality in describing the method we leave it in (108). For the moment, x is used to
denote a general spatial variable, rather than the coarse-grid variable used above.

For the purpose of deriving the method, we first suppose that (108) holds in a domain
Ω and that p = 0 on ∂Ω. The modifications for handling inhomogeneous boundary
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conditions are trivial. The variational problem of (108) is then to seek p ∈ H1
0 (Ω) such

that
a(p, q) = f(q), ∀q ∈ H1

0 (Ω) (109)

where

a(p, q) =

∫

Ω
a(x)

∂q

∂xi

∂p

∂xi
dx (110)

f(q) =

∫

Ω
f(x)q(x)dx (111)

(summation convention is used for repeated indices here). Since a(x, t) is bounded from
below by a positive constant, the linear form a(·, ·) is elliptic and continuous, i.e.

α |q|21,Ω ≤ a(q, q), ∀q ∈ H1
0 (Ω) (112)

and
|a(p, q)| ≤ β |p|1,Ω |q|1,Ω , ∀q ∈ H1

0 (Ω) (113)

A finite element method is obtained by restricting the weak formulation (109) to a finite
dimensional subspace of H1

0 (Ω). Let Kh be a partition of Ω of elements K with diameter
less than h. In our method we will always assume that the partition consists of rectangular
elements which are defined by an axi-parallel rectangular mesh and with maximum edge
length h. This case covers the meshes we described in the previous sections for the
saturation equation. Let xs ∈ K (s = 1, . . . , d), d = 4, be the nodal points of K. In each
element K ∈ Kh, we define a set of basis functions {φr

K , i = 1, . . . , d}. In the traditional
finite element method these basis functions would be bilinear function [3]. In MsFEM,
these basis functions satisfy

−∇ · (a(x)∇φr
K) = 0 (114)

inside K. As is usual for finite element basis functions we require φr
K(xs) = δrs. Further,

we need to specify the boundary conditions of φr
K for well posedness of (114). The choice

of boundary conditions on the basis functions has a strong influence on the convergence
of MsFEM. For the moment we assume that the boundary conditions are linear along
the boundaries of the elements, i.e. along the boundaries MsFEM basis functions and
traditional (linear) finite element basis functions coincide.

MsFEM with these basis functions is conforming, i.e.

V h = span{φr
K : i = 1, . . . , d;K ∈ Kh} ⊂ H1

0 (Ω) (115)

and the approximate solution of (108) in V h, i.e. ph ∈ V h is

a(ph, q) = f(q), ∀q ∈ H1
0 (Ω) . (116)

We can see that the only difference between MsFEM and a traditional finite element
method is in the construction of the basis functions. Note that (116) is solved at the
coarse grid level, with the solution ph given at coarse grid nodes, and it is in this sense
that it is an upscaling scheme.
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4.5 Special MsFEM for the Case of Periodic Oscillations

In the case of periodic oscillations such as those that have been considered in Section 3,
we may employ a variant of the MsFEM that gives a numerical two-scale solution directly,
i.e. a solution of the form p = p(x,y). Recall that the basis functions in MsFEM satisfy
(114) within a coarse grid cell. a is assumed to be of the form a = a(x,y) and periodic
in y. In exactly the same way as the pressure equation had an asymptotic expansion of
the form (14), the basis functions will have an expansion of the form

φr
K = φr

0,K(x) + εφr
1,K(x,y) + ε2φr

2,K(x,y) +O(ε3) . (117)

Using an exactly similar analysis that was used to derive the expressions (15) and (18)
for p0 and p1 and now applied to (117) we get

∂

∂xi

(

a∗(x)
∂φr

0,K

∂xi

)

= 0 (118)

and

φr
1,K(x,y) = −χj

∂φr
0,K

∂xj
. (119)

where a∗ is a diagonal tensor with

a∗ij(x) =
1

|Y |

∫

Y

a(x,y)

(

1 −
∂χj

∂yi

)

dy (120)

and χj satisfies
∂

∂yi

(

a(x,y)
∂χj

∂xi

)

=
∂a

∂yj
(121)

with periodic boundary conditions.
The coarse grid will always have sufficient resolution so that the elements in a∗(x) can

be approximated by constants throughout a coarse grid cell K. Thus, (118) with linear
boundary conditions will have solutions that correspond to the standard bilinear basis
functions. That is, the φr

0,K are the standard bilinear basis functions. Then, we take

φr
K = φr

0,K + εφr
1,K (122)

= φr
0,K − εχj

∂φr
0,K

∂xj
(123)

which gives the basis functions to within O(ε2). To determine the basis functions in all
the coarse grid blocks, we need to solve (121) within each to obtain χj, j = 1, 2 and then
use these in (123).

Once the solution for the pressure has been obtained at coarse grid points, via the
usual construction of the stiffness matrix and solving the resulting linear equations we
can reconstruct the two-scale pressure within each cell using

p =

d
∑

r

ph
rφ

r
K (124)

=

d
∑

r

ph
r

(

φr
0,K − εχj

∂φr
0,K

∂yj

)

+O(ε2) . (125)
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We call this a two-scale numerical solution since it has variation with respect to the coarse
grid (each ph

r is given at coarse grid node) and variation within the cell (χj is varying as
a function of y inside the cell). We can prove the convergence of this MsFEM, and this
is given in [25] along with numerical examples. To obtain the two-scale velocity field for
use in our scheme for the saturation equation, we use Darcy’s law

v = −a(x,y)∇p (126)

= −a(x,y)

d
∑

r

ph
r

(

∂φr
0,K

∂xi
−
∂χj

∂yi

∂φr
0,K

∂xj

)

+O(ε) . (127)

We compute v at the center of each coarse grid cell using (127), and then take the
average of this to obtain v and v

′ which are then used in the scheme for the saturation
equation. Note that χj and hence v

′ are solved for on exactly the sub-grid described in
the previous sections for the saturation equation, and the average velocity is computed
as a cell-centered quantity on the coarse grid.

The only disadvantage to using a finite-element method in solving the pressure equa-
tion is that the divergence-free property of the velocity field (24), in particular, ∇x ·v = 0,
nor ∇x · v

′ = 0 are not explicitly enforced (note that ∇y · v
′ = 0 by construction). Thus,

the resulting velocity fields are not exactly divergence-free. This was generally not found
to be a problem for our computations since the velocity field is used in the upscaled equa-
tions. When MsFEM is used for the velocity field in (25) it was found that it gave poor
results for long time simulations [6, 17]. To overcome these problems, a mixed multiscale
finite element method was introduced in [6], and in [17] a multiscale finite volume method
was introduced. However, neither is as simple to implement as the MsFEM described
above, which is why we implemented this method.

Once the basis functions have been solved for, the solution at the coarse-grid is ex-
tremely cheap. However, the construction of the basis functions is relatively expensive.
Since we will be solving the pressure equation at each time step, it is worth discussing an
efficient implementation of the method as it applies to our problem. In principal, since a
depends on the saturation, we need to update the basis functions at each time step. The
crucial observation is that for many regions, the saturation will be evolving slowly and
therefore it is not necessary to update the basis functions in these regions [18]. We can
selectively choose which basis functions to update based upon how much the saturation
within the cell has changed. An obvious region where basis functions would need to be
updated often is near the oil-water front. Regions ahead of this front, where the water
saturation is zero would need no updating, and regions behind, where the saturation is
evolving more slowly, would need updating only at a less frequent intervals.

4.6 Extension to Non-Periodic Problems

In the multiscale analysis so far we have assumed that all small scale fluctuations are
periodic with respect to the fast variable y. However, this is clearly a restrictive assump-
tion that will not hold for all permeabilities. Nevertheless, the assumption is an integral
part of our framework and so we restrict our attention to permeabilities with two dis-
tinct length scales for which the fluctuations can be well-approximated as being locally
periodic. Given such a permeabililty, the method used will give us a permeability which
approximates the original and also has periodic oscillations. In [16], a reparameterization
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Figure 5: Original log permeability and “reparametrized” log permeability for a layered case.

technique has been introduced to prepare a general non-periodic media in a form of two-
scale structure formally. In order to apply the technique in [16], we need to extend the
porous media outside the computational domain by multiplying an appropriate cut-off
function. Using this technique, we can apply the multiscale analysis developed earlier to
general multiscale media. See [25] for more details.

We now demonstrate the ability of the reparameterization technqiue to capture the
fluctuations correctly. We take an example permeability and apply the reparameteriza-
tion technique to it. Since the permeability is a strictly positive quantity, i.e. K > 0
throughout the domain, we find it better to apply the method to the log of the perme-
ability, i.e. to u = log(K). By applying it to this and then taking the exponential, we are
guaranteed that the resulting approximation is also strictly positive.

To demonstrate the method we show some results for two different types of permeabil-
ity. The original permeability is shown in the left plot of figure 5. This permeability was
generated using the GSLIB package on a 256×256 uniform grid. This is then interpolated
(bilinear interpolation) to give a 1024× 1024 permeability. The interpolation is done be-
cause the variation in the original permeability is very strong and even on a 256 × 256
grid can appear discontinous as one crosses the layers of high/low permeability. With
this new permeability the reparameterization method is then applied and the resulting
reconstruction is shown in the right plot of figure 5. For this, the cut-off wavelength was
ε = 1/32. Each periodic wave was reconstructed using a 16× 16 subgrid. As can be seen
from the plots, the reconstruction is very close to the original permeability. Statistics for
the original and reconstruction are shown in table 7.

5 Numerical Results

In this section we present numerical results for the scheme proposed in the previous
section. We first demonstrate that the scheme is first order accurate in capturing the
average saturation for the single-phase case for periodic permeabilities. We perform
simulations in much the same manner as that done in subsection 4.2 of Section 4. In
addition we now specify the boundary conditions for the pressure equation as follows:
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Original Reparametrized
max 1.074 1.022
min -0.914 -0.943
mean 0.0693 0.0693

variance 0.0642 0.0639
l2 error – 0.05

Table 7: Statistics for the original and reconstructed log permeability in the layered case.

• The two ends aligned in the horizontal direction will have zero flux condition, i.e.
v · n = 0 where n is the outward pointing normal

• The two other sides will have prescribed pressures, p = 1 at x1 = 0 and p = 0 at
x1 = 1.

• The main flow will be in the positive x1-direction.

The resulting flow model is sometimes referred to as the “core-plug” model.
After this we then demonstrate the efficacy of our upscaling scheme for non-periodic

permeabilities, using the method proposed to approximate the non-periodic oscillations
into locally periodic ones. We find that our upscaling scheme very accurately computes
the fractional flow curves given by (8).

5.1 Periodic Permeability Field

To demonstrate our method converges, we present some examples where the permeability
is a prescribed two-scale function. We do this for both single-phase using an analysis
similar to that given in section 4.2. We do not use the two-phase results here since the
shock-formation in that case reduces our ability to analyse the formal convergence rate
of the scheme. We use only the core-plug model boundary conditions in this case. The
sections that follow describe in detail the results obtained.

To test the scheme in this case, we prescribe a permeability field with fast periodic
oscillations. We use

K(x,y) = 15x2(1.0 − x2) +
2 + P (x1, x2) sin(2πy1)

2 + P (x1, x2) cos(2πy2)
+

2 + sin(2πy2)

2 + P (x1, x2) cos(2πy1)
(128)

where

P (x) = 1 +
1

2
cos(πx1) cos(2πx2) (129)

We set the small scale parameter ε = 1/64. The permeability has rapid oscillations in the
horizontal and vertical directions, with the magnitude of the oscillations greatest in the
center. A similar model for the permeability was used in [13] in testing the convergence
of MsFEM. Since the pressure is uncoupled from the saturation in the single-phase case,
we need only solve for this once at the start of the simulation. The first test we perform
is to check the convergence rate as the number of coarse grid points is increased. We do
this in the same manner as that used in section 4.2 when we tested the scheme for the
saturation seperately, i.e. by comparing the results with resolved calculations for different
coarse grid. Again, we use 16×16, 32×32 and 64×64 coarse grids. We keep the sub-grids
the same in each of these cases, using 32 × 32 sub-grid points. The initial data for the
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N l
2 error max error

16 0.0780 0.3725
32 0.0556 0.2793
64 0.0460 0.2239

Table 8: Errors in the multiscale reconstruction in the single-phase case using different grids.

N l
2 error max error

16 0.0745 0.2204
32 0.0419 0.1155
64 0.0215 0.0595

Table 9: Errors in the homogenized in the single-phase case using different grids.

N l
2 error max error

16 0.2098 0.4014
32 0.1216 0.2416
64 0.0655 0.1636

Table 10: Errors in the velocity field in the single-phase case using different grids.

saturation is given by (107). We evolve the saturation up until time t = 0.1 and then
compute the l2 and infinity norms of the error in the multiscale reconstruction and the
average.

5.2 Non-Periodic Examples

We now apply all the preceeding numerical methods for the upscaling problem to a case
where the permeability field is a given non-periodic quantity. We apply the reparame-
terization technique to the permeability fields shown in Figure 5 for 1-phase and 2-phase
computations. As before, we compare the resulting solutions for the average saturation
with those computed using resolved calculations. In this case, we cannot hope to obtain
the same kind of convergence rates that we obtained in the previous sections where all
the fluctuations had a definite periodic structure. Therefore, as a measure of accuracy,
we compute the fractional flow curves that were described in Section 2, given by equa-
tion (8). As mentioned in that section, this is a feature of interest to engineers when
evaluating a reservoir simulation and any upscaling scheme should aim to reproduce this
accurately.

For the tests we use the same boundary conditions and initial data as those used in
section 4.2.

5.3 Single-Phase Results

Figure 6 shows the logarithm of permeability field. This is given on a 256 × 256 grid,
as described in section 4.6. For the resolved computations, we use a 1024 × 1024 grid
which was found to be sufficient to fully resolve flow features. For the upscaled com-
putations, including the permeability re-parameterization, we use a 64 × 64 coarse grid
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Figure 6: Layered permeability used.

with 16× 16 sub-grid points. This configuration gives us a “scale-up” factor of 8 in each
direction (since the average solution is given on a 64 × 64 grid). Figure 5 shows the
re-parametrized permeability field obtained by applying the method described in section
4.6 to this permeability. This is almost indistinguishable from the original permeability.

We first compare the velocity fields computed from the resolved scheme and the up-
scaling (MsFEM) method. Figure 7 shows the horizontal (x1) component of the velocity
field as computed by the different methods. The details of the velocity are captured well,

Figure 7: Comparison of the horizontal components of the velocity field computed using re-
solved scheme (left), and MsFEM (right).

with layers computed accurately. Because of the coarser grid in the MsFEM computa-
tions, there are some slight edge effects which can be seen. Note, however, that this
velocity field shown is not used directly in the upscaled computations, but rather it’s av-
erage and the locally periodic velocity are used. The average component of the horizontal
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velocity as computed from the resolved scheme and MsFEM are shown in Figure 8. The
agreement between these is clearly very good.

Figure 8: Comparison of the average horizontal components of the velocity field computed
using resolved scheme (left), and MsFEM (right).

The above velocity fields are now used to advance the saturation. Since the aim of
the method is to accurately compute the average, we compare the average saturations
computed from the resolved calculations and the upscaling scheme at several times. Fig-
ure 9 shows the resolved calculations at time t = 0.17. Note the amount of “fingering”
of the saturation front, which is due to the amount of layering in the permeability and
velocity fields. Figure 10 shows the average saturation at this time computed from the

Figure 9: The resolved saturation at t = 0.17.

resolved computations and upscaled scheme. From these one can see that the upscaling
scheme is accurately capturing the average. In addition to these we also study the case
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if one ignores the interaction terms when computing the average, i.e. we solve

∂S

∂t
+ v · ∇xf(S) = 0 (130)

for the average saturation S where v is computed using the MsFEM. We found that
the average saturation is not being moved correctly in this case. This confirms that
including the interaction terms is vital in computing the average correctly. It seems for
this example, that if the interaction terms are ignored, that the bulk of the saturation is
moved too slowly.

Figure 10: Comparison of the average saturation profiles for the single-phase case at t = 0.17
for the exact calculation (left), upscaled (right).

Figure 11 shows the average saturation at time t = 0.45 computed from the resolved
computations and upscaled scheme. Again the agreement is very good.

Figure 12 shows the fractional flow curves computed using the resolved computations
and the upscaled method. As with the saturation plots one can see that the upscaled
computations accurately capture the true fractional flow. We also show that if one ignores
the interaction terms in the upscaling method then the results are much poorer. In that
case, the bulk of the saturation is moved too slowly, the fractional flow curve, labeled with
“naive”, is too high after the breakthrough time and remains far from the true fractional
flow for all subsequent times. For the upscaled scheme, the fractional flow curve follows
the true one closely for most of the time. There are some slight differences at later times,
which are most likely due to the fact, mentioned above, that the average velocity field
computed from MsFEM is not exactly divergence-free.

5.4 Two-Phase Results

For the two-phase flows we perform exactly the same analysis as was done above for
the one-phase case. In this case, since it has already been demonstrated that MsFEM
accurately captures the velocity field, we skip the comparisons of the velocity fields. For
two-phase flow, there is not as much “fingering” of the saturation into the layers of high
permeability as in the single-phase case but there is still quite alot of small scale features.
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Figure 11: Comparison of the average saturation profiles for the single-phase case at t = 0.45
for the exact calculation (left), upscaled (right).

Figure 12: Comparison of the fractional flow curves for the single-phase case.

In Figure 13 we show the average saturations computed from the resolved and upscaled
at the time t = 0.3. One can see again that the upscaled method captures the average
saturation accurately whilst the naive method, which ignores the interaction term, does
not move the average correctly. This is also evident from the fractional flow curves shown
in Figure 14.

6 Concluding Remarks

In this paper we have proposed a new framework for upscaling the hyperbolic saturation
equation for the two-phase flow problem in porous media. In addition we have incor-
porated this into a numerical scheme for solving the full flow problem. The main goal
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Figure 13: Comparison of the average saturation profiles for the two-phase case at t = 0.3 for
the exact calculation (left), upscaled (right).

Figure 14: Comparison of the fractional flow curves for the two-phase case.

of this work is to be able to solve the flow problem on coarse grids and capture on the
average (coarse grid) features efficiently. The framework makes only limited assumptions
on the nature of the small scale features and is not as restrictive as previous methods.
Through numerical examples we have demonstrated the ability of our method to accu-
rately capture the average flow features. Further, our numerical method is extensible to
the more realistic case where the small scale features are non-periodic.
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