COMPUTING THE GAMMA FUNCTION USING
CONTOUR INTEGRALS AND RATIONAL APPROXIMATIONS

THOMAS SCHMELZER'$ AND LLOYD N. TREFETHEN#

Abstract. Some of the best methods for computing the gamma function are based on nu-
merical evaluation of Hankel’s contour integral. For example, Temme evaluates this integral based
on steepest-decent contours by the trapezoid rule. Here we investigate a different approach to the
integral: the application of the trapezoid rule on Talbot-type contours using optimal parameters re-
cently derived by Weideman for computing inverse Laplace transforms. Relatedly, we also investigate
quadrature formulas derived from best approximations to exp(z) on the negative real axis, following
Cody, Meinardus and Varga. The two methods are closely related and both converge geometrically.
We find that the new methods are competitive with existing ones, even though they are based on
generic tools rather than on specific analysis of the gamma function.
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1. The gamma function. In his childhood Gauss rediscovered that the sum of
the first n positive integers is given by

Zk:n(nJrl)

2
k=1

n

a formula which can be considered as an interpolation valid even for non-integers.
Starting in 1729 Euler discussed in a series of three letters to Goldbach, well known
for the Goldbach conjecture, the problem of the product of the first n integers, which
is today known as the factorial of n, n!l. Davis [5] gives details about the history of
the gamma function. We start here with the standard definition

I'(z)= / t*~tetdt Re z > 0, (1.1)
0

where
771 = D08t 4nd logt € R.
The gamma function is analytic in the open right half-plane. Partial integration yields
I'(z+1)=2I(2), (1.2)
and since I' (1) = 1, we have
I'(n+1)=nl

Any confusion caused by this identity dates back to Legendre. It is possible to continue
the gamma function analytically into the left half-plane. This is often done by a
representation of the reciprocal gamma function as an infinite product [1, Eq. 6.1.2]:
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valid for all z. This representation shows that I'(z) has poles for z = 0,—1,—-2,....
Of more practical use is the reflection formula [1, Eq. 6.1.17]

™

Fz)r(1-z2) = z & 7. (1.3)

sinwz’
This identity implies T" (1/2) = /7. It is standard to approximate the gamma function
only for Re z > 1/2 and exploit (1.3) for Re z < 1/2.

2. Hankel’s representation. An alternative representation for the reciprocal
gamma function, which is an entire function, is due to Hankel [10]. Substituting
t = su in (1.1) yields

F o0
F(s) := (2) = uw* e " du,
S* 0
which can be regarded as the Laplace transform of u*~!. Hence u*~! can be inter-

preted as an inverse Laplace transform:

wt = L7HF(s)} L/Ce’WJ_[«“(k:)dk.

- 211

The path C is any deformed Bromwich contour such that C winds around the negative
real axis in the anti-clockwise sense. Now we substitute s = ku, which yields

1 1 [ ..
= — [ s72etds. 2.1
T (2) 27ri/cs e (2.1)

The numerical evaluation of integrals of the form

1 s
I= 5] Ce f(s)ds (2.2)
has been discussed by Trefethen, et al. [21]. The function s~% has a branch cut on
R~ = (—o0, 0] but is analytic everywhere else. Hence (2.2) is independent of C under
mild assumptions. The freedom to choose the path for inverse Laplace transforms
has aroused a good deal of research interest. Recently Weideman [21, 22, 23] has
optimized parameters for the cotangent contours introduced by Talbot [17] as well
as for other contours in the form of parabolas and hyperbolas. Here we focus on
different numerical methods for which (2.1) is the common basis. In particular we
shall compare:
1. steepest descent contours,
2. Talbot-type contours,
3. rational approximation of e® on (—o0,0].
The first of these methods is an existing one and the other two are new. Methods we
do not compare are those of Spouge, Lanczos and Stirling. Comments on these and
on what is done in practice can be found in §7.
In addition we mention in §6 a generalization of (2.1) for matrices and introduce
an idea for solving linear systems of the form I'(4)z = ¢ without computing I'(A).

3. Saddle point method. Saddle point methods in general are extensively dis-
cussed in the book by Bender and Orszag [2, Section 6.6]. The reciprocal gamma
function is a standard example for this technique presented in this and many other
textbooks. We keep the details to a minimum and follow an approach of Temme [18],
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Fic. 2.1. A typical Hankel contour, winding around the negative real azis (dashed) in the
anti-clockwise sense.

who advocates the numerical evaluation of the integral along a steepest descent con-
tour. A zero of the first derivative of an analytic function f indicates a saddle point
of ‘ef | Through this point runs a path C where f has constant imaginary part and
decreasing real part. This is a very desirable property for asymptotic analysis and
numerical quadrature schemes. In order to apply these ideas here we fix the movable
saddle by a change of variable s = zt. We get

1 eizl—?
= 2¢(t) gt 3.1
T(z) 2 /Ce (3.1)

where ¢(t) = t — 1 — Int. If z is real and positive, then the integrand in (3.1)
decreases exponentially as ¢ moves away from 1 along the steepest descent contour.
For complex z, on the other hand, the decrease becomes oscillatory, and in the limit
of pure imaginary z, there is no decrease at all. Thus let us assume that z is a positive
real number. Let t = pe be the steepest descent path parameterized by the radius
p and the argument 6. The vanishing imaginary part at ¢ = 1 induces the equation

0=1Im ¢(t) = psind — 6.

Hence the path is given by p = 6/sinf. Temme [18] gives the reparametrization

z,1—2 ™
1 _ ez / e*Z‘I’(G)dQ
I (2) 27

—T

where

0
P@)=1—-0cotf +1In——
() cotv+n sin ¢
with ®(0) = 0.
The integral can be approximated by the midpoint rule, which is exponentially ac-
curate. See [20] for a review of this phenomenon of high accuracy. The approximated
integral is

z,1—2

ez
In(z) = S5 3 emsew), (3.2)
k=1
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where the nodes are

1\ 27
O = — k—=)— 1<k<N.
k T+ ( 2> N ’ = =
This set of nodes is exponentially accurate, but it is not optimal for large z, for the
nodes closer to —7 and 7 contribute negligibly because of the fast decay along the
path. We could delete some of these points to make the method even more efficient,
truncating the interval to [—7, 7] instead of [—m, 7].

4. Direct Contour Integration. Instead of working with saddle points, an-
other approach is to apply the trapezoidal rule directly to (2.1). This makes it easy
to evaluate I'(z) for complex as well as real arguments. Let ¢(f) be an analytic
function that maps the real line R onto the contour C. Then (2.1) can be written as

1
T omi

(oo}
I / 5(0)~7¢*O) & (6) do. (4.1)
— 00
Because of the term e?(?) | the integrand decreases exponentially as |0] — oo, so that
one commits an exponentially small error by truncating R to a finite interval. For
simplicity we shall arbitrarily fix this interval as [—m, 7]. In [—7, 7] we take N points
01 spaced regularly at a distance 27/N, and our trapezoid approximation to (2.1)
becomes

N
Iy = fz‘N*IZeS’“sgzwk, (4.2)
k=1

where s = ¢(0;) and wi, = ¢’ (0x). MATLAB codes are given in Fig. 4.1.

function I = ContourIntegral(z,contour,N,f)

[s,w] = feval(contour,N); % contour is a function
I = zeros(size(z)); % the different sums
for k = 1:N % quadrature via
I = I+w(k)*exp(s(k)).*feval(f,s(k),z); % evaluating f at the nodes
end

function [s,w] = contourCot (N)

t = (-N+1:2:N-1)*pi/N; % angles theta
a = 0.5017; b = 0.2645i; ct = 0.6407*t; d = 0.6122;

s = Nx(axt.*cot(ct)-d+b*t).’; % poles

w = -ix(a*cot(ct)-a*ct./sin(ct) . 2+b).’; % weights

function f = IntGamma(s,z)
% for the reciprocal gamma function
f =s5.7(-2);

Fic. 4.1. MATLAB codes to evaluate (2.2) by (4.2). The function f(s) = s~% and the contour
C are defined in separate M-files and addressed as handles.

Note that there is still the freedom left to choose a particular path. In Program
31 of the textbook [19], a closed circle with center ¢ = —11 and radius r = 16 is used
with 70 equidistant nodes on it. Although this contour crosses the branch cut, it does
so sufficiently far down the real axis that the error introduced thereby is less than
1071
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Fic. 4.2. Convergence of In to 1/T'(z) for the cotangent contour (4.2), (4.5), for siz different
values of z. The dashed line shows 3.89~Y | confirming Weideman’s analysis.

A more systematic approach has been pursued by Weideman [21, 22, 23], who has
proposed, in particular, parameters for parabolic, hyperbolic and cotangent contours:
1. Parabolic contour

s(0) = N [0.1309 — 0.11946* + 0.250046)] , (4.3)

2. Hyperbolic contour
s(6) = 2.246N [1 —sin(1.1721 — 0.3443i0)], (4.4)

3. Cotangent contour
s(0) = N [0.50176 cot(0.64076) — 0.6122 + 0.2645i6)] . (4.5)

Using equidistant nodes with respect to 6, all of these contours show geometric con-
vergence at rates approximately O(37V). Figure 4.2 illustrates this behaviour by
showing convergence as N — oo for six values of z. According to Weideman the
convergence rate for the cotangent contour is O(3.897"), which is shown as a dashed
line in the figure.

In Fig. 4.3, this behavior is compared in a region of the z-plane to the conver-
gence for the parabolic and hyperbolic contours, the steepest descent contours, and
the method of rational approximation to be introduced in the next section. All the
methods are geometrically convergent (except steepest descents near the imaginary
axis), and the cotangent contours and rational approximations are the best.

For all of these Talbot-type contours we encounter the same non-optimality effect
as for the saddle point method: The decay of the integrand is so fast that the left-
most nodes make a negligible contribution. The source of this phenomenon is the fact
that Weideman’s analysis considers only the factor e® in (2.1), treating the factor s—*
as of order 1, whereas in fact, when z has large real part, s™# is very small. This
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(a) Saddle point method (3.2), N = 32.
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(b) Circular contour from [19], N = 70. (¢) Parabolic contour (4.3), N = 32.
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(d) Hyperbolic contour (4.4), N = 32. (e) Cotangent contour (4.5), N = 32.
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(f) CMV approzimation (5.1) with no shift, (g) CMYV approzimation (5.1) with shift b=1,
N =16. N = 16.

Fic. 4.3. Relative error in evaluating I'(z) in various points of the z-plane. The colorbar in
(a) indicates the scale for all seven plots (logs base 10). In practice, one would improve accuracy by
reducing values of z to a fundamental strip, as shown in Figs. 4.4 and 5.3.
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F1G. 4.4. Relative error in evaluating I'(z) using a cotangent contour (4.5), N = 32 in % <

Re z <
in Fig.

% and applying (1.2) and (1.3) for other points of the z-plane. The shading is the same as
4.3.

% gammatalbot - Thomas Schmezler & Nick Trefethen November 2005

%

% For real arguments this is around 20 times slower than Matlab’s

% gamma, a factor roughly equal to the product of:

% 5 since this is an M-file rather than a .mex file

% 2 since it uses Talbot quadrature rather than best approximation

% 2 since the real symmetry is not exploited in the sum

function g = gammatalbot(z) % complex Gamma function
r = find(real(z)<0.5); % reflect to real(z)>=0.5
z(r) = 1-z(x);
shift = floor(real(z)-0.5); % shift to fundamental strip

zz = z-shift;
g = 1./ContourIntegral(zz,@contourCot,32,0IntGamma) ;

while any(shift)>0
f = find(shift>0);
g(f) = g(f).xzz(£);
shift(f) = shift(£f)-1;
zz(f) = zz(f)+1;
end
g(r) = -pi./(g(r).*sin(pi*(z(x)-1))); % reflect back
j = find(imag(z)==0); g(j) = real(g(j)); ' real inputs -> real outputs

Fia. 4.5. A MATLAB routine for computing the the gamma function. The fundamental iden-
tities (1.2) and (1.3) are used to reduce all arguments to the strip % < Rez< % The code makes
use of the functions listed in Fig. 4.1.

effect is ubiquitous when computing with a fixed path and fixed nodes for all z € C.
We could take advantage of it by fine-tuning Weideman’s parameters in a manner
specific to the gamma function, but we shall not do that here since our interest is in
the application of generic methods for integrals of the form (2.2). Also, it is simpler
and just as effective to use the fundamental identities (1.2) and (1.3) to reduce all
arguments to the strip % <Rez< % The effect of such reductions is illustrated for
the cotangent contour in Fig. 4.4.

5. Rational Approximation. In a recent paper we interpreted the trapezoidal
rule on a Hankel contour as a rational approximation of exp(z) on the negative real
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axis [21]. The analysis of best Chebyshev approximations of this kind is a problem
made famous by Cody, Meinardus and Varga [4]; the errors are known to decrease
asymptotically at the rate O(HN), where H = 1/9.28903... is known as Halphen’s
constant [9]. As shown in [21], these approximations can be used directly to evaluate
integrals (2.2), bypassing the consideration of Talbot contours and the trapezoid rule.
Given N, we define the best type (IV, N) approximation to exp(s) to be the unique
real rational function 7%, of type (N, N) such that

sup |riy(s) —exp(s)| = inf sup |r(s) — exp(s)|

SER— r€ERN sER™
where Ry denotes the set of all rational functions of type (N, N). The coefficients
of the polynomials in the numerator and denominator of rj are given to very high
accuracy in a paper by Carpenter et al. [3]. A practical way of determining these
approximants on the fly is the Carathéodory-Fejér (CF) method. (In principle, the
CF approximation is not best but near-best, but its difference from the true best
approximation is negligible for N > 2 [21].) The function r}, can be represented in a
partial fraction representation, that is, by N poles p1,...,pny and residues cy,...,cn
such that

N
Ck
r}‘v(s):zs_ + ¢o.
1 Pk

We define 7n (s) to be the portion of this expression in the sum, i.e., Fn(s) =y (s) —
ri(00), a rational function of type (N — 1, N) whose deviation from exp(s) on R~
decreases at the same asymptotic rate as that of v} as N — oo.

These rational approximants can be used as the basis of another method for
evaluating 1/T'(z). We simply replace e® in (2.1) by 7n to obtain, with the aid of
residue calculus,

1

N
Iy = 30 Tn(s)s *ds = — ; cLly s (5.1)
A =

which converges for Re z > 0 as the decay of the integrand at infinity is fast enough.
For Re z > 1 we also have

1 * —z
=5 ry(s)s ds. (5.2)
C

In

For even N the poles come in conjugate pairs and (5.1) simplifies for real z to

N/2
Iy =— Z 2Re (ckpgz)
k=1

provided the first N/2 poles are all in the upper half-plane or all in the lower half-
plane.

For each z satisfying Re z > 0 or Re z > 1 as appropriate, Iy appears to converge
to 1/T'(z) at a geometric rate controlled by the same constant H = 1/9.28903.... A
proof of this claim would follow from the following result, which we believe is true
but do not yet have a proof of.
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CONJECTURE 5.1. Let {r} be the best approzimations over R~ as defined above,
let K be a compact set in C, and let ||-|| - denote the supremum norm over K. Then

1/N 1

I o <H—— -
imsup Jlexp(s) —ry(s)llx < 9.28903 ...

Here is the result that follows from the conjecture:

THEOREM 5.2. Let {fn} and {ri} be the rational approximations defined above
and let z be fived with Re z > 0. Then the approzimations (5.1) and (5.2) (provided
Re z > 1) satisfy

1/N

<H !

= 9.28903...

1
li =1
e [ =)

Partial proof, assuming the validity of Conjecture 5.1. We introduce a special
Hankel contour C,. It consists of a circle of radius p enclosing the origin and two rays
joining pe ™" and pet™ with the point —oo. An upper bound for the error is deduced
on C,. For the case of 1}, for example, we get by using (2.1) and (5.2)

‘ 1

1. -
e IN(Z)‘ S o I (s) — exp(5)|cpc/ |57 1ds]

and we note that for any s, |s7%| < |s| "% €™l for z = a + bi with a > 1. From here

we readily obtain
-z 2 |bl7 1—a
|s7%| |ds| < (27 + —— ) "Imp! .
a—1
C

P

The convergence of r}(s) to exp(s) on the circle of radius p can be estimated by
Conjecture 5.1, and therefore

1/N
<H.

lim sup ‘% —In(2)
z

N—o0

It remains to show that the result just proved for r3, and Re z > 1 also holds for 7n
and Re z > 0. To do this split up the integral to obtain the estimate

‘ﬁ]zv(z)

- 27

< 5 s ((s) = explo)le, [ 15l
Co

The function s (7nx — exp(s)) in the left-hand term of this estimate approaches a con-
stant as s — —oo for each N, since 7y — exp(s) decreases at the rate O(s~1). The
essential point in showing that these Nth roots approach H as required is to make
sure that the leftmost extremum of 7y (s) — exp(s) does not occur at a value of s
that is exponentially large, in which case the Nth root of this value of s might fail
to converge to 1. In fact, the results of Aptekarev and Magnus appear to confirm
numerical evidence that the location of this extremum grows just algebraically, but
we will not attempt a rigorous proof here. O
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F1a. 5.1. Convergence for the near-best rational approzimation (5.1) of type (N —1, N) with no
shift. The convergence is about twice as fast as in Fig. 4.2, with fifteen integrand evaluations sufficing
to produce near machine precision. The dashed line shows 9.28903~ Y, confirming Theorem 5.2.

The fundamental property exp(a + b) = exp(a) exp(b) for any two complex argu-
ments can be exploited in our algorithm. Given a positive parameter b, the function
78 (s) = exp(b)Fn (s — b) can be regarded as an approximation of exp(s) in the inter-
val (=00, b]. In particular, equation (5.1) is the special case of this approximation for

b=0:

N
1
B (s)s *ds = — Z e, (p, + )77 (5.3)
& k=1

Y = —
N omi

It is easily proved that the shifted rational approximation 74 (s) still converges with

the same asymptotic rate H. In experiments we have observed that a shift of
O(1) gives better results especially for real arguments, as illustrated in Fig. 5.2 and
Fig. 4.3(g), where we used a shift of b = 1. The results for b = 0 are given in Fig. 5.1.

6. Matrix arguments. Hankel’s contour integral (2.1) can be generalized to
square matrices A, and one can apply the methods introduced here to compute I'(A4) ™!
or to compute the solution vector x in a linear system I'(A)x = ¢ without comput-
ing I'(A). We have confirmed this by numerical experiments not reported here. A
drawback of such methods is that it is expensive to compute s;Ac for every node;
methods based on the algorithms of Spouge and Lanczos might be more efficient. We
are currently not aware of applications where I'(A) is used for matrix arguments.

7. Other methods and existing software. There are a variety of existing
methods for computing the gamma function. Are our methods competitive with
these? As far as we can tell, the answer seems to be yes, they are “in the ballpark”
in the sense of coming within a factor of 1-10 of the best methods, notably

e the method of Lanczos [11],
e the method of Spouge [16],



Computing the gamma function 11

* 05
10° | % o1 |
B & < 2
\X\§ § ° ; g+'
~ I
\\O\é % O 2+2i
10° ¢ X I+ ]
N A
2 © 0w @ %+
[} No) o *
£ e 8%y
%10—107 @ @ M + |
= >0 @ *
\\O @ * + %
S g * FO
o.® § s 9
~ X
10t e :
L L L L L L L L
0 2 4 6 8 10 12 14 16 18
N

Fic. 5.2. Convergence for the near-best rational approzimation (5.1) of type (N — 1, N) with
shift b= 1. Though the asymptotic behaviour is the same, the constants are better than in Fig. 5.1,
and the use of such a shift might be a good idea in practice.

0 5 10 15
Rez

F1G. 5.3. Relative error in evaluating I'(z) using a CMV approzimation, N = 16 with no shift
solely in % <Rez< % and applying (1.2) and (1.3) for other points of the z-plane. The shading is
the same as in Fig. 4.3.

e the asymptotic Stirling series [1, Eq. 6.1.37].
We emphasize that these methods are specialised algorithms designed for computing
the gamma function and its close relatives, whereas our ideas are applicable in a much
larger framework.

7.1. The method of Spouge. The method of Spouge is attractive because of
its simplicity and precise error estimates. Spouge introduced the approximation

N
D(z+1) & (z +7)"2eEVor | e + Z sz(jk): ;
k=1

which is valid for Re (z + ) > 0 and dependent on a positive real parameter v with
N = [~] — 1, which converges to an equality as v — oo. Here ¢y = 1, and the other
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coefficients are given by

cx(y) = Lﬂ(_k + fy)k—l/Qe—k-i-’Y 1< k< N.
2T (k’ — 1)' ’ -

The absolute error for this approximation can be bounded [16, Theorem 1.3.1] by

1
VN F1(2m)N+3/2|"

Note that the relative error does not depend on z, making Spouge’s method especially
attractive for uniform approximations in the right half-plane. The above inequality
implies that the method converges at least as fast as (6.287%), a rate lying midway
between (3.897%) for Talbot contours and (9.29~) for best rational approximations.
Actually, experiments suggest a better convergence rate, closer to O(10~).

En(2) < |7(2)

7.2. The method of Lanczos. The method of Lanczos is closely related to
that of Spouge. Lanczos’s method is based on the fast evaluation of the integral

F,(z)= /Oe [v(1 —logv)]* vVdv

where 7 is a positive free parameter. The integral is approximated by a rational
function

N
Fny(2)=a0+ Y ar/(z+k).
k=1

A variety of methods for computing the coefficients are discussed in a recent thesis by
Pugh [14]. Their rate of decay depends strongly on a good choice for v. However, it
is unclear if it makes sense to ask about the asymptotic behaviour for N — oco. Little
is known about the decay of the error |F,(z) — Fn ~(2)| [14, Chapter 11]. Lanczos
claimed that the higher v becomes, the smaller is the value of the coefficients at which
the convergence begins to slow down. At the same time, however, we have to wait
longer before the asymptotic stage is reached. Pugh [14] calls this behaviour the
Lanczos shelf and is interested in finding good pairs of v and N in order to guarantee
a certain precision in the right half-plane. Godfrey [8] gives a 15-term expansion
that provides an accuracy of about 15 significant digits along the real axis and about
13 digits in the rest of the complex plane. Because of the simple form of Fi ~(z),
Lanczos’s method is particularly suitable for matrix arguments.

7.3. Stirling’s method. The asymptotic series that generalizes Stirling’s for-
mulal is still a standard and powerful method for evaluating the gamma function.
There is a great deal of literature discussing efficient strategies and error estimates
for these series (see the references in [12]). The goal here is to minimize the number
of terms used to achieve the desired accuracy. This can be done in two ways, either
by shifting the argument to the right or by enforcing a faster asymptotic decay of
the relative error using more terms in the series. (For fixed z and N — oo the series
does not converge.) The method is especially attractive for arguments with large real
part working in an arbitrary precision environment. Using an asymptotic series for
log['(z), the error is bounded for Re z > 0 by |Bon /(2N — 1)| |2|' "2 where Byy
denotes a Bernoulli number. This simple error estimate is due to Spira [15].

1Stirling was a student at the same Oxford college we both belong to, Balliol.
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7.4. Software. Software libraries and programming environments for scientific
computing all have routines to compute the gamma function, although quite a few do
not deal with complex arguments. For our small survey we explored online documen-
tations for various products and yet it often remains unclear exactly which methods
are used. For real arguments, a popular trick is to work with a rational Chebyshev
approximation on the interval [1,2] and map this interval by the recurrence relation
(1.2) to larger regions of the real line. The routine in the NAG library? seems to map
this interval to the whole real line, whereas MATLAB? uses a Stirling approximation
for arguments larger than 12. On the fundamental interval, MATLAB uses a rational
Chebyshev approximation of type (8,8). As the MATLAB routine was originally de-
signed for Fortran® we imagine that many Fortran providers compilers use essentially
the same method.

None of the above products provides a function for complex arguments. For
Fortran the IMSL Library® has a routine of this kind. As there are no references to
the work of Lanczos and Spouge in the IMSL documentation, we presume that it is
based on asymptotic series.

Mathematica® uses the asymptotic Binet formula, which is another name for Stir-
ling series. We presume Maple uses the same method, since the Maple documentation
gives a reference to the classic book on special functions [6], which appeared before
the methods of Lanczos and Spouge were introduced. Somewhat more interesting are
the comments in [13]:

There are a variety of methods in use for calculating the function
I'(z) numerically, but none is quite as neat as the approximation
derived by Lanczos. This scheme is entirely specific to the gamma
function, seemingly plucked from thin air.

8. Conclusions. We have shown that T'(z) can be evaluated with geometric

accuracy by two types of generic related methods:

e Applying the trapezoidal rule on Talbot contours

e Using best rational approximations on the negative real axis.
Typically the second method is about twice as fast as the first. However, the first is
much simpler to implement as the construction of the best rational approximation is
not trivial.

Amongst the Talbot contours, the cotangent contour has the best results. Using
a shift from (—o0, 0] to (—oo, 1], one can improve the the results for the best rational
approximation a bit. For smaller values of z in the right half-plane the approximations
are excellent, and using the fundamental recurrence relation for the gamma function
one can extend the region of accuracy.

Even though the methods we have introduced are based on generic tools rather
than on specific analysis of the gamma function, they are competitive with existing
ones. The gamma function is just one of many special functions that have integral
representations which can be evaluated efficiently by Talbot-type contours and ratio-
nal approximations (see [7] for further examples). We believe that these methods can

2http://www.nag.co.uk/numeric/FN/manual/pdf/c03/c03m02_gamma_fun_£fn03.pdf

3In MATLAB 7.0 the command type gamma gives the source code of the corresponding mex-file.
Previous versions do not offer this possibility.

4http://csiticwe.fsu.edu/extra_link/x1hpf/x1f1rm03.htm

Shttp://www.vni.com/books/dod/pdf/SFun.pdf

Shttp://documents.wolfram.com/v5/TheMathematicaBook/MathematicaReferenceGuide/
SomeNotesOnInternalImplementation/A.9.4.html
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be useful in many areas of scientific computing.
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