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SHORT PCPS WITH POLYLOG QUERY COMPLEXITY∗

ELI BEN-SASSON† AND MADHU SUDAN‡

Abstract. We give constructions of probabilistically checkable proofs (PCPs) of length n ·
polylogn proving satisfiability of circuits of size n that can be verified by querying polylogn bits
of the proof. We also give analogous constructions of locally testable codes (LTCs) mapping n
information bits to n · polylogn bit long codewords that are testable with polylogn queries. Our
constructions rely on new techniques revolving around properties of codes based on relatively high-
degree polynomials in one variable, i.e., Reed–Solomon codes. In contrast, previous constructions of
short PCPs, beginning with [L. Babai, L. Fortnow, L. Levin, and M. Szegedy, Checking computations
in polylogarithmic time, in Proceedings of the 23rd ACM Symposium on Theory of Computing, ACM,
New York, 1991, pp. 21–31] and until the recent [E. Ben-Sasson, O. Goldreich, P. Harsha, M. Sudan,
and S. Vadhan, Robust PCPs of proximity, shorter PCPs, and applications to coding, in Proceedings
of the 36th ACM Symposium on Theory of Computing, ACM, New York, 2004, pp. 13–15], relied
extensively on properties of low -degree polynomials in many variables. We show how to convert
the problem of verifying the satisfaction of a circuit by a given assignment to the task of verifying
that a given function is close to being a Reed–Solomon codeword, i.e., a univariate polynomial of
specified degree. This reduction also gives an alternative to using the “sumcheck protocol” [C. Lund,
L. Fortnow, H. Karloff, and N. Nisan, J. ACM, 39 (1992), pp. 859–868]. We then give a new PCP for
the special task of proving that a function is close to being a Reed–Solomon codeword. The resulting
PCPs are not only shorter than previous ones but also arguably simpler. In fact, our constructions
are also more natural in that they yield locally testable codes first, which are then converted to
PCPs. In contrast, most recent constructions go in the opposite direction of getting locally testable
codes from PCPs.
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1. Introduction. Probabilistically checkable proof (PCP) systems as formu-
lated in [20, 3, 2] are proof systems that allow efficient probabilistic verification based
on querying a few bits of a proof. Formally, a PCP system is given by a PCP-verifier
that probabilistically queries a few bits of a purported proof of a claimed theorem and
accepts valid proofs of true theorems with probability 1, while accepting any claimed
proof of false assertions with low probability, say, at most 1/2. The celebrated PCP
theorem [3, 2] asserts that for any language in NP there exists a PCP-verifier that
reads just a constant number of bits from a proof of polynomial length. Subsequently,
it was shown in [28, 26] that the number of queries can be made as small as three
bits, while rejecting proofs of false assertions with probability arbitrarily close to (but

∗Received by the editors November 30, 2005; accepted for publication (in revised form) December
5, 2006; published electronically May 23, 2008.

http://www.siam.org/journals/sicomp/38-2/64644.html
†Computer Science Department, Technion—Israel Institute of Technology, Haifa, 32000, Israel

(eli@cs.technion.ac.il). This author is a Landau Fellow who was supported by the Taub and Shalom
Foundations. This author’s work was also supported by an Alon Fellowship of the Israeli Council for
Higher Education, an International Reintegration Grant from the European Community, and grants
from the Israeli Science Foundation and the US-Israel Binational Science Foundation. This work was
done while the author was at the Radcliffe Institute for Advanced Study, Cambridge, MA.
‡Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technol-

ogy, Cambridge, MA 02139 (madhu@mit.edu). The work of this author was supported in part by
NSF Award CCR-0312575. This work was done while the author was at the Radcliffe Institute for
Advanced Study, Cambridge, MA.

551



552 ELI BEN-SASSON AND MADHU SUDAN

larger than) 1/2. Such query-efficient proofs translate to strong inapproximability
results for many combinatorial optimization problems; see [7, 8, 26, 28, 38].

Somewhat surprisingly, PCPs are rarely appreciated for their positive properties,
i.e., as methods of transforming proofs into extremely efficiently verifiable formats. In-
stead their negative implications for combinatorial optimization dominate their study.
In principle, PCPs could form the semantic analogue of error-correcting codes: Error-
correcting codes are used to preserve data for long periods of time; PCPs may be
used to preserve data, with a promise of integrity with respect to any fixed Boolean
property, for long periods of time. However such uses seemed infeasible using current
PCP constructions, which are too long and too complex. This forms the motivation
of our work, which tries to find shorter and simpler PCPs.

A number of works [5, 37, 27, 24, 11, 9] have been focused on optimizing the
length of the PCP. In addition to the inherent motivation mentioned above, the
length of PCPs also plays an important role in their use in cryptography (e.g., in
CS proofs [30, 35] and their applications [6, 13]) and is closely related to the construc-
tion of locally testable codes [24, 11, 9]. Simplifying PCP constructions has long been
a goal within the study of PCPs, though little progress had been achieved in this di-
rection until Dinur’s recent surprising proof of the PCP theorem by gap amplification
[18] continuing the combinatorial approach taken in [19]. Although we also construct
simpler PCPs, our approach by contrast relies on adding algebraic structure instead
of combinatorics.

PCPs. Our main result, Theorem 2.2, is a PCP construction that blows up the
proof length by only a polylogarithmic factor resulting in a PCP of quasilinear length.
(Throughout this paper, a function f : N+ → N+ is said to be quasilinear if f(n) =
n·polylog n.) These short proofs can be verified by querying a polylogarithmic number
of bits of the proof. By way of comparison, the recent results of Ben-Sasson et al. [9]
give proofs of length n · exp(poly log log n) with a query complexity of poly log log n.
Thus, while the query complexity of our PCPs is higher than that of most recent
results, the proof size is smaller.

PCPs of proximity. The results of [9] are actually for a stronger notion of PCPs,
called PCPs of proximity (PCPPs). This notion was simultaneously introduced (under
the name assignment testers) in [19] and a similar notion also appeared earlier in [40].
Informally, a PCPP-verifier’s input includes two oracles, a “claimed theorem” and the
“proof,” and the verifier confirms that the claimed theorem is close in, say, Hamming
distance, to a true theorem. It does so by making few oracle queries into the theorem
and the proof. In contrast, recall that a PCP-verifier had unlimited access to the
“claimed theorem” but verified that it was true exactly as stated. Theorem 2.10 gives
a construction of PCPPs for all languages in NP with shorter proofs of proximity,
though with larger query complexity than that of [9].

Locally testable codes. PCPs typically go hand-in-hand with locally testable codes
(LTCs); for a detailed discussion of LTCs, see [24, 23] and references therein. Briefly,
LTCs are error-correcting codes with relatively large rate and distance. Additionally,
the amount of noise in a received word can be bounded from above by querying only
a sublinear number of positions of the received word. Specifically, these codes have an
associated tester that reads very few symbols of a received word and accepts codewords
with probability 1, while rejecting words that are far from all codewords with constant
probability (say, 1/2). Theorem 2.13 constructs LTCs with parameters similar to those
of our PCPs. Namely, the codes have linear distance while the codeword to message
ratio and the query complexity of the tester are polylogarithmic.
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We highlight the fact that our work first constructs LTCs with polylogarithmic
rate and query complexity, after which PCPs with the same parameters are derived
as a consequence. While the early work of Babai et al. [5] also had this feature,
constructions of smaller LTCs (in particular, those in [24, 11, 9]) reverse this direction,
getting PCPs first and then deriving LTCs as a consequence. Our work thus achieves
one of the goals associated with LTCs, namely, offering benefits and insights into
PCPs via direct construction of LTCs.

Our techniques. Although our construction is algebraic as in prior PCP construc-
tions, our techniques are significantly different and thus interesting in their own right.
All previous algebraic PCPs (i.e., those excluding the combinatorial construction of
[19]) start with a PCP based on the properties of multivariate polynomials over some
finite field. Some key ingredients in such constructions are the following: (1) a low-
degree test, i.e., a method to test if a function given by an oracle is close to being a
low-degree multivariate polynomial, (2) a self-corrector, i.e., a procedure to compute
the value of a multivariate polynomial at a given point, given oracle access to a poly-
nomial that is close to this polynomial, (3) a zero-tester, i.e., an efficient procedure
to verify if a function given by an oracle is close to a multivariate polynomial that is
zero on every point in a prespecified subset of its domain, and (4) a reduction from
verifying satisfiability to zero-testing. Typical solutions to the above problems yield
a query complexity that is polynomial in the number of variables and the degree of
the multivariate polynomial. This query complexity can then be reduced using a set
of techniques referred to as proof composition.

Our solution follows a similar outline (though we do not need a self-corrector)
except that, for the most part, we work only with univariate polynomials. This forms
the essence of our technical advantage, giving PCPs with smaller proof length. The
length of PCPs is well known to grow with the number of variables in the polynomials
used to construct them, and reducing this number was an obvious way to try to
reduce PCP length. However, reducing the number of variables increases the degree
of the associated polynomials, and since solutions to steps (1)–(3) above had query
complexity polynomial in the degree, previous solutions needed to use a large number
of variables to significantly reduce the number of queries. In our case, we propose
analogous questions for univariate polynomials and give query-efficient solutions for
them, leading to short PCPs. We describe our solutions to the steps (1)–(4) in reverse
order.

We start with the reduction from satisfiability to testing zero polynomials, which
is step (4) above. The usual reduction is a transformation from a Boolean formula φ to
a constraint C on pairs of polynomials along with subsets S1 and S2 of the multivariate
domains with the following property: φ is satisfiable iff there exist polynomials P1, P2

that are zero on S1, S2, respectively, and furthermore C(P1, P2) holds. (To enable
“easy verification,” C(P1, P2) needs to be of a special form, but we will not get into
this now.) In general, these reductions are simple, and our version of the reduction is
as well. However in our case, the reductions appear particularly natural since we deal
with a very small number of variables. In section 5 we describe our natural way of
reducing NP-complete problems to problems about testing zeros of polynomials. In
the end we use a somewhat more complex solution due only to our goal of extreme
length efficiency; even in this case the full proof is only a few pages long.

Next we move to the zero-testing problem, which is step (3) above. We reduce
this to two univariate low-degree testing questions, along with a natural consistency
test between the two polynomials. The query complexity is a constant independent of
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the degrees of the polynomials we are working with. Furthermore, it directly reduces
zero-testing to low-degree testing while most previous solutions relied on some form or
other of the self-correcting question. Put together, our solutions for steps (3) and (4)
give a short and simple reduction from verifying NP statements to testing the degree
of a univariate function. Furthermore, these reductions add only a constant number
of queries to the query complexity of the low-degree testing protocol. This highlights
the importance of the low-degree testing problem for univariate polynomials, which
we describe below.

Reed–Solomon codes and proofs of proximity. The problem at the heart of our
PCPs is the following: Given a finite field F, a degree bound d, and oracle access to a
function f : F→ F, test if f is close to a polynomial of degree at most d. Specifically,
if f is a degree-d polynomial, then the test must always accept. On the other hand, if
f is δ-far from every degree-d polynomial, i.e., the value of f needs to be changed on
at least δ-fraction of the points in F to get a degree-d polynomial, then the test must
reject with high probability. The objective is to do this while querying the oracle
for f as few times as possible. The functions derived by evaluating polynomials of a
specified degree over a field are known as Reed–Solomon codes, which we sometimes
refer to by the name RS-codes. Our goal is thus to provide an efficient test for
membership in these codes.

It is easy to see that, as such, the problem above allows no very efficient solutions:
A tester that accepts all degree-d polynomials with probability 1 must probe the value
of f in at least d+2 places before it can reject any function. This is too many queries
for our purpose. This is where the notion of PCPPs comes to the rescue. Whereas it
is hard to test if function f described by the oracle represents a degree-d polynomial
with fewer than Ω(d) queries, it is conceivable (and indeed implied by previous works,
for example, by [9]) that one can use an auxiliary proof oracle π to “prove” that f
is close to the evaluations of a degree-d polynomial. More formally, our new task is
thus to design a PCPP-verifier that makes a few queries to a pair of oracles (f, π),
where we allow π to return elements of F as answers, and the following holds: If f is
a degree-d polynomial, there exists a valid proof π so that (f, π) is always accepted
by the tester. If f is δ-far from every degree-d polynomial, then for every π, the pair
(f, π) must be rejected with high probability.

Since the property of being a degree-d polynomial over F can be efficiently ver-
ified (in time |F| · polylog |F|), we can apply the final theorem of Ben-Sasson et
al. [9], which gives length-efficient proofs for any property relative to the time it
takes to verify the property deterministically, to get moderately efficient solutions to
this problem. Unfortunately, such a solution would involve proof oracles of length
|F| · exp(poly log log |F|), which is longer than we can allow. Their solution would also
not satisfy our (subjective) simplicity requirement. However it does confirm that our
goal of making o(d) queries is attainable.

Our main technical result is a PCPP for Reed–Solomon codes. This proof of
proximity has length O(n · polylog n) and query complexity polylog n for RS-codes
over a field F of cardinality n and characteristic 2. We also describe some variations,
such as PCPPs for RS-codes over certain prime fields, but these are not needed for
our final PCP results. Our proof of proximity consists of an encoding of an efficient
FFT-like evaluation of the low-degree polynomial. Our analysis makes crucial (black-
box) use of Polishchuk and Spielman’s [37] analysis of a natural low-degree test for
bivariate polynomials.

We remark that almost all ingredients in the construction of our PCPs, including
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the PCPPs for RS-codes, are simple. The simplicity of the PCP also means that the
“hidden constants” in the construction are relatively small and the building blocks we
use can be implemented with relative ease. In fact, our main building blocks, namely,
the PCP of proximity for Reed–Solomon codes and its verifier described in Theorem
3.2, have been recently implemented successfully in code [12], resulting in PCPPs of
length ≈ 1

4n · log4 n for RS-codes over binary fields of size n.
Recent developments. One of the main problems left open by this work was obtain-

ing quasilinear PCPs and PCPPs with constant query complexity. This was recently
solved by Dinur in [18] by applying her novel proof of the PCP theorem by gap am-
plification to our Theorem 2.2. Dinur provides a general transformation that takes
any PCP of length `(n) where the verifier makes q(n) queries and converts it into a
PCP of length `(n) · q(n)O(1) where the verifier makes O(1) queries. Applying this to
the trivial PCP that makes O(n) queries yields a simple proof of the PCP theorem,
though with long proofs. On the other hand, applying this transformation to our
PCP yields a quasilinear PCP with constant query complexity.

With the exception of [5], the running time of all previously known PCP- and
PCPP-verifiers, including ours, is polynomial in the size of the input. Recently, it
was shown in [10] that the running time of our PCPP-verifier can be reduced to be
polylogarithmic, maintaining the query complexity and proof length of our PCPP
construction in Theorem 2.10.

Organization of this paper. In section 2 we present formal definitions of the no-
tions of PCPs, LTCs, and PCPPs, and we present the formal statements of our main
theorems about these concepts. In section 3 we introduce the main technical notions
used in this paper, namely, Reed–Solomon codes, some computationally important
subclasses of Reed–Solomon codes, and algebraic satisfiability problems. We state
our technical results about these problems and then show how our main theorems
(i.e., the ones stated in section 2) follow from these technical results. In sections 4–7,
we prove our technical results. A more detailed breakdown of these results is given at
the end of section 3.

2. Definitions and main results.
Preliminaries. Unless specified otherwise, our alphabet of choice is Σ = {0, 1}

and all logarithms are taken to base 2. For a function t : N+ → N+, recall that
NTIME(t(n)) is the class of languages L ⊆ Σ∗ decidable in nondeterministic time
t(n) on inputs of length n.

2.1. PCPs. The following is a variant of the standard definition of PCPs [3],
where the running time of the verifier is allowed to grow exponentially with the ran-
domness. This is done following [10] to allow a statement of results about languages
whose nondeterministic decision time is superpolynomial. Recall that an oracle ma-
chine is said to be nonadaptive if its queries do not depend on previous oracle answers.
We stress that all oracle machines considered in this paper, and, in particular, the
following PCP-verifier and the PCPP-verifier of Definition 2.4, are nonadaptive.

Definition 2.1 (PCP). For functions r, q : N+ → N+ an (r(n), q(n))-PCP-
verifier is a probabilistic machine V with oracle access to a probabilistically checkable
proof, or simply, a proof, denoted π. On input x of length n, V runs in time 2O(r(n)),
tosses r(n) coins, makes q(n) nonadaptive queries to the proof, and outputs either
accept or reject. We denote by V π[x;R] the output of V on input x, proof π, and
random coins R.

For constant s ∈ [0, 1], a language L ⊆ Σ∗ is said to belong to the class of
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languages

PCPs[randomness r(n), query q(n)]

if there exists an (r(n), q(n))-PCP-verifier VL such that the following hold:
• Perfect completeness: If x ∈ L then ∃π such that PrR[V πL [x;R] = accept] =

1.
• Soundness: If x 6∈ L then ∀π we have PrR [V πL [x;R] = accept] ≤ s.

Our first main result is the following. Recall the definition of a proper complexity
function from [36, Definition 7.1], where a function f(n) is proper if it can be computed
in time polylog n.

Theorem 2.2 (quasilinear PCPs). For any proper complexity function t : N+ →
N+,

NTIME(t(n)) ⊆ PCP 1
2
randomness log(t(n) · polylog t(n)), query polylog t(n)].

Remark 2.3. The parameters of Theorem 2.2 have been recently improved. In
particular, [18] reduced the query complexity to O(1) and [10] reduced the verifier’s
running time to poly n+ polylog t(n) (as opposed to t(n) ·polylog t(n)). In both cases
all other parameters remain unchanged.

Since without loss of generality the proof is of size at most 2randomness × query
the previous theorem implies that the probabilistically checkable proof for x ∈ L is
quasilinear in the running time of the nondeterministic machine deciding L.

In contrast, the recent results of [9] give proofs of length n · exp(poly log log n)
with a query complexity of poly log log n and slightly longer proofs with constant
query complexity. Thus, while the query complexity of our PCPs is higher than that
of the previous state of the art, their length is shorter.

2.2. Proximity and proofs of proximity. We now formalize the notion of
verifying proofs of theorems where even the theorem is not known but rather is pro-
vided as an oracle to the verifier. The verifier, in such a case, can hope only to certify
that the theorem is “close” to one that is true. To define this notion we first need to
formalize the notion of “closeness,” or proximity.

We will work with a variety of distance measures ∆ : ΣN × ΣN → [0, 1], where
a distance measure satisfies the properties (1) ∆(x, x) = 0, (2) ∆(x, y) = ∆(y, x),
and (3) ∆(x, z) ≤ ∆(x, y) + ∆(y, z). The most common/natural one, and the target
of most of our theorems, will be relativized Hamming distance over the alphabet Σ,
denoted HammingΣ(·, ·). Formally, for y = (y1, . . . , yN ), y′ = (y′1, . . . , y

′
N ) ∈ ΣN ,

HammingΣ(y, y′) = |{i : yi 6= y′i}|/N.

For our proofs we use other distance measures on strings which may weigh different
coordinates differently. For example, given a set I ⊆ [N ] we may consider the distance
HammingΣ,I(y, y′) = |{i ∈ I : yi 6= y′i}|/|I|. Note that a convex combination of
distance measures is also a distance measure, and this describes many other distance
measures we use later.

Given a distance measure ∆ : ΣN × ΣN → [0, 1] and a set S ⊆ ΣN we define the
distance of an element y ∈ ΣN from S to be

∆(y, S) =
{

mins∈S ∆(y, s), S 6= ∅,
1, S = ∅.
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We are now ready to describe PCPs of proximity (PCPPs)/assignment testers [9,
19]. We follow the general formulation as appearing in [9]. In this formulation, the
input comes in two parts (x, y), where x ∈ Σ∗ is given explicitly to the verifier and
y ∈ Σ∗ is given as oracle. In addition, the verifier is given oracle access to a proof.
The verifier is allowed to read x in its entirety, but its queries to y are counted as
part of its query complexity, i.e., together with the queries to the proof. Throughout
this paper we assume without loss of generality the explicit input of a pair instance
includes a specification of the length of the implicit input. If unspecified we set the
length to be t(|x|). Formally, we assume the explicit input is of the form x = (x′, N),
where N = |y|. The size of the explicit input is the size of x′.

Definition 2.4 (PCPP-verifier). For functions r, q : N+ → N+ an (r(n), q(n))-
PCPP-verifier is a probabilistic machine V with oracle access to an implicit input y
and a proof of proximity, or simply, a proof, denoted π. On explicit input x = (x′, N)
with |x′| = n, and N an integer, verifier V runs in time 2O(r(n)), tosses r(n) coins,
makes at most q(n) nonadaptive queries in total to the two oracles, y of size N and
π, and outputs either accept or reject. We denote by V (y,π)[x;R] the output of the
PCPP-verifier on input x and random coins R.

PCPPs refer to languages consisting of pairs of strings where the elements in
these pairs refer to the two parts of the input in Definition 2.4. Thus, we define
a pair language to be subset of Σ∗ × Σ∗. It is useful for us to measure the com-
plexity of a pair language as a function of its first input. So PAIR-TIME(t(n)) is
the set of languages L such that there exists a machine M that takes time t(|x|)
on input (x, y) such that L = {(x, y) : M(x, y) = accept}. One notable pair
language in PAIR-TIME(n · polylog n) is CktVal, the language of pairs (C,w),
where C is a Boolean circuit with N inputs and w is an assignment satisfying C.
PAIR-NTIME(t(n)) is defined similarly, this time allowing M to be a nondetermin-
istic machine.

For a pair language L and x ∈ Σ∗, x = (x′, N), let

Lx , {y ∈ ΣN : (x, y) ∈ L}.

PCPP-verifiers are intended to accept implicit inputs in Lx and reject implicit inputs
that are far from being in Lx. This gives rise to classes of pair languages defined in
terms of PCPPs.

Definition 2.5 (PCPP). For functions r, q : N+ → N+, soundness parameter
s ∈ [0, 1], family of distance measures ∆ = {∆N : ΣN × ΣN → [0, 1]}N∈N+ , and
proximity parameter δ ∈ [0, 1] we say the pair language L belongs to the class of
languages

PCPPs,δ

 randomness r(n),
query q(n),
distance ∆


if there exists an (r(n), q(n))-PCPP-verifier VL such that the following hold for all
(x, y), |y| = N :

• Perfect completeness: If (x, y) ∈ L then ∃π such that PrR[V (y,π)
L [x;R] =

accept] = 1.
• Soundness: If ∆N (y, Lx) ≥ δ, then ∀π PrR[V (y,π)

L [x;R] = accept] ≤ 1− s.
Remark 2.6. As mentioned earlier, our main results (for example, Theorem 2.10)

target the relative Hamming distance. However, to prove these we shall need to use
PCPPs with different distance measures (see subsection 3.4).
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Our constructions of PCPPs come naturally with a somewhat different soundness
condition than the one required in Definition 2.5. On the one hand, they do not
achieve a soundness error of an absolute constant. On the other hand, they satisfy the
additional property that a PCPP-verifier for Lx rejects every string y with probability
proportional to the distance of y from Lx. We formalize this “strong” soundness
condition below and then state a general transformation from PCPPs with strong
soundness to the weaker version above. (The term “strong” is derived from the
analogous definition of strong locally testable codes [24, Definition 2.1].)

Definition 2.7 (strong PCPP). For r, q,∆ as in Definition 2.5 and soundness
function s : (0, 1]× N+ → (0, 1], we say language L belongs to the class

Strong-PCPPs(δ,n)

 randomness r(n),
query q(n),
distance ∆


if there exists an (r(n), q(n))-PCPP-verifier VL with perfect completeness as in Defi-
nition 2.5 and for all (x, y), |y| = N , the following holds:

• Strong soundness: ∀π PrR[V (y,π)
L [x;R] = accept] ≤ 1− s(∆N (y, Lx), n).

Remark 2.8. Naturally, one expects the soundness function to be nondecreasing.
Formally, we say s : (0, 1]×N+ → [0, 1] is nondecreasing if for all n ∈ N+ the function
s(·, n) : (0, 1] → (0, 1] is nondecreasing. This implies that the farther y is from Lx,
the higher the rejection probability or soundness. Indeed, all soundness functions
considered in this paper are nondecreasing.

Notice that a “weak” PCPP, with soundness parameter s0 and distance param-
eter s0, is also a “strong” PCPP with a threshold soundness function s(δ, n) that
evaluates to 0 on δ′ < δ0 and to s0 on δ′ ≥ δ0. A converse of this is also true. To
see this one needs only to amplify the soundness error from s(δ, n) to some fixed
desired constant s′. The now standard application of randomness efficient sampling
allows such amplification with little additional cost in randomness. Indeed, using the
expander-neighborhood sampler of [25] (see also [22, section C.4]) we get the following
proposition, given here without proof. (For a proof see [9, Lemma 2.11].)

Proposition 2.9 (strong PCPPs imply “weak” ones). Let s : (0, 1]×N+ → (0, 1]
be a nondecreasing soundness function as defined in Remark 2.8. If a pair language
L belongs to

Strong-PCPPs(δ,n)

 randomness r(n),
query q(n),
distance ∆

,
then, for every s′, δ ∈ (0, 1), the language L belongs to

PCPPs′,δ

 randomness r(n) +O( 1
s(δ,n) · log 1

s′ ),

query O
(
q(n)·log 1/s′

s(δ,n)

)
,

distance ∆

.
Furthermore, the proof queried by the “weak” PCPP-verifier is of the same length as
that queried by the “strong” one.

We are now ready to state our main result for PCPPs.
Theorem 2.10 (quasilinear PCPPs). For any proper complexity function t :
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N+ → N+,

PAIR-NTIME(t(n))

⊆ Strong-PCPPδ/ polylog t(n)

 randomness log(t(n) · polylog t(n)),
query polylog t(n),
distance HammingΣ

.
Consequently, as implied by Proposition 2.9, for any s, δ ∈ (0, 1),

PAIR-NTIME(t(n)) ⊆ PCPPs,δ

 randomness log(t(n) · polylog t(n)),
query polylog t(n),
distance HammingΣ

.
Furthermore, the length of the proof queried by the PCPP-verifier (in both the strong
and weak cases) is t(n) · polylog t(n).

Remark 2.11. As in the case of Theorem 2.2, the parameters of Theorem 2.10
have been recently improved. In particular, [18] reduced the query complexity to O(1)
and [10] reduced the verifier running time to poly n + polylog t(n). In both cases all
other parameters remain unchanged.

The previous state of the art with respect to PCPPs [9] gave proofs of length n ·
exp(poly log log n) with a query complexity of poly log log n (and slightly longer proofs
with constant query complexity). Once again, our query complexity is somewhat
higher but our proofs are somewhat shorter.

2.3. Locally testable codes. We now move to the third notion addressed by
this paper—that of LTCs.

For field F and integers n, k, d, a linear [n, k, d]F-code is an injective linear map
C : Fk → Fn such that for every pair x 6= y ∈ Fk, HammingF(C(x), C(y)) ≥ d/n. We
point out that all codes considered in this paper are linear. The alphabet of C is F,
the blocklength is n, the dimension is k, the rate is k/n, and the distance is d. The
image of C is the linear space Image(C) = {C(a) : a ∈ Fk}. Often a code is identified
with its image.

Loosely speaking, a linear [n, k, d]F-code is said to be locally testable if a tester, i.e.,
a randomized machine with oracle access to the supposed codeword, can distinguish
with high probability between words in the code and words that are far from it,
while making only o(k) random queries into a purported codeword. The following is
essentially Definition 2.1 from [24].

Definition 2.12 (locally testable codes). A randomized polynomial time oracle
machine T is called a (δ, q, γ)-tester for the linear [n, k, d]F code C if it satisfies the
following two conditions:

• For any w ∈ Image(C),

Pr[Tw[R] = accept] = 1,

where Tw[R] denotes the output of the tester on oracle w and random coins
R.

• For any w ∈ Fn such that HammingF(w, Image(C)) ≥ δ,

Pr[Tw[R] = reject] ≥ γ.

A code is said to be (δ, q, γ)-locally testable if it has a (δ, q, γ)-tester.
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Theorem 2.13 (locally testable codes with polylogarithmic rate). Let δ, γ ∈
(0, 1), Σ = F2 be the field of two elements and let n be any power of 2. Then, there
exists a linear [N = n · polylog n,K = n/8, D = N/8]Σ-code that is (δ, polylog n, γ)-
locally testable. Furthermore, encoding, decoding, and testing can be performed in
time polynomial in n.

Remark 2.14. As with Theorems 2.2 and 2.10, the query complexity of Theo-
rem 2.13 has been recently improved in [18] to O(1), leaving all other parameters
unchanged.

We remark that we also give LTCs over a variety of other fields and other choices
of n (see Theorems 3.2 and 3.4 for details). Also if we relax the requirement that the
code be linear, then the theorem above follows immediately from Theorem 2.10 (and
[9, section 4.1]) without any restrictions on the choice of n.

3. Technical ingredients of our constructions. In this section we introduce
the main technical ingredients of our paper and prove the three main theorems (The-
orems 2.2, 2.10, and 2.13) of our paper, assuming these ingredients. Recall that these
theorems promise short PCPs, PCPPs, and LTCs. We stress that while the construc-
tion of PCPs and LTCs follows easily from the PCPP construction, this is not the
approach in our paper.

We start by constructing an LTC, based on one of the most popular codes, namely,
the Reed–Solomon code. We give a PCPP for a language whose elements are essen-
tially Reed–Solomon codewords. Recalling the fact that Reed–Solomon codes are
evaluations of univariate polynomials of bounded degree, this result shows how it is
possible to prove that a function given as an oracle is close to some polynomial of
bounded degree. Subsection 3.1 below describes the actual language based on Reed–
Solomon codes and states the PCPP construction that we obtain for this language.
This immediately leads to a proof of Theorem 2.13.

We then move to the constructions of PCPs and PCPPs for general NTIME
languages. These constructions are obtained by first reducing the NTIME language
under consideration to an algebraic version of SAT that we call an algebraic constraint
satisfaction problem, and then giving PCPs (and PCPPs) for algebraic constraint
satisfaction problems. We define algebraic constraint satisfaction problems and state
their completeness for NTIME in subsection 3.2.

The advantage of algebraic constraint satisfaction problems is that the natural
“classical” proofs of satisfiability for these problems come in the form of two univariate
polynomials of bounded degree, say, f, g, that satisfy some simple constraints. For
example, in the PCP construction, the verifier knows some set H ⊆ F and would like
to verify that g(x) = 0 for every x ∈ H. The PCPPs for Reed–Solomon codes already
show how to prove/verify that the functions f and g are close to some polynomials of
bounded degree. In subsection 3.3 we augment this PCPP so as to test that it vanishes
on the set H, and this leads us to a proof of Theorem 2.2. Finally, in subsection 3.4
we describe the additional ingredients needed to get a PCPP for NTIME and prove
Theorem 2.10 modulo these ingredients.

3.1. PCPPs for Reed–Solomon codes. We start by defining the Reed–Solomon
codes and a pair language based on these codes. We then describe two cases of Reed–
Solomon codes where we can obtain PCPPs for membership in the language. This
yields our main theorem (Theorem 2.13) on LTCs.

Definition 3.1 (Reed–Solomon codes and pair language). The evaluation of a
polynomial P (z) =

∑d
i=0 aiz

i over S ⊆ F, |S| = n is the function p : S → F defined by
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p(s) = P (s) for all s ∈ S. The formal sum P (z) is called the polynomial corresponding
to (the function) p. The Reed–Solomon code of degree at most d over F, evaluated at
S, is

RS(F, S, d) , {p : S → F | p is an evaluation of a polynomial of degree ≤ d over S}.

The pair language PAIR-RS is defined as follows. The explicit input is a triple
(F, S, d), where F is a description of a finite field,1 S ⊆ F, and d is an integer. The
size of the explicit input is assumed to be |S|+O(1) field elements because in all our
applications both d and F can be described using log |F| bits. The implicit input is
a function p : S → F. The size of the implicit input is |S| field elements. A pair
((F, S, d), p) is in PAIR-RS iff p ∈ RS(F, S, d) and the explicit input is in the format
described above.

Notice that RS(F, S, d) is the image of a linear [n, d+ 1, n−d]F-code. To see this,
set S = {ξ1, . . . , ξn} and consider the linear map sending (a0, . . . , ad) ∈ Fd+1 to the
codeword (P (ξ1), . . . , P (ξn)) for P (z) =

∑d
i=0 aiz

i.
Next we state our main technical results, namely, quasilinear length proofs of

proximity for Reed–Solomon codes. Our results hold for certain “well-behaved” fields
and evaluation sets, including fields of characteristic 2 (Theorem 3.2) and multiplica-
tive subgroups that are sufficiently smooth (Theorem 3.4). As is customary when
discussing Reed–Solomon codes, our distance measure is the relative Hamming dis-
tance over alphabet F, denoted HammingF, and our alphabet is the underlying field.
In particular, queries are answered by field elements.

3.1.1. Fields of characteristic two.
Theorem 3.2 (PCPPs for RS-codes over fields of characteristic 2). Let PAIR-

ADDITIVE-RS be the restriction of PAIR-RS to pairs ((GF(2`), S, d), p), where
GF(2`) is the Galois field of size n = 2` and characteristic 2 and S ⊆ F is GF(2)-
linear. (Recall that S is GF(2)-linear iff for all α, β ∈ S we have α+ β ∈ S.) Then,

PAIR-ADDITIVE-RS ∈ Strong-PCPPδ/ polylogn

 randomness log(n · polylog n),
query O(1),
distance HammingGF(2`)

.
Consequently (using Proposition 2.9), for any s, δ ∈ (0, 1),

PAIR-ADDITIVE-RS ∈ PCPPs,δ

 randomness log(n · polylog n),
query polylog n,
distance HammingGF(2`)

.
Furthermore, the proof queried by the “weak” PCPP-verifier is of the same length as
that queried by the “strong” one.

Remark 3.3. The proof of Theorem 3.2 can be modified to obtain (strong) PCPPs
with parameters as above for some other fields also. In particular, we can get PCPPs
for F of characteristic ≤ polylog n as long as the evaluation set S is linear over a sub-
field of F of size polylog n. For simplicity, and since this suffices for our applications,
we prove the result only for characteristic 2.

We prove Theorem 3.2 in section 6. Here we note that Theorem 3.2 immediately
leads to a construction of LTCs. In particular, we use it to prove Theorem 2.13 later
in this section. But before doing so, we describe a different collection of fields F and
sets S where we can derive PCPPs for Reed–Solomon codes.

1An explicit description for such a field could be via a prime a and an irreducible polynomial
g(x) over GF(a).
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3.1.2. RS-codes over smooth fields. For this part, and throughout the rest
of this paper, let F∗ denote the multiplicative group of a finite field F. The order of
ω ∈ F∗, denoted ord(ω), is the smallest positive integer n such that ωn = 1. The
multiplicative group generated by ω is 〈ω〉 ,

{
ω0, ω1, . . . , ωn−1

}
.

Theorem 3.4 (PCPPs for smooth RS-codes). Let PAIR-SMOOTH-RS be the
restriction of PAIR-RS to pairs ((F, 〈ω〉, d), p), where ord(ω) = n is a power of 2.
Then,

PAIR-SMOOTH-RS ∈ Strong-PCPPδ/ polylogn

 randomness log(n · polylog n),
query O(1),
distance HammingF

.
Consequently (using Proposition 2.9), for any s, δ ∈ (0, 1),

PAIR-SMOOTH-RS ∈ PCPPs,δ

 randomness log(n · polylog n),
query polylog n,
distance HammingF

.
Furthermore, the proof queried by the “weak” PCPP-verifier is of the same length as
that queried by the “strong” one.

Remark 3.5. Examination of the proof of Theorem 3.4 shows that it can be ex-
tended to 〈ω〉 of size n that is polylog n-smooth; i.e., all prime factors of n are at most
polylog n. For simplicity, we state and prove our theorem only for the multiplicative
case of a 2-smooth n.

While not immediately evident, prime fields satisfying the requirements of the
previous theorem abound. In section 7 we discuss this and provide an alternative
proof of the quasilinear PCP Theorem 2.2 that relies on such prime fields. Notice the
intersection of PAIR-ADDITIVE-RS and PAIR-SMOOTH-RS is empty. Indeed,
a field with a multiplicative subgroup of size 2k must be of size c · 2k + 1 for integer
c, whereas the size of a field of characteristic 2 is a power of 2. Next we show how to
construct LTCs using the PCPPs for RS-codes over fields of characteristic two.

3.1.3. Proof of quasilinear LTC—Theorem 2.13.
Proof of Theorem 2.13. Given an integer n = 2t we use Theorem 3.2 above applied

to the field F of size n, with S = F and d = n/8. The resulting Reed–Solomon code
has rate Ω(1) and relative distance at least 7/8. We then convert the PCPP for this
code into an LTC over F using a standard conversion. Here we simply sketch this
step. For a formal proof, see [9, Proposition 4.1].

The codewords of the LTC are in one-to-one correspondence with the codewords
of the Reed–Solomon code. The codeword of the LTC corresponding to a polyno-
mial p consists of two parts. The first part is simply the Reed–Solomon encoding
of p repeated sufficiently often so that the first part takes at least, say, half of the
coordinates of the LTC. The second part consists of the PCPP that p is a member
of the language. The LTC-verifier simply simulates the PCPP-verifier using the first
half as the oracle for the implicit input and the second half as the proof oracle, along
with some spot-checks to verify that the first part repeats the same codeword several
times. It is straightforward to see that the rate of this LTC is asymptotically bounded
by the length of the Reed–Solomon codewords divided by the length of their PCPP,
and the query complexity is similar to that of the PCPP-verifier. It is easy to see
that the LTC so obtained has a relative distance of at least 7/16 (i.e., half the relative
distance of the Reed–Solomon code).
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It remains to convert this code into a binary code. This is also straightforward
using the idea of concatenation of codes. We pick a small error-correcting code with
|F| codewords of length ` = O(log |F|) and distance, say, at least .4` and represent ele-
ments of F as codewords of this code. This converts the LTC obtained in the previous
paragraph into a binary code with relative distance at least .4 times the distance of
that code, which yields a relative distance of at least 7/40 > 1/8. The verifier of the
LTC above can now be simulated on this binary code with a multiplicative increase
in the query complexity by a factor of O(log |F|).

Thus the PCPP for Reed–Solomon codes immediately leads to short LTCs. Ad-
ditionally as we discuss in the upcoming sections, it also forms the central ingredient
in our PCP and PCPP constructions.

3.2. Algebraic constraint satisfaction problems. To obtain length-efficient
PCPs and PCPPs we reduce L ∈ NTIME(t(n)) to an algebraic constraint satisfaction
problem. We describe this problem by comparing it to a combinatorial analogue,
namely, 3SAT. A 3-CNF formula ψ with n variables and m clauses can be viewed as
a mapping ψ : {0, 1}n → {0, 1}m, sending an assignment to the characteristic vector
of the set of clauses satisfied by it. The “natural” proof of satisfiability of a 3-CNF
formula is a vector a of n bits. The proof proves the satisfiability of ψ if ψ(a) = ~1. The
typical advantage of this proof is that verification is a sequence of local steps, i.e., to
verify that the jth coordinate of ψ(a)j = 1, we need only examine three coordinates
of a.

An instance of an algebraic constraint satisfaction φ similarly can be viewed as a
mapping φ : F[x]→ F[x] from polynomials to polynomials. A candidate proof for the
algebraic problem is a low-degree (univariate) polynomial A ∈ F[x] over finite field F,
called the proof polynomial. The map φ would map A to a polynomial P of slightly
larger degree. φ would be considered satisfiable if P = φ(A) vanishes on a prespecified
subset H of F. Finally, for “local verifiability,” we will expect that computing P (x0)
requires knowledge of A at very few places, denoted k. But here we place some very
strong restrictions on the local neighborhoods. Whereas in 3SAT, there was no simple
relationship between a clause index j and the variables participating in the clause,
in algebraic constraint satisfaction problems, we expect P (x0) to depend on A on
some set of points of the form {Aff1(x0), . . . ,Affk(x0)}, where Affi(x) = aix + bi
is an affine map. Moreover, we insist that the computation of P (x0) from x0 and
A(Aff1(x0)), . . . , A(Aff1(x0)) itself be algebraically simple. Combining all these
ingredients leads to the following definition.

Definition 3.6 (univariate algebraic constraint satisfaction problem (CSP)). In-
stances of the language ALGEBRAIC-CSP are tuples of the form φ = (F, {Aff1, . . . ,
Affk′}, H,C), where F is a field, Affi(x) , aix+bi is an affine map over F specified
by ai, bi ∈ F, H ⊆ F, and C : Fk′+1 → F is a polynomial of degree at most |H| in its
first variable. The size of φ is |F|.

A polynomial A ∈ F[x] is said to satisfy the instance φ ∈ ALGEBRAIC-CSP iff
deg(A) ≤ |H| − 1 and for all x ∈ H,

(3.1) C(x,A(Aff1(x)), . . . , A(Affk′(x))) = 0.

The instance φ is in ALGEBRAIC-CSP iff there exists a polynomial satisfying it.
For integers k, d, let ALGEBRAIC-CSPk,d be the restriction of ALGEBRAIC-

CSP, to instances as above where k′ ≤ k and the degree of C in all but the first variable
is at most d.
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Our main theorem on PCPs is obtained by reducing NTIME languages to
ALGEBRAIC-CSP, while preserving the length of instances to within polyloga-
rithmic factors.

Theorem 3.7 (ALGEBRAIC-CSP is NTIME-complete). There exist integers
k, d such that for any proper complexity function t : N+ → N+ and L ∈ NTIME(t(n))
the following hold.

1. L is reducible to ALGEBRAIC-CSPk,d in time poly t(n).
2. The reduction maps an instance of L of size n to an instance of ALGEBRAIC-

CSPk,d over field GF(2`) of size 2` ≤ t(n) polylog t(n) and characteristic 2,
where 100(kd+ 1)(|H| − 1) < 2` ≤ 200(kd+ 1)(|H| − 1).

The proof of this theorem is given in section 5.
Remark 3.8. Inspection of the proof of Theorem 3.7 gives k = 10 and d = 8.

More careful optimization can give k = 9 and d = 1; i.e., C is multilinear in all but
the first variable. Favoring simplicity over constant optimization, we omit this proof.
Additionally, one can obtain the theorem for any F as long as |F| > |H|. However, to
derive Theorems 2.2 and 2.10 we need |F| � |H|.

Very similar algebraic reductions are prevalent in many previous PCPs [5, 3, 2,
37, 39, 11, 9], starting with [5], and our reduction follows that of Polishchuk and
Spielman [37]. However, all previous reductions used multivariate polynomials to
perform degree reduction. Namely, a message (or assignment) of length n is encoded
by an m-variate polynomial of degree ≈ m · n1/m (allowing proximity testing with
n1/m queries). In contrast, our reduction does not reduce the degree at all; in fact
it slightly increases it. The PCPPs for the RS-code described earlier allow us to
tolerate this and verify proximity to high-degree polynomials with very small query
complexity—logarithmic in the degree.

For our PCPP construction we need to modify the reduction above so that it
works appropriately for pair languages. Suppose we wish for a reduction R from a
pair language L to a pair language L′. Note that such a reduction can only work with
the explicit input of pair languages. Furthermore, the reduction should say something
about (the proximity of) the implicit input to an accepting pair. The following defi-
nition of a “systematic reduction” (borrowing a phrase from coding theory) specifies
our needs.

Definition 3.9 (systematic reduction). A systematic reduction from a pair
language L to L′ is given by a pair of functions (R,m), R : Σ∗ → Σ∗, and m :
Σ∗ × Z+ → Z+ satisfying the following properties:

• For every x, the function m′(i) = m(x, i) restricted to the domain {1, . . . , N}
is injective and maps to the range {1, . . . , N ′}, where N denotes the length of
the implicit input associated with x, and N ′ denotes the length of the implicit
input associated with R(x).

• If y ∈ Lx, then there exists a y′ ∈ Σ∗ such that y′ ∈ L′R(x) and yi = y′m(i) for
every i ∈ {1, . . . , N}.

• If y′ ∈ L′R(x), then y ∈ Lx, where y is the string given by yi = y′m(i) for
i ∈ {1, . . . , N}.

The running time of the reduction is the maximum of the computation times of R(x)
and m(x, i), measured as a function |x|.

We next state a variant of Theorem 3.7 giving systematic reductions from pair
languages to a language related to ALGEBRAIC-CSP. To this end, we define
PAIR-ALGEBRAIC-CSP to be the pair language whose explicit inputs are in-
stances φ as in Definition 3.6 and whose implicit inputs are mappings y : F→ F. A pair
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(φ, y) is in PAIR-ALGEBRAIC-CSP iff the polynomial corresponding to y satisfies
φ. We now state our theorem about the completeness of PAIR-ALGEBRAIC-CSP
for PAIR-NTIME.

Theorem 3.10. There exist integers k, d such that for any proper complexity
function t : N+ → N+ and L ∈ PAIR-NTIME(t(n)) the following hold.

1. L is reducible to PAIR-ALGEBRAIC-CSPk,d by a systematic reduction,
given by the pair (R,m), in time poly t(n).

2. For x ∈ {0, 1}n, the instance R(x) is an instance of ALGEBRAIC-CSPk,d

over field GF(2`) of size 2` ≤ t(n) polylog t(n) and characteristic 2, where
100(kd+ 1)(|H| − 1) < 2` ≤ 200(kd+ 1)(|H| − 1).

Since Theorem 3.10 is proved by a minor modification of the proof of Theorem
3.7, we prove them together in section 5.

3.3. Vanishing RS-codes and the PCP construction. The completeness
of ALGEBRAIC-CSP for NP, combined with the PCPPs for Reed–Solomon codes,
suggests a natural approach to building PCPs. In order to prove that some input
instance x belongs to some NP language L, the verifier transforms x into an instance
φ of ALGEBRAIC-CSP. To prove that φ is satisfiable, the prover can write a table
of the assignment function A : F→ F. Furthermore, the prover can also write a table
of the transformed polynomial P = φ(A). In order to verify that this is a valid proof
of the satisfiability of φ, the verifier need only verify the following three properties:
(1) The degrees of A and P are as specified; (2) A and P satisfy the relationship
P = φ(A); and (3) P vanishes on the set H. The PCPP for Reed–Solomon codes
solves the problem in (1) above. The locality in the definition of ALGEBRAIC-CSP
turns out to lead to a simple solution to step (2) above as well. This leaves us to solve
the problem in step (3). In this section we abstract this problem, calling it the
vanishing RS-code problem, and state our result showing how to verify this. We then
formalize the argument above to get a formal proof of Theorem 2.2.

We remark that the problem in step (3) is a special case of a common problem
in all previous algebraic PCPs [4, 5, 20, 3, 2, 37, 39, 11, 9], where the goal is to test
whether an m-variate function f , given as an oracle, is close to some polynomial p that
vanishes on a set Hm for some prespecified subset H ⊂ F. Our setting specializes this
to the case where the functions are univariate (i.e., m = 1) as opposed to multivariate
in the above mentioned results. This motivates the following pair language.

Definition 3.11 (vanishing RS-codes). A polynomial P (z) over field F is said
to vanish over H ⊆ F iff for all h ∈ H,P (h) = 0. For field F, subsets S,H of F, and
integer d, the H-vanishing RS-code is

VRS(F, S,H, d) , {p ∈ RS(F, S, d) : The polynomial correspoding to p vanishes on H}.

The pair language PAIR-VRS is defined as follows. The explicit input is a
quadruple (F, S,H, d), where F is a description of a finite field, S,H ⊆ F, and d
is an integer. The implicit input is a function p : S → F. The size of both the
implicit and explicit inputs is O(|S|). A pair ((F, S,H, d), p) is in PAIR-VRS iff
p ∈ VRS(F, S,H, d).

Note that in the above definition we do not require H to be a subset of S.
The following lemma reduces testing proximity to the vanishing RS-code to testing
proximity to the standard RS-code.

Lemma 3.12 (PCPPs for PAIR-VRS). Suppose a field F, S ⊆ F, and integer d
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are such that

RS(F, S, d) ∈ Strong-PCPPs(δ)

 randomness r,
query q,
distance HammingF

.
Then, for any H ⊂ F and s′(δ) = min{δ/2, s(δ/2)},

VRS(F, S,H, d) ∈ Strong-PCPPs′(δ)

 randomness max{r, log |S|},
query q + 2,
distance HammingF

.
Applying the previous lemma to Theorems 3.2 and 3.4 we immediately get the

following corollary.
Corollary 3.13 (quasilinear PCPPs for vanishing RS-codes). Let PAIR-

ADDITIVE-VRS be the restriction of PAIR-VRS to pairs ((F, S,H, d), p)), where
F, S are as defined in Theorem 3.2. Similarly, let PAIR-SMOOTH-VRS be the
restriction of PAIR-VRS to pairs where F, S are as defined in Theorem 3.4. Let
|S| = n. Then,

PAIR-ADDITIVE-VRS,
PAIR-SMOOTH-VRS

∈ Strong-PCPPδ/ polylogn

 randomness log(n · polylog n),
query O(1),
distance HammingF

.
Consequently (using Proposition 2.9), for any s, δ ∈ (0, 1),

PAIR-ADDITIVE-VRS,
PAIR-SMOOTH-VRS

∈ PCPPs,δ

 randomness log(n · polylog n),
query polylog n,
distance HammingF

.
Furthermore, the proof queried by the “weak” PCPP-verifier is of the same length as
that queried by the “strong” one.

Lemma 3.12 generalizes to the case of multivariate polynomials and can replace
the sumcheck-based protocols in previous PCP constructions [5, 3, 2, 37, 27, 24, 11, 9].
We describe this problem and our solution to it in subsection 4.4. We remark that
our solution is both simpler and somewhat more efficient than the previous solutions
(alas we do not need it for any of our own constructions). For our PCP construction
the univariate version above suffices, as we show next.

3.3.1. Proof of quasilinear PCP—Theorem 2.2. We now show how to use
the PCPP for (vanishing) RS-codes to prove Theorem 2.2, which gives short PCPs
for all NTIME languages.

Proof of 2.2. Overview. We need to show that L ∈ NTIME(t(n)) has short
PCPs. We start by reducing an instance ψ, |ψ| = n of L to an instance φ of
ALGEBRAIC-CSPk,d of quasilinear size in n. As our proof, we request an eval-
uation p0 of the polynomial A satisfying φ. Additionally, we request an evaluation p1

of the polynomial from (3.1) appearing in Definition 3.6. To verify that A satisfies φ,
we need only test that (i) p0 is of sufficiently low degree, (ii) p0, p1 are consistent, i.e.,
p1 is the evaluation of the polynomial from (3.1), and (iii) the polynomial correspond-
ing to p1 vanishes on H. We test (i) using Theorem 3.2, (iii) using Corollary 3.13,
and (ii) using an additional consistency test with constant query complexity. Details
follow.

Let φ = {GF(2`), {Aff1, . . . ,Affk}, H,C} be the instance of ALGEBRAIC-
CSPk,d that ψ is reduced to via Theorem 3.7. Let F = GF(2`) and notice that
|F| = Θ(t(n) polylog t(n)).
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Probabilistically checkable proof. The verifier expects oracle access to a proof com-
prised of

• function p0 : F → F and proof of proximity π0 to RS(F,F, |H| − 1) as per
Theorem 3.2 and

• function p1 : F→ F and proof of proximity π1 to VRS(F,F, H, (kd+1)(|H|−
1)) as per Corollary 3.13.

Notice that Theorem 3.2 and Corollary 3.13 imply that the size of the proof is quasi-
linear in |F|, which is quasilinear in t(n).

Verifier operation. The verifier tosses log(t(n) · polylog t(n)) coins and runs the
following subtests using the same random coins in all and accepting iff all subtests
accept.

• Invoke the PCPP-verifier for the Reed–Solomon code from the second part
of Theorem 3.2 on explicit input (F,F, |H| − 1), implicit input p0, and proof
π0, using proximity parameter δ = 1/10k and soundness half.

• Invoke the PCPP-verifier for vanishing Reed–Solomon code from the second
part of Corollary 3.13 on explicit input (F,F, H, |H| − 1), implicit input p1,
and proof π1, using proximity parameter 1/100 and soundness half.

• Select random x ∈ F, query p0(x), p0(Aff1(x)), . . . , p0(Affk(x)) and p1(x);
accept iff

p1(x) = C(x, p0(x), p0(Aff1(x)), . . . , p0(Affk(x))).

Basic parameters. Randomness and query complexity are as claimed, by Theorem
3.2 and Corollary 3.13.

Completeness. Suppose ψ ∈ L. Then φ ∈ ALGEBRAIC-CSPk,d by Theorem
3.7. Suppose A satisfies φ as per Definition 3.6. Let p0 be the evaluation of A on F.
Let

(3.2) B(x) , C(x,A(Aff1(x)), . . . , A(Affk(x))).

Notice that deg(B) ≤ degx0
(C) +

∑k
i=1 degxi(C) · deg(A) ≤ (kd + 1)(|H| − 1). Fur-

thermore, B vanishes on H because A satisfies φ. Let p1 be the evaluation of B on F.
We conclude that p0 ∈ RS(F,F, |H| − 1) and p1 ∈ VRS(F,F, H, (kd + 1)(|H| − 1)),
so by the completeness property of Theorem 3.2 and Corollary 3.13 there exist proofs
π0, π1 causing the first two subtests of the verifier to accept. Finally, for all x ∈ F we
have by construction

p1(x) = B(x) = C(x,A(Aff1(x)), . . . , A(Affk(x)))
= C(x, p0(Aff1(x)), . . . , p0(Aff1(x))).

We conclude that the last subtest also accepts with probability 1, completing the
proof of the completeness statement.

Soundness. Suppose ψ 6∈ L. Then φ 6∈ ALGEBRAIC-CSP by Theorem 3.7.
There are several cases to consider:

• If p0 is (1/10k)-far from RS(F,F, |H| − 1) then Theorem 3.2 implies the first
subtest rejects with probability 1/2. Similarly, if p1 is not (1/100)-close to
VRS(F,F, H, (kd+1)(|H|−1)) then Corollary 3.13 implies the second subtest
rejects with probability 1/2.

• Otherwise, let A be the unique polynomial of degree ≤ |H| − 1 that is closest
to p0 and let B(x) be as defined in (3.2). Let p2 : F→ F be defined by

p2(x) = C(x, p0(Aff1(x)), . . . , p0(Affk(x))).
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A union bound implies p2 is (1/10)-close to the valuation of B on F because
p0 is (1/10k)-close to the valuation of A and Affi(x) is uniformly distributed
on F when x is uniformly distributed on F.
Let B′ be the (unique) polynomial closest to p1. Notice that B 6= B′ because
if B = B′, then B vanishes on H, implying A satisfies φ. Summing up, we
have p1 is (1/100)-close to B′ and p2 is (1/10)-close to B, where B 6= B′

are polynomials of degree ≤ |F|/100, so they agree on at most 1/100 fraction
of their entries. Thus, the third subtest accepts with probability at most
(1/10) + (1/100) + (1/100) < 1/2. The soundness analysis is complete and
with it we have proved Theorem 2.2.

3.4. Systematic RS-codes and quasilinear PCPPs. We now turn to the
task of building PCPPs for PAIR-NTIME languages. It is relatively straightforward
to convert the PCP-verifier for ALGEBRAIC-CSP constructed in the previous sec-
tion into a PCPP-verifier for PAIR-ALGEBRAIC-CSP. Unfortunately, this is not
sufficient to imply a PCPP-verifier for all PAIR-NTIME languages, despite the sys-
tematic reduction given by Theorem 3.10.2

To get to the underlying issue, consider pair language L in PAIR-NTIME, and
consider the task of proving/verifying if (x, y) ∈ L, where x is explicit and y is given
as an oracle. Using the systematic reduction of Theorem 3.10, a PCPP-verifier could
convert x to an instance φ = R(x) of ALGEBRAIC-CSP. It now demands proof
oracles for a polynomial A satisfying φ, along with other ingredients as in the proof
of Theorem 2.2 that prove that A satisfies φ. The PCPP-verifier can now verify that
A satisfies φ with few queries. It still needs to verify that A is consistent with the
implicit input y. Using the “systematic” nature of the given reduction, it also knows
that y ought to be “contained” in A. More specifically, it knows that there is some
subset H of A such that the evaluation of the polynomial A on the set H should be
equal to the string y. In what follows we abstract this problem as that of building
a PCPP-verifier for “systematic” Reed–Solomon codes. Such a verifier is given two
oracles, one for a function f : H → F (representing the implicit input y above), and
the other for a (supposedly polynomial) function p : S → F, and attempts to verify
that p is a polynomial of the appropriate degree that agrees with the function f . We
formalize the task below and state our main result for this task.

Definition 3.14 (systematic RS-codes). For field F, subsets S,H ⊆ F, |H| ≤
|S|/2, and integer d ≤ |S|/2 let RSsys(F, S,H, d) be the set of pairs of functions
(f : H → F, p : S → F), such that p ∈ RS(F, S, d) and the polynomial corresponding to
p agrees with f on H. The pair language PAIR-RSsys is the set of pairs with explicit
input (F, S,H, d) as above and implicit input (f, p) ∈ RSsys(F, S,H, d). Similarly,
the pair language PAIR-ADDITIVE-RSsys (PAIR-SMOOTH-RSsys, respectively)
is the restriction of PAIR-RSsys to pairs with F, S as in Theorem 3.2 (Theorem 3.4,
respectively).

Notice in Definition 3.14 we do not require H to be a subset of S, nor do we
assume H ∩S = ∅. Furthermore, we allow d to be greater than |H| − 1, in which case
there are several polynomials of degree d that all agree with f on H.

Recall that when building PCPP-verifiers we need to specify our distance measure.
Since typically |H| � |S|, the standard Hamming distance is not a good measure
because under this measure (f, p) is close to RSsys whenever p is low degree, regardless

2Indeed, we do not know of a generic reduction that, when given a pair language L with a
systematic reduction to L′ and a PCPP-verifier for L′, can construct an efficient PCPP-verifier for
L.
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of the amount of agreement between p and f . To amend this we use the following
weighted Hamming distance:

Hamming
1
2
F ((f, p), (f ′, p′)) =

1
2

(HammingF(f, f ′) + HammingF(p, p′)).

The main theorem of this section gives an efficient PCPP for the language of
systematic Reed–Solomon codes. Its proof is deferred to subsection 4.3.

Theorem 3.15 (PCPPs for systematic RS-codes).

PAIR-ADDITIVE-RSsys,
PAIR-SMOOTH-RSsys

∈ Strong-PCPPδ/ polylogn

 randomness log(n · polylog n),
query polylog n,

distance Hamming
1
2
F

.
3.4.1. Proof of quasilinear PCPP Theorem 2.10. We now show how to use

Theorems 3.10 and 3.15 to construct efficient PCPP-verifiers for all PAIR-NTIME
languages.

Proof of Theorem 2.10. Let (x, y) be an instance of PAIR-L ∈ NTIME(t(n)) with
|y| = N . The PCPP-verifier starts by reducing x to an instance φ = (F, {Aff1, . . . ,
Affk}, H,C} of ALGEBRAIC-CSP as in Theorem 3.10. Let m : {1, . . . , N} → F
be the efficiently computable injective mapping as per Definition 3.9. Let m([N ]) =
{m(1), . . . ,m(N)} ⊆ F. From here on we view y as a function from m([N ]) to F by
associating {0, 1} with the same elements in F. Verifier expects oracle access to a
proof of proximity comprised of the following:

• A PCP π for x as described in the proof of Theorem 2.2. In particular, the
PCP is comprised of functions p0, p1 : F→ F and subproofs π0, π1.

• A proof of proximity for PAIR-ADDITIVE-RSsys(F,F,m([N ]), |H| − 1),
denoted π2.

Verifier operation. The verifier invokes the PCP-verifier described in the proof
of Theorem 2.2 on explicit input x and proof π. Reusing randomness, the verifier
invokes the PCPP-verifier for the pair language PAIR-ADDITIVE-RSsys described
in Theorem 3.15 on explicit input (F,F,m([N ]), |H| − 1), implicit input pair (y, p0),
and proof π2. The verifier accepts iff both subverifiers accept. Notice that Theorems
2.2 and 3.15 imply the randomness and query complexity are as claimed.

Completeness. Suppose (x, y) ∈ PAIR-L and let φ be the instance of
ALGEBRAIC-CSP that x is reduced to as per Theorem 3.7. By Theorem 3.10, y
agrees with p0 on m([N ]) and p0 is an evaluation of a polynomial satisfying φ. Com-
pleteness now follows from Theorems 2.2 and 3.15.

Soundness. Suppose y is δ-far from Lx in distance measure Hamming
1
2
F . There

are several cases to consider. First, if x 6∈ L in which case Lx is empty and δ = 1,
then Theorem 2.2 implies the first subtest of our verifier rejects with probability
δ/polylog n. From here on we assume x ∈ L. If p0 is not (1/100)-close to an evaluation
of a polynomial of degree ≤ |H| − 1 that satisfies φ, then the soundness part of the
proof of Theorem 2.2 implies the first subtest of our verifier rejects with probability
≥ 1/(100 ·polylog n) ≥ δ/polylog n. Finally, suppose p0 is (1/100)-close to evaluation
of a polynomial A satisfying φ and let y′ : m([N ]) → F be the evaluation of A on
m([N ]). Theorem 3.10 implies y′ satisfies x, so by assumption y is δ-far from y′.
Thus, the pair of functions (y, p0) is (δ/2)-far from RSsys(F,F,m([N ]), |H| − 1), so
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Theorem 3.15 implies that the second subtest rejects (y, p0) with probability at least
δ/polylog n, completing the proof of Theorem 2.10.

3.5. Organization of the rest of the paper. We have thus far proved our
main theorems (Theorems 2.2, 2.10, and 2.13) assuming the NTIME-completeness
result for ALGEBRAIC-CSP (Theorems 3.7 and 3.10) and PCPPs for RS-codes
(Theorem 3.2), for vanishing Reed–Solomon codes (Lemma 3.12), and for systematic
Reed–Solomon codes (Theorem 3.15). In the following sections we give proofs for
these claims. We remark that the sections may be read in any order. The order in
which they are sequenced here merely reflects our opinion of the complexity of the
proofs.

In section 4 we assume a PCPP for Reed–Solomon codes and give PCPPs for
vanishing and systematic Reed–Solomon codes. We also show how to verify vanishing
properties of multivariate polynomials in this section (see Lemma 4.7 in subsection
4.4), a result that may be of independent interest. In section 5 we prove the NTIME
completeness of ALGEBRAIC-CSP and PAIR-ALGEBRAIC-CSP. In section 6
we give the PCPP for RS-codes over fields of characteristic two, which is our central
technical result. Finally, in section 7, we give an analogous PCPP for RS-codes over
smooth fields.

4. PCPPs for vanishing and systematic Reed–Solomon codes. In this
section, we show how one can test various properties of polynomials given by an
oracle, once we have the ability to test that an oracle is close to a polynomial.

The first such property is to verify that a univariate function f is close to some
polynomial P that vanishes on a prespecified set H. This property was used crucially
in building a PCP for NP languages in subsection 3.3.

The PCPP for vanishing RS-codes immediately leads to a PCPP to verify if two
given oracles f1 and f2 are close to polynomials that agree on the prespecified set
of inputs. (This task reduces to verifying whether f1 − f2 represents a vanishing
RS-code.) We refer to this property as “agreeing” Reed–Solomon codes.

We then use the PCPP for agreeing Reed–Solomon codes to get a PCPP for
systematic RS-codes. Recall that here, our goal was to take two oracles for functions
f : H → F and p : S → F and verify that p is close to a polynomial P that agrees
with f on H. This PCPP was crucial to our PCPP Theorem 2.10.

Finally, we show how to extend our PCPP for vanishing RS-codes to a PCPP
for vanishing multivariate polynomial codes even though we do not use this result
anywhere in the paper. (However, it was extensively used in previous PCP construc-
tions.)

We note that all the constructions are quite simple and differ from previous such
“tests” in a crucial way. Whereas previous tests of properties as above attempt to
use the fact that the oracle being tested is close to a polynomial, they do not seem
to explicitly use the fact that a low-degree test is available and can be used to test
other functions that may be provided by the prover. Our constructions exploit this
additional feature to simplify many known tests.

4.1. PCPPs for vanishing Reed–Solomon—Proof of Lemma 3.12. Recall
the notion of a vanishing RS-code from Definition 3.11.
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Lemma 4.1 (Lemma 3.12, restated). Suppose a field F, S ⊆ F, and an integer d
are such that

RS(F, S, d) ∈ Strong-PCPPs(δ)

 randomness r,
query q,
distance HammingF

.
Then, for any H ⊂ F and s′(δ) = min{δ/2, s(δ/2)},

VRS(F, S,H, d) ∈ Strong-PCPPs′(δ)

 randomness max{r, log |S|},
query q + 2,
distance HammingF

.
The key observation in our proof is that a degree-d polynomial P (z) vanishes

on H iff the polynomial gH(z) ,
∏
h∈H(z − h) divides P (z), i.e., iff there exists a

polynomial P̃ ,deg(P̃ ) ≤ d− |H| such that P (z) = gH(z) · P̃ (z).
Proof. The PCPP-verifier for VRS(F, S,H, d) has oracle access to implicit input

p : S → F and a proof combined of two parts: (i) a function p̃ : S → F (a supposed
evaluation of P̃ on S) and (ii) a proof of proximity π̃ to RS(F, S, d − |H|). Notice
that the proof length is |S|+ |π̃|. The verifier operates as follows.

• Toss max{r, log |S|} random coins. Let R denote the random outcome.
• Invoke an assumed RS-verifier using randomness R on explicit input (F, S, d−
|H|), implicit input p̃, and proof π̃. Reject if the verifier rejects. Otherwise,

• pick random α ∈ S (using randomness R); read p(α) and p̃(α); accept iff
p(α) = gH(α) · p̃(α).

Notice that gH(α) can be computed in time poly(|H| · log |F|) by the verifier because
H is given as an explicit input. Thus, the running time is as claimed, and so are the
randomness and query complexity, by construction. Completeness follows by taking p̃
to be the evaluation of P̃ (z) , P (z)/gH(z) and taking π̃ to be p̃’s proof of proximity
to RS(F, S, d− |H|).

As to the soundness, assume p is δ-far from VRS(F, S,H, d). If p̃ is δ/2-far from
RS(F, S, d − |H|), then by assumption the RS-verifier rejects p̃ with probability at
least s(δ/2) and we are done. Otherwise, p̃ is δ/2-close to some polynomial Q of
degree ≤ d−|H|. Let q : S → F be the evaluation of Q on S. Notice that the function
p̃ · gH is δ/2-close to q · gH and the latter function is, by construction, a codeword of
VRS(F, S,H, d). By assumption, p is δ/2-far from p̃ · gH ; hence the last subtest of
the verifier rejects with probability at least δ/2. This completes our proof.

4.2. Agreeing Reed–Solomon codes. We now show how to extend the PCPP
of the previous section to test if two polynomials agree on a given set. Two polynomials
P1(z), P2(z) are said to agree on H ⊆ F if P1(z) = P2(z) for all z ∈ H. Below we
formalize the problem of testing agreement.

Definition 4.2 (agreeing RS-codes). For field F, subsets S,H ⊆ F, and in-
tegers |S|/2 ≥ d1 ≥ d2 let RSagr(F, S,H, d1, d2) be the set of pairs of functions
p1, p2 : S → F, such that p1 ∈ RS(F, S, d1), p2 ∈ RS(F, S, d2), and the polyno-
mial corresponding to p1 agrees with the polynomial corresponding to p2 on H. The
pair language PAIR-RSagr is the set of pairs with explicit input (F, S,H, d1, d2) as
above and implicit input (p1, p2) ∈ RSagr(F, S,H, d1, d2). Similarly, the pair language
PAIR-ADDITIVE-RSagr (PAIR-SMOOTH-RSagr, respectively) is the restriction
of PAIR-RSagr to pairs with F, S as in Theorem 3.2 (Theorem 3.4, respectively).
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Lemma 4.3. Assume a field F, S ⊆ F, and integers d2 ≤ d1 ≤ |S|/2 satisfy

RS(F, S, d1),
RS(F, S, d2),
VRS(F, S, d1)

∈ Strong-PCPPs(δ,|S|)

 randomness r,
query q,
distance HammingF

,
where s is monotone nondecreasing in δ. Then for any H ⊂ F,

RSagr(F, S,H, d1, d2) ∈ Strong-PCPPs(δ/8,|S|)

 randomness r,
query q + 2,
distance HammingF

.
Proof. The main idea is that P1(z) agrees with P2(z) on H iff P1(z) − P2(z)

vanishes on H, so we apply the PCPP from Lemma 3.12 to this difference. Details
follow.

The verifier for RSagr(F, S,H, d1, d2) has oracle access to implicit inputs p1, p2 :
S → F and proof of proximity comprised of

• proof of proximity π1 to RS(F, S, d1),
• proof of proximity π2 to RS(F, S, d2), and
• proof of proximity π3 to VRS(F, S, d1).

The verifier’s operation is to invoke the following three subtests using the same ran-
domness across all tests and accepting iff all of them accept:

• Invoke verifier for RS(F, S, d1) on implicit input p1 and proof π1.
• Invoke verifier for RS(F, S, d2) on implicit input p2 and proof π2.
• Invoke verifier for RSH(F, S, d1) on implicit input p1 − p2 and proof π3.

Querying p1 − p2 on α ∈ S is performed by querying p1(α), p2(α) and taking
their difference.

All properties can be checked as in the proof of Lemma 3.12. For an illustra-
tion, consider the soundness. Suppose the pair of functions (p1, p2) is δ-far from
RSagr(F, S,H, d1, d2). If either one of p1, p2 is δ/8-far from RS(F, S, d1),RS(F, S, d2),
respectively, then (the first/second subtest of) the verifier rejects with probability
s(δ/8, |S|). Otherwise, q = (p1− p2) is δ/4-close to a polynomial of degree d1 that by
assumption does not vanish on H. Since d1 ≤ |S|/2 and δ ≤ 1 we conclude q is 1/4-
far from VRS(F, S,H, d1) in which case the third subtest of the verifier rejects with
probability ≥ s(1/4, |S|) ≥ s(δ/8, |S|). The last inequality follows from monotonicity
of s.

The previous lemma combined with Lemma 3.12 and Theorems 3.2 and 3.4 im-
mediately implies the following.

Corollary 4.4 (PCPPs for agreeing RS-codes).

PAIR-ADDITIVE-RSagr,
PAIR-SMOOTH-RSagr

∈ Strong-PCPPδ/ polylogn

 randomness log(n · polylog n),
query O(1),
distance HammingF

.
4.3. PCPP for systematic Reed–Solomon codes: Proof of Theorem 3.15.

Recall the definition of the systematic RS-code (Definition 3.14) and the related no-
tation presented in subsection 3.4. We now prove Theorem 3.15, restated below.
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Theorem 4.5 (Theorem 3.15, restated).

PAIR-ADDITIVE-RSsys,
PAIR-SMOOTH-RSsys

∈ Strong-PCPPδ/ polylogn

 randomness log(n · polylog n),
query polylog n,

distance Hamming
1
2
F

.
To prove the theorem we apply induction to the following lemma, the proof of

which appears below. Roughly, the lemma says that if we have PCPPs for systematic
and agreeing RS-codes of size n/2, then we can construct systematic codes of size
n. Intuitively, the proof is as follows. To verify that a message is indeed encoded
by a codeword, we split the message into two parts of equal length. We ask for the
encoding of each of these submessages and verify agreement of the subencodings with
the encoding of the large message. This part uses PCPPs for agreeing codes described
in the previous section. Then we pick one of the submessages at random and verify
that it is consistent with its supposed subencoding and for this part we use induction.
Details follow.

Lemma 4.6. If H,S ⊆ F, and d ≤ |S|/2 satisfy the following conditions:
1. there exist S0, S1 ⊆ S, |S0|, |S1| = |S|/2, and a partition H0 ∪H1 = H, |H0|,
|H1| = |H|/2 and these sets are computable in time t0,

2. we have

RS(F, S, d) ∈ Strong-PCPPs1(δ,|S|)

 randomness r1,
query q1,
distance HammingF

,
3. for i = 0, 1 we have

RSagr(F, S,Hi, d, |Hi|−1) ∈ Strong-PCPPs2(δ,|S|)

 randomness r2,
query q2,
distance HammingF

,
4. for i = 0, 1 we have

RSsys(F, Si, Hi, |Hi| − 1) ∈ Strong-PCPPs3(δ,|Si|)

 randomness r3,
query q3,

distance Hamming
1
2
F

,
and s3 is subadditive, i.e., s3(δ0, |S0|) + s3(δ1, |S1|) ≥ s3(δ0 + δ1, |Si|),

then for any 0 < α < 1/16,

RSsys(F, S,H, d) ∈ Strong-PCPPs(δ,|S|)

 randomness r,
query q,

distance Hamming
1
2
F

,
where

s(δ, |S|) = min
{
s1(αδ, |S|), s2(αδ, |S|)/2, 1

2
s3((2− α)δ, |S|/2)

}
,

r = max{r1, r2, r3}+ 1,
q = q1 + q2 + q3.
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Proof of Theorem 3.15. Consider first the case of PAIR-ADDITIVE-RSsys. We
need to prove there exists a constant c ≥ 1 that will be specified later such that for
any F of characteristic 2, linear space S ⊆ F, |S| = n, set H ⊂ F, |H| = 2` ≤ |S|/2,
and d ≤ |S|/2 we have

RSsys(F, S,H, d) ∈ Strong-PCPPδ/(logn)c

 randomness log(n · polylog n),
query polylog n,
distance HammingF

.
Our proof is by induction on n, using Lemma 4.6. The base case of constant n

follows because a verifier can query all entries in the implicit input and reject any pair
of functions (f, p) that is not in RSsys(F, S,H, d).

As to the inductive step, partition H into two equal sets H0, H1 arbitrarily. Let
S0 = S1 be a (k − 1)-dimensional space. Part 1 of Lemma 4.6 holds by construction.
Parts 2 and 3 follow from Theorem 3.2 and Corollary 4.4, respectively, with

s1(δ, n), s2(δ, n) ≥ δ/(log n)c
′
, q1, q2 = polylog n, r1, r2 = log(n · polylog n),

where c′ is a constant. Part 4 holds by induction with

s3(δ, n/2) = δ/((log n)− 1)c, q3 = poly((log n)− 1), r3 ≤ log(n · polylog n).

Notice that s3 is subadditive. Apply Lemma 4.6 with α = 1/ log n. Randomness and
query complexities follow immediately and the verifier’s running time is polynomial.
As to soundness, notice that 1

2s3((2 − α)δ, n/2) ≥ (1 − 1/ log n)δ/(log n − 1)c ≥
δ/ logc n. Thus, by selecting c > c′ + 1 we conclude that

s(δ, n) ≥ min{δ/ logc
′+1 n, δ/ logc n} ≥ δ/ logc n.

This completes the proof.
Regarding PAIR-SMOOTH-RSsys, change S = 〈ω〉 and S0 = S1 = 〈ω2〉, and

use Theorem 3.4. The rest of the proof is identical.
Proof of Lemma 4.6. To prove that p is an evaluation of a polynomial P that

agrees with f on H, we request that the prover provide evaluations of the polynomials
that agree with P on the two partitions of H. We test agreement of p with these two
polynomials, denoted p0, p1, and then split f to two corresponding parts and recurse.
Details follow. We describe the proof of proximity, followed by the verifier’s operation,
and conclude with completeness and soundness analysis.

Proof of proximity. The proof for the implicit input pair f : H → F, p : S → F is
defined recursively. In the base case (|S| = O(1)) the proof is empty. Otherwise, it is
comprised of

• one proof of proximity π to RS(F, S, d),
• two functions p0, p1 : S → F,
• two proofs of proximity π0, π1 to RSagr(F, S,H0, d, |H0| − 1) and RSagr(F, S,
H1, d, |H1| − 1), respectively, and

• two proofs of proximity π′0, π
′
1 to RSsys(F, S0, H0, |H0|−1) and to RSsys(F, S1,

H1, |H1| − 1), respectively, defined recursively.
Verifier operation. Let fi : Hi → F be the restriction of the function f to domain

Hi and let p′i be the restriction of the function pi to domain Si for i = 0, 1. The
verifier tosses r = max{r1, r2, r3}+ 1 coins, sets i ∈ {0, 1} according to the first coin,
and performs the following subtests reusing the remaining r− 1 coins across different
tests:



SHORT PCPS WITH POLYLOG QUERY COMPLEXITY 575

• Invoke verifier for RS(F, S, d) on input p and proof π.
• Invoke verifier for RSagr(F, S,Hi, d, |Hi| − 1) on input pair (p, pi) and proof
πi.

• Invoke verifier for RSsys(F, Si, Hi, |Hi| − 1) on input pair (fi, p′i) and proof
π′i.

• Accept iff all aforementioned tests accept.
Basic properties. The randomness is r, by construction. The query complexity is

the sum of queries made by the various subtests, as claimed.
Completeness. Assume (f, p) ∈ RSsys(F, S,H, d). Since p is of degree ≤ d there

exists a proof π accepted by the first subtest of the verifier with probability one. Let
pi be the polynomial of degree |Hi|−1 that agrees with fi (on Hi). By construction p
agrees with pi on Hi. Thus, there exist proofs πi accepted by the second subtest of the
verifier with probability 1. Finally, notice that (fi, p′i) ∈ RSsys(F, Si, Hi, |Hi| − 1), so
there exist subproofs π′i causing the third test of the verifier to accept with probability
one.

Soundness. Assume the distance of (f, p) from RSagr(F, S,H, d) is exactly δ.
There are several cases to consider. (i) If p is αδ-far from RS(F, S, d), then the
first test of the verifier rejects with probability s1(αδ, |S|). (ii) If for some i ∈ {0, 1}
the distance of (p, pi) from RSagr(F, S,Hi, d, |Hi|−1) is greater than αδ, then the sec-
ond test of the verifier rejects with probability s2(αδ, |S|)/2. The factor half decrease
in rejection probability is due to the random selection of i. (iii) Otherwise, because
(i) does not hold and d ≤ |S|/2 and α < 1/16, we conclude that p is αδ-close to a
unique polynomial P , so f is ((2−α)δ)-far from the evaluation of P on H. Similarly,
because (ii) does not hold, we conclude that each of p0, p1 is 1/8-close to the unique
polynomial agreeing with P on Hi.

For i = 0, 1, let δi be the distance of (fi, p′i) from RSsys(F, Si, Hi, |Hi| − 1) using

measure Hamming
1
2
F . Notice that δ0 + δ1 ≥ (2 − α)δ because pi is 1/8-close to the

evaluation of P on H, so p′i is 1/4-close to the evaluation of P on Hi, while f is
((2− α)δ)-far from it. By induction, the rejection probability of the third subtest in
this case is at least

1
2

(s3(δ0, |S|/2) + s3(δ1, |S|/2)) ≥ 1
2
s3(δ0 + δ1, |S|/2) ≥ 1

2
s3((2− α)δ, |S|/2).

Summing up, our rejection probability is at least as claimed and this completes our
proof.

4.4. PCPPs for multivariate polynomials and vanishing Reed–Muller
codes. Finally, we give a generalization of Lemma 3.12 to the case of multivariate
polynomials. This generalization would suffice to replace the sumcheck-based proto-
cols in previous PCP constructions [5, 3, 2, 37, 27, 24, 11, 9].

In the multivariate problem we are given sets S,H ⊂ F and oracle access to
a multivariate function f : Sm → F. We are asked to verify that f is close to a
polynomial of degree ≤ d in each variable that evaluates to zero on Hm. Once again,
we do not need to assume H ⊂ S. Recall that evaluations of low-degree multivariate
polynomials form the well-known Reed–Muller code. We denote by RM(F, S, d,m)
the set of functions p : Sm → Fm that are evaluations of m-variate polynomials of
maximal individual degree d. We denote by VRM(F, S,H, d,m) its subcode consisting
of all evaluations of polynomials that vanish on Hm. Our main lemma of this section
is the following.
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Lemma 4.7 (multivariate zero testing). Suppose field F, set S ⊆ F, and integers
d,m satisfy

RM(F, S, d,m) ∈ Strong-PCPPs(δ)

 randomness r,
query q,
distance HammingF

.
Then, for any H ⊂ F and s′(δ) = min{s(δ), 1− ((m+ 1)δ + ( d

|S| )
m)},

VRM(F, S,H, d,m) ∈ Strong-PCPPs′(δ)

 randomness r +m log |S|,
query (m+ 1)(q + 1),
distance HammingF

.
Notice that the query complexity of previous solutions to this problem depended

polynomially on the size of H. Our solution has query complexity that is independent
of H and is based on a straightforward characterization of VRM that resembles Alon’s
combinatorial Nullstellensatz [1]). Before proving the lemma we first recall some
(relatively well-known) results on testing proximity to Reed–Muller codes.

Testing proximity to multivariate polynomials. It is easy to extend the PCPP for
the RS-code into one for the Reed–Muller code (based on multivariate polynomials),
given the extensive literature on testing multivariate polynomials using axis parallel
lines [4, 5, 20, 3, 37, 21].

For a set S ⊆ F and an m-variate function f : Sm → F, let δdm(f) be the fractional
distance of f from RM(F, S, d,m). Let δdm,i(f) denote the fractional distance of f from
a polynomial of degree d in the ith variable, and an unbounded degree in all other
variables. Finally, let E[δdm,i(f)] be the expectation of δdm,i over random i ∈ [m]. The
following lemma is a rephrasing of [3, Lemma 5.2.1]. Notice that Lemma 6.13 is a
special case of it with tighter parameters.

Lemma 4.8 (see [3]). There exists a universal constant c such that for every
S ⊂ F such that |S| ≥ poly(m, d),

δdm(f) ≤ c ·m · E[δdm,i(f)].

This lemma and Theorem 3.2 imply short PCPPs for Reed–Muller codes.
Lemma 4.9 (RM PCP of proximity). Let S ⊂ F and d,m be integers such that

|S| ≥ poly(m, d) for the polynomial of Lemma 4.8 and suppose

RS(F, S, d) ∈ Strong-PCPPs(δ)

 randomness r,
query q,
distance HammingF

.
Then

RM(F, S, d,m) ∈ Strong-PCPPs(δ)/m

 randomness r + log(m · |S|m−1),
query q,
distance HammingF

.
Proof. The proof for a purported RM-codeword is the collection of proofs of

proximity for each axis parallel line (to the RS-code). A line parallel to the ith axis is
{(b1, . . . , bi−1, xi, bi+1, . . . , bm) : xi ∈ S}, where b1, . . . , bm ∈ S. The verifier selects a
random axis parallel line and invokes the RS-verifier of Definition 6.7 on the line and
its proof. The proof follows from Lemma 4.8.
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Remark 4.10. A more query-efficient test can be constructed when S = F. Instead
of axis parallel lines, we use an ε-biased set of directions as in [11]. This results in
proofs of similar length and query complexity and slightly larger randomness, but the
soundness is as large as Ω(s(δ)) and independent of m.

Testing proximity to vanishing multivariate polynomials. We now move to the
proof of Lemma 4.7. The catch in immediately extending the univariate verifier of
Lemma 3.12 to even the bivariate case is that the “factoring” concept does not extend
immediately. Specifically, if we are given that a bivariate polynomial Q(x, y) has a
zero at (α, β) this does not imply that Q(x, y) has some nice factors. However, one
can abstract a nice property about Q from this zero. Specifically, we can say that
there exist polynomials A(x, y), B(x, y) (of the right degree) such that Q(x, y) =
A(x, y) · (x− α) +B(x, y) · (y − β). Thus to prove that Q(α, β) = 0, we may ask the
prover to give an evaluation of Q(x, y), A(x, y), and B(x, y). We can then test that
Q, A, and B are of low degree and that they satisfy the identity above. Extending
this idea to m-variate polynomials that are zero on an entire generalized rectangle
is straightforward. The technical lemma giving the identity is included below. The
lemma is also a key ingredient in Alon’s combinatorial Nullstellensatz [1]. We include
a proof for completeness.

Lemma 4.11. Let Q(x1, . . . , xm) be a polynomial over FQ of degree d in each of

m variables. Let H ⊆ FQ and let gH(z)def=
∏
β∈H(z − β). Then Q evaluates to 0 on

Hm iff there exist m-variate polynomials A1, . . . , Am of individual degree at most d
such that Q(~x) =

∑m
i=1Ai(~x) · gH(xi).

Remark 4.12. The lemma above is intentionally sloppy with degree bounds.
While tighter degree bounds on Ai’s can be obtained, this will not be needed for our
PCPs.

Proof. One direction is immediate. If Q(~x) =
∑m
i=1Ai(~x) · gH(xi) then Q(~α) = 0

for every ~α ∈ Hm. The other direction is proved in three steps. First, we show that for
any polynomial P (x1, . . . , xm) of degree dj in xj , and any i ∈ {1, . . . ,m}, there exist
polynomials B(x1, . . . , xm) and C(x1, . . . , xm) of degree at most dj in xj , with the
degree of C in xi being at most min{dj , |H|−1}, such that P (~x) = B(~x)·gH(xi)+C(~x).
Second, we show that there exist polynomials A1, . . . , Am and R with the Ai’s having
degree at most d in each variable and R having degree at most |H|−1 in each variable
such that Q(~x) =

∑m
i=1Ai(~x) · gH(xi) + R(~x), where Q is the polynomial from the

lemma statement. In the final step, we show that R(~x) = 0, concluding the proof.
Step 1. Recall that any polynomial f(xi) can be written as q(xi) · gH(xi) +

r(xi), where r has degree less than |H|. Applying this fact to the monomials xDi for
nonnegative D we find that there exist polynomials qD(xi) and rD(xi), with degree
of qD being at most D and degree of rD being less than |H|, such that xDi = qD(xi) ·
gH(xi) + rD(xi). Now consider any polynomial P (x1, . . . , xm) of degree di in xi.
Suppose P (~x) =

∑di
D=0 Pi(~x

′) · xD, where ~x′ = (x1, . . . , xi−1, xi+1, . . . , xm). Writing
the monomials xDi in terms of the qD’s and rD’s, we get

P (~x) =

(
di∑
D=0

Pi(~x′)qD(xi)

)
· gH(xi) +

(
di∑
D=0

Pi(~x′)rD(xi)

)
.

Letting B(~x) =
∑di
D=0 Pi(~x

′)qD(xi) and C(~x) = (
∑di
D=0 Pi(~x

′)rD(xi)) yields the poly-
nomials as claimed. In particular, the degrees of B and C in any variable are no more
than that of P , and the degree of C in xi is smaller than |H|.



578 ELI BEN-SASSON AND MADHU SUDAN

Step 2. We now claim that there exist polynomials A1, . . . , Am and R0, . . . , Rm
such that for every j ∈ {0, . . . ,m}, Q(~x) =

∑j
i=0Ai(~x)·gH(xi)+Rj(~x), with Ai’s being

of degree at most d in each variable and Rj being of degree less than |H| in x1, . . . , xj
and of degree at most d in the remaining variables. The proof is straightforward by
induction on j, with the induction step using Step 1 on the polynomial P () = Rj() and
the variable xj+1. The final polynomials A1, . . . , Am and R = Rm are the polynomials
as required to yield the subclaim of this step.

Step 3. Finally, we note that for every ~α ∈ Hm, we have R(~α) = Q(~α) −∑m
i=1Ai(~α) · gH(αi) = 0−

∑m
i=1 0 = 0. But R is a polynomial of degree less than |H|

in each variable and is zero on the entire box Hm. This can happen only if R ≡ 0.
Thus we get that Q(~x) =

∑m
i=1Ai(~x) · gH(xi), with the Ai’s being of degree at most

d in each variable, as required in the completeness condition.
Proof of Lemma 4.7. As a proof of the proximity of q ∈ FSm to the code

VRM(F, S, d,m) our verifier expects (i) the evaluations of A1, . . . , Am from Lemma
4.11 on Sm, denoted a1, . . . , am, and (ii) for each of q, a1, . . . , am, a proof of proximity
of Ai to RM(F, S, d,m). Proof length is as claimed. The verifier operates as follows.
First, it tests proximity of each of q, a1, . . . , am to RM(F, S, d,m). Then, a random
〈α1, . . . , αm〉 ∈ Sm is selected and the verifier accepts iff q(~α) =

∑m
i=1 gH(αi) · ai(~α).

The query complexity is as claimed. Completeness follows from Lemma 4.11. As to
the soundness, if any of q, a1, . . . , am is δ-far from RM(F, S, d,m), the verifier rejects
with probability s(δ). Otherwise, q is δ close to a polynomial Q that does not vanish
on Hm. If A1, . . . , Am are the polynomials closest to a1, . . . , am, respectively, then
by Lemma 4.11 we get Q(~x) 6=

∑
iAi(~x) · gH(xi) and Q has degree at most d in

each variable. Thus, the two polynomials agree on ≤ dm points, so the acceptance
probability of the verifier is ≤ (m+ 1)δ + ( d

|S| )
m as claimed.

5. Quasilinear reductions of NTIME(n) to ALGEBRAIC-CSP. In this
section we show the completeness of ALGEBRAIC-CSP for NTIME classes, thereby
proving Theorem 3.7 (restated below). We also show how to modify this proof to get a
proof of Theorem 3.10, which shows the completeness of PAIR-ALGEBRAIC-CSP
for PAIR-NTIME classes under systematic reductions.

Theorem 5.1 (Theorem 3.7, restated). There exist integers k, d such that for
any proper complexity function t : N+ → N+ and L ∈ NTIME(t(n)) the following
hold:

1. L is reducible to ALGEBRAIC-CSPk,d in time poly t(n).
2. An instance of L of size n is reduced to an instance of ALGEBRAIC-CSPk,d

over field GF(2`) of size 2` ≤ t(n) polylog t(n) and characteristic 2, where
100(kd+ 1)(|H| − 1) < 2` ≤ 200(kd+ 1)(|H| − 1).

5.1. Warmup—quadratic size reduction. To illustrate the ideas used in the
proof of Theorem 3.7, we start with a simpler proof of a weaker version of it, where the
size blowup is quadratic rather than quasilinear. Our starting point is the following
NP-complete language essentially from Cook’s theorem [14]. (See also [36, proof of
Theorem 8.2]).

Definition 5.2 (domino tiling). A domino tiling instance over alphabet Σ is
a tuple of constraints ψ = {Ĉij : i, j ∈ {0, . . . , n − 2}}, where each constraint is a
mapping Ĉij : Σ3 → {accept, reject}. An instance is satisfiable iff there exists a
mapping Â : {0, n2 − 1} → Σ such that for all i, j ∈ {0, . . . , n− 2}

Ĉi,j(Â(in+ j), Â(in+ j + 1), Â((i+ 1)n+ j) = accept.
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The language Domino-TilingΣ is the set of all satisfiable instances over alphabet Σ.
Theorem 5.3 (Domino-Tiling is NTIME-complete [14]). There exists a finite

size alphabet Σ such that if L ∈ NTIME(t(n)) for a proper complexity function t :
N+ → N+, then L is reducible to Domino-TilingΣ under quadratic size reductions.

Our warmup version of Theorem 3.7 is the following.
Theorem 5.4. For every finite alphabet Σ, the language Domino-TilingΣ is

reducible under linear sized reductions to ALGEBRAIC-CSP4,|Σ| .
Notice that although the reduction from Domino-Tiling to ALGEBRAIC-CSP

is linear, the reduction from a language L ∈ NTIME(t(n)) to Domino-Tiling incurs
a quadratic size blowup.

Proof. We reduce an instance ψ of Domino-TilingΣ to an instance φ = (F, {Aff1,
. . . ,Aff4}, H,C) as in Definition 3.6. We will make crucial use of the fact that the
constraint Ĉij depends on assignment entries whose indices are linear functions of i
and j.

Fix F to be any finite field satisfying 100n2 < |F| ≤ 200n2. Let ω be a generator
of F∗. Associate Σ with arbitrary elements of F. View an assignment to ψ as a
mapping Â : {win+j : i, j ∈ {0, . . . , n − 1}} → Σ where the domain and range of
this mapping are subsets of F. The arithmetized instance φ will be satisfied only by
polynomials A that are a low-degree extension of an assignment Â that satisfies ψ.
Thus, the constraint polynomial C will ensure that (i) A takes only values in Σ on
I = {win+j : i, j ∈ {0, . . . , n − 1}} and (ii) the evaluation of A on I produces an
assignment Â that satisfies ψ. Details follow.

Define

Aff1(x) = x; Aff2(x) = x · ωn; Aff3(x) = x · ω,Aff4(x) = x · ω−n
2
,

H = I ∪ ωn
2
· I = {{win+j : i ∈ {0, . . . , 2n− 1}, j ∈ {0, . . . , n− 1}}.

Notice that |I| = n2 and |H| = 2n2. We now define the constraint polynomial C.
Notice that Ĉi,j can be interpreted as a function from Σ3 ⊂ F3 to {0, 1} ⊂ F

and we associate 0 with accept and 1 with reject. Arithmetize this constraint by
a trivariate polynomial Ci,j : F3 → F of degree at most |Σ| − 1 in each variable,
satisfying

(5.1) Ci,j(σ1, σ2, σ3) = Ĉi,j(σ1, σ2, σ3) ∀σ1, σ2, σ3 ∈ Σ.

For ωin+j ∈ H, let Pi,j(x) be the unique polynomial of degree |H| − 1 that evaluates
to 1 on ωin+j and to 0 on every other element in H. Finally, let PΣ(x) =

∏
σ∈Σ(x−σ)

be the unique monic nonzero polynomial of degree |Σ| whose set of roots is precisely
Σ. The constraint polynomial is

(5.2) C(x, y1, . . . , y4) =
n−2∑
i,j=0

Pi,j(x) · Ci,j(y1, y2, y3) +
2n−1∑
i=n

n−1∑
j=0

Pi,j(x) · PΣ(y4).

The polynomial Pi,j is often used to “bundle” together many constraints and ver-
ify that all of them are satisfied, forming the algebraic analogue of an AND gate. The
second summand on the right-hand side of (5.2) corresponds to the set of constraints
(i) mentioned above, and the first summand corresponds to (ii).

Notice that C has degree |H|−1 in its first variable and degree |Σ| in the remaining
variables. We conclude that φ is a legal instance of ALGEBRAIC-CSP4,|Σ|.
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Completeness. Suppose ψ ∈ Domino-TilingΣ and let Â be a proof for ψ. Let A
be the low-degree extension of Â; i.e., A is a polynomial of degree ≤ n2− 1 satisfying
A(ωin+j) = Â(in+ j) for all i, j ∈ {0, . . . , n− 1}. We now prove for all x ∈ H

C(x,A(x), A(ωnx), A(ωx), A(ω−n
2
x)) = 0.

If x = ωin+j ∈ H then by definition of Pi,j at most one summand of (5.2) can be
nonzero. There are two cases to consider:

• i ≤ n−2: The summand to consider is Pi,j(ωin+j)·Ĉi,j(Â(ωin+j), Â(ωin+j+1),
Â(ω(i+1)n+j)). This summand vanishes because Â satisfies Ĉi,j .

• i ≥ n: The summand to consider is Pi,j(ωin+j)·PΣ(Â(ωin+j)), which vanishes
because Â evaluates to Σ on I.

We conclude that φ ∈ ALGEBRAIC-CSP4,|Σ|.
Soundness. Suppose φ ∈ ALGEBRAIC-CSP4,|Σ| and let A witness this. Let

Â : {0, . . . , n2 − 1} be defined by Â(in + j) = A(ωin+j). We claim Â satisfies ψ.
First, notice that the range of A on inputs from I is Σ. If this is not the case and
A(ωin+j) 6∈ Σ, then PΣ(A(ωin+j)) 6= 0, so (5.2) does not vanish on x = ωn

2+in+j ∈ H.
Since A evaluates to Σ on I and for σ1, σ2, σ3 ∈ Σ (5.1) implies Ci,j(σ1, σ2, σ3) = 0

iff Ĉ(σ1, σ2, σ3) = accept, we conclude that Â satisfies ψ so ψ ∈ Domino-TilingΣ.
This completes our proof.

5.2. Quasilinear size reduction. In this section we prove Theorem 3.7 and
show that ALGEBRAIC-CSP is NTIME(t(n))-complete under quasilinear size re-
ductions. Our proof is similar to that of Polishchuk and Spielman [37]; however, our
ending point is a problem over univariate polynomials.

Overview. The reason we chose Domino-Tiling as our starting point in the
previous section was because this language was NP-complete and additionally had
“nice” structure, in the sense that each constraint (Ĉi,j) depended on assignment
entries whose indices are linear functions of the constraint index. The problem with
Domino-Tiling is that the reduction from an arbitrary language in NTIME(t(n)) to
it results in instances of size t2(n). Thus, we are looking for an NP-complete language
that has a similar “nice” structure, yet whose blowup factor, when reducing from a
language in NTIME(t(n)), is only quasilinear.

One such language is de Bruijn Coloring, first presented by Polishchuk and
Spielman [37], based on a construction of [5]. First we will describe this language and
state its completeness. Then we will arithmetize it and reduce it to ALGEBRAIC-
CSP. The crucial observation in the arithmetization, given in Proposition 5.11, is
that the de Bruijn graph can be embedded in an “affine” graph over a finite field (see
Definition 5.9).

de Bruijn Coloring. Let σ : {0, 1}k → {0, 1}k be the cyclic permutation op-
erator; i.e., for w ∈ {0, 1}k, w = (w1, . . . , wk) let σ(w) = (wk, w1, . . . , wk−1). Let u⊕v
denote the bitwise xor of u, v ∈ {0, 1}k and let ei ∈ {0, 1}k be the sequence that is
zero on all but the ith coordinate, where it is one.

Definition 5.5 (wrapped de Bruijn graph [39]). The k-dimensional wrapped
de Bruijn graph is the following directed graph Bk = (V,E). Let m be the smallest
power of 2 satisfying m > 5k. The vertex set is

V = {(w, i) : w ∈ {0, 1}k, i ∈ {0, . . . ,m− 1}}.

Each vertex v = (w, i) : w ∈ {0, 1}k, i ∈ {0, . . . ,m− 1}, has two neighbors:

N0(v) = (σ(w), (i+ 1 mod m)), N1(v) = ((σ(w))⊕ e1, (i+ 1 mod m)).
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Remark 5.6. The definition in [39, section 4.3.2] is slightly different from the
above; namely, it fixes m = 5k + 1. However, Theorem 5.8 holds for any m > 5n, as
inspection of [39, section 4.3] reveals.

Definition 5.7 (de Bruijn Coloring). Let Σ̂ = {0, 1}4. The language de
Bruijn Coloring has as its space of instances tuples of the form ψ = {Bk, Ĉ}, where
Bk = (V,E) is a k-dimensional wrapped de Bruijn graph, and Ĉ = {Ĉv : v ∈ V } is a
set of constraints, where Ĉv : Σ̂3 → {accept, reject}.

An instance is in the language de Bruijn Coloring iff there exists an assign-
ment Â : V → Σ̂ such that for all v ∈ V we have Ĉv(Â(v), Â(N0(v)), Â(N1(v))) =
accept.

Theorem 5.8. de Bruijn Coloring is NP-complete. Moreover, for any proper
complexity function t : N+ → N+, a language L ∈ NTIME(t(n)) is reducible in
time poly t(n) to an instance ψ = {Bk, Ĉ} of de Bruijn Coloring, where k =
dlog(t(n) ·O(log2 t(n)))e.

Proof. L ∈ NTIME(t(n)) is reducible in time poly t(n) to an instance of CktSAT
of size O(t(n) log t(n)) [29, 15]. This instance is reducible in time poly t(n) to an
instance of de Bruijn Coloring of size t(n) polylog t(n) [37]. (See [39, section 4.3]
for details.)

To arithmetize an instance of de Bruijn Coloring we embed Bk in an affine
graph as defined below. Recall an injective graph homomorphism of G to H is an
injective mapping f : V (G) → V (H) such that if (u, v) ∈ E(G) then (f(u), f(v)) ∈
E(H). Further recall an affine map Aff : F → F is of the form Aff(z) = az + b for
a, b ∈ F.

Definition 5.9 (affine graph). Let A be a set of affine maps over a field F. The
affine graph G(F,A) over F, generated by A, is the directed graph over vertex set F,
where each vertex v ∈ F is connected to Aff(v) for all Aff ∈ A. Notice that the
outdegree of this graph is at most |A|.

We will use the following elementary properties of primitive polynomials (see [32,
section 3.1]).

Proposition 5.10. Let S(x) be a primitive polynomial of degree s over GF(2).
Then, denoting ξi = xi(mod S(x)), we have that ξ1, . . . , ξ2s = ξ0 are distinct polyno-
mials over GF(2) of degree less than s.

We now define a graph homomorphism injecting Bk to an affine graph of outdegree
eight over GF(2`) for any ` > k+log 5k+2. Briefly, a vertex (w, i) ∈ Bk will be mapped
to a polynomial p(w,i) ∈ GF(2`). We will show that the polynomials corresponding
to (w, i+ 1) and (w⊕ ei, i+ 1) can be obtained by applying two out of eight possible
affine shifts to p(w,i). In what follows, addition and multiplication are in GF(2`) and
we identify {0, 1} with GF(2).

Proposition 5.11. Let m be the smallest power of 2 satisfying m > 5k. Let
GF(2`) = GF(2)[x]/q(x), where q(x) is an irreducible polynomial of degree `. Let
S(x) be a primitive polynomial of degree s = logm (note that s is an integer), and let
ξi be as defined in Proposition 5.10. For ((w1, . . . , wk), i), wj ∈ {0, 1}, i ∈ [m], let

(5.3) g(w) = xs ·
k∑
j=1

wjx
j ; h(i) = ξi ; f(w, i) = g(w) + h(i).

Then, the mapping f : V (Bk) → GF(2`) is an injective homomorphism of Bk



582 ELI BEN-SASSON AND MADHU SUDAN

into the affine graph G(GF(2`),A), where
(5.4)
A =

{
Affb(α) , x · α+ b1S(x) + b2x

s+1 + b3x
s+k+1 : b = (b1, b2, b3) ∈ {0, 1}3

}
.

Proof. Our mapping is injective. Note that deg(h(i)) < s for all i ∈ [m], whereas
the minimal degree of a nonzero term of g(w) is s + 1. Thus, f(w, i) = f(w′, i′) iff
g(w) = g(w′) and h(i) = h(i′). The former happens by definition iff w = w′ and the
latter happens iff i = i′ because Proposition 5.10 implies ξi 6= ξi′ for all i 6= i′ ∈ [m].

To prove f is a homomorphism, we need to show that if ((w, i), (w′, (i+1 mod m)))
is an edge of Bk,m then f(w′, (i + 1 mod m)) = Affb(f(w, i)) for some b ∈ {0, 1}3.
There are eight cases to consider. Recall w′ is either σ(w) or (σ(w))⊕ e1. Note that
` > k+s+1 so for all w ∈ {0, 1}k we have that x ·g(w) mod (q(x)) is equal to x ·g(w)
as polynomials over GF(2). By definition of g we get

g(σ(w)) =
{
x · g(w), wk = 0,
x · g(w) + xs+k+1 + xs+1, wk = 1.

Similarly,

g((σ(w))⊕ e1) =
{
x · g(w) + xs+1, wk = 0,
x · g(w) + xs+k+1, wk = 1.

Finally, by definition of h we get

h(i+ 1 mod m) =
{
x · h(i), deg(h(i)) < s− 1,
x · h(i) + S(x), deg(h(i)) = s− 1.

Our claim follows from the definition of Affb and the previous equations.
Proof of Theorem 3.7. We prove Theorem 3.7 for k = 10 and d = |Σ̂| = 16,

where Σ̂ is from Definition 5.7. By Theorem 5.8 it suffices to show a polynomial time
reduction sending an instance ψ = {Bk, Ĉ} of de Bruijn Coloring to an instance
of ALGEBRAIC-CSP over a field of size 2k · poly k. We reduce in time poly 2` to
an instance over GF(2`) for any ` > k + (log 5k) + 2 and the reduced instance is of
the form

φ = {GF(2`), {Aff′,Aff′′} ∪ A, H,C(x, y0, y1, z000, . . . , z111)},

where Aff′(x) = x, Aff′′(x) = ζ − x (for ζ to be defined later), and A is as in (5.4).
Embed Σ̂ in GF(2`) arbitrarily and associate accept with 0 and reject with

1. As in the proof of Theorem 5.4, we view the constraint Ĉv as a mapping from
Σ̂ ⊂ GF(2`) to {0, 1}. Recall that Proposition 5.11 showed V (Bk) can be embed-
ded in G(GF(2`),A) via the embedding f from (5.3). Notice that the outdegree
of G(GF(2`),A) is greater than the outdegree of Bk; thus when arithmetizing Ĉv
we must take into account which of the eight neighbors of f(v) in G(GF(2`),A)
are maps of the neighbors of v in Bk. Let b0(v), b1(v) ∈ {0, 1}3 denote the two
relevant neighbors of f(v) in G(GF(2`),A) satisfying f(N0(v)) = Affb0(v)(f(v))
and f(N1(v)) = Affb1(v)(f(v)). Let Cv(y, zb0 , zb1) be the trivariate polynomial of
degree at most |Σ̂| − 1 in each variable, agreeing with Ĉv on inputs in Σ̂3. Let
I = {f(v) : v ∈ V }. Let ζ ∈ GF(2`) satisfy (ζ+I)∩I = ∅, where ζ+I = {ζ+ξ : ξ ∈ I}
and set H = I ∪ (ζ + I). Such ζ exists because viewing elements of GF(2`) as poly-
nomials over GF(2) modulo an irreducible polynomial of degree `, all elements in I
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have degree at most k + s. Now, let Ph(x) be the polynomial of degree |H| − 1, that
is, 1 when x = h and 0 for all x = h′ ∈ H,h′ 6= h. Finally, let PΣ̂(y) be the nonzero
polynomial of degree |Σ̂| whose roots are precisely the elements of Σ̂. We are ready
to define the constraint polynomial of φ:

C(x, y0, y1, z000, . . . , z111) =
∑
v∈I

Pv(x) · Cv(y0, zb0(v), zb1(v))(5.5)

+
∑

h∈H\I

Ph(x) · PΣ̂(y1).

The second summand on the right-hand side checks that all vertices receive colors
in Σ̂ and the first summand checks that all coloring constraints are satisfied. The
polynomials Pv, Ph are used to “bundle” all constraints into one polynomial.

Note that degx(C) ≤ |H|−1 and the degree in the remaining variables is at most
|Σ̂|. Thus, φ is a legal instance of ALGEBRAIC-CSPk,d.

Completeness. Suppose ψ ∈ de Bruijn Coloring and let Â : V → Σ̂ witness
this. Let A be the polynomial of degree ≤ |V | − 1 satisfying A(f(v)) = Â(v) for all
v ∈ V . We claim A satisfies φ. We need to show for all x ∈ H

C (x,A(x), A(ζ − x), A(Aff000(x)), . . . , A(Aff111(x))) = 0.

As in the proof of Theorem 5.4, when x ∈ H, at most one summand of (5.5) may be
nonzero, by definition of Pv. We split the proof into cases.

• x ∈ I: Let v = x. The summand to consider is Pv(v)·Cv(A(v), A(Affb0(v)(v)),
A(Affb1(v)(v))), which vanishes because Ĉ(Â(v), Â(N0(v)), Â(N1(v)) =
accept, f(N0(v)) = Affb0(v)(f(v)), and f(N1(v)) = Affb1(v)(f(v)).

• x ∈ H \I: The summand to consider is Pv(x) ·PΣ̂(A(ζ−x)). By construction
of H and selection of ζ we have ζ −x ∈ I. By construction A takes on values
in Σ̂ on ζ − x, so the summand vanishes.

Soundness. Suppose φ ∈ ALGEBRAIC-CSPk,d and let A witness this. Let
Â : I → GF(2`) be the evaluation of A on I. First we claim that the range of Â is
Σ̂. Indeed, assume A(x) 6∈ Σ̂ for x ∈ I. Let x′ = ζ + x and notice that x′ ∈ H \ I.
Then the second summand of (5.5) does not vanish on x′. Since all other summands
vanish by construction of Pv, we reach a contradiction. We conclude that Â is a legal
assignment to ψ.

Next, we claim that Â satisfies ψ. Consider the constraint Ĉv. Equation (5.5)
holds for v and Pv′(v) = 0 for all v′ 6= v, v′ ∈ H, implying Cv(A(v), A(Affb0(v)(v)),
A(Affb1(v)(v))) = 0. Recall from the previous paragraph that A(v), A(Affb0(v)(v)),
A(Affb1(v)(v)) ∈ Σ̂. By construction of Cv we conclude that Ĉv(Â(v), Â(N0(v)),
Â(N1(v))) = accept. This completes our proof.

5.3. Systematic reduction to PAIR-ALGEBRAIC-CSP. We now show
how to modify the reduction of the previous section to apply it to pair languages and
get a systematic reduction, thus proving Theorem 3.10.

Proof. Consider the sequence of reductions applied to an instance x of L and
resulting in an instance φ of ALGEBRAIC-CSP. First, we reduce x to an instance
C of CktSAT along the lines of [29, 15]. Inspection reveals that this reduction is
systematic. Indeed, the implicit input y is embedded into the inputs of C, and C
accepts only inputs y ∈ Lx.
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In the next step we reduce C to an instance ψ of de Bruijn Coloring. Once
again, inspection of this reduction shows it is systematic [39, section 4.3]. In particular,
this latter reduction embeds all nodes of C including its inputs in the first layer of
the wrapped de Bruijn graph and each input node is mapped to a unique vertex. By
construction, a coloring of the resulting de Bruijn graph is legal only if the colors of
the vertices corresponding to inputs form an assignment satisfying C. Similarly, any
assignment satisfying C can be extended to a coloring satisfying the constraints of ψ.

Finally, consider the reduction from de Bruijn Coloring to ALGEBRAIC-
CSP. Notice that each vertex of the de Bruijn graph is mapped to a distinct ele-
ment of F (Proposition 5.11). Additionally, by construction we map the colors of the
de Bruijn coloring problem to distinct elements of F. By construction, φ is satisfied
by A iff A is the low-degree extension of a coloring that satisfies ψ. We have seen
that all steps of our reduction are systematic; hence so is their concatenation. This
completes our proof.

6. PCPPs for Reed–Solomon codes over fields of characteristic 2. In
this section we give a PCPP-verifier for RS-codes when the field is of characteristic 2
and the set of evaluation points is a linear subspace of the field over GF(2), thereby
proving Theorem 3.2 (restated below).

An overview of the proof appears in subsection 6.1. This is followed by a formal
description of the proof of proximity and verifier in subsection 6.2 and the analysis
of its basic properties in subsection 6.3. The analysis of the soundness follows in
subsection 6.4. We conclude with a formal proof of Theorem 3.2 in subsection 6.5.

Theorem 6.1 (Theorem 3.2, restated). Let PAIR-ADDITIVE-RS be the re-
striction of the language PAIR-RS to pairs ((GF(2`), L, d), p), where GF(2`) is the
Galois field of size n = 2` (and characteristic 2) and L ⊆ F is GF(2)-linear. Then,

PAIR-ADDITIVE-RS ∈ Strong-PCPPδ/ polylogn

randomness log(n · polylog n),
query O(1),
distance HammingGF(2`)

.
Remark 6.2. For simplicity, we first prove the theorem for the special case of

degree d = |L|/8 − 1. Then we show in Proposition 6.14 that this implies that the
theorem holds for all degrees.

6.1. Sketch of proof of Theorem 3.2. At a high level, we attempt a reduction
from the task of testing a univariate polynomial to the task of testing a bivariate
polynomial of significantly smaller degree. We then invoke an analysis of a “bivariate
low-degree test” by Polishchuk and Spielman [37], which reduces the task of testing
bivariate polynomials back to the task of testing univariate polynomials, of much
smaller degree than the original. Recursing on this idea leads to the full test. We
note that crucial to our obtaining short PCPPs is the evaluation of the bivariate
polynomial on a carefully selected, algebraically structured, subset of points. This set
is very different from the sets typically used in previous PCP constructions, e.g., in
[5, 2, 17], which are product sets usually consisting of the whole field.

We start by considering the polynomial P (z) of degree < n/8 evaluated on the
linear space L ⊂ GF(2`) of cardinality n and address the task of “testing” it. Our
starting point is that for any polynomial q(z) of degree ≈

√
n, we can define a bivariate

polynomial Q(x, y) of degree ≈
√
n in each variable that “captures” all the information

of P . Specifically, we can reconstruct P from Q using the identity P (z) = Q(z, q(z)).
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Proposition 6.3. Given any pair of polynomials P (z), q(z), there exists a unique
bivariate polynomial Q(x, y) with degx(Q) < deg(q) and degy(Q) = bdeg(P )/ deg(q)c,
such that P (z) = Q(z, q(z)).

Proof. We use division over the ring of bivariate polynomials F[z, y] (see [16]
for more details). Fix the lexicographic ordering on terms where z > y; i.e., terms
are ordered first by their degree in z and then by their degree in y. Divide P (z) by
(y − q(z)), obtaining

(6.1) P (z) = Q′(z, y) · (y − q(z)) +Q(z, y).

By the basic properties of division in this ring Q is uniquely defined, and degy(Q) =
bdeg(P )/ deg(q)c and degz(Q) < deg(q). To complete the proof set y = q(z) and
notice that the first summand on the right-hand side of (6.1) vanishes.

The presentation of P of degree ≈ n as a bivariate polynomial Q of individual
degree ≈

√
n is useful, because testing of bivariate polynomials reduces to testing of

univariate polynomials of roughly the same degree using well-known “low-degree tests”
and their analysis. This leads us to the hope that Q might provide a good “proof”
that P is of low degree. More to the point, to prove that a table of evaluations of P
corresponds to the evaluations of a polynomial of low degree, the prover can provide
a table of evaluations of a bivariate polynomial Q, prove that Q has degree

√
n in

each variable, and then prove that Q is consistent with the table of evaluations of P .
To completely describe the above approach, all we need to do is describe which

set of points we will specify Q on so as to achieve both tasks: (i) verifying that Q has
low degree, and (ii) that it is consistent with P . However, this leads to conflicting
goals. To test that Q has low degree, using a bivariate verifier, we need to know its
values on some subset X × Y , where X,Y ⊆ GF(2`). To make this efficient, we need
to make |X|, |Y | ≈

√
n. On the other hand, to test its consistency with P , the natural

approach is to ask for its values on the set

T = {(z, q(z))|z ∈ L}.

Unfortunately the set T , which depends on the selection of q(z), is far from being
of the form X × Y . For starters, the projection of T onto its first coordinate has
cardinality n while we would like this projection to be of cardinality O(

√
n).

Our solution is to ask the prover to provide the evaluation on both sets of points.
This leads to a problem of checking consistency between the two sets and to do so we
pick q(z) in a way that will ensure T is compatible withX×Y . In particular, we choose
q(z) to be a special linearized polynomial as defined in [32, Chapter 3, section 4]. A
polynomial q(z) over GF(2`) is said to be linearized if q(x+y) = q(x) + q(y) for every
x, y ∈ GF(2`). A linearized polynomial defines a linear map over GF(2`) and we abuse
notation and use q to denote this map. For S ⊂ GF(2`), let q(S) = {q(s) : s ∈ S}.
The linearized polynomial we use and its useful properties are listed below.

Proposition 6.4. For L a linear subspace of GF(2`) that is a direct sum of the
linear spaces L0, L1, let

q(z) = qL0(z) ,
∏
α∈L0

(z − α).

• The polynomial q(z) is linearized.
• The kernel of (the linear map defined by) q is L0.
• q(L) = q(L1) and q(L1) is a linear space of dimension dim(L1).
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q(L1)

y

x

L0, L0 + β1, . . . , L0 + β7

T

Fig. 1. Here F = GF(26) is the field with 64 elements and q is a linearized polynomial of degree
8. We plot the set of points T ⊂ F×F defined by T = {(z, q(z)) : z ∈ F}. Notice T can be partitioned
into eight product sets, each set being a product of an affine shift of L0 and some β ∈ L1.

• q is a one-to-one map from L1 to q(L1); i.e., for β 6= β′ we get q(β) 6= q(β′).
• q is an |L0| to one map on L, where, for β ∈ L1, the affine space L0 + β ,
{α+ β : α ∈ L0} is mapped to q(β).

Proof. The first part is proved by induction on the dimension of L. The base case
(dimension zero) is easy, as qL0(z) = z is clearly linearized. For the inductive step,
let L0 = span(L̂, α), where dim(L̂) = k − 1 and α ∈ GF(2`). Let q̂(z) = qL̂(z) be the
linearized polynomial whose set of roots is L̂. Clearly, qL0(z) = q̂(z) · q̂(α+z) because
addition and subtraction are the same in fields of characteristic 2. So

qL0(x+ y) = q̂(x+ y) · q̂(α+ x+ y) = q̂2(x) + q̂2(y) + q̂(α)(q̂(x) + q̂(y))
= q̂(x) · q̂(α+ x) + q̂(y) · q̂(α+ y) = qL0(x) + qL0(y).

We conclude that qL0 is a linearized polynomial. The second part follows because
deg(q) = |L0| and the elements of L0 are all roots of q.

The last three parts follow via basic linear algebra from our previous assertions
that q defines a linear map with kernel L0.

With Proposition 6.4 in hand, we return to the task of providing a proof of
proximity for the evaluation of a polynomial on the set of points L. Write L as the
direct sum of L0, L1, with dim(L0) = bdim(L)/2c and dim(L1) = ddim(L)/2e (so
|L0|, |L1| ≈

√
|L|), and take q(z) = qL0(z) as described above. The last part of

Proposition 6.4 implies that q partitions T into the disjoint union of |L1| lines, where
each line is a product of a set of size ≈

√
|L| with a singleton set (see Figure 1):

T =
⋃
β∈L1

{{L0 + β} × {q(β)}} .

This suggests requesting the evaluation of Q on the set of points (L0×q(L1))∪T ,
the cardinality of which is ≤ 2n. With such an evaluation in hand we can use the
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subset L0 × q(L1) to perform a bivariate low-degree test, by testing proximity to the
RS-code of degree ≈

√
n of a random row/column of this product set. The consistency

of Q’s evaluation on the product set L0×q(L1) and on the set T can also be addressed,
by reading Q(x, q(β)) for all points x ∈ L0 ∪ (L0 + β) for β ∈ L1. This consistency is
precisely what is needed to connect the evaluation of P on the set L, that is isomorphic
to T , to the evaluation of the bivariate Q on the product set L0 × q(L1). We have
reduced our original problem of size n to O(

√
n) identical problems of size O(

√
n).

x

y
T

S

, Lβ7

q(L1)

L00, Lβ1 = L
0
0 ∪ (L

0
0 + β1), . . .

Fig. 2. The proof of proximity for P is the evaluation of Q on the set of points denoted S.
Notice it has a large subset that is the product set L′0 × q(L1), allowing for bivariate low degree
testing. Additionally, S ∪ T can be partitioned into eight rows and each row is a linear space.

Our description so far leads to a proof of proximity of size O(n) that can be
tested by making O(

√
n) queries. However, the robustness of our tests can be used

to decrease the query complexity further, at the price of increasing the proof length.
Informally, robustness means the following. If a function f : (L0×q(L1))∪T → GF(2`)
is δ-far from being a low-degree bivariate polynomial, then the expected distance of a
random row/column of f from a low-degree univariate polynomial is Ω(δ). To apply
recursion, notice that all of our tests verify proximity to Reed–Solomon codewords
evaluated on linear subspaces of GF(2`). To see this notice that L0 and q(L1) are
linear spaces, and so is L0∪ (L0 +β) = span(L0, β). Using recursion we conclude that
to test proximity to the RS-code of size n it suffices to test proximity to RS-codes of
size ≈

√
n, which can be done by testing proximity to the RS-code of size ≈ n1/4, etc.

Applying this recursion a log log n number of times reduces the degree to a constant
and gives us our proofs of length n · polylog n.

From intuition to proof. Our rigorous analysis follows the intuition above, with
one technical difference regarding the degree of the bivariate polynomial Q. To use
the bivariate low-degree test on Q, we need its evaluation on a product set of points
X × Y , where |X| � degx(Q) and |Y | � degy(Q). In our case Proposition 6.3 gives
us only |X| > degx(Q). As to y, we get |Y | > 8 degy(Q), which is sufficient. So
we need to enlarge X. This is done by taking a linear space L′0 ⊃ L0 of dimension
dim(L0) + 2 and asking for the evaluation of Q on (L′0 × q(L1)) ∪ T . This causes a
new problem, because L′0∪ (L0 +β) is not a linear space, as dim(L′0) > dim(L0). This
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problem is fixed by asking for the evaluation of Q on the linear space L′0 ∪ (L′0 + β).
The resulting set of points is described in Figure 2.

6.2. The RS proof of proximity and its associated verifier. First we define
the structure of the proof of proximity for RS(GF(2`), L, d) and then describe the
verifier’s operation. As explained in the previous section, the proof for a purported
low-degree polynomial p : L → GF(2`) is an evaluation of a low-degree bivariate
polynomial related to p on a carefully chosen subset of GF(2`)×GF(2`), concatenated
with a sequence of subproofs for RS-codes of smaller size. To formally define the proof
of proximity we use the following notation throughout this section.

Given basis (b1, . . . , bk) for L, let

L0 , span(b1, . . . , bbk/2c); L′0 , span(b1, . . . , bbk/2c+2);(6.2)

L1 , span(bbk/2c+1, . . . , bk).

Fix q(x) , qL0(x). Notice that L′0 ∩L1 = span(bbk/2c+1, bbk/2c+2), and, in particular,
this intersection is nonempty. For β ∈ L1 let

Lβ ,

{
span(L′0, bbk/2c+3), β ∈ L′0,
span(L′0, β) otherwise.(6.3)

A partial bivariate function f over GF(2`) is a function with a partial domain
f : S → GF(2`), where S ⊂ GF(2`) × GF(2`). The β-row of S is the set Rβ =
{α : (α, β) ∈ S} (this set might be empty). The restriction of f to the β-row is
the univariate function f |↔β : Rβ → GF(2`) that agrees with f on its inputs, i.e.,
f |↔β (α) = f(α, β). Similarly, the α-column of S is Cα = {β : (α, β) ∈ S}, and the

restriction of f to it is f |lα : Cα → GF(2`) defined by f |lα(β) = f(α, β).
Definition 6.5 (Reed–Solomon proof of proximity). The proof of proximity for

a purported codeword of the Reed–Solomon code RS(GF(2`), L, n/8 − 1) is defined
by induction on k = dim(L). If k ≤ 6 then it is empty. Otherwise, the proof is
a pair π = {f,Π}, where f is a partial bivariate function over partial domain S ⊂
GF(2`)×GF(2`) defined next and Π is a sequence of proofs of proximity for RS-codes
over (smaller) linear spaces.

Partial domain. Let

(6.4) T ,
⋃
β∈L1

{{L0 + β} × {q(β)}} ; S ,

 ⋃
β∈L1

{Lβ × {q(β)}}

 \ T.
Auxiliary proofs. For each β ∈ L1, the sequence of proofs Π has a unique subproof

for an RS-codeword over Lβ of degree |Lβ |/8 − 1, denoted π↔β . For each α ∈ L′0,
the sequence Π includes a unique subproof for an RS-codeword over q(L1) of degree
|q(L1)|/8− 1, denoted πlα. Formally,

Π , {π↔β : β ∈ L1} ∪ {πlα : α ∈ L′0}.

The next proposition shows that S∪T can be decomposed into rows and columns
that are linear spaces (of size ≈

√
|L|). This gives some explanation of our peculiar

choice of the set S as described in the previous section and shown in Figure 2.
Proposition 6.6. The set S ∪ T is the disjoint union of q(β)-rows for β ∈ L1.

The q(β)-row of S∪T is the linear space Lβ. Similarly, for every α ∈ L′0, the α-column
of S ∪ T is the linear space q(L1).



SHORT PCPS WITH POLYLOG QUERY COMPLEXITY 589

Proof. By construction of S, to prove the claim about the rows of S∪T it suffices
to show that the q(β)-row of T is a subset of Lβ . By the last part of Proposition 6.4
this row is

{γ ∈ L : q(γ) = q(β)} = q(−1)(q(β)) ∩ L = L0 + β ⊂ Lβ .

The inclusion above follows by definition from (6.3). This completes the proof of the
claim about the rows.

Now consider the α-column of S ∪ T for α ∈ L′0. By (6.3) we have L′0 ⊂ Lβ for
every β ∈ L1 and Lβ × {q(β)} ⊂ S, so (α, q(β)) ∈ S implying q(L1) is a subset of
the α-column. However, by the first part of our proposition, the only nonempty rows
of S ∪ T are the q(β)-rows. So we conclude that the α-column of S ∪ T is precisely
q(L1).

Definition 6.7 (RS-verifier). The verifier for proximity to RS(GF(2`), L, d =
|L|/8− 1) is denoted VRS

(p,π)(GF(2`), L, d). It receives as explicit inputs the descrip-
tion of the field GF(2`), a basis (b1, . . . , bk) for L, and the degree parameter d =
|L|/8− 1. The implicit input of the verifier is the purported codeword p : L→ GF(2`)
and its purported proof is π = {f,Π} as described in Definition 6.5. The verifier
operates as follows.

Base case (|L| ≤ 64). The verifier reads p in entirety and accepts iff p ∈
RS(GF(2`), L, |L|/8− 1).

Recursion (|L| > 64). Let p̂ : T → GF(2`) be the partial bivariate function
corresponding to p,

(6.5) p̂(γ, q(γ)) = p(γ) for γ ∈ L.

Notice that p̂ is well defined because the mapping γ 7→ (γ, q(γ)) is a bijection from L
to T . Let

(6.6) f̂ : S ∪ T → GF(2`)

be the function that agrees with f on S and with p̂ on T . Notice that f̂ is well
defined because S ∩ T = ∅. The verifier sets L0 = span(b1, . . . , bbk/2c), computes the
coefficients of the polynomial q(x) = qL0(x), and performs one of the following two
tests with probability half each.
Row test. Pick β ∈ L1 at random. Let Lβ be as in (6.3). Invoke

VRS
(f̂ |↔q(β),π

↔
β )(GF(2`), Lβ , |Lβ |/8− 1).

Column test. Pick α ∈ L′0 at random. Let L1 be as in (6.2). Compute a basis for
q(L1) and invoke

VRS
(f̂ |lα,π

l
α)(GF(2`), q(L1), |q(L1)|/8− 1).

Remark 6.8. The “inner” verifiers, i.e., the row and column tests, restrict their
attention to special subsets of p and π. To simplify our analysis, we assume these
special subsets are copied to an “inner oracle” before invocation of an inner test. This
assumption can be made without loss of generality because the verifier is nonadaptive;
i.e., its operation does not depend on the implicit input given to it. Furthermore, the
indices of the queries needed at the bottom of the recursion can be computed efficiently
given the random coins used through the recursion as can be verified by inspection of
the proof of Proposition 6.9.
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The following subsections analyze the performance of VRS. Specifically, the next
subsection analyzes the simple properties including the running time, query complex-
ity, randomness/size complexity, and the completeness. The soundness analysis is
addressed in subsection 6.4.

6.3. Basic properties.
Proposition 6.9. VRS

(p,π)(GF(2`), L, |L|/8− 1) makes at most 64 queries into
p and π. It tosses at most k + O(log k) random coins (recall that k = dim(L)) and
runs in time poly `. The size of the proof π accessed by VRS

(p,π)(GF(2`), L, |L|/8−1)
is 2k · poly k = |L| · polylog |L|.

Proof. The query complexity is easy to verify. In the base case, the verifier reads
64 field elements. In the inductive case the verifier invokes VRS which by induction
makes 64 queries.

Regarding randomness complexity, in the base case the verifier tosses zero coins.
In the inductive case, the verifier tosses one coin to determine which test to perform—
row or column. It then tosses k/2 + O(1) coins to determine the inner call and then
(k/2 + O(1)) + O(log(k/2 + O(1))) coins in the recursive call. Adding up, we get a
total of k+O(log k) coins. The size of the proof can be similarly analyzed or bounded
by 2randomness to get the same bound.

We now analyze the running time, which is the sum of two processes.
The preprocessing time. This is the time required by the outer verifier VRS

(p,π)[GF(2`),
L, |L|/8−1] to prepare the explicit input for invoking an inner verifier on a row/column.
Notice that q(x) can be computed and evaluated in polynomial time in |L0| and ` and
so can the bases for L0, L

′
0, Lβ , L1, and q(L1). Thus, the preprocessing time is poly-

nomial.
The index translation time. Suppose the outer verifier conducts an inner row test

of the form

VRS
(f̂ |↔q(β),π

↔
β )[GF(2`), q(Lβ), |Lβ |/8− 1].

The case of a column test is analogous. A query to f̂ |↔q(β) by the inner verifier is
indexed by an element α ∈ Lβ . However, this query needs to be translated to a query
to f̂ , which is a pair (α, β) ∈ S∪T . This translation is easily seen to be efficient given
α and β. Furthermore, translating a query to f̂ into a query to f : S → F or p : T → F
is also easy. If β = q(α) we query p(α) because (α, β) ∈ T , and otherwise we query
f(α, β). This translation involves evaluating q(α), which can be done efficiently as
argued above.

We conclude that for each level of the recursion, the running time of the pre-
processing and index translation is at most polynomial in |L| and `. Since there are
O(log `) levels of recursion, we conclude that the running time is as stated, completing
our proof.

Next we move to the completeness part of the proof.
Proposition 6.10 (perfect completeness). If p is the evaluation of a polynomial

P of degree < |L|/8, then there exists a proof that causes the RS-verifier to accept
with probability one.

This part is straightforward given the intuition developed in the proof sketch of
Theorem 3.2. If p is indeed low-degree, then there exists a proper low-degree bivariate
polynomial Q that is consistent with it on all rows. Looking at Figure 2 we argue
that S is a union of linear spaces and the restriction of Q to each row is low-degree
and consistent with p. The formal proof follows.
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Proof. To prove the proposition inductively, it suffices to construct f : S →
GF(2`) so that the function f̂ : S ∪ T → GF(2`) is such that for every β ∈ L1, the
q(β)-row of f̂ is a codeword of RS(GF(2`), Lβ , |Lβ |/8− 1), and for every α ∈ L′0, the
α-column of f̂ is a codeword of RS(GF(2`), L1, |L1|/8− 1).

Using Proposition 6.3 we get P (x) = Q(x, q(x)) for q(x) = qL0(x), where

(6.7) degx(Q) < |L0| and degy(Q) = bdeg(P )/ deg(q)c < (|L|/8)/|L0| = |L1|/8.

Set f(α, β′) = Q(α, β′) for every (α, β′) ∈ S. If (α, β′) ∈ T we have β′ = q(α), so

p̂(α, β′) = p̂(α, q(α)) = p(α) = P (α) = Q(α, q(α)) = Q(α, β′).

Thus, f̂ is the evaluation of Q on S ∪ T . Consider the q(β)-row of f̂ for β ∈ L1. By
Proposition 6.6 the q(β)-row of S ∪ T is Lβ . By (6.3) we have |Lβ | = 8 · |L0| because
dim(Lβ) = dim(L0) + 3. By (6.7) we have deg(Q(x, q(β)) ≤ degx(Q) < |L0|. We
conclude that the q(β)-row of f̂ is indeed a member of RS(GF(2`), Lβ , |Lβ |/8− 1).

Similarly, by Proposition 6.6 the α-column of f̂ is q(L1). By Proposition 6.4
dim(q(L1)) = dim(L1), so |q(L1)| = |L1|. By construction the α-column of f̂ is
the evaluation of Q(α, y) on q(L1). Equation (6.7) completes our proof, because
deg(Q(α, y)) ≤ degy(Q) < |L1|/8.

6.4. Soundness. Our analysis of the soundness is by induction. Assume VRS

accepts implicit input p and proof π = {f,Π} with high probability. Let p̂, f̂ be
the partial bivariate functions as defined in (6.5) and (6.6), respectively. We argue
by induction that for most α ∈ L′0 and β ∈ L1, the α-column and q(β)-row of f̂
are close to polynomials of degree roughly

√
|L|. The analysis of Polishchuk and

Spielman implies that f̂ restricted to the product set L′0× q(L1) is very close to some
low-degree bivariate polynomial. Then we claim that p̂ is close to an evaluation of
the same polynomial on the set of points T . This implies p is close to a degree-|L|/8
univariate polynomial, completing the analysis. Formally, we have the following.

Lemma 6.11 (soundness). There exists constant c ≥ 1 such that for every integer
k and ε, if

Pr[VRS
(p,π)(GF(2`), span(b1, . . . , bk), 2k/8− 1) = reject] ≤ ε,

then p is
(
clog k · ε

)
-close to RS(GF(2`), span(b1, . . . , bk), 2k/8− 1).

To prove the lemma, we need a version of the analysis of Polishchuk and Spielman
of the bivariate test. The following lemma is directly implied by the main theorem in
[37]. We defer its proof to section 6.6 below.

Definition 6.12. For set S ⊆ F × F, partial bivariate function f : S → F, and
nonnegative integers d1, d2, define δ(d1,d2)(f) to be the fractional distance of f from a
polynomial of degree d1 in its first variable and d2 in its second variable. Formally,

δ(d1,d2)(f) , min
{Q:S→F| degx(Q)≤d1,degy(Q)≤d2}

{δ(f,Q)}.

Let δ(d,∗)(f) and δ(∗,d)(f) denote the fractional distances when the degree in one of
the variables is unrestricted.

Lemma 6.13 (bivariate test on product set [37]). There exists a universal
constant c0 ≥ 1 such that the following holds. For every A,B ⊆ F and integers
d1 ≤ |A|/4, d2 ≤ |B|/8 and function f : A×B → F, it is the case that

δ(d1,d2)(f) ≤ c0 ·
(
δ(d1,∗)(f) + δ(∗,d2)(f)

)
.



592 ELI BEN-SASSON AND MADHU SUDAN

Proof of Lemma 6.11. The proof is by induction on k. Let L = span(b1, . . . , bk)
and let L0, L

′
0, L1, q be as defined in the beginning of subsection 6.2. We use the

following constants, where ĉ is a parameter to be minimized and c0 is the universal
constant from Lemma 6.13:

c1 , ĉlog(7/6)/2; c2 ,
c1
3c0

; c3 ,
3c1

16(3c0 + 2)
.

We fix c to be the minimal ĉ such that c3 ≥ 2 and 1
c3

+ 16
c1
≤ 1. Notice that c1, c2, c3 are

strictly increasing functions of ĉ, so c is well defined (we do not attempt to minimize
it).

The base case k ≤ 6 is immediate. For the inductive case we assume that the
lemma is true by induction for smaller dimension k′ and, in particular, for the recursive
calls of the RS-verifier, and we now prove it for dimension k ≥ 7.

Let π = (f,Π) be as in Definition 6.5 and assume that (p, π) is rejected by
the verifier with probability at most ε. We assume without loss of generality that
ε ≤ c− log k, for otherwise there is nothing to prove. We show below that p is within
distance clog k ·ε of some RS-codeword. In what follows let p̂, f̂ be the partial bivariate
functions defined in (6.5) and (6.6), respectively.

Step 1. Restricting the bivariate function f̂ to a product set L′0 × q(L1). Denote
by ε(α) the probability that the inner verifier rejects f̂ |lα (and its proof), and similarly
let ε(β) be the probability verifier rejects f̂ |↔q(β). Let εcol be the expectation of ε(α)
over random α ∈ L′0 and let εrow be the similar expectation of ε(β) over random
β ∈ L1. By definition of the verifier, we have ε = 1

2 (εrow + εcol). Since these quantities
are nonnegative we get εrow, εcol ≤ 2ε.

Let d1 = |L0| − 1 and recall that |Lβ | = 8|L0| for every β ∈ L1. This follows
from (6.2) and (6.3). First we bound δ(d1,∗)(f̂). This quantity is the expectation
over random β ∈ L1 of the fractional distance of f̂ |↔q(β) from a degree-d1 univariate

polynomial. Let δ(d1)(f̂ |↔q(β)) denote this distance. We get

δ(d1,∗)(f̂) = Eβ∈L1

[
δ(d1)(f̂ |↔q(β))

]
≤ Eβ∈L1

[
ε(β) · clog(dim(Lβ))

]
≤ εrow · clog(bk/2c+3) ≤ 2ε · clog 6k

7 =
ε

c1
· clog k.(6.8)

The first inequality follows by induction, the second follows because dim(Lβ) =
bk/2c+ 3 for every β ∈ L1, the third holds for k ≥ 7, and the last equality is true for
our setting of c1.

Let f ′ be the restriction of f̂ to L′0 × q(L1); i.e., f ′ : L′0 × q(L1)→ GF(2`) is the
function that agrees with f̂ on its domain. Since |L′0| = |Lβ |/2 we get from (6.8)

(6.9) δ(d1,∗)(f ′) ≤ 2ε
c1
· clog k.

Let d2 = |L1|/8− 1. By analogy to (6.8), we get by induction

(6.10) δ(∗,d2)(f ′) ≤ εcol · clog(bk/2c+1) ≤ ε

c1
· clog k.

The conditions of Lemma 6.13 hold with respect to f ′ and A = L′0, B = q(L1),
because d1 ≤ |L′0|/4 and d2 ≤ |q(L1)|/8. Thus, from (6.9), (6.10), Lemma 6.13, and
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our setting of c2, we conclude that f ′ is “close” to an evaluation of a low degree
bivariate polynomial:

(6.11) δ(d1,d2)(f ′) ≤ ε

c2
· clog k.

Step 2. Extending the analysis to the bivariate function p̂. Let Q be the degree-
(d1, d2) polynomial closest to f ′. We wish to bound the probability over random
(α, β̃) ∈ T that p̂(α, β̃) 6= Q(α, β̃). Let β̃ = q(β) and notice that β̃ ∈ q(L1). This
follows from Proposition 6.4. Call β̃ good if the polynomial closest to f̂ |↔

β̃
is Q(x, β̃),

and otherwise it is bad. We bound the probability as follows:

Pr
(α,β̃)∈T

[
p̂(α, β̃) 6= Q(α, β̃)

]
≤ Pr
β̃∈q(L1)

[
β̃ is bad

]
(6.12)

+ Pr
(α,β̃)∈T

[
p̂(α, β̃) 6= Q(α, β̃)|β̃ is good

]
.

• First summand of (6.12). We start by bounding the probability of bad β̃. Let
f̂ |↔
β̃

′
be the restriction of f̂ |↔

β̃
to domain L′0 and let Qβ̃(x) be the degree-d1

polynomial closest to f̂ |↔
β̃

. If β̃ is bad, i.e., Qβ̃(x) 6= Q(x, β̃), then f̂ |↔
β̃

′
is

either (3/8)-far from Q(x, β̃) or (3/8)-far from Qβ̃(x). This is because Qβ̃(x)
and Q(x, β̃) can agree on at most |L′0|/4 locations in L′0. Thus, by (6.9) and
(6.11), we get

(6.13) Pr
β̃∈q(L1)

[
β̃ is bad

]
≤ 2 · 8

3
·max

{
1
c2
,

2
c1

}
· ε · clog k ≤ ε

c3
· clog k.

The last inequality follows by bounding the maximum of two nonnegative
numbers by their sum and holds for our setting of c1, c2, c3.

• Second summand of (6.12). Let Tgood = {(α, β̃) ∈ T : β̃ is good}. Since p̂ is
a function on a subdomain of f̂ we can bound the second summand in (6.12)
as follows:

Pr
(α,β̃)∈T

[
p̂(α, β̃) 6= Q(α, β̃)|β̃ is good

]
≤ Pr

(α,β̃)∈S

[
f̂(α, β̃) 6= Q(α, β̃)

]
(6.14)

· |S|
|Tgood|

.

We already showed in (6.8) that PrS [f̂ 6= Q] is relatively small, so we need
only to argue that |Tgood| is large relative to |S|. By Proposition 6.4 the
β̃-row of T is an affine shift of L0 by β̃. From the proof of the first part of
Proposition 6.6 we conclude that the β̃-row of T is 1/8 fraction subset of the
β̃-row of S, so (6.13) implies

(6.15) |Tgood|/|S| =
1
8
· (1− Pr[β̃ is bad]) ≥ 1/16.

The last inequality follows from (6.13) by our assumption that ε · clog k ≤ 1
and because we set c3 ≥ 2.

Summing up from (6.13), (6.14), and (6.15) we get

(6.16) Pr
(α,β̃)∈T

[
p̂(α, β̃) 6= Q(α, β̃)

]
≤
(

1
c3

+
16
c1

)
ε · clog k ≤ ε · clog k.

The last inequality holds because we set c1 and c3 such that 1
c3

+ 16
c1
≤ 1.
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Step 3. From bivariate p̂ to univariate p. Let P (x) = Q(x, q(x)). Notice that
deg(P ) ≤ |L|/8 − 1. This follows from the degree of Q and deg(q) = |L0| = |L′0|/4.
Using (6.16) and the definition T = {(γ, q(γ)) : γ ∈ L} we conclude that for all but a
(ε · clog k)-fraction of L we have

p(γ) = p̂(γ, q(γ)) = Q(γ, q(γ)) = P (γ).

The fractional distance of p from a degree-|L|/8 − 1 polynomial is as claimed, com-
pleting our proof.

6.5. Proof of Theorem 3.2. In this subsection we complete the formal proof
of Theorem 3.2. First consider the case of degree precisely |L|/8 − 1, dealt with in
the preceding sections. In particular, the proof of proximity and its associated verifier
are described in subsection 6.2. The query complexity, randomness, and proof length
are argued in Proposition 6.9. Perfect completeness is asserted by Proposition 6.10.
Soundness is analyzed in Lemma 6.11. This completes the proof of the special case.
The following proposition, Proposition 6.14, generalizes the degree and completes the
full proof of Theorem 3.2.

In what follows we say a soundness function s : [0, 1] × N+ → [0, 1] is monotone
if it increases with δ; i.e., for all n we have δ ≥ δ′ ⇒ s(δ, n) ≥ s(δ′, n).

Proposition 6.14. Let L be either of the pair-languages PAIR-ADDITIVE-RS
and PAIR-SMOOTH-RS, and let L 1

8
be the restriction of L to explicit pairs of the

form (F, S, |S|/8− 1). Suppose

L 1
8
∈ Strong-PCPPs(δ,n)

 randomness r(n),
query q(n),
distance HammingF

,
where s(δ, n) is monotone and r(n) ≥ log n. Then for s′(δ, n) = min{δ/2, s(δ/64, n)},

L ∈ Strong-PCPPs′(δ,n)

 randomness r(n),
query O(q(n)),
distance HammingF

.
Proof. Let (x, p) be an instance to L with explicit input x = (F, S, d′). Denote

d = |S|
8 − 1 and let V 1

8
denote the verifier for L 1

8
. We start with the case of d′ < d.

On explicit input (F, S, d′ < d) the verifier expects a (concatenation of) two subproofs
for RS(F, S, d), denoted π1, π2. The verifier operates as follows:

• Toss r(n) coins. Let R denote the random string.
• Invoke V 1

8
using randomness R on explicit input (F, S, d), implicit input p,

and proof π1.
• Fix Q(z) , zd−d

′
and set p′(z) = p(z) ·Q(z). Invoke V 1

8
using randomness R

on explicit input (F, S, d), implicit input p′, and proof π2.
Notice that querying p′(α) can be simulated by querying p(α) and multiplying the
answer by Q(α). Additionally evaluating Q(α) can be done in time polylog |F|. So
the running time, query complexity, and randomness are essentially inherited from
V 1

8
. Completeness follows by observing that deg(p) ≤ d′ implies deg(p′) ≤ d. As to

soundness, there are two cases to consider. If p is δ/4-far from RS(F, S, d) then by
assumption, the first subtest rejects with probability at least s(δ/4, n) ≥ s(δ/64, n)
(the previous inequality follows from monotonicity). Otherwise, p is within relative
distance δ/4 ≤ 1/4 of an evaluation of a polynomial P with d′ < deg(P ) ≤ d. In this
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case, p′ is 1/4-close to the evaluation of P ′(z) = Q(z) · P (z), where d < deg(P ′) <
|S|/4. Thus, P ′ is 3/4-far from RS(F, S, d), so the distance of p′ from the same code
is at least 1/2 > δ/4. We conclude that the second subtest rejects with probability
s(δ/4, n) ≥ s(δ/64, n).

Next assume d′ > d and notice without loss of generality that d′ ≤ 8(d+1) because
otherwise every implicit input is a codeword. The key observation is that a polynomial
P (z) is of degree d′ iff it can be written as a sum P (z) =

∑7
i=0 z

i(d+1) · Pi(z), where
deg(Pi) = di ≤ d can be uniquely and efficiently computed given d and d′. Let
L(≤d) be the restriction of L to instances of degree ≤ d and let V(≤d) denote the
verifier for L(≤d). The proof for explicit input (F, S, d′) consists of eight functions
p0, . . . p7 : S → F and eight proofs of proximity to L(≤d) denoted π0, . . . , π7. On
explicit input (F, S, d′) and implicit input p, the verifier operates as follows:

• Toss r(n) coins. Let R denote the random string.
• For i = 0, . . . , 7, invoke V(≤d) using randomness R on explicit input (F, S, di),

implicit input pi, and proof πi.
• UsingR, select uniformly at random γ ∈ S. Accept iff p(γ) =

∑7
i=0 γ

i(d+1)pi(γ).
Proof length, randomness, completeness, running time, and query complexity follow
from construction. As to soundness, assume that p is δ-far from RS(F, S, d′). There
are two cases to consider. If p(z) disagrees with

∑7
i=0 z

i(d+1)pi(z) on a δ/2-fraction
of z ∈ S, then the second subtest rejects with probability ≥ δ/2. Otherwise, p(z)
is δ/2-close to

∑7
i=0 z

i(d+1)pi(z). In this case at least one pi must be δ/16-far from
RS(F, S, di). So the first part of this proof (for the case d′ < d) implies the rejection
probability is at least s( δ

4·16 , n). This completes our proof.

6.6. Proof of Lemma 6.13. The lemma is an immediate corollary of the bi-
variate testing theorem of Polishchuk and Spielman [37, Theorem 9]. We use here the
general version of it appearing in Spielman’s thesis.

Theorem 6.15 (see [39, Theorem 4.2.19]). Let F be a field, S, T ⊆ F. Let R(x, y)
be a polynomial over F of degree (d, |T | − 1) and let C(x, y) be a polynomial over F of
degree (|S| − 1, e). If

Pr
(x,y)∈S×T

[R(x, y) 6= C(x, y)] < γ2 and 2
(
d

|S|
+

e

|T |
+ γ

)
< 1,

then there exists a polynomial Q(x, y) of degree (d, e) such that

Pr
(x,y)∈S×T

[R(x, y) 6= Q(x, y) or C(x, y) 6= Q(x, y)] < 2γ2.

To prove Lemma 6.13 we show the contrapositive form for c0 = 128, making
no attempt to optimize constants. We may assume without loss of generality that
δ(d,∗), δ(∗,e) < 1/c0; otherwise the claim is trivial. Correct each row of f to its closest
RS-codeword (breaking ties arbitrarily), obtaining a bivariate polynomial R(x, y) of
degree (d, |T | − 1). By definition, ∆(R(x, y), f) = δ(d,∗)(f). Similarly, correct the
columns of f to obtain the polynomial C(x, y) of degree (|S| − 1, e) that is within
fractional distance δ(∗,e)(f) of f . We get

Pr
(x,y)∈S×T

[R 6= C] ≤ δ(d,∗)(f) + δ(∗,e)(f) = γ2 < 1/64.

Since γ ≤ 1/8, d ≤ |S|/4, and e ≤ |T |/8, both conditions of Theorem 6.15 hold,
allowing us to conclude that R(x, y) is (2γ2)-close to RM(F, S×T, (d, e)). The triangle
inequality completes the proof:

δ(d,e)(f) ≤ ∆(f,R) + ∆(R,RM(F, S × T, (d, e))) ≤ 3δ(d,∗)(f) + 2δ(∗,e)(f).
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7. PCPPs for Reed–Solomon codes over smooth fields. In this section
we give a PCPP-verifier for Reed–Solomon codes over smooth fields, when the set
S over which the polynomials are evaluated are multiplicative subfields of the field,
thereby proving Theorem 3.4 (restated below). We also show it suffices for obtaining
quasilinear PCPs (Theorem 2.2). Our presentation mirrors that of the additive case
presented in section 6.

Theorem 7.1 (Theorem 3.4, restated). Let PAIR-SMOOTH-RS be the re-
striction of PAIR-RS to pairs ((F, 〈ω〉, d), p), where ord(ω) = n is a power of 2.
Then,

PAIR-SMOOTH-RS ∈ Strong-PCPPδ/ polylogn

 randomness log(n · polylog n),
query O(1),
distance HammingF

.
7.1. Proof overview. This section should be read as a continuation of subsec-

tion 6.1. The crucial property used in our constructions in section 6 was that the
linearized polynomial q(z) “nicely partitions” the linear space L. Specifically, q(z)
defines a linear map on L, its image is a linear space of size ≈

√
|L|, and for every

value in its image, the set of preimages of that value form an affine space of size
≈
√
|L|.
In the smooth case, F contains a multiplicative subgroup S = 〈ω〉 of size n.

Assume that
√
n is an integer and consider a polynomial P (z) evaluated over S.

Using Proposition 6.3 with the polynomial q(z) , z
√
n we get P (z) = Q(z, z

√
n).

Notice that q(z) “nicely partitions” 〈ω〉. Specifically, q(〈w〉) = 〈ω
√
n〉 is of size

√
n

(recall q(S) , {q(s) : s ∈ S}), and for every value in the image of q, the set of its
preimages is a multiplicative coset of 〈ω

√
n〉.

Thus, to prove proximity of P (z) to RS(F, S, d) we may ask for an evaluation
of Q(x, y) on the set of points (X × Y ) ∪ Z, where Z = {(z, q(z)) : z ∈ 〈ω〉} and
X = Y = 〈ω

√
n〉. In the additive case we used the fact, implied by Proposition 6.6,

that the union of a linear space (L′0) and an affine shift of it (L′0 + β) form a linear
space of slightly larger dimension. In the smooth case, it is not true in general that
〈ω
√
n〉 and a coset of it form a small multiplicative group. In fact, the smallest group

containing both can be as large as 〈ω〉. To overcome this problem, we define the
shifted Reed–Solomon code (SRS-code), which is formed of evaluations of polynomials
over a multiplicative group 〈ω〉 and a coset of it of the form κ〈ω〉 , {κz : z ∈ 〈w〉}.

The crucial observation is that q(z) “nicely partitions” each of 〈ω〉 and κ〈ω〉
into

√
n cosets of 〈ω

√
n〉 (see Figure 3). Indeed, the image of q(〈ω〉) = 〈ω

√
n〉 and

q(κ〈ω〉) = κ
√
n〈ω
√
n〉. Similarly, for an element in q(〈ω〉) of the form ωj

√
n, j ∈ [

√
n],

we get q(−1)(ωj
√
n) = ωj〈ω

√
n〉 and for an element in q(κ〈ω〉) of the form κ

√
nωj
√
n

we get q(−1)(κ
√
nωj
√
n) = κωj〈ω

√
n〉. Thus, we will ask our prover to provide an

evaluation of the bivariate polynomial Q on the points (see Figure 4)

{(z, q(z)) : z ∈ 〈ω〉 ∪ κ〈ω〉}
⋃(
〈ω
√
n〉 × (〈ω

√
n〉 ∪ κ

√
n〈ω
√
n〉)
)
.

By our previous discussion we notice that the restriction of Q to certain rows and
columns forms a word of an SRS-code of length ≈

√
n.

This allows us to measure proximity to the SRS-code of length n by measuring
proximity to SRS-codes of size ≈

√
n. As in the additive case of section 6 we use

the bivariate testing lemma, Lemma 6.13, to apply recursion and obtain quasilinear
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Fig. 3. In this case, F = Z101. Let σ generate F∗, let ω = σ4 be an element of order n = 25,
and let κ = σ2 and q(z) = z5. The elements on each axis are ordered by increasing powers of σ
and the figure shows the subsets of points Z,Zκ ⊂ F∗ × F∗, where Z = {(z, q(z)) : z ∈ 〈ω〉} and
Zκ = {(κz, q(κz)) : z ∈ 〈ω〉}.

sized proofs that can be tested with polylogarithmic query complexity. We need
some technical modifications, arising from difficulties similar to the additive case. In
particular, the degree of Q in its first variable is too large for applying Lemma 6.13, so
we reduce this degree by breaking Q into a sum of several polynomials of sufficiently
small degree. Additionally, we will not assume that

√
n is an integer; rather we

use the fact that n = 2k and work with the multiplicative subgroups generated by
n0 = 2dk/2e, n1 = 2bk/wc that are of size ≈

√
n.

7.2. The shifted Reed–Solomon code. We prove Theorem 3.4 by proving a
stronger statement about testing proximity to shifted RS-codes, defined next.

Definition 7.2 (shifted Reed–Solomon code). For F a finite field, ω, κ ∈
F∗, ord(ω) = n, and integer d, the degree-d shifted Reed–Solomon (SRS)-code over
〈ω〉 with shift κ is

SRS(F, d, ω, κ) , RS(F, 〈ω〉 ∪ κ〈ω〉, d).

Let PAIR-SMOOTH-SRS be the pair language whose explicit inputs are triples (F, S =
〈ω〉 ∪ κ〈ω〉, d), where ord(ω) is a power of 2 and whose implicit inputs are functions
p : S → F. The size of (explicit and implicit) inputs is ord(ω). A pair ((F, S, d), p) is
in PAIR-SRS if p ∈ SRS(F, ω, κ, d).

Notice that SRS(F, ω, 1, d) = RS(F, 〈ω〉, d). Thus, Theorem 3.4 follows from the
following theorem, the proof of which occupies the rest of the section.

Theorem 7.3 (SRS PCP of proximity).

PAIR-SMOOTH-SRS ∈ Strong-PCPPδ/ polylogn

 randomness log(n · polylog n),
query O(log |F|),
distance HammingF

.
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Fig. 4. The proof of proximity for the smooth RS-code is the evaluation of Q on the set of
points Z ∪Zκ ∪ (X × Y )∪ (X × Yκ). Notice that the restriction of this set to every row and column
gives a pair—a multiplicative group of order

√
n and a coset of it.

As in the additive case, our proof will focus on the special case of degree d =
n/8− 1, and Proposition 6.14 generalizes this to an arbitrary degree.

7.3. The SRS proof of proximity and its associated verifier.
Notation. Recall ord(ω) = n = 2k for integer k. Let n0 = 2dk/2e and n1 = 2bk/2c.

Note that n = n0 · n1 and
√
n/2 ≤ n1 ≤ n0 ≤

√
2n. For r ≤ ord(α), let 〈α〉r ,

{α0, α1, . . . , αr−1}. When dealing with a purported codeword of SRS(F, ω, κ, d) we
treat it as a pair of functions, p : 〈ω〉 → F and pκ : κ〈ω〉 → F.

Definition 7.4 (SRS proof of proximity). The proof of proximity for a purported
codeword of the code SRS(F, ω, κ, n/8 − 1) is defined by induction on n = ord(ω). If
n ≤ 16 then it is empty. Otherwise, it is of the form

π = ({f (`), f (`)
κ , g(`), g(`)

κ , {π(1,β,`), π(2,β,`)}β∈〈ω〉n1
, {π(3,α̃,`)}α̃∈〈ωn1 〉}`∈{0,...,7}),

where
• f (`), f

(`)
κ : 〈ωn1〉 × 〈ω〉n1 → F,

• g(`), g
(`)
κ : 〈ωn1〉 × 〈ωn0〉 → F, and

• π(1,·,`), π(2,·,`), π(3,·,`) are proofs for SRS-codewords (over F) of sizes n0, n0, n1,
respectively.

We are now ready to describe the proximity tester.
Definition 7.5 (SRS-verifier). The verifier for proximity to SRS(F, ω, κ, d =

ord(ω)/8− 1) is denoted V〈(p,pκ),π〉
SRS (F, ω, κ, d). It receives as explicit input the param-

eters F, ω, κ as defined in the statement of Theorem 7.3. The implicit input is a pair
of functions p : 〈ω〉 → F, pκ : κ〈ω〉 → F. The proof π is as described in Definition 7.4.
The verifier operates as follows.
Base case (n ≤ 16). The verifier reads p and pκ in entirety and accepts iff (p, pκ) ∈

SRS(F, ω, κ, 1).
Recursion (n ≥ 32). The verifier computes n0 = 2dk/2e, n1 = 2bk/2c and performs one

of the following four tests with probability 1/4 each.
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Outer. Pick α̃ ∈ 〈ωn1〉, β ∈ 〈ω〉n1 uniformly at random; query p(α̃ · β),
pκ(α̃ · β) and f (`)(α̃, β), f (`)

κ (α̃, β) for every ` ∈ {0, . . . , 7}; accept iff
p(α̃ · β) =

∑7
`=0(α̃ · β)`n0/8 · f (`)(α̃, β) and pκ(κα̃ · β) =

∑7
`=0(κα̃ ·

β)`n0/8 · f (`)
κ (α̃, β).

Inner. Pick ` ∈ {0, . . . , 7}, β ∈ 〈ω〉n1 at random and invoke

V
〈(g(`)|↔

βn0 ,f
(`)|↔β ),π(1,β,`)〉

SRS (F, ωn1 , β, n0/8− 1).

Innerκ. Pick ` ∈ {0, . . . , 7}, β ∈ 〈ω〉n1 at random and invoke

V
〈(g(`)κ |

↔
βn0 ,f

(`)
κ |

↔
β ),π(2,β,`)〉

SRS (F, ωn1 , κβ, n0/8− 1).

Innerc. Pick ` ∈ {0, . . . , 7}, α̃ ∈ 〈ωn1〉 at random and invoke

V〈(g
(`)|lα̃,g

(`)
κ |

l
α̃),π(3,α,`)〉

SRS (F, ωn0 , κn0 , n1/8− 1).

The remaining subsections analyze the performance of this verifier, thus yielding
Theorem 3.4. Specifically, the next subsection analyzes the simple properties including
the query complexity, the randomness/size complexity, and the completeness. The
hard part, the soundness analysis, is addressed in subsection 7.5.

7.4. Basic properties.
Proposition 7.6. V〈(p,pκ),π〉

SRS (F, ω, κ, n/8 − 1) makes at most 32 queries into
p, pκ, π. It tosses at most log2 n+O(log log n) random coins and runs in time poly n.
The size of the proof π is O(n · polylog n).

Proof. The proof is straightforward from the definition. The query complexity is
easy to verify. In the base case, the verifier reads 32 field elements. In the inductive
case, if the verifier chooses to execute the Outer step, then it makes 18 < 32 queries;
else it makes a recursive query to V〈〉SRS which makes 32 queries by induction.

The randomness complexity is similar. In the base case the verifier tosses 0 coins.
In the inductive case, the verifier tosses O(1) coins to determine which step to perform.
If it chooses the outer test, it picks α̃ and β at random with log n + O(1) coins. If
it chooses one of the inner tests, it tosses log

√
n+O(1) coins to determine the inner

call, and then log
√
n + O(log log

√
n) coins in the recursive call. Adding up, we get

a total of log n + O(log log n) coins in all. Notice that all computations are simple
and can be performed in time poly n. Finally, the size of the proof is bounded by
2randomness.

Next we move to the completeness part of the proof. This part is straightforward
given the intuition developed in subsection 7.1. We first generalize Proposition 6.3
and express a univariate polynomial as a sum of bivariate polynomials of low degree.
We then use this to describe a proof π that is accepted with probability 1 when
accompanying an SRS-codeword.

Proposition 7.7. Given positive integers d1, d2, L, and d such that d1 ·d2 ·L ≥ d,
the following holds: For every univariate polynomial P (x) of degree less than d there
exists a sequence of L bivariate polynomial Q(0)(y, z), . . . , Q(L−1)(y, z), of degree less
than d1 in y and d2 in z, such that

P (x) =
L−1∑
`=0

x`·d1Q(`)(x, xL·d1).
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Furthermore, such a sequence is unique if d1 · d2 · L = d.
Proof. Let the ai’s be the coefficients of P ; i.e., P (x) =

∑d−1
i=0 aix

i. Now let

Q(`)(y, z) =
d1−1∑
i=0

d2−1∑
j=0

ai+`·d1+j·d1·Ly
izj ,

where ai is defined to be 0 if i ≥ d. It can be verified by inspection that we have

P (x) =
L−1∑
`=0

x`·d1Q(`)(x, xL·d1).

Uniqueness follows from a counting argument: the set of sequences of polynomials
Q(0), . . . , Q(L−1) forms a vector space of dimension L · d1 · d2 = d, the dimension of
the space of polynomials of degree less than d.

Proposition 7.8 (completeness). If (p, pκ) equal the SRS encoding of some
polynomial P of degree less than n/8, then there exists a proof that causes the SRS
proximity tester to accept with probability one.

Proof. The proof is by induction on n. Let Q(0), . . . , Q(7) be the polynomials as
given by Proposition 7.7 applied to P with integers d1 = n0/8, d2 = n1/8, L = 8, and
d = n/8. Note that we have d1 ·d2 ·L = d, since n0 ·n1 = n. For every ` ∈ {0, . . . , 7}, we
let f (`)(α̃, β) = Q(`)(α̃β, βn0), f (`)

κ (α̃, β) = Q(`)(κα̃β, κn0βn0), g(`)(α̃, β̃) = Q(`)(α̃, β̃),
and g

(`)
κ (α̃, β̃) = Q(`)(α̃, κn0 β̃) for every α̃ ∈ 〈ωn1〉, β ∈ 〈ω〉n1 , and β̃ ∈ 〈ωn0〉.

Note that the above choice of table f (`), f (`)
κ , g(`), g(`)

κ is such that the Outer
test accepts with probability one. Specifically, we have

p(α̃ · β) = P (α̃ · β)

=
∑

`∈{0,...,7}

(α̃ · β)`n0/8Q(`)(α̃β, α̃n0βn0)

=
∑

`∈{0,...,7}

(α̃ · β)`n0/8Q(`)(α̃β, βn0)

=
∑

`∈{0,...,7}

(α̃ · β)`n0/8f (`)(α̃, β).

Similarly we get pκ(κα̃ · β) =
∑7
`=0(κα̃ · β)`n0/8 · f (`)

κ (α̃, β).
Now we describe how to set up the rest of the subproofs π(·,·,·) such that the inner

tests accept. For this part, note that the recursive calls to the SRS proximity verifiers
access implicit input pairs that satisfy the completeness condition on smaller inputs.
Consider, for example, the invocation

V
〈(g(`)|↔

βn0 ,f
(`)|↔β ),π(1,β,`)〉

SRS (F, ωn1 , β, n0/8− 1)

by Inner for some ` ∈ {0, . . . , 7} and β ∈ 〈ω〉n1 . We may relate these implicit inputs
to the polynomial Q(`) as follows: We have g(`)|↔βn0 (α̃) = g(`)(α̃, βn0) = Q(`)(α̃, βn0),
f (`)|↔β (α̃) = f (`)(α̃, β) = Q(α̃ · β, βn0). Thus, if we let P ′(α̃) = Q(`)(α̃, βn0) and ω′ =
ωn1 , then the pair f (`)|↔β , g(`)|↔βn0 is a codeword of the SRS-code SRS(F, ω′, β, n0/8−1)
corresponding to the encoding of P ′, and thus (by induction) there exists a proof
π(1,β,`) that causes the recursive verifier to accept with probability one. Similar rea-
soning shows that the verifier also accepts with probability one when invoking Innerκ
or Innerc.
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7.5. Soundness. We now argue the soundness of the SRS-verifier as follows.
By induction, for most α̃ and β, the functions g(`)|lα̃, g(`)|↔βn0 , g(`)

κ |lα̃, and g
(`)
κ |↔βn0

are close to polynomials of degree roughly
√
n. The bivariate testing lemma, Lemma

6.13, implies that g(`) and g
(`)
κ are very close to some low-degree bivariate polyno-

mials Q(`) and Q
(`)
κ . Furthermore, we will show Q(`) ≡ Q

(`)
κ . Next, we claim the

function f (`)(z, zn0) is close to the function Q(`)(z, zn0) and similarly f (`)
κ is close to

Q(`)(κz, (κz)n0). Finally, we claim that p(z) is close to
∑7
`=0 z

`n0/8 ·Q(`)(z, zn0), i.e.,
p is close to a low-degree univariate polynomial. Similarly pκ is close to the same low-
degree polynomial, where the consistency of p and pκ follows from the equivalence of
Q and Qκ.

Lemma 7.9 (soundness). There exists a constant c such that for every ε the
following holds. If

Pr
[
V〈(p,pκ),π〉

SRS (F, ω, κ, ord(ω)/8− 1) = reject
]
≤ ε,

then (p, pκ) is (clog log ord(ω) · ε)-close to SRS(F, ω, κ, ord(ω)/8− 1).
Proof. Let c0 be as in Lemma 6.13. Let c1 = 128 · c0, c2 = (320 + 2c1), and

c3 = 8c2 + 4. We prove the lemma for c = c23, which is a (large) constant. Note that
the conditions imply c > 1 and c > (2 · (256 + 4c1))2 as will be used later.

We assume the lemma is true by induction for smaller n and in particular for
the recursive calls to the various Inner tests, and we now prove it for n. Assume
clog logn · ε ≤ 1 or else the claim is vacuously true. We use below the fact that
clog logn0 ≤ clog log

√
2n ≤ clog logn− 1

2 for every c ≥ 1 and n ≥ 16.
Denote by εO(α̃, β) the probability that the Outer verifier rejects (p, pκ, π) on

random choice α̃ and β. Let εO denote the expectation of εO(α̃, β) over the choice
of α̃ and β. Similarly let εI(`, β), εκ(`, β), and εc(`, α̃) denote the probability that
Inner, Innerκ, and Innerc reject on random choice `, β, and α̃. Let εI(`), εκ(`),
and εc(`) denote the expectations of these quantities over β and α̃, and let εI , εκ, and
εc denote the expectations over β, α̃, and `. By definition of the tester, we have ε =
1
4 ·(εO + εI + εκ + εc). Since these quantities are nonnegative, we get εO, εI , εκ, εc ≤ 4ε.
Similarly, we have εO(`), εI(`), εκ(`), εc(`) ≤ 32ε for every ` ∈ {0, . . . , 7}.

For ` ∈ {0, . . . , 7}, denote by Q(`)(x, y) the polynomial of degree at most n0/8
in x and n1/8 in y that is closest to g(`) (on the domain 〈ωn1〉 × 〈ωn0〉), where
ties are broken arbitrarily. Similarly let Q(`)

κ be the closest polynomial to g
(`)
κ . Let

P (z) =
∑7
`=0 z

`n0/8 ·Q(`)(z, zn0) and let Pκ(z) =
∑7
`=0 z

`n0/8 ·Q(`)
κ (κz, zn0). We show

below that (p, pκ) is close to the evaluation of P on 〈ω〉 ∪ κ〈ω〉. (Among other facts,
we also show that Pκ(z) ≡ P (κ · z).)

Step 1. The functions Q(`) (and Q
(`)
κ ). By the inductive hypothesis applied to

Inner(`, β), we have that (g(`)|↔βn0 , f
(`)|↔β ) is (clog logn0 · εI(`, β))-close to the SRS

encoding of some degree n0/8 polynomial. Thus g(`)|↔βn0 is at most (2 · clog logn0 ·
εI(`, β))-close to the RS encoding of some degree-n0/8 polynomial. Averaging over
β, we get that g(`) is (2 · clog logn0 · εI(`))-close to some bivariate polynomial of degree
n0/8 in x and arbitrary degree in y. A similar argument based on the Innerc tests
yields that g(`) is (2 · clog logn1 · εc(`))-close to some bivariate polynomial of degree
n1/8 in y and arbitrary degree in x. Now applying Lemma 6.13, we get that g(`) is
close to some polynomial of degree n0/8 in x and n1/8 in y. More specifically, we
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have

δ(n0/8,n1/8)(g(`)) ≤ c0 ·
(
δ(n0/8,∗)(g(`)) + δ(∗,n1/8)(g(`))

)
≤ c0 ·

(
2 · clog logn0 · εI(`) + 2 · clog logn1 · εc(`)

)
≤ 64 · c0

(
clog logn0 + clog logn1

)
· ε

≤ 128 · c0 · clog logn0 · ε.

Letting c1
def= 128 · c0, we have that δ(g(`), Q(`)) ≤ c1 · clog logn0 · ε. A similar argument

shows that δ(g(`)
κ , Q

(`)
κ ) ≤ c1 · clog logn0 · ε.

Step 2. The functions f (`) and f (`)
κ . Next we move to the functions f (`) (for any

` ∈ {0, . . . , 7}) and show that for most α̃, β f (`)(α̃, β) = Q(`)(α̃ ·β, βn0) (and similarly
for most α̃, β, f (`)

κ (α̃, β) = Q
(`)
κ (κ · α̃ · β, βn0).

We first describe the argument informally. Consider a β such that g(`)|↔βn0 and
f (`)|↔β pass the Inner test with high probability and the SRS-codeword correspond
to the encoding of Q(·, βn0). For such β, we have f (`)|↔β (α̃, β) = Q(α̃ · β, βn0) for
most α̃. It remains to make this argument quantitative, and we do so below.

Define a β to be good if the fractional distance between (g(`)|↔βn0 , f
(`)|↔β ) and

the SRS(F, n0/8, ωn1 , β) encoding of Q(`)(·, βn0) is at most 1/8. Let δ(β) denote
the relative distance of f (`)|↔β to the projection of the SRS-codeword nearest to
(g(`)|↔βn0 , f

(`)|↔β ) onto the second half of the coordinates. Note that

Pr
α̃,β

[f (`)(α̃, β) 6= Q(`)(α̃ · β, βn0)]

≤ Eβ [δ(β)|β is good] · Pr
β

[β is good] + Pr
β

[β is not good]

≤ Eβ [δ(β)] + Pr
β

[β is not good].

Note that the first term above is easily estimated as in Step 1. We get Eβ [δ(β)] ≤
(2 · clog logn0 · εI(`)) ≤ 64 · clog logn0 · ε.

Next we describe two sets that cover the case where β is not good. Let S1 be
the set of all β such that the distance of (g(`)|↔βn0 , f

(`)|↔β ) from every SRS-codeword
is more than 1

8 . For every β ∈ S1 note that the εI(`, β) ≥ 1
8clog logn0

. Thus, the
probability that β ∈ S1 is at most 8 · clog logn0 · εI(`) ≤ 256 · clog logn0 · ε. Next, let
S2 be the set of β for which (g(`)|↔βn0 , f

(`)|↔β ) is 1
8 -close to an SRS-codeword, but

the SRS-codeword is not the encoding of Q(`)(·, βn0). For every β ∈ S2, we have
that Q(`)(α̃, βn0) and g(`)(α̃, βn0) disagree for at least 5

8 fraction of the α̃’s (since
Q(`)(·, βn0) and the other SRS-codeword can agree on at most n0/8 values of the α̃’s).
Since the distance between g(`) and Q(`) is at most c1 · clog logn0 · ε, we get that the
probability that β ∈ S2 is at most 8

5 · c1 · c
log logn0 · ε ≤ 2c1 · clog logn0 · ε. Finally, we

note that if β is not good, then β ∈ S1 ∪ S2. Thus we get

Pr
β

[β is not good] ≤ (256 + 2c1) · clog log n0 · ε.

Putting the above together, and recalling c2 = (320+2c1), we get Prα̃,β [f (`)(α̃, β) 6=
Q(`)(α̃ · β, βn0)] ≤ c2 · clog logn0 · ε. Similarly we also get Prα̃,β [f (`)

κ (α̃, β) 6= Q
(`)
κ (κ · α̃ ·

β, βn0)] ≤ c2 · clog logn0 · ε.
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Step 3. The functions p and pκ. Next we move to the functions p and show that
p(z) usually equals P (z) =

∑7
`=0 z

`·n0/8Q(`)(z, zn0) for z ∈ 〈ω〉. Note that 〈ω〉 is in
one-to-one correspondence with {α̃ · β}, where α̃ ∈ 〈ωn1〉 and β ∈ 〈ω〉n1 , and so we
are interested in estimating the probability that

p(α̃ · β) 6=
7∑
`=0

(α̃β)`·n0/8Q(`)(α̃β, βn0).

We consider the following events: For ` ∈ {0, . . . , 7}, let E` be the event that
f (`)(α̃, β) 6= Q(`)(α̃β, βn0). Further, let E′ be the event that p(α̃·β) 6=

∑7
`=0(α̃β)`·n0/8

·f (`)(α̃β, βn0). For any `, we have that E` happens with probability at most c2 ·
clog logn0 · ε. Further, E′ happens with probability at most εO ≤ 4ε ≤ 4 · clog logn0 · ε,
using c ≥ 1. Furthermore, if none of the events E′, {E`}` occurs, then we do have
p(α̃ · β) =

∑7
`=0(α̃β)`·n0/8Q(`)(α̃β, βn0). Thus, recalling c3 = 8c2 + 4, we get that

δ(p, P ) ≤ c3 · clog logn0 · ε. Similarly, we get δ(pκ, Pκ) ≤ c3 · clog logn0 · ε. Combining,
we get that δ((p, pκ), (P, Pκ)) ≤ c3 · clog logn0 · ε. By the definition of c = c23 and the
condition clog logn0 ≤ clog logn− 1

2 , we get that the final proximity above is at most
clog logn · ε, as desired.

All that remains to be shown is that P and Pκ are consistent, i.e., that Pκ(z) =
P (κ · z).

Step 4. Consistency of the κ shifts. We prove this part by showing that for every
`, Q and Qκ are consistent, i.e., Q(`)

κ (x, y) = Q(`)(x, κn0y). This suffices, since we will
then have

Pκ(z) =
∑
`

z`n0/8Q(`)
κ (κz, zn0) =

∑
`

z`n0/8Q(`)(κz, κn0zn0) = P (κz).

Fix ` ∈ {0, . . . , 7}. Define α̃ ∈ 〈ωn1〉 to be good if (g(`)|lα̃, g
(`)
κ |lα̃) is 1/8 close to

some SRS-codeword and g(`)|lα̃ is 1/4 close to the evaluations of Q(`)(α̃, ·), and g(`)
κ |lα̃

is 1/4 close to the evaluations of Q(`)
κ (α̃, ·). It is straightforward to see that if α̃ is

good, then Q
(`)
κ (α̃, y) = Q(`)(α̃, κn0y). Furthermore, if the fraction of good α̃’s is

more than 1/8, then we will have Q(`)
κ (x, y) = Q(`)(x, κn0y) as desired. So it suffices

to bound the probability of α̃ being not good (to be less than 7/8).
The three conditions above can be analyzed in a manner similar to the analysis of

the probability of β not being good in Step 2. Specifically, we have the following: The
probability that (g(`)|lα̃, g

(`)
κ |lα̃) is not 1/8 close to some SRS-codeword is at most 8 ·

clog logn1 ·εc(`) ≤ 256·clog logn0 ·ε. The probability that g(`)|lα̃ is 1/8 close to some SRS-
codeword and not 1/4 close to the evaluations of Q(`)(α̃, ·) is at most 2 ·c1 ·clog logn0 ·ε.
Finally, the probability that g(`)

κ |lα̃ is 1/8 close to some SRS-codeword and not 1/4
close to the evaluations of Q(`)

κ (α̃, ·) is at most 2 ·c1 ·clog logn0 ·ε. Combining the above
we get that the probability that α̃ is not good is at most (256 + 4 · c1) · clog logn0 · ε. In
turn the final quantity is at most (256+4 ·c1) ·clog logn− 1

2 · ε ≤ 1
2c

log logn · ε ≤ 1
2 <

7
8 as

desired. The first inequality follows from the fact that we have c > (2 · (256 + 4 · c1))2.
This concludes the proof that Q and Qκ and hence P and Pκ are consistent. Combined
with Step 3, this concludes the soundness analysis.

7.6. Proof of Theorem 3.4.
Proof of smooth SRS PCPP Theorem 7.3 (for special case of d = n/8 − 1). The

verifier is formally defined in subsection 7.3. Its query complexity, randomness, and
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proof length are given by Proposition 7.6. Its completeness is asserted by Proposition
7.8. Its soundness is analyzed in Lemma 7.9.

Proof of Theorem 3.2. The statement for d = n/8 − 1 follows from Theorem 7.3
by setting κ = 1. The generalization to arbitrary degree d follows from Proposition
6.14.

7.7. Proving Theorem 2.2 using smooth RS-codes. In this section we
briefly outline the modifications needed to prove Theorem 2.2 using PCPPs for smooth
RS-codes (Theorem 3.4). Our motivation is to present a proof of Theorem 2.2 in as
general a setting as possible and in particular show that we do not require the un-
derlying field to be of characteristic 2. Our exposition follows that of subsection
3.3.1.

Our first challenge is to show the existence and abundance of fields with a multi-
plicative subgroup of order that is a power of 2. A second problem is that we cannot
embed de Bruijn graphs in an affine graph of constant degree (Proposition 5.11), be-
cause our fields are not of characteristic 2. To solve this problem we embed the de
Bruijn graph in an affine graph of logarithmic degree. Thus, we end with a weaker
version of Theorem 3.7 and we need to prove quasilinear PCPs for this weaker version,
using Theorem 3.4. We now elaborate on each of these three issues.

Prime fields with 2-smooth subgroups. Theorem 3.4 holds only for Reed–Solomon
codes RS(F, 〈ω〉, d), where ord(ω) is a power of 2. The following (special case of a)
theorem due to Linnik [33] shows that there is a polynomial time computable sequence
{Fn}n∈N such that n ≤ |Fn| ≤ nO(1) and F∗n has an element ω the order of which is a
power of 2.

Theorem 7.10 (Linnik’s theorem [33]). There exists a constant 1 < L < 6 such
that for any sufficiently large d, there exists a prime of size ≤ dL such that d|(p−1).

Remark 7.11. The general statement of Linnik’s theorem says that there exists
a universal constant L such that for every pair of integers 0 < a < n, there exists a
prime p < nL such that n|(p− a). The case stated above is derived from the general
statement by setting a = 1.

Suppose we wish to find a field Fn of size nO(1) that has an element ω of order
Θ(n) that is a power of 2. Let d be a power of 2 such that n < d ≤ O(n). Let Fn be the
prime field Zp for p as in Linnik’s theorem, Theorem 7.10. We have |F∗n| = p−1 = k ·d.
Let σ be a generator of F∗ and set ω = σk. Then ord(ω) = Θ(n) is a power of 2.
Notice that p and ω can be found in polynomial time (in n) by an exhaustive search.
Finally, each element of Fn is represented by O(log n) bits.

Algebraic constraint satisfaction problems for PAIR-SMOOTH-RS. We now
sketch a proof of a weaker version of Theorem 3.7. The weakness of this version
refers to the fact that the number of affine functions is not constant but polyloga-
rithmic. However, we will be able to prove this theorem without relying on fields of
characteristic 2. Rather, we need our field only to be sufficiently large.

Theorem 7.12 (ALGEBRAIC-CSP is NP-complete (weak version)). There
exists an integer d such that for any proper complexity function t : N+ → N+ and
L ∈ NTIME(t(n)), the following hold.

1. L is reducible to ALGEBRAIC-CSP in time poly t(n).
2. Given any field F of size Ω(t(n) polylog t(n)), an instance of L of size n is

reduced to an instance of ALGEBRAIC-CSPpolylogn,d over F.
Proof. The reduction underlying Theorem 3.7 and described in subsection 5.2

relied on the existence of a homomorphism of the wrapped de Bruijn graph Bk (see
Definition 5.5) into an affine graph (as per Definition 5.9) of constant degree over a
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field of characteristic 2. This homomorphism, in turn, relies on the additive structure
of the field (see the proof of Proposition 5.11).

As in the proof of Theorem 5.4, we will assume only that the underlying field is
sufficiently large. We use the existence of an efficiently computable homomorphism of
Bk into the hypercube of dimension k+O(log k) (for details see [31]). Next we notice
the hypercube of dimension k′ can be embedded into an affine graph over any finite
field F, |F| > 2k

′
. Indeed, fix ω ∈ F∗ with ord(ω) ≥ 2k

′
. Consider the affine graph G

over vertex set 〈ω〉 and edge set generated by {ω(−1)b·2`}`∈[k′],b∈{0,1}. To see that the
hypercube can be embedded into G, let ī ∈ {0, . . . , 2k′ − 1} denote the integer with
binary representation i ∈ {0, 1}k′ . Associate with i the element ωī ∈ 〈ω〉. We claim
that the elements associated with i and i + e` (in the hypercube) are adjacent in G.
Indeed, let b denote the `th bit of i and notice that i is associated with ωī whereas
i+ e` is associated with ωī+(−1)b2` = ω(−1)b·2` · ωī, so the corresponding vertices are
adjacent in G.

From here on we follow the proof of Theorem 3.7, using the above defined affine
graph G of degree polylog n instead of the constant degree graph used there. All other
details are identical. Thus, our reduction results in an instance of ALGEBRAIC-
CSPpolylogn,O(1).

Quasilinear PCPs via PCPPs for smooth RS-codes. We now provide efficient
PCPs for the instances of ALGEBRAIC-CSP given by Theorem 7.12 and thus pro-
vide an alternative proof of Theorem 2.2.

Proof of quasilinear PCP Theorem 2.2. Let ψ be an instance of L ∈ NTIME(t(n))
of size n. Using Theorem 7.12 we reduce ψ to an instance φ = {F, {Aff1, . . . ,Affk},
H,C} of ALGEBRAIC-CSPk,d of size n′ = n · polylog n, where k = polylog n, d =
O(1) and F is the smallest prime field containing an element ω with 100kdn′ <
ord(ω) ≤ 200kdn′, where ord(ω) is a power of 2. Linnik’s theorem, Theorem 7.10,
implies that F and ω exist and can be found in polynomial time (by an exhaustive
search).

From here on our proof is essentially identical to the proof presented in subsec-
tion 3.3.1 and we use the notation given there. Notice that since k = polylog n,
the first subtest invokes an RS-verifier with proximity parameter 1/ polylog n. How-
ever, Proposition 2.9 implies that the query complexity increases only by a factor of
polylog n. All other details are exactly as in subsection 3.3.1, and this completes the
alternative proof of Theorem 2.2.
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