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Abstract. We develop a one-dimensional Eulerian model suitable for analysing the behaviour
of viscous fluid drops falling from rest from an upper boundary. The method allows examination of
development and behaviour from early time, when a drop and filament begin to form, out to large
times when the bulk of the fluid forms a drop at the bottom of a long thin filament which connects
it with the upper boundary. This model overcomes problems seen in Lagrangian models, caused by
excessive stretching of grid elements, and enables a better examination of the thin fluid filament.
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1. Introduction. Formation of drops via extensional flow and break-off has
been much studied (see the review article by Eggers [1]), motivated by a wide range
of applications such as ink-jet printing, spinning and drawing of polymer or glass
fibres, glass blowing and blow-moulding in the manufacture of containers, light bulbs
and glass tubing, rheological measurement by fibre extension and fibre spinning for
polymers and glasses [2, 3, 4, 5]. Considerable progress has been made towards the
understanding of the breakup of a thin filament into drops, although the exact details
of the final stages of breakup are yet to be resolved. However, the evolution of the drop
and filament from some initial configuration, and the influence of initial conditions on
the final breakup, is still relatively unexplored and has been the focus of our attention
for some time [6, 7]. Some work by others on this topic includes [8, 9].

The problem of interest is a drop of very viscous fluid hanging beneath a solid
wall/boundary and extending under gravity, similar to honey dripping from an up-
turned spoon. Analyses with and without inertia have been done and compared by
the present authors [6, 7]. Surface tension was neglected in those studies, on the basis
that a mean diameter ` =

√
R0L0 of the drop is large compared to the meniscus

scale
√

γ/(ρg), or equivalently that the Bond number Bo = ρg`2/γ is large. Here g
is the gravitational acceleration, ρ, γ are respectively the density and surface tension
coefficient of the fluid, R0 is a length scale for the drop’s cross-section (e.g. the radius
of the drop at the wall) and L0 is the initial length of the drop. As the fluid filament
extends and gets thinner, this neglect of surface tension may become less justifiable,
and an examination of the effect of surface tension is desirable.

Because of the slender geometries involved, one-dimensional models are common
in analysis of filament breakup [10, 11, 12, 13, 14, 15, 16]. However, the development of
a drop and filament may also involve non-slender geometries at early times, requiring
numerical solution of the full Navier-Stokes equations. Our previous work [6, 7] has
involved both one-dimensional models and numerical solution of the Navier-Stokes
equations for axisymmetric drops and 2D sheets.

For all of our work, a Lagrangian reference frame has been used, with grids
that move with moving fluid elements. However, as the filament thins and surface
tension potentially becomes important, Lagrangian numerics begin to fail due to the
stretching of the grid. For example, in finite-element simulations of the full Navier-
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Stokes equations [7], mesh elements in and near the filament region become excessively
elongated or distorted, leading to loss of accuracy. Similarly, in one-dimensional
models the grid points become sparse in the filament region while congregating in the
main drop, so that we lose the ability to examine the development of the filament.
Hence, if we are to better investigate the filament evolution, including possible effects
of surface tension, we must modify our methods.

We have therefore developed a one-dimensional model in an Eulerian reference
frame, where the Lagrangian coordinate (a fluid particle label equal to the initial
distance ξ from the wall) is sought as a function of time t and that particle’s physical
distance x from the wall. This model may be derived directly from the Navier-Stokes
and continuity equations, as described below. It may also be obtained (in the absence
of surface tension) by a transformation of our previous one-dimensional Lagrangian
model [7] for the cross-sectional area A as a function of time t and Lagrangian coor-
dinate ξ, which will also be outlined here.

The resulting PDE for ξ = Z(x, t) is formally of higher order in space than the
original PDE for A(ξ, t). Also, while the original problem could be solved in a fixed
spatial domain 0 < ξ < L0 where L0 is the initial drop length, the transformation
results in a moving boundary problem in the domain 0 < x < L(t) where the actual
drop length L(t) must be determined as part of the problem. Both of these aspects
mean that the problem in physical coordinates is considerably harder to solve than
that in Lagrangian coordinates, but it has the major benefit that grid elements do
not become stretched over time and is therefore worth pursuing in order to better
understand the filament behaviour.

The increased complexity of the problem is fundamentally a result of the transfor-
mation employed, rather than arising from inclusion of surface tension, although the
latter does add a further element of difficulty. Therefore, in this paper we explore the
new model and its solution in the absence of surface tension, which will be considered
in a future paper. We will, however, derive here the equations with surface tension
included.

2. A one-dimensional Eulerian model. For an axisymmetric column of in-
compressible fluid, a one-dimensional lubrication approximation to the Navier-Stokes
equations yields (see, for example, Eggers [13] or Senchenko and Bohr [16])

∂u

∂t
+ u

∂u

∂x
= g − γ

ρ

∂K

∂x
+

ν∗

h2

∂

∂x

(
h2 ∂u

∂x

)
, (2.1)

while the continuity equation becomes

(h2)t + (uh2)x = 0 , (2.2)

where subscripts denote derivatives, ν∗ = 3µ/ρ is the elongational (Trouton) kine-
matic viscosity [17] of a fluid with shear viscosity µ and density ρ, g is gravitational
acceleration in the downwards (positive) direction, γ is the coefficient of surface ten-
sion, u(x, t) is the downward velocity of the fluid at position x and time t, h(x, t) is
the radius of the drop and K(x, t) is the curvature of the drop, given by

K =
1√

1 + (hx)2

[
1

h
− hxx

1 + (hx)2

]
. (2.3)

The cross-sectional area of the drop is given by A = πh2, so equation (2.2) can
be rewritten as

At + uAx = −Aux (2.4)
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and substituted into (2.1) to obtain

ut + uux = g − γ

ρ
Kx − ν∗

A

∂

∂x

(
∂A

∂t
+ u

∂A

∂x

)

or

Du

Dt
= g − γ

ρ
Kx − ν∗

A

∂

∂x

DA

Dt
, (2.5)

where D/Dt = ∂/∂t + u ∂/∂x denotes the material time derivative.
In a Lagrangian reference frame [6, 7, 12] we let x = X(ξ, t), where ξ is a fluid-

particle label such that x = ξ at t = 0. The initial drop geometry is assumed
to have a cross-sectional area distribution given by some function A0(ξ). That is,
A(ξ, 0) = A0(ξ), 0 ≤ ξ ≤ L0, where A(ξ, t) is the cross-sectional area at label ξ and
time t, and L0 is the initial drop length. Conservation of mass demands [7]

A
∂X

∂ξ
= A0

or, on integration,

X(ξ, t) =

∫ ξ

0

A0(ξ1)

A(ξ1, t)
dξ1 . (2.6)

Now, defining ξ = Z(x, t) we have

A = A0Zx, u = Xt = −Zt

Zx
and

∂A0

∂x
= A′

0Zx,

where primes denote differentiation with respect to ξ. Substituting for A and u in
(2.5) gives

− D

Dt

(
Zt

Zx

)
= g − γ

ρ
Kx − ν∗

A0Zx

∂

∂x

[
A0

D

Dt
(Zx)

]

= g − γ

ρ
Kx − ν∗

[
A′

0

A0

D

Dt
(Zx) +

1

Zx

∂

∂x

(
D

Dt
(Zx)

)]

= g − γ

ρ
Kx − ν∗

D

Dt

(
A′

0

A0
Zx +

Zxx

Zx

)
, (2.7)

with

D

Dt
=

∂

∂t
− Zt

Zx

∂

∂x
.

The transformation to the dependent variable Z(x, t) has yielded a PDE (2.7)
which is second order in time and third order in space, whereas the Navier-Stokes
equation (2.1) is first order in time and second order in space. We must also solve
for the length of the drop L(t) = X(L0, t), which is increasing with time. Thus, to
solve (2.7) we need two initial conditions and four boundary conditions. One initial
condition is obtained from the definition of the Lagrangian coordinate such that ξ = x
at t = 0, so that

Z(x, 0) = x. (2.8)
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The other comes from the condition that the flow starts from rest, so u(x, 0) = 0 or

Zt(x, 0) = 0. (2.9)

With respect to boundary conditions, two (one at each end) come from the definition
of the Lagrangian coordinate such that x = 0 at ξ = 0 and x = L(t) at ξ = L0, giving

Z(0, t) = 0, (2.10)

Z(L(t), t) = L0. (2.11)

Since the drop is falling from under a solid plane boundary where the normal velocity
is zero for all time, i.e. u = 0 at x = 0, then Du/Dt = 0 at x = 0 and hence, from
equation (2.7),

0 = g − γ

ρ
Kx − ν∗

D

Dt

(
A′

0

A0
Zx +

Zxx

Zx

)
at x = 0. (2.12)

We require a further boundary condition which comes from a balance between viscous
stresses and surface tension at the bottom of the drop x = L(t), namely

∂

∂x

(
Zt

Zx

)
= −γ

µ
K or, equivalently,

D

Dt
(Zx) = −γ

µ
KZx. (2.13)

Equation (2.7) subject to initial and boundary conditions (2.8)-(2.13) describes
the fall of a drop of viscous fluid from underneath a solid boundary, starting from
a known initial configuration. Gravitational, viscous, inertial and surface tension
effects are all included. The model derived involves the fluid-particle label ξ = Z(x, t)
as the dependent variable, with the physical space coordinate x and time t as the
independent variables.

For zero surface tension (γ = 0), equation (2.7) simplifies considerably, by inte-
gration with respect to the material time derivative. With non-zero surface tension
(γ 6= 0) such a procedure is computationally problematic due to the necessity of
time-integrating the surface-tension term while holding the particle label ξ = Z(x, t)
constant. We leave consideration of this matter to a future paper and, from here on,
neglect surface tension (i.e. set γ = 0). Integration with respect to t at fixed ξ = Z,
subject to Z = x and Zt = 0 at t = 0, then yields

−Zt

Zx
= gt − ν∗

(
A′

0

A0
(Zx − 1) +

Zxx

Zx

)

or

Zt = ν∗Zxx − gtZx − ν∗
A′

0(Z)

A0(Z)
Zx(1 − Zx). (2.14)

Equation (2.14) is in general a non-linear PDE which, like the Navier-Stokes equation
(2.1), is first order in time and second order in space. It is worth noting in passing that
in the special case of an initially-cylindrical drop where A0 = constant, it becomes
linear, and in the further special case where gravity can be neglected (such as in a
liquid bridge problem [18]), it reduces to the ordinary linear heat-conduction equation,
with diffusivity ν∗.
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The appropriate initial and boundary conditions are

Z(x, 0) = x at t = 0,
Z(0, t) = 0 at x = 0,

Z(L(t), t) = L0 at x = L(t),
Zx(L(t), t) = 1 at x = L(t).

(2.15)

Note that we no longer need boundary condition (2.12) which, in integrated form is
equivalent to u = 0 at x = 0, and which is automatically satisfied by demanding
Z(0, t) = 0. Also, with γ = 0, (2.13) can be integrated with respect to the material
time derivative to give Zx = 1 at x = L(t) as we have in (2.15).

The Lagrangian equivalent to (2.14) in terms of the cross-sectional area A(ξ, t)
as a function of Lagrangian coordinate ξ and time t is readily (by manipulation of
(2.14)) shown to be

u = gt − ν∗

A0

∂

∂ξ
(A − A0).

Differentiating with respect to ξ, using (2.6) and rearranging gives

∂A

∂t
= ν∗

A2

A0

∂

∂ξ

(
1

A0

∂

∂ξ
(A − A0)

)
, 0 ≤ ξ ≤ L0. (2.16)

The corresponding initial and boundary conditions are

A(ξ, 0) = A0(ξ),
∂

∂ξ
(A − A0)(0, t) =

gt

ν∗
A0(0), A(L0, t) = A0(L0). (2.17)

The Lagrangian model given by (2.16) and (2.17) was derived directly in [7] by bal-
ancing viscous and gravitational forces; the inertialess version was considered in [6].
Comparison between solutions to these models and those for the new Eulerian model
of present interest, (2.14), (2.15), will be given below. We note that the Eulerian
model involves gravity explicitly in the PDE (2.14), whereas the Lagrangian model
involves gravity only in a boundary condition at ξ = 0 (2.17).

3. Eulerian-model solution. For the remainder of this paper, we will be pri-
marily interested in initially paraboloidal slender drops, given in Lagrangian coordi-
nates by A0(ξ) = A0(0)(1 − ξ/L0) with small aspect ratio αr =

√
A0(0)/L0 � 1, as

considered in [7].
Defining dimensionless variables (denoted by bars)

A0(ξ) =
A0(ξ)

A0(0)
, ξ = Z =

ξ

L0
=

Z

L0
, x =

x

L0
, t =

gL0

ν∗
t, (3.1)

the dimensionless form of (2.14) for the initially paraboloidal drop A0(Z) = 1 − Z is
(after removing the bars)

Re Zt = Zxx − tZx +
Zx

1 − Z
[1 − Zx], (3.2)

with the Reynolds number Re given by

Re =
gL3

0

ν∗2
.
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The initial and boundary conditions (2.15) become

Z(x, 0) = x, Z(0, t) = 0, Z(L(t), t) = 1 and Zx(L(t), t) = 1. (3.3)

Equation (3.2) subject to (3.3) is most easily solved using the explicit forward-
time-centred-space finite difference method. Setting the time step ∆t and spatial step
∆x, we approximate (3.2) in the usual manner by

Re
Zj+1

i − Zj
i

∆t
=

Zj
i+1 − 2Zj

i + Zj
i−1

∆x2
− t

Zj
i+1 − Zj

i−1

2∆x

+
1

1 − Zj
i

Zj
i+1 − Zj

i−1

2∆x

[
1 −

Zj
i+1 − Zj

i−1

2∆x

]
, (3.4)

where Zj
i = Z(xi, tj) is the value of Z(x, t) at the jth time step and the ith grid point.

For numerical stability, we must ensure that the diffusion number ∆t/Re(∆x)2 < 0.5.
The initial and wall boundary conditions are easily specified by setting Z0

i = i∆x

and Zj
0 = 0. However, the boundary conditions at the free end are not quite so

straightforward to implement, due to the moving boundary. At each time step, the
drop becomes longer and some of the drop (at the bottom) will move beyond the
current computational domain. Hence we need to extend the grid to the new position
of the bottom of the drop.

The most obvious and generally applicable way to do this is by a linear extrapo-
lation from the bottom-most known grid point, using the boundary condition Zx = 1.
Specifically if xNj

is the grid point at the bottom of the computational grid at the
jth time step, then forward differencing in space yields

Zx(xNj
, tj) =

Zj
Nj+1 − Zj

Nj

∆x
= 1 or Zj

Nj+1 = Zj
Nj

+ ∆x.

This expression for Zj
Nj+1 is substituted into (3.4) so as to compute Zj+1

Nj
. Then we

compute Zj+1
Nj+k = Zj+1

Nj+k−1 + ∆x, k = 1, 2, . . ., stopping when Zj+1
Nj+k > 1. This

method can be applied for any arbitrary initial drop shape, but because the boundary
condition Zx = 1 is, strictly, applied over a small region at the bottom of the drop,
and not just at x = L(t), it tends to result in a reduction in the overall length of the
drop. However, typically, only one or two points are added to the grid in this manner
and accuracy improves as ∆x is decreased.

An alternative method, is to extrapolate the bottom of the drop using the solu-
tion from the corresponding Lagrangian model neglecting inertia. Earlier work [6, 7]
has shown that, with neglect of surface tension, the drop shape very near to the
bottom is given quite accurately by the inertialess solution. This is because in early
time accelerations are very small and Stokes flow solutions are applicable; at later
times, the main drop is essentially in free fall and (with neglect of surface tension)
does not change in shape. Furthermore, for some initial configurations, including the
initially paraboloidal drop considered here, we can obtain an exact analytic solution
to the Lagrangian model neglecting inertia and use this to assign appropriate values
of Z(x, t) to the new grid points. Specifically, using (3.1), the dimensionless form of
the Lagrangian PDE (2.16) is (after removing the bars)

Re
∂A

∂t
=

A2

A0

∂

∂ξ

(
1

A0

∂

∂ξ
(A − A0)

)
, 0 ≤ ξ ≤ 1, (3.5)
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with initial and boundary conditions

A(ξ, 0) = A0(ξ),
∂

∂ξ
(A − A0)(0, t) = t, A(1, t) = A0(1, t). (3.6)

In the inertialess limit (Re = 0) this has the explicit solution

A(ξ, t) = A0(ξ) − tV (ξ), V (ξ) =

∫ 1

ξ

A0(ξ1) dξ1. (3.7)

As discussed in Stokes et. al. [6], the cross-sectional area of the drop vanishes at
the position ξ = ξ∗ such that t = t∗ = A0(ξ∗)/V (ξ∗) is a minimum, so that the drop
formally breaks with A(ξ∗, t∗) = 0. The time t∗ is the “crisis” time; at this time
the length of the drop, given by (2.6) with ξ = 1, formally becomes infinite in this
inertialess approximation. No solution exists for t > t∗, i.e. we have a finite-time blow
up at the crisis time t∗. However, for larger times t > t∗ the main drop is effectively
falling as a solid body, and in the absence of surface tension it retains the same shape
given by (3.7) with t = t∗.

For the initially paraboloidal drop A0(ξ) = 1 − ξ, equation (3.7) becomes

A(ξ, t) = (1 − ξ)

(
1 − 1

2
t(1 − ξ)

)
, (3.8)

from which we see that ξ∗ = 0 and t∗ = 2, i.e. the drop breaks at the wall at the
crisis time t = 2. Hence, for all t ≥ 2,

A(ξ) = ξ(1 − ξ) (3.9)

which is a solution to equation (3.5). It is readily verified using Zx = A/A0 that
(3.8) satisfies the condition Zx = 1 at x = L(t) (i.e. ξ = 1) for all t ≤ 2. Hence
we may use (3.8) for t < 2 and (3.9) for t ≥ 2 with the present Eulerian model to
extrapolate the bottom of the drop, as necessary, beyond the current computational
domain. Figure 3.1(a) compares the drop shape at t = 1.5 given by the inertialess
solution (3.8) and as found by solving (3.5) with Reynolds number Re = 0.1 using
the implicit backward-time centred-space finite-difference method; also shown is the
large- (i.e. crisis) time inertialess solution (3.9) which is indistinguishable from the
solution to (3.5) at Re = 0.1, t = 4. Figure 3.1(b) shows the percentage relative
difference between solutions to (3.5) at Reynolds number Re = 0.1 and the inertialess
solution at different times. At the very bottom of the drop, the relative difference is
much less than 1%. Thus, the inertialess solution is an accurate representation of the
very bottom of the drop over all time, and can be used to accommodate the moving
boundary condition as proposed.

For the paraboloidal drop of interest here, the extrapolation is performed by
substituting A0 = 1 − Z, and A(Z, t) given by (3.8) for t < 2 or (3.9) for t ≥ 2, into
Zx = A/A0 and integrating, yielding

Z(x, t) =

{
1 − 2

t
+ c(t) ext/2 for 0 < t < 2,

c(t) ex for t ≥ 2.
(3.10)

For a computational domain of Nj + 1 gridpoints x0, x1, . . . , xNj
at the jth time

step, we compute Zj+1
i , i = 1, 2, . . . , Nj − 1 using (3.4). We then solve for the value
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Fig. 3.1. (a) Drop shape as a function of distance L(t) − x from the bottom of the drop.
Inertialess solution (3.8) at t = 1.5 (dashed); solution to the Lagrangian PDE (3.5) at t = 1.5
(dotted) and t = 4.0 (solid); the inertialess large-time solution (3.9) is indistinguishable from the
solid curve. (b) Percentage relative difference between the solution to the Lagrangian PDE (3.5)
and the inertialess solution (3.8) for t < 2 or (3.9) for t ≥ 2. The percentage relative difference
is calculated as 100 × (AL − AI)/AI where AL is the calculated solution to (3.5) and AI is the
inertialess solution (3.8) or (3.9). (Re = 0.1, ∆ξ = 10−3, ∆t = 10−3).

of the unknown function of time c(t) at time tj+1 using the just computed value

Zj+1
Nj−1 = Z(xNj−1, tj+1) and equation (3.10). The computed value of c(tj+1) is then

used in (3.10) to calculate values of Zj+1
Nj+k, k = 0, 1, . . ., stopping when Zj+1

Nj+k > 1,
so extending the computational domain to Nj+1 grid points. To calculate the actual
position of the bottom of the drop, we can interpolate between the bottom-most two
grid points Zj+1

Nj+1−1 < 1 and Zj+1
Nj+1

> 1, to estimate the value of x for which Z = 1.

Having determined the Lagrangian coordinate Z(x, t) over the new, extended,
computational domain, the actual shape of the drop can be calculated via R =

√
A =√

A0Zx.

4. Results and comparison between Eulerian and Lagrangian models.

The numerical solution to equation (3.2) for the particle label Z(x, t) as a function of
physical space and time is shown, for Reynolds number Re = 0.1, in Figure 4.1. The
growth of the computational domain as a result of the moving boundary at Z = 1
can be clearly seen.

The axisymmetric drop shape is shown in Figure 4.2(a), alongside drop shapes
from the numerical solution to the Lagrangian equation (3.5), Figure 4.2(b). The solu-
tion to equation (3.5) was calculated using the implicit backward-time-centred-space
finite-difference method. The two different models produce the same drop shapes with
the same overall length; however there are some differences to be highlighted.

Firstly, for times t & 2.6 the computed solutions to the Lagrangian model (Figure
4.2(b)) appear to move away from the wall. This is due to stretching of the grid and
a consequent loss of gridpoints in the filament region and accumulation of gridpoints
in the main drop below the filament, as seen in Figure 4.3(b). The fluid particle that
is initially a distance x = ∆ξ from the wall (i.e. the closest point to the wall for which
we calculate A(ξ, t)), falls ever downwards so that there is a continually lengthening
region in physical space, which is essentially the fluid filament connecting the drop to
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Fig. 4.1. Solution to PDE (3.2) for Z(x, t), with Re = 0.1, at times t = 0, 0.1, . . . , 3.9, 4.0.
∆x = 10−2, ∆t = 4 × 10−6.

the wall, about which we know virtually nothing. Unfortunately, it is in this filament
region that our greatest interest lies, since this is where the drop will eventually
break. While decreasing the grid spacing near the wall will extend the time over
which we have near complete information, there will always come a time (soon after
the crisis time t∗ of the inertialess theory, when accelerations approach gravitational
acceleration) when the grid becomes too stretched in the filament region. This loss
of information in the filament region is completely overcome with the Eulerian model
(Figure 4.2) because gridpoints are fixed in space and the grid constantly extended
as the drop length increases. This leads to a uniform spacing of gridpoints over the
full length of the drop as seen in Figure 4.3(a). The greater knowledge of the filament
region that results from the Eulerian model will better enable a future study of the
effect of surface tension on filament breakup and drop pinch-off.

A second point of difference between the Eulerian and Lagrangian models is with
respect to the behaviour near the wall boundary at x = ξ = 0. At this boundary, the
Lagrangian boundary condition (3.6) for the initially paraboloidal drop is

∂A

∂ξ
(0, t) + 1 = t. (4.1)

For the Lagrangian model it is a simple matter to check that this boundary condition
is indeed satisfied, by computing Aξ(0, t) using the forward-space finite-difference
formula, i.e.

Aξ(0, t) =
A(∆ξ, t) − A(0, t)

∆ξ
.

The value of Aξ(0, t) + 1 so computed is plotted against time t in Figure 4.4 (solid
curve). The wall boundary condition is satisfied until t ≈ 2.0, and then begins to
move away from it. At t ≈ 2.4 there is a rapid deviation from the correct solution as
the value of Aξ(0, t) decreases and appears to approach a constant unit value. This
highlights the fact that the Lagrangian solution cannot be relied upon at large times
when the grid becomes excessively stretched in physical space.
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Fig. 4.2. Drop shapes for Re = 0.1 at times t = 0, 0.2, . . . , 3.8, 4.0. (a) Shape calculated using
Eulerian framework, equation (3.2) (∆x = 10−2, ∆t = 4. × 10−6). (b) Shape calculated using
Lagrangian framework, equation (3.5) (∆ξ = 10−3, ∆t = 10−3).

The equivalent condition on Aξ(0, t) for the Eulerian model is obtained by differ-
entiating A = A0Zx with respect to ξ, i.e. (for the initially paraboloidal drop)

Aξ = A′

0Zx +
A0Zxx

Zx

= −Zx + (1 − Z)
Zxx

Zx
.

The slope, Aξ at the wall can thus be found from the calculated values of Z(0, t), Z(∆x, t)
and Z(2∆x, t) using first-order forward-space finite-difference formulae for Zx and
Zxx, i.e.

Zx(0, t) =
Z(∆x, t) − Z(0, t)

∆x
and Zxx(0, t) =

Z(2∆x, t) − 2Z(∆x, t) + Z(0, t)

∆x2
.

Figure 4.4 (dashed line) shows that Aξ + 1 ∼ t for times well beyond t = 2.4, i.e.
the wall boundary condition (4.1) is satisfied. Thus, we see that, for large times, the
solution obtained from the Eulerian model is more reliable than that obtained from
the Lagrangian model, especially in the filament region.

This is also shown by Figures 4.5 and 4.6. Figure 4.5 shows the relative differences
between the inertialess prediction (3.8) of the drop/filament radius (R =

√
A) and

solutions at Re = 0.1 to the Lagrangian and Eulerian models, as a function of physical
distance x from the upper wall boundary, at time t = 1.5 before the crisis time of
inertialess theory. There is excellent agreement between the Lagrangian and Eulerian
models at this time, with a difference only visible at the very bottom of the drop.
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Fig. 4.3. Comparison of Lagrangian and Eulerian solutions methods at t = 3.4. Each figure
has approximately 260 grid points. (a) Drop shape calculated using the Eulerian model (3.2), (3.3)
(∆x = 5 × 10−2, ∆t = 10−4). (b) Drop shape calculated using the Lagrangian model (3.5), (3.6)
(∆x = 1/260, ∆t = 10−3). The extra grid points in the filament region of the Eulerian model can
be clearly seen.
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Fig. 4.4. The accuracy of the Lagrangian and Eulerian models as indicated by the wall boundary
condition (3.6)2. For an initially paraboloidal drop we require Aξ +1 ∼ t. This condition is satisfied
by the Eulerian model, but not the Lagrangian model.
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Fig. 4.5. Percentage relative differences at t = 1.5 between the inertialess radius
√

AI with
AI given by (3.8), and Lagrangian and Eulerian solutions with Re = 0.1. The difference is given
by 100 × (

√
A −

√
AI)/

√
AI where A denotes the Lagrangian solution (solid), the Eulerian solution

with extension of the computational domain using the inertialess solution at crisis time (dashed),
and the Eulerian solution with extension of the computational domain using the forward-difference
representation of Zx(L(t), t) = 1 (dotted).

Figure 4.6 gives the same comparisons but at time t = 4, well after the crisis time of
inertialess theory. Now we see considerably more difference between the Lagrangian
and Eulerian solutions, which is due to error in the Lagrangian solution resulting from
an excessively stretched grid. Note also that grid stretching limits our comparison to
the bottom third of the drop where the Lagrangian solution is available; in the region
0 ≤ x < 16 no information is available from the Lagrangian solution due to a lack of
gridpoints.

For interest, Figures 4.5 and 4.6 also show results for the Eulerian solution ob-
tained using the finite-difference approximation to the boundary condition Zx = 1 at
x = L(t), discussed earlier as an alternative to pasting of the inertialess solution to the
bottom of the drop. This differs from the other curves by only about 0.1% over most
of the drop length, with the difference increasing to about 1% at the very bottom;
note that the overall drop length is slightly less, as mentioned earlier, although it is
not noticable with the grid size used here or at the scales shown.

It is interesting to note that the time at which the numerical solution to (3.5)
begins to become inaccurate in the filament region (as indicated by Figure 4.4) is
approximately equal to the crisis time of inertialess theory, as predicted in [6] (t∗ = 2),
when accelerations increase rapidly up to gravitational acceleration. This correlation
between the inertialess crisis time and the time at which the Lagrangian solution
becomes inaccurate is also observed with other initial drop shapes.

5. Discussion and conclusions. The major benefit of reformulating the extensional-
flow problem using an Eulerian framework is that, in contrast to other one-dimensional
Lagrangian models, we now include many grid points in the filament region. This
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Fig. 4.6. As for Figure 4.5 but at time t = 4 with AI given by the inertialess large-time solution
(3.9).

greater resolution enables us to better study the dynamics of the developing filament.
In particular we are now much better equipped to investigate the effects of surface
tension on the filament, the drop shape and pinch-off of the main drop by solving
equation (2.7) with γ 6= 0. This will be considered in a future paper.

Meanwhile, reformulating the problem also enables us to address a question pre-
viously posed in Stokes and Tuck [7]. In that paper, we saw that at small Reynolds
numbers and large times, the main part of the drop is indistinguishable from a solid
object that fell from rest at an apparent time t0. Identification of this apparent time
with the crisis time of inertialess theory leads to the conclusion that the large-time
drop shape is the drop shape obtained at the crisis time when neglecting inertia. Con-
versely, it can be shown that equating the large-time drop shape at small Reynolds
numbers with the drop shape at the crisis time of inertialess theory, which is strongly
supported by the numerical solutions (both here and in [7]), implies that the apparent
time t0 and the crisis time t∗ are identical. This relationship between the inertialess
theory and the large-time limit of the flow with inertia implies the expected large-time
shape for an initially paraboloidal drop [7]

A(x, t) = e−(L−x)
[
1 − e−(L−x)

]
, (5.1)

where L = L(t) is the length of the drop at time t. However, the asymptotic theory
described in [7] did not provide an estimate of the actual length L(t) of the drop. We
can now supply that estimate.

In the physical coordinate system, the cross-sectional area of the drop is given by
A(x, t) = A0Zx. The expected large-time drop shape obtained from the inertialess
theory, for the initially paraboloidal drop, is given by (3.10)2 Z(x, t) = c(t)ex, so that

A(x, t) = (1 − Z)Zx

= (1 − c(t) ex)c(t) ex. (5.2)
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Comparing this with (5.1), we see that

c(t) = e−L(t) or L(t) = − ln c(t). (5.3)

Furthermore, since (3.10)2 must be a solution to the PDE in physical coordinates,
we may substitute it into (3.2) to obtain a first-order differential equation for c(t).
Upon solving this, we find

c(t) = exp

[
− 1

2Re
(t − 2)2 − L̃0

]
(5.4)

where L̃0 is a constant. The length of the drop at large times is then given by

L(t) =
1

2Re
(t − 2)2 + L̃0, (5.5)

and the velocity of the bottom of the drop can be found by differentiating to give

L′(t) =
1

Re
(t − 2). (5.6)

The constant L̃0 is seen to be the apparent initial length of the drop at the crisis time
t∗ = 2 of inertialess theory when the main drop essentially enters free fall from rest.
That is, at later times, the bottom of the drop falls as if it was dropped from rest at
time t∗ with apparent initial length L̃0.
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3
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3.4

2 2.5 3 3.5 4

t

−
(t
−

2
)2

/
2
R

e
−
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c(
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Fig. 5.1. Plot of the function −(t − 2)2/(2 Re) − ln c(t) at Re = 0.1. The apparent drop length
�

L0 is given by the large-time value of this function, i.e. we have
�

L0 ≈ 3.3.

Our solutions of the Eulerian model for initially paraboloidal slender drops in-
volves computation of the function c(t) for extension of the computational domain.
Then, at large time, an approximate value for the apparent initial length is given by

L̃0 = − 1

2Re
(t − 2)2 − ln c(t).
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Fig. 5.2. Overall drop length L(t) as found by solving equation (3.2) (solid), and as predicted

at large times t > 2 by (5.5) with
�

L0 = 3.3 (dashed).

With Reynolds number Re = 0.1, we find L̃0 ≈ 3.3 (see Figure 5.1). Figure 5.2
shows the length of the drop found by solving equation (3.2) in comparison with the

predicted length at large times (5.5) with L̃0 = 3.3.
One final point of interest is that the large-time drop (5.1) (Lagrangian coordi-

nates) or (5.2) (Eulerian coordinates), which derives from the inertialess large-time
drop shape (3.9) is observed to be a good representation for the main body of the
drop and the lower portion of the filament, as seen by a comparison of Figures 4.6
and 4.2(a); the inertialess large- (crisis) time solution is accurate to within 1% over
x > 15 (see Figure 4.6), which we see from Figure 4.2(a) is over the bottom third
of the drop and filament at this time. The inertialess solution is less accurate in the
upper filament region which is to be expected since inertia and viscous fluid flow are
significant in this region of transition from rigid body motion (at increasing velocity)
back to zero velocity at the wall; the inertialess solution can only be justified at early
time when accelerations are much smaller than gravity, or, at larger times in the main
drop region which is falling as a rigid body.
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