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ON THE COMPLEXITY OF VERIFYING CONSISTENCY OF XML SPECIFICATIONS∗

MARCELO ARENAS† , WENFEI FAN‡ , AND LEONID LIBKIN§

Abstract. XML specifications often consist of a type definition (typically, a DTD) and a set of integrity constraints. It
has been shown previously that such specifications can be inconsistent, and thus it is often desirable to check consistency at
compile-time. It is known [16] that for general keys and foreign keys, and DTDs, the consistency problem is undecidable;
however, it becomes NP-complete when all keys are one-attribute (unary), and tractable, if no foreign keys are used.

In this paper, we consider a variety of previously studied constraints for XML data, and investigate the complexity of
the consistency problem. Our main conclusion is that in the presence of foreign key constraints, compile-time verification
of consistency is infeasible. We look at absolute constraints that hold in the entire document, and relative constraints that
only hold in a part of the document. For absolute constraints, we prove decidability and establish complexity bounds for
primary multi-attribute keys and unary foreign keys, and study unary constraints that involve regular expressions. For relative
constraints, we prove that even for unary constraints, the consistency problem is undecidable. We also show that results continue
to hold for extended DTDs, a more expressive typing mechanism for XML.

1. Introduction. XML data, just like relational and object-oriented data, can be specified in a cer-
tain data definition language. While the exact details of XML data definition languages are still being
worked out, it is clear that all of them would contain a form of document description, as well as integrity
constraints. Constraints are naturally introduced when one considers transformations between XML and
relational databases [10, 12, 18, 19, 23, 30, 31], as well as integrating several XML documents [2, 3, 4, 15].

Document descriptions usually come in the form of DTDs (Document Type Definition), and constraints
are typically natural analogs of the most common relational integrity constraints: keys and foreign keys.
Indeed, a large number of proposals (e.g., [35, 38, 36, 5]) support specifications for keys and foreign keys.

We investigate XML specifications with DTDs and keys and foreign keys. We study the consistency,
or satisfiability, of such specifications: given a DTD and a set of constraints, whether there are XML
documents conforming to the DTD and satisfying the constraints. In other words, we want to validate XML
specifications statically, at compile-time. Invalid XML specifications are likely to be more common than
invalid specifications of other kinds of data, due to the rather complex interaction of DTDs and constraints.
Furthermore, many specifications are not written at once, but rather in stages: as new requirements are
discovered, they are added to the constraints, and thus it is quite possible that at some point they may be
contradictory.

An alternative to the static validation would be a dynamic approach: simply attempt to validate a
document with respect to a DTD and a set of constraints. This, however, would not tell us whether repeated
failures are due to a bad specification, or problems with the documents.

The consistency analysis for XML specifications is not nearly as easy as for relational data (any set
of keys and foreign keys can be declared on a set of relational attributes). Indeed, [16] showed that for
DTDs and arbitrary keys and foreign keys, the consistency problem is undecidable. Furthermore, under the
restriction that all keys and foreign keys are unary (single-attribute), the problem is NP-complete.

These results only revealed the tip of the iceberg, as many other flavors of XML constraints exist, and are
likely to be added to future standards for XML such as XML Schema [38]. One of our goals is to study such
constraints. In particular, we concentrate on constraints with regular expressions, and relative constraints
that only hold in a part of the document. We now give examples of new kinds of constraints considered here,
and explain their consistency problem.

Constraints with regular expressions.. As XML data is hierarchically structured, one is often interested
in constraints specified by regular expressions. For example, consider an XML document (represented as a
node-labeled tree) in Figure 1.1, which conforms to the following DTD for schools:

<!ELEMENT r (students, courses, faculty, labs)>
<!ELEMENT students (student+)>
<!ELEMENT courses (cs340, cs108, cs434)>

∗An extended abstract was presented at the 21st ACM Sympsium on Principles of Database Systems (PODS 2002).
†Pontificia Universidad Católica de Chile, Santiago, Chile (marenas@ing.puc.cl)
‡School of Informatics, University of Edinburgh, Edinburgh EH8 9LE, UK (wenfei@inf.ed.ac.uk)
§School of Informatics, University of Edinburgh, Edinburgh EH8 9LE, UK (libkin@inf.ed.ac.uk)
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Fig. 1.1. An XML document.

<!ELEMENT faculty (prof+)>
<!ELEMENT labs (dbLab, pcLab)>
<!ELEMENT student (record)> /* similarly for prof
<!ELEMENT cs434 (takenBy+) /* similarly for cs340, cs108
<!ELEMENT dbLab (acc+) /* similarly for pcLab

Here we omit the descriptions of elements whose type is string (PCDATA). Assume that each record element
has an attribute @id, each takenBy has an attribute @sid (for student id), and each acc has an attribute
@num. One may impose the following constraints over the DTD of that document:

r. ∗.(student ∪ prof ).record .@id → r. ∗.(student ∪ prof ).record ,
r. ∗.cs434.takenBy.@sid ⊆FK r. ∗.student .record .@id ,

r. ∗.dbLab.acc.@num ⊆FK r. ∗.cs434.takenBy.@sid .

Here ‘ ’ is a wildcard that matches any label (tag) and ‘ ∗’ is its Kleene closure that matches any path. The
first constraint says that @id is a key for all records of students and professors. The other constraints specify
foreign keys, which assert that cs434 can only be taken by students, and only students who are taking cs434
can have an account in the database lab. Recall that a foreign key also imposes a key constraint on the
target elements, e.g., the last foreign key above also says that @sid is a key for students taking cs434.

Clearly, there is an XML tree satisfying both the DTD and the constraints. As was mentioned earlier,
specifications are rarely written at once. Now suppose a new requirement is discovered: all faculty members
must have a dbLab account. Consequently, one adds a new foreign key:

r.faculty.prof .record .@id ⊆FK r. ∗.dbLab.acc.@num .

However, this addition makes the whole specification inconsistent. This is because previous constraints
postulate that dbLab users are students taking cs434, and no professor can be a student since @id is a key
for both students and professors, while the new foreign key insists upon professors also being dbLab users
and the DTD enforces at least one professor to be present in the document. Thus no XML document both
conforms to the DTD and satisfies all the constraints.

The consistency problem for regular expression constraints is at least as hard as for constraints specified
for element types with simple attributes: NP-hard in the unary case and undecidable in general [16]. We use
results from [1, 16, 27] to show that in the unary case, the problem remains decidable, but the lower bound
becomes PSPACE.

Relative integrity constraints.. Many types of constraints are specified for an entire document. A different
kind of constraints, called relative, was proposed in [5] – those constraints only hold in a part of a document.
As an example, consider an XML document that for each country lists its administrative subdivisions (e.g.,
into provinces or states), as well as capitals of provinces. A DTD is given below and an XML document
conforming to it is depicted in Figure 1.2.
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capitalprovince

capital

@inProvince

province capital

capital

@inProvince

country

@name
"Holland". . .

@name
"Limburg"

"Limburg"
"Maastricht"

. . .. . .

@name
"Limburg"

"Limburg"
"Hasselt"

@name
"Belgium". . .

country

. . .

db

Fig. 1.2. An XML document storing information about countries and their administrative subdivisions.

<!ELEMENT db (country+)>
<!ELEMENT country (province+, capital+)>
<!ELEMENT province (capital, city∗)>

Each country has a nonempty sequence of provinces and a nonempty sequence of province capitals, and for
each province we specify its capital and perhaps other cities. Each country and province has an attribute
@name, and each capital has an attribute @inProvince.

Now suppose we want to define keys for countries and provinces. One can state that country @name is
a key for country elements. It is also tempting to say that @name is a key for province, but this may not be
the case. The example in Figure 1.2 clearly shows that; which Limburg one is interested in probably depends
on whether one’s interests are in database theory, or in the history of the European Union. To overcome
this problem, we define @name to be a key for province relative to a country; indeed, it is extremely unlikely
that two provinces of the same country would have the same name. Thus, our constraints are:

country.@name → country,
country(province.@name → province),

country( ∗.capital .@inProvince → ∗.capital ),
country( ∗.capital .@inProvince ⊆FK

∗.province.@name).

The first constraint is like those we have encountered before: it is an absolute key, which applies to the
entire document. The rest are relative constraints which are specified for sub-documents rooted at country
elements. They assert that for each country, @name is a key of all province descendants of the country
element and @inProvince is a key of all capital descendants of the country element and it is a foreign key
referring to @name of province elements in the same sub-document. The foreign keys assure that for each
capital element in a country element (sub-document), its @inProvince attribute refers to a province in the
same country (recall that capital elements immediately below country also denote province capitals). Note
that these constraints are somewhat related to the notion of keys for weak entities in relational databases (cf.
[33]). In contrast to regular expression constraints given earlier, these constraints are defined for element
types, e.g., the first constraint is a key for all country elements in the entire document, and the second
constraint is a (relative) key for all capital elements in a sub-document rooted at a country node.

To illustrate the interaction between constraints and DTDs, observe that the above specification –
which might look reasonable at first – is actually inconsistent! To see this, let T be a tree that satisfies
the specification. The constraints say that for any sub-document rooted at a country c, the number of
its capital elements is at most the number of province elements among c’s descendants. The DTD says
that each province has a capital element as a child and that each country element has at least one capital
child. Thus, the number of capital descendants of c is larger than the number of province descendants of
c, which contradicts the previous bound. Hence, the specification is inconsistent. We note that one can
make the specification consistent by replacing country( ∗.capital .@inProvince → ∗.capital ) with two keys:
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country(capital .@inProvince → capital ) and country(province.capital .@inProvince → province.capital ),
which allow capital.@inProvince and province.capital.@inProvince to share the same value.

Relative constraints appear to be quite useful for capturing information about XML documents that
cannot possibly be specified by absolute constraints. It turns out, however, that the consistency problem is
much harder for them: it is undecidable even for single-attribute keys and foreign keys.

Decidable restrictions.. Since expensive lower bounds, and even undecidability, were established for most
versions of the consistency problem, we would like to see some interesting tractable, or decidable, restrictions.
In case of absolute constraints, the results of [16] consider either single attributes or multi-attribute sets for
both keys and foreign keys, and thus say nothing about the intermediate case in which only keys are allowed
to be multi-attribute. This class of constraints is rather common and arises when relational data is translated
into XML. While often identifiers are used as single-attribute keys, other sets of attributes can form a key
as well (e.g., via SQL unique declaration) and those typically contain more than one attribute. We show
that the consistency problem for this class of constraints, when every key is primary (i.e., at most one key
is defined for each element type), remains decidable.

The main conclusion of this paper is that while many proposals such as XML Schema [38] and XML
Data [36] support the facilities provided by the DTDs as well as integrity constraints, and while it is possible
to write inconsistent specifications, checking consistency at compile-time appears to be infeasible, even for
fairly small specifications.

Related work.. Consistency was studied for other data models, such as object-oriented and extended
relational (e.g., with support for cardinality constraints), see [8, 9, 22].

A number of specifications for XML keys and foreign keys have been proposed, e.g., XML Schema [38],
XML-Data [36]. A recent proposal [5] introduced relative constraints. To the best of our knowledge, consis-
tency of XML constraints in the presence of schema specifications was only investigated in [16]. However,
[16] did not consider relative constraints, constraints defined with regular expressions and the class of multi-
attribute keys and unary foreign keys. Other constraints for semi-structured data, different from those
considered here, were studied in, e.g., [1, 6, 17]. The latter also studies the consistency problem; the special
form of constraints used there makes it possible to encode consistency as an instance of conjunctive query
containment. Application of constraints in data transformations was studied in [23, 12]; usefulness of keys
and foreign keys in query optimization has also been recognized [13, 14].

Organization.. Section 2 defines DTDs, and absolute keys and foreign keys for XML. Section 3 studies the
class of absolute multi-attribute keys and unary foreign keys, and the class of regular expression constraints
which is an extension of absolute constraints with regular path expressions. Section 4 defines and investigates
relative keys and foreign keys. Section 5 provides lower and upper bounds for the consistency problem for
extended DTDs, a slight extension of DTDs which captures unranked tree automata, and several different
classes of keys and foreign keys. Section 6 summarizes the main results of the paper.

2. Notations.

2.1. DTDs, XML Trees and Paths. Assume that we have the following disjoint sets: El of element
names, Att of attribute names, S of possible values of attributes and raw text, and Vert of node identifiers.
All attribute names start with the symbol @, and these are the only ones starting with this symbol. We let
S be a reserved symbol not in any of those sets.

We formalize the notion of DTDs as follows (cf. [35, 7, 25, 16]).
Definition 2.1. A DTD (Document Type Definition) is defined to be D = (E, A, P, R, r), where:
• E ⊆ El is a finite set of element types;
• A ⊆ Att is a finite set of attributes;
• P is a mapping from E to element type definitions: Given τ ∈ E, P (τ) = S or P (τ) is a regular

expression α defined as follows:

α ::= ε | τ ′ | α|α | α, α | α∗

where S denotes the string type, τ ′ ∈ E, ε is the empty word, and “|”, “,” and “∗” denote union,
concatenation, and the Kleene closure, respectively;

• R is a mapping from E to the powerset of A. If @l ∈ R(τ), we say that @l is defined for τ .
4
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v5 v6

v0

(a) (b)

Fig. 2.1. An XML document represented as a tree.

• r ∈ E and is called the element type of the root. �

We normally denote element types by τ , and assume that R(r) = ∅ and r does not appear in P (τ) for
any τ ∈ E. We also assume that each τ in E \ {r} is connected to r, i.e., either τ appears in P (r), or it
appears in P (τ ′) for some τ ′ that is connected to r. In this paper we also use the following shorthands for
regular expressions: α+ for (α, α∗) and α? for (ε|α). Finally, notice that mixed content is not allowed in
XML trees; for every τ ∈ E, P (τ) is either S or a regular expression over E.

Example 2.2. Let us consider the DTD D given in Section 1 for storing information about countries
and their administrative subdivisions. In our formalism, D can be represented as (E, A, P, R, r), where E
= {db, country, province, capital , city}, A = {@name, @inProvince}, r = db and P , R are as follows:

P (db) = country+ R(db) = ∅
P (country) = (province+, capital+) R(country) = {@name}
P (province) = (capital , city∗) R(province) = {@name}
P (capital ) = S R(capital ) = {@inProvince}
P (city) = S R(city) = ∅
� An XML document is typically modeled as a node-labeled tree. Below we describe valid XML

documents w.r.t. a DTD, along the same lines as XQuery [39], XML Schema [38] and DOM [34].
Definition 2.3. Let D = (E, A, P, R, r) be a DTD. An XML tree T conforming to D, written T |= D,

is defined to be (V, lab, ele, att, root), where
• V ⊆ Vert is a finite set of nodes;
• lab : V → E; if lab(v) = τ (v ∈ V ), τ is said to be the element type of v;
• ele : V → S ∪ V ∗, where V ∗ is the set of all the finite sequences of values from V , such that for

every v ∈ V , if P (lab(v)) = S, then ele(v) = [s], where s ∈ S, otherwise ele(v) = [v1, . . . , vn], and
the string lab(v1) · · · lab(vn) is in the regular language defined by P (lab(v)).

• att is a partial function from V ×A to S such that for any v ∈ V and @l ∈ A, att(v, @l) is defined
iff @l ∈ R(lab(v)).

• root is the root of T : root ∈ V and lab(root) = r.
The parent-child edge relation on V , {(v1, v2) | v2 occurs in ele(v1)}, is required to form a rooted tree. �

In an XML tree T , for each v ∈ V , there is a unique path of parent-child edges from the root to v, and each
node has at most one incoming edge. The root is a unique node labeled with r. If a node x is labeled τ in
E, then function ele defines the children of x and function att defines the attributes of x. The children of
x are ordered and their labels observe the regular expression P (τ). In contrast, its attributes are unordered
and are identified by their labels (names).

Example 2.4. Figure 2.1 (a) shows an XML document storing information about provinces in
Canada and conforming to the DTD shown in Example 2.2. Figure 2.1 (b) shows an XML tree T =
(V, lab, ele, att, v0) representing this document. In this tree, V = {vi | i ∈ [0, 6]} and lab is defined as:

lab(v0) = db lab(v2) = province lab(v4) = capital lab(v6) = capital
lab(v1) = country lab(v3) = province lab(v5) = capital

Furthermore, function ele is defined as:
5



ele(v0) = [v1] ele(v2) = [v5] ele(v4) = [Toronto] ele(v6) = [Winnipeg]
ele(v1) = [v2, v3, v4] ele(v3) = [v6] ele(v5) = [Edmonton]

Finally, function att is defined as:
att(v1,@name) = Canada att(v4,@inProvince) = Ontario
att(v2,@name) = Alberta att(v5,@inProvince) = Alberta
att(v3,@name) = Manitoba att(v6,@inProvince) = Manitoba

� Our model is simpler than the models of XQuery and XML Schema as
DTDs support only one basic type (PCDATA or string) and do not have complex type constructs. Unlike
the data model of XQuery, we do not consider nodes representing namespaces, processing instructions and
references. These simplifications do not affect the lower bounds, however.

We also use the following notations. Referring to an XML tree T , if x is a τ -element in T and @l is
an attribute in R(τ), then x.@l denotes the @l-attribute value of x, i.e., x.@l = att(x,@l). If X is a list
[@l1, . . . ,@ln] of attributes in R(τ), then x[X ] = [x.@l1, . . . , x.@ln]. For any element type τ ∈ E, ext(τ)
denotes the set of all the τ -elements in T . For any @l ∈ R(τ), values(τ.@l) denotes {x.@l | x ∈ ext(τ)}, the
set of all the @l-attribute values of τ -nodes. We write |S| for the cardinality of a set S. Given a DTD D
and a set Σ of constraints, we also use |D| and |Σ| to denote their sizes, respectively.

Given a DTD D = (E, A, P, R, r) and element types τ, τ ′ ∈ E, a string τ1.τ2. · · · .τn over E is a path in
D from τ to τ ′ if τ1 = τ , τn = τ ′ and for each i ∈ [2, n], τi is a symbol in the alphabet of P (τi−1). Moreover,
paths(D) = {p | there is τ ∈ E such that p is a path in D from r to τ}. We say that a DTD is non-recursive
if paths(D) is finite, and recursive otherwise. We also say that D is a no-star DTD if the Kleene star does
not occur in any regular expression P (τ) (note that this is a stronger restriction than being ∗-free: a regular
expression without the Kleene star yields a finite language, while the language of a ∗-free regular expression
may still be infinite as it allows boolean operators including complement).

2.2. Keys and Foreign Keys. We consider two forms of constraints for XML: absolute constraints that
hold on the entire document, denoted by AC; and relative constraints that hold on certain sub-documents,
denoted by RC. Below we define absolute keys and foreign keys, and we shall define relative constraints in
Section 4. The constraints given in Section 1 are instances of absolute constraints and relative constraints.

Regular expression constraints. To capture the hierarchical nature of XML data, absolute constraints,
in their general form, are defined on a collection of elements identified by a regular path expression. It is
common to find path expressions in specification and query languages for XML (e.g., XML Schema [38],
XQuery [39], XSL [40]). We define a regular (path) expression over a set of element types E as follows:

β ::= ε | τ | β.β | β ∪ β | β∗,

where ε denotes the empty word, τ is an element type in E and ‘.’, ‘∪’ and ‘∗’ denote concatenation, union
and Kleene closure, respectively. A regular expression defines a language over the alphabet E, which will be
denoted by β as well. Given a DTD D = (E, A, P, R, r) and a regular expression β over E, we say that β
is a regular (path) expression over D if β is of the form r.β′ where β′ does not include r. In this section, we
use ‘ ’ as a shorthand for E \ {r}.

Recall that a path in a DTD is a list of E symbols, that is, a string in E∗. Given an XML tree
T = (V, lab, ele, att, root), a pair of nodes x, y in T with y a descendant of x and a path w = τ1. · · · .τn over
E, we say that w is a path from x to y if there exists a sequence of nodes v1, . . ., vn in T such that (1) v1 = x
and vn = y, (2) vi+1 is a child of vi in T , for every i ∈ [1, n− 1], and (3) lab(vi) = τi, for every i ∈ [1, n].
Any pair of nodes x, y in an XML tree T with y a descendant of x uniquely determines the path, denoted by
ρ(x, y), from x to y. We say that y is reachable from x by following a regular expression β over D, denoted
by T |= β(x, y), iff ρ(x, y) ∈ β. For any fixed T , let nodes(β) stand for the set of nodes reachable from the
root by following the regular expression β: nodes(β) = {y | T |= β(root, y)}. Note that for any element
type τ ∈ E \ {r}, nodes(r. ∗.τ) = ext(τ).

We now define unary XML keys and foreign keys with regular path expressions. Let DTD D =
(E, A, P, R, r).

• A key over D is an expression ϕ of the form β.τ [X ] → β.τ , where
– τ ∈ E;
– X is a nonempty set of attributes in R(τ); and

6



– β is a regular expression over D.
For any XML tree T that conforms to D, the tree T satisfies ϕ, denoted by T |= ϕ, if

∀x, y ∈ nodes(β.τ)
(
x[X ] = y[X ] → x = y

)
.

• A foreign key over D is an expression ϕ of the form β1.τ1[X ] ⊆FK β2.τ2[Y ], where
– τi ∈ E for i = 1, 2;
– βi is a regular expression over D, for i = 1, 2; and
– X,Y are nonempty lists of attributes in R(τ1), R(τ2) of the same length.

Here T |= ϕ if T |= β2.τ2[Y ] → β2.τ2, and

∀x ∈ nodes(β1.τ1) ∃ y ∈ nodes(β2.τ2)
(
x[X ] = y[Y ]

)
.

We use two notions of equality to define keys: value equality is assumed when comparing attributes, and
node identity is used when comparing elements. We shall use the same symbol ‘=’ for both, as it will never
lead to ambiguity.

The above constraints are generally referred to as multi-attribute regular expression constraints as they
may be defined with multiple attributes. A regular expression key (foreign key) is said to be unary if it is
defined in terms of a single attribute; that is, |X | = 1 (|X | = |Y | = 1) in the above definition. In that case,
we write β.τ.@l → β.τ for regular expression unary keys, and β1.τ1.@l1 ⊆FK β2.τ2.@l2 for regular expression
unary foreign keys.

From [16], we immediately obtain that the consistency problem for regular expression constraints is
undecidable. Thus, in this paper we only study the consistency problem for unary constraints defined with
regular expressions. We denote this class of constraints by ACreg

K ,FK , where subscripts K and FK stand for
keys and foreign keys, respectively. For example, the constraints over the school DTD that we have seen in
Section 1 are instances of ACreg

K ,FK .

Constraints associated with element types. A class of absolute keys and foreign keys, denoted by
AC∗,∗

K ,FK (we shall explain the notation shortly), has been studied in [16]. It is a special case of regular-
expression constraints and is defined for element types as follows. An AC∗,∗

K ,FK -constraint ϕ over a DTD
D = (E, A, P, R, r) has one of the following forms:

• Key. τ [X ] → τ , where τ ∈ E and X is a nonempty set of attributes in R(τ). An XML tree T
satisfies ϕ, denoted by T |= ϕ, if

∀x, y ∈ ext(τ)
(
x[X ] = y[X ] → x = y

)
.

• Foreign key. τ1[X ] ⊆FK τ2[Y ], where τ1, τ2 ∈ E and X,Y are nonempty lists of attributes in R(τ1),
R(τ2) of the same length. It is satisfied by a tree T if T |= τ2[Y ] → τ2, and in addition

∀x ∈ ext(τ1) ∃ y ∈ ext(τ2)
(
x[X ] = y[Y ]).

That is, τ [X ] → τ says that the X-attribute values of a τ -element uniquely identify the element in ext(τ).
Furthermore, τ1[X ] ⊆FK τ2[Y ] says that the list of X-attribute values of every τ1-node in T must match the
list of Y -attribute values of some τ2-node in T and the Y -attribute values of a τ2-element uniquely identify
the element in ext(τ2).

Note that an AC∗,∗
K ,FK -constraint can be readily expressed as a regular-expression constraint, by using

r. ∗.τ for τ .
As for the case of regular expression constraints, an AC∗,∗

K ,FK -constraint is generally referred to as a
multi-attribute constraint as it may be defined with multiple attributes. An AC∗,∗

K ,FK -constraint is said to
be unary if it is defined in terms of a single attribute; that is, |X |=| Y |= 1 in the above definition. In
that case, we write τ.@l → τ for unary keys, and τ1.@l1 ⊆FK τ2.@l2 for unary foreign keys. As in relational
databases, we also consider primary keys: for each element type, at most one key can be defined.

We shall use the following notations for subclasses of AC∗,∗
K ,FK : subscripts K and FK denote keys and

foreign keys, respectively. When the primary key restriction is imposed, we use subscript PK instead of
K. The superscript ‘∗’ denotes multi-attribute, and ‘1’ means unary. When both superscripts are left out,
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Notation Meaning

AC∗,∗
K ,FK multi-attribute keys and foreign keys

AC∗,1
PK ,FK multi-attribute primary keys, unary foreign keys

ACK ,FK unary keys and foreign keys
ACPK ,FK primary unary keys and unary foreign keys
ACreg

K ,FK regular expression unary keys and foreign keys

Fig. 2.2. Notation summary.

we mean that both keys and foreign keys are unary. We shall be dealing with the following subclasses of
AC∗,∗

K ,FK : AC∗,1
K ,FK denotes the class of multi-attribute keys and unary foreign keys; AC∗,1

PK ,FK is the class of
primary multi-attribute keys and unary foreign keys; ACK ,FK is the class of unary keys and unary foreign
keys; and ACPK ,FK is the class of primary unary keys and unary foreign keys. We note that since a key is
part of a foreign key, the restriction of AC∗,∗

K ,FK to unary keys and multi-attributes foreign keys (AC1,∗
K ,FK )

does not make sense.
For easy reference, in Figure 2.2 we summarize our notation for absolute constraints.

2.3. The Consistency Problem. We are interested in the consistency, or satisfiability problem for
XML constraints considered together with DTDs: that is, whether a given set of constraints and a DTD are
satisfiable by an XML tree. Formally, for a class C of integrity constraints we define the XML specification
consistency problem SAT(C) as follows:

PROBLEM: SAT(C)
INPUT: A DTD D, a finite set Σ of C-constraints.
QUESTION: Is there an XML tree T such that T |= D and T |= Σ?

It is known [16] that SAT(AC∗,∗
K ,FK ) is undecidable, but SAT(ACK ,FK ) and SAT(ACPK ,FK ) are NP-complete.

Nothing was known however about SAT(AC∗,1
K ,FK ), where only keys are allowed to be multi-attribute, or

about SAT(ACreg
K ,FK ), where regular expressions are used to define unary keys and foreign keys. These

problems will be studied in Section 3.
In what follows, we write T |= (D,Σ) instead of T |= D and T |= Σ.

3. Absolute Integrity Constraints. In this section, we establish the decidability and lower bounds
for SAT(AC∗,1

PK ,FK ) and SAT(ACreg
K ,FK ), the consistency problems for absolute primary multi-attribute keys

and unary foreign keys, and for regular-expression unary keys and unary foreign keys.

3.1. Consistency of Multi-attribute Keys. We know that SAT(ACK ,FK ), the consistency problem
for unary absolute keys and foreign keys, is NP-complete [16]. In contrast, SAT(AC∗,∗

K ,FK ) is undecidable
[16]. This leaves a large gap: namely, SAT(AC∗,1

K ,FK ), where only keys are allowed to be multi-attribute.
The reason for the undecidability of SAT(AC∗,∗

K ,FK ) is that the implication problem for functional and
inclusion dependencies can be reduced to it [16]. However, this implication problem is known to be decidable –
in fact, in cubic time – for single-attribute inclusion dependencies [11], thus giving us hope to get decidability
for multi-attribute keys and unary foreign keys.

The problem we resolve here is SAT(AC∗,1
PK ,FK ): the consistency problem for primary multi-attribute

keys and unary foreign keys. Recall that a set Σ of AC∗,1
K ,FK -constraints is said to be primary if for each

element type τ , there is at most one key in Σ defined for τ -elements (including key dependencies defined
by foreign key constraints). Even dealing with this version of SAT(AC∗,1

K ,FK ) one encounters considerable
difficulties: with a rather involved proof, we manage to show that this problem is equivalent to a certain
decidable version of Diophantine equations problem whose exact complexity has been an open problem for
a while [21]:

PROBLEM: PDE (Prequadratic Diophantine Equations)
INPUT: An integer n×m matrix A, a vector �b ∈ Z

n, and a set E ⊆ {1, . . . ,m}3.
QUESTION: Is there a vector �x ∈ N

m such that A�x ≤ �b and xi ≤ xj · xk for all (i, j, k) ∈ E?

8



Note that for E = ∅, this is exactly the integer linear programming problem [27]. Thus, PDE can be thought
of as integer linear programming extended with inequalities of the form x ≤ y · z among variables. It is
therefore NP-hard, and [21] proved an NEXPTIME upper bound for PDE. The exact complexity of the
problem remains unknown.

Recall that two problems P1 and P2 are polynomially equivalent if there are PTIME reductions from P1

to P2 and from P2 to P1. We now show the following.
Theorem 3.1. SAT(AC∗,1

PK ,FK ) and PDE are polynomially equivalent. �

Proof. The proof consists of two PTIME reductions, one for each direction.
a) A reduction from SAT(AC∗,1

PK ,FK ) to PDE. We first define a class of simplified DTDs called narrow
DTDs, and we explain how to reduce the consistency problem for AC∗,1

PK ,FK -constraints over arbitrary DTDs
to that over narrow DTDs. Then we show how to encode the consistency problem for narrow DTDs and
AC∗,1

PK ,FK -constraints by a prequadratic Diophantine system.
We start by explaining the process of narrowing the DTDs. Intuitively, we replace long “horizontal”

regular expressions in P (τ) by shorter ones. Formally, consider a DTD D = (E, A, P, R, r). D is basically
an extended regular grammar (cf. [7, 25]); for each τ ∈ E, P (τ) is a regular expression α and, thus, τ → α
can be viewed as the production rule for τ . We rewrite the regular expression by introducing a set N of
new element types (nonterminals) such that the production rules of the new DTD have one of the following
forms:

τ → τ1, τ2 τ → τ1 | τ2 τ → τ∗1 τ → τ ′ τ → S τ → ε

where τ, τ1, τ2 are element types in E ∪N , τ ′ ∈ E, S is the string type and ε denotes the empty word. More
specifically, we conduct the following “narrowing” process on the production rule τ → α:

• If α = (α1, α2), then we introduce two new element types τ1, τ2 and replace τ → α with a new rule
τ → τ1, τ2. We proceed to process τ1 → α1 and τ2 → α2 in the same way.

• If α = (α1|α2), then we introduce two new element types τ1, τ2 and replace τ → α with a new rule
τ → τ1 | τ2. We proceed to process τ1 → α1 and τ2 → α2 in the same way.

• If α = α∗
1, then we introduce a new element type τ1 and replace τ → α with τ → τ∗1 . We proceed

to process τ1 → α1 in the same way.
• If α is one of τ ′ ∈ E, S or ε, then the rule for τ remains unchanged.

We refer to the set of new element types introduced when processing τ → P (τ) as Nτ and the set of
production rules generated/revised as Pτ . Observe that Nτ ∩ E = ∅ for any τ ∈ E. We define a new DTD
DN = (EN , A, PN , RN , r), referred to as the narrowed DTD of D (or just a narrow DTD if D is clear from
the context), where

• EN = E ∪
⋃

τ∈E

Nτ , i.e., all element types of E and new element types introduced in the narrowing

process;
• PN =

⋃
τ∈E

Pτ , i.e., production rules generated/revised in the narrowing process;

• RN (τ) = R(τ) for each τ ∈ E, and RN (τ) = ∅ for each τ ∈ EN \ E.
Note that the root element type r and the set A of attributes remain unchanged. Moreover, elements of
any type in EN \E do not have any attribute. The only kind of PN production rules whose right-hand side
contains element type of E are of the form τ → τ ′, where τ ′ ∈ E. It is easy to see that DN is computable
in polynomial time.

Obviously, any set Σ of AC∗,1
PK ,FK -constraints overD is also a set of AC∗,1

PK ,FK -constraints over the narrow
DTD DN of D. The next lemma establishes the connection between D and DN , which allows us to consider
only narrow DTDs from now on.

Lemma 3.2. Let D be a DTD, DN the narrowed DTD of D and Σ a set of AC∗,1
PK ,FK -constraints over

D. Then there exists an XML tree T1 such that T1 |= (D,Σ) iff there exists an XML tree T2 such that
T2 |= (DN ,Σ).

Proof. Given an element type τ and a sequence of attributes @l1, . . . ,@ln ∈ R(τ), define
values(τ [@l1, . . . ,@ln]) as {(x.@l1, . . . , x.@ln) | x ∈ ext(τ)}.

To prove the lemma, it suffices to show the following:
9



Claim: Given any XML tree T1 |= D one can construct an XML tree T2 by modifying T1 such that T2 |= DN ,
and vice versa. Furthermore, for every element type τ in D and @l1, . . . ,@ln ∈ R(τ), |ext(τ)| in T2 equals
|ext(τ)| in T1, and values(τ [@l1, . . . ,@ln]) in T2 equals values(τ [@l1, . . . ,@ln]) in T1.

For if the claim holds, we can show the lemma as follows. Assume that there exists an XML tree T1 such
that T1 |= D and T1 |= Σ. By the claim, there is T2 such that T2 |= DN . Suppose, by contradiction, there is
ϕ ∈ Σ such that T2 �|= ϕ. (1) If ϕ is a key τ [@l1, . . . ,@ln] → τ , then there exist two distinct nodes x, y ∈ ext(τ)
in T2 such that x.@li = y.@li for every i ∈ [1, n]. In other words, |values(τ [@l1, . . . ,@ln])| < |ext(τ)| in
T2. Since T1 |= ϕ, it must be the case that |values(τ [@l1, . . . ,@ln])| = |ext(τ)| in T1 because the tuple
(x.@l1, . . . , x.@ln) of each x ∈ ext(τ) uniquely identifies x among ext(τ). This contradicts the claim that
|ext(τ)| in T2 equals |ext(τ)| in T1 and values(τ [@l1, . . . ,@ln]) in T2 equals values(τ [@l1, . . . ,@ln]) in T1.
(2) If ϕ is a unary foreign key: τ1.@l1 ⊆FK τ2.@l2, then either T2 �|= τ2.@l2 → τ2 or there is x ∈ ext(τ1) in
T2 such that for all y ∈ ext(τ2) in T2, x.@l1 �= y.@l2. In the first case, we reach a contradiction as in (1). In
the second case, we have x.@l1 �∈ values(τ2.@l2) in T2. By the claim, x.@l1 ∈ values(τ1.@l1) in T1. Since
T1 |= ϕ, x.@l1 ∈ values(τ2.@l2) in T1. Again by the claim, we have x.@l1 ∈ values(τ2.@l2) in T2, which
contradicts the assumption. The proof for the other direction is similar.

We next verify the claim. Given an XML tree T1 = (V1, lab1, ele1, att, root) such that T1 |= D, we
construct an XML tree T2 by modifying T1 such that T2 |= DN . Consider a τ -element v in T1. Let
ele1(v) = [v1, ..., vn] and w = lab1(v1) . . . lab1(vn). Recall Nτ and Pτ , the set of nonterminals and the set of
production rules generated when narrowing τ → P (τ). Let Qτ be the set of E symbols that appear in Pτ

plus S. We can view G = (Qτ , Nτ ∪ {τ}, Pτ , τ) as an extended context free grammar, where Qτ is the set of
terminals, Nτ ∪ {τ} the set of nonterminals, Pτ the set of production rules and τ the start symbol1. Since
T1 |= D, we have w ∈ P (τ). By a straightforward induction on the structure of PN (τ) it can be verified that
w is in the language defined by G. Thus there is a parse tree T (w) w.r.t. the grammar G for w, and w is
the frontier (the list of leaves from left to right) of T (w). Without loss of generality, assume that the root of
T (w) is v, and the leaves are v1, . . . , vn. Observe that the internal nodes of T (w) are labeled with element
types in Nτ except that the root v is labeled τ . Intuitively, we construct T2 by replacing each element v in
T1 by such a parse tree. More specifically, let T2 = (V2, lab2, ele2, att, root). Here V2 consists of nodes in V1

and the internal nodes introduced in the parse trees. For each x in V2, let lab2(x) = lab1(x) if x ∈ V1, and
otherwise let lab2(x) be the node label of x in the parse tree where x belongs. Note that nodes in V2 \ V1

are elements of some type in EN \ E. For every x ∈ V1, let ele2(x) be the list of its children in the parse
tree having x as root. For every x ∈ V2 \ V1, let ele2(x) be the list of its children in the parse tree of an
element in V1 that contains x. Note that att and root remain unchanged. By the construction of T2 it can
be verified that T2 |= DN ; and moreover, for every element type τ in D and @l1, . . . ,@ln ∈ R(τ), |ext(τ)|
in T2 equals |ext(τ)| in T1 and values(τ [@l1, . . . ,@ln]) in T2 equals values(τ [@l1, . . . ,@ln]) in T1 because,
among other things, (1) none of the new nodes, i.e., nodes in V2 \ V1, is labeled with an E-type; (2) no new
attributes are defined; and (3) attribute function att is unchanged.

Conversely, assume that there is T2 = (V2, lab2, ele2, att, root) such that T2 |= DN . We construct an
XML tree T1 by modifying T2 such that T1 |= D. For every node v ∈ V2 with lab(v) = τ and τ ∈ EN \ E,
we substitute v in ele2(v′) by the children of v, where v′ is the parent of v. In addition, we remove v from
V2, lab2(v) from lab2, and ele2(v) from ele2. Observe that by the definition of DN , no attributes are defined
for elements of any type in EN \ E. We repeat the process until there is no node labeled with element type
in EN \ E. Now let T1 = (V1, lab1, ele1, att, root), where V1, lab1 and ele1 are V2, lab2 and ele2 at the
end of the process, respectively. Notice that att and root remain unchanged. By the definition of T1 it can
be verified that T1 |= D; and in addition, for every element type τ in D and @l1, . . . ,@ln ∈ R(τ), |ext(τ)|
in T2 equals |ext(τ)| in T1 and values(τ [@l1, . . . ,@ln]) in T2 equals values(τ [@l1, . . . ,@ln]) in T1 because,
among other things, none of the nodes removed is labeled with a type of E and the attribute function att is
unchanged.

By Lemma 3.2, in the rest of this proof we consider only narrow DTDs. Next we show how to encode
AC∗,1

PK ,FK -constraints by a prequadratic Diophantine system. Let D = (E, A, P, R, r) be a narrow DTD
and Σ be a set of AC∗,1

PK ,FK -constraints, i.e., primary AC∗,1
K ,FK -constraints. We encode Σ with a set CΣ of

1If τ is in P (τ), i.e., if τ is recursively defined, we need to rename τ in Qτ to ensure that Qτ and Nτ ∪ {τ} are disjoint. It
is straightforward to handle that case.
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integer constraints, referred to as the cardinality constraints determined by Σ. For every ϕ ∈ Σ,
• if ϕ is a key constraint τ [@l1, . . . ,@lk] → τ , then CΣ contains |ext(τ)| ≤ |values(τ.@l1)| · . . . ·
|values(τ.@lk)|;

• if ϕ is a unary foreign key τ1.@l1 ⊆FK τ2.@l2, then CΣ contains |values(τ1.@l1)| ≤ |values(τ2.@l2)|
and |ext(τ2)| ≤ |values(τ2.@l2)|;

• furthermore, for any τ ∈ E, if R(τ) = ∅, then 0 ≤ |ext(τ)| is in CΣ. Otherwise, for every @l ∈ R(τ),
|values(τ.@l)| ≤ |ext(τ)| and 0 ≤ |values(τ.@l)| are in CΣ.

Observe that for a unary key τ.@l → τ we have both |values(τ.@l)| ≤ |ext(τ)| and |ext(τ)| ≤ |values(τ.@l)|
in CΣ. Thus CΣ assures |ext(τ)| = |values(τ.@l)|.

We write T |= CΣ if T satisfies all the constraints of CΣ, and we write T |= (D,CΣ) if T conforms to a
narrow DTD D and satisfies CΣ. Note that CΣ is equivalent (in fact, can be converted in polynomial time)
to a prequadratic Diophantine system since x ≤ x1 · . . . ·xk can be written as constraints of the form x ≤ y ·z
by introducing k − 2 fresh variables, e.g., x ≤ x1 · x2 · x3 · x4 is equivalent to x ≤ x1 · z1, z1 ≤ x2 · z2 and
z2 ≤ x3 · x4 (in the sense that the former is satisfiable iff the latter is). Thus, without loss of generality,
assume that CΣ consists of linear and prequadratic integer constraints only. It should be noted that CΣ can
be computed in time polynomial in the size of Σ and D. The lemma below shows that CΣ characterizes the
consistency of Σ if keys in Σ are primary.

Lemma 3.3. Let D be a narrow DTD and Σ a set of AC∗,1
PK ,FK -constraints over D. Then every XML

tree conforming to D and satisfying Σ also satisfies CΣ. In addition, if there exists an XML tree T2 such
that T2 |= (D,CΣ), then there exists an XML tree T1 such that T1 |= (D,Σ).

Proof. It is easy to see that for every XML tree T1 that satisfies Σ, it must be the case that T1 |= CΣ.
Conversely, we show that if there exists an XML tree T2 = (V, lab, ele, att2, root) such that T2 |=

(D,CΣ), then we can construct an XML tree T1 = (V, lab, ele, att1, root) such that T1 |= (D,Σ). We
construct T1 from T2 by modifying the function att2 while leaving V , lab, ele and root unchanged. More
specifically, let S = {τ.@l | τ ∈ E, @l ∈ R(τ)}. To define the new function, denoted by att1, we first
associate a set of string values with each τ.@l in S. Let N be the maximum cardinality of values(τ.@l)
in T2, i.e., N ≥ |values(τ.@l)| in T2 for all τ.@l ∈ S. Let VS = {ai | i ∈ [1, N ]} be a set of distinct
string values. For each τ.@l ∈ S, let Vτ.@l = {ai | i ∈ [1, |values(τ.@l)|]}, and for each x ∈ ext(τ), let
att1(x,@l) be a string value in Vτ.@l such that in T1, values(τ.@l) = Vτ.@l. The value att1(x,@l) can be
selected in such a way that for each key ϕ = τ [@l1, . . . ,@lk] → τ in Σ, x[@l1, . . . ,@lk] is a distinct list
of string values from Vτ.@l1 × . . . × Vτ.@lk . This is possible because by the definition of T1, (1) ext(τ) in
T1 equals ext(τ) in T2; (2) |values(τ.@l)| in T1 equals |values(τ.@l)| in T2; (3) T2 |= CΣ and |ext(τ)| ≤
|values(τ.@l1)| · . . . · |values(τ.@lk)| is in CΣ; and (4) since ϕ is the only key defined for τ -elements, when
we populate attributes @l1, . . . , lk of x, we only need to select the value of att1(x,@li) from Vτ.@li such that
x[@l1, . . . ,@lk] is distinct, without worrying about whether the population may hamper “other keys” defined
on x (note that in the absence of the primary key assumption, the populations of different keys may interact
with each other and as a result, the simply population strategy given above may no longer work; this is
why we assume primary keys). It should be noted that it may be the case that Vτ1.@l1 ⊆ Vτ2.@l2 even if Σ
does not imply τ1.@l1 ⊆FK τ2.@l2. This does not lose generality as we do not intend to capture negation of
foreign keys. We next show that T1 is indeed what we want.

It is easy to verify that T1 |= D given the construction of T1 from T2 and the assumption that T2 |= D.
To show that T1 |= Σ, we consider ϕ ∈ Σ in the following cases. (1) If ϕ is a key τ [@l1, . . . ,@lk] → τ , it
is immediate from the definition of T1 that T1 |= ϕ since for any x ∈ ext(τ), x[@l1, . . . ,@lk] is a distinct
list of string values from Vτ.@l1 × . . . × Vτ.@lk . (2) If ϕ is τ1.@l1 ⊆FK τ2.@l2, then T2 |= |values(τ1.@l1)| ≤
|values(τ2.@l2)| by T2 |= CΣ. By the definition of att1, for i = 1, 2, Vτi.@li = {ai | i ∈ [1, |values(τi.@li)|]}
and in T1, values(τi.@li) = Vτi.@li . Thus values(τ1.@l1) ⊆ values(τ2.@l2) in T1. Furthermore, given that
|ext(τ2)| ≤ |values(τ2.@l2)| and |values(τ2.@l2)| ≤ |ext(τ2)| are both in CΣ, T2 |= CΣ, |ext(τ2)| in T2 is equal
to |ext(τ2)| in T1 and |values(τ2.@l2)| in T2 is equal to |values(τ2.@l2)| in T1, we conclude that |ext(τ2)| is
equal to |values(τ2.@l2)| in T1 and, hence, T1 |= τ2.@l2 → τ2 since each x ∈ ext(τ2) in T1 has a distinct
@l2-attribute value and thus the value of its @l2-attribute uniquely identifies x among nodes in ext(τ2).
Therefore, T1 |= ϕ and, thus, T1 |= (D,Σ). This concludes the proof of the lemma.

The above lemma takes care of coding the constraints; the next step is to code DTDs. For that, we use
the technique developed in [16]: for each narrow DTD D, one can compute in polynomial time in the size
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of D a set ΨD of linear inequalities on nonnegative integers, referred to as the set of cardinality constraints
determined by D, which includes |ext(τ)| as a variable for each element type τ in D, but it does not have
|values(τ.@l)| as a variable for any attribute @l of τ . More specifically, for each symbol τ ∈ E ∪ {S},
|ext(τ)| is treated as a distinct variable, which keeps track of the number of all τ elements in an XML tree T
conforming to D. In addition, for each occurrence of τ in the definition P (τ ′) of some element type τ ′, we also
create distinct variables as follows: if P (τ ′) = τ1 for τ1 ∈ E ∪ {S}, then we create a distinct variable x1

τ1,τ ′ ;
if P (τ ′) = (τ1, τ2) or P (τ ′) = (τ1|τ2), then we create two distinct variables x1

τ1,τ ′ and x2
τ2,τ ′ . Intuitively, for

i ∈ [1, 2], xi
τi,τ ′ keeps track of the number of τi subelements at position i under all τ ′ elements in T . Let

Xτ be the set of all variables of the form xi
τ,τ ′ . Using these variables, for each τ ∈ E, we define a set ψτ of

linear integer constraints that characterizes P (τ) quantitatively, as follows:
• If P (τ) = τ1 for τ1 ∈ E ∪ {S}, then ψτ includes |ext(τ)| = x1

τ1,τ . Referring to an XML tree T that
conforms to D, this assures that each τ element has a unique τ1 subelement.

• If P (τ ′) = (τ1, τ2), then ψτ includes |ext(τ)| = x1
τ1,τ and |ext(τ)| = x2

τ2,τ . These assure that each τ
element in T must have a unique τ1 subelement and a unique τ2 subelement.

• If P (τ ′) = (τ1|τ2), then ψτ includes |ext(τ)| = x1
τ1,τ + x2

τ2,τ . These assure that each τ element in T
must have either a τ1 subelement or a τ2 subelement, and thus the sum of the numbers of these τ1
and τ2 subelements equals the number of τ elements in T .

The set ΨD of cardinality constraints determined by DTD D consists of the following:
• |ext(r)| = 1; i.e., there is a unique root in any XML tree valid w.r.t. D;
• constraints of ψτ for each τ ∈ E; these assure that P (τ) is satisfied;
• |ext(τ)| =

∑
xi

τ,τ′∈Xτ

xi
τ,τ ′ for each τ ∈ (E \ {r}) ∪ {S}; this indicates that the set ext(τ) includes all

τ elements no matter where they occur in an XML tree;
• x ≥ 0 for any variable x used above; i.e., the number of elements (subelements) is nonnegative.

It has been shown [16] that ΨD has a nonnegative integer solution if and only if there exists an XML tree
T conforming to D such that the cardinality of ext(τ) in T equals the value of the variable |ext(τ)| in the
solution for each element type τ in D.

We now combine this coding with the coding for AC∗,1
PK ,FK -constraints. Given a narrow DTD D and a

set Σ of AC∗,1
PK ,FK -constraints over D, we define the set of cardinality constraints determined by D and Σ to

be

Ψ(D, Σ) = ΨD ∪ CΣ ∪ {(|ext(τ)| > 0) → (|values(τ.@l)| > 0) | τ ∈ E, @l ∈ R(τ)},
where CΣ is the set of cardinality constraints determined by Σ, ΨD is the set of cardinality constraints
determined by D, and constraints (|ext(τ)| > 0) → (|values(τ.@l)| > 0) are to ensure that every τ -element
has an @l-attribute (note that |values(τ.@l)| ≤ |ext(τ)| is already in CΣ). Constraints in Ψ(D, Σ) are either
linear integer constraints, or inequalities of the form x ≤ y · z, which come from CΣ, or constraints of the
form x > 0 → y > 0. Note that if we leave out constraints of the form x > 0 → y > 0, Ψ(D, Σ) is a
prequadratic Diophantine system. Also note that Ψ(D, Σ) can be computed in polynomial time in the size
of D and Σ.

We say that Ψ(D, Σ) is consistent if and only if Ψ(D, Σ) admits a nonnegative integer solution. That
is, there is a nonnegative integer assignment to the variables in Ψ(D, Σ) such that all the constraints in
Ψ(D, Σ) are satisfied.

Lemma 3.4. Let D be a narrow DTD and Σ a set of AC∗,1
PK ,FK -constraints over D. Then Ψ(D, Σ) is

consistent if and only if there is an XML tree T such that T |= (D,Σ).
Proof. Suppose that there exists an XML tree T such that T |= (D,Σ). Then there is a nonnegative

integer solution to ΨD such that for each element type τ in D, the value of the variable |ext(τ)| equals the
number of τ -elements in T [16]. By Lemma 3.3 and T |= Σ, we have T |= CΣ. We extend the solution of ΨD

to be one to Ψ(D, Σ) by letting the variable |values(τ.@l)| equal the number of distinct @l-attribute values
of all τ -elements in T , for each element type τ and attribute @l of τ in D. Since T |= CΣ, this extended
assignment satisfies all the constraints in CΣ. In addition, if |ext(τ)| > 0 then |values(τ.@l)| > 0 since every
τ -element in T has an @l-attribute. Hence the assignment is indeed a nonnegative solution to Ψ(D, Σ) and,
therefore, Ψ(D, Σ) is consistent.
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Conversely, suppose that Ψ(D, Σ) admits a nonnegative integer solution. Then there exists an XML
tree T such that T |= D and moreover, for each element type τ in D, the cardinality of ext(τ) in T equals
the value of the variable |ext(τ)| in the solution [16]. We construct a new tree T ′ from T by modifying the
definition of the function att such that in T ′, for each element type τ and attribute @l of τ , the number of
distinct @l-attribute values of all τ -elements equals the value of the variable |values(τ.@l)| in the solution.
This is possible since |values(τ.@l)| ≤ |ext(τ)| and (|ext(τ)| > 0) → (|values(τ.@l)| > 0) are in Ψ(D, Σ).
The assignment is also a solution to CΣ. Thus T ′ |= D and T ′ |= CΣ. Hence by Lemma 3.3, there exists an
XML tree T ′′ such that T ′′ |= (D,Σ). This concludes the proof of the lemma.

We now conclude the proof of reduction from SAT(AC∗,1
PK ,FK ) to PDE. By Lemma 3.2, given an arbitrary

DTD D and a set Σ of AC∗,1
PK ,FK -constraints, one can compute a narrow DTD DN such that (D,Σ) is

consistent iff (DN ,Σ) is consistent. By Lemma 3.4, (DN ,Σ) is consistent iff Ψ(DN ,Σ) has a nonnegative
integer solution. Such a solution requires |values(τ.@l)| > 0 if |ext(τ)| > 0. To ensure this, let Φ(DN ,Σ) be
a system that includes all linear integer constraints and prequadratic constraints in Ψ(DN ,Σ) and moreover,
|ext(τ)| ≤ |values(τ.@l)|·|ext(τ)| for each (|ext(τ)| > 0) → (|values(τ.@l)| > 0) in Ψ(DN ,Σ). Now Φ(DN ,Σ)
is a prequadratic Diophantine system. In addition, Ψ(DN ,Σ) has a nonnegative integer solution iff Φ(DN ,Σ)
has a nonnegative integer solution. To see this, observe that for any nonnegative integer assignment to |ext(τ)|
and |values(τ.@l)|, (|ext(τ)| > 0) → (|values(τ.@l)| > 0) iff |ext(τ)| ≤ |values(τ.@l)| · |ext(τ)|. Thus, (D,Σ)
is consistent iff the prequadratic Diophantine system Φ(DN ,Σ) has a nonnegative integer solution. Note that
DN can be computed in polynomial time in the size of D, Ψ(DN ,Σ) can be computed in polynomial time in
the size of DN and Σ, and Φ(DN ,Σ) can be computed in polynomial time in the size of Ψ(DN ,Σ). Hence,
it takes polynomial time to compute Φ(DN ,Σ) from D and Σ. Therefore, there is a PTIME reduction from
SAT(AC∗,1

PK ,FK ) to PDE.

b) A reduction from PDE to SAT(AC∗,1
PK ,FK ). We now move to the other direction. Given an instance of

PDE, i.e., a system S consisting of a set SL of linear equations/inequalities on integers and a set SP of
prequadratic constraints of the form x ≤ y · z, we define a DTD D and a set Σ of AC∗,1

PK ,FK -constraints such
that S has a nonnegative solution iff there is an XML tree T satisfying Σ and conforming to D. We use
X = {xi | i ∈ [1, n]} to denote the set of all the variables in S. Assume that SL = {ej | j ∈ [1,m]} and ej is
of the form: aj

1 x1 + . . .+ aj
n xn + cj ≤ bj1 x1 + . . .+ bjn xn + dj , where aj

i (i ∈ [1, n]), bji (i ∈ [1, n]), cj and
dj are nonnegative integers2. Also, assume that SP = {pj | j ∈ [1, l]}, where pj is a prequadratic equation
of the form x ≤ y · z. Then we define DTD D = (E, A, P, R, r) as follows:

(1) For each variable xi, we define an element type Xi. In addition, for each ps ∈ SP of the form
xi ≤ xj · xk, we define an element type Us

i . For each linear constraint ej , we define distinct element types
Ej , A

j
1, . . ., A

j
n, Cj , Fj , B

j
1, . . ., B

j
n, Dj. We use r to denote the root element type. That is,

E = {r} ∪ {Xi | i ∈ [1, n]} ∪
{Ej, A

j
1, . . . , A

j
n, Cj , Fj , B

j
1, . . . , B

j
n, Dj | j ∈ [1,m]} ∪ {Us

i | ps = xi ≤ xj · xk ∈ SP }.

Intuitively, referring to an XML tree conforming to D, we use |ext(Xi)| to code the value of the variable xi

in S. For every equation ej , we use |ext(Aj
1)|, . . ., |ext(Aj

n)|, |ext(Cj)| to code the values of constants aj
1,

. . ., aj
n, cj ; |ext(Ej)| to code the value of the expression aj

1x1 + · · · + aj
nxn + cj ; |ext(Bj

1)|, . . ., |ext(Bj
n)|,

|ext(Dj)| to code the values of constants bj1, . . ., b
j
n, dj ; and |ext(Fj)| to code the value of the expression

bj1x1 + · · · + bjnxn + dj . Furthermore, for each prequadratic equation ps = xi ≤ xj · xk in SP , we create a
distinct copy Us

i of Xi. The reason to use Us
i instead of Xi is to ensure that the set Σ of AC∗,1

K ,FK -constraints
defined below is primary.

(2) A = {@c, @d, @e}. Intuitively, we shall define @e as a key and use @c and @d to code prequadratic
constraint of the form x ≤ y · z.

2For example, we represent equation −3x + 5y ≤ −7 as 0x + 5y + 7 ≤ 3x + 0y + 0.
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Fig. 3.1. Trees used in the proof of Theorem 3.1

(3) We define production rules as follows. For the root of the DTD:

P (r) = (X1, U
s1,1
1 , . . . , U

s1,j1
1 )∗, . . . , (Xn, U

sn,1
n , . . . , U

sn,jn
n )∗,

C1, . . . , C1︸ ︷︷ ︸
c1 times

, . . . , Cm, . . . , Cm︸ ︷︷ ︸
cm times

, D1, . . . , D1︸ ︷︷ ︸
d1 times

, . . . , Dm, . . . , Dm︸ ︷︷ ︸
dm times

,

where {si,1, . . ., si,ji} (i ∈ [1, n]) is the set of indexes {s | ps = xi ≤ xj · xk ∈ SP }. Furthermore, for every
i ∈ [1, n] and every j ∈ [1,m]:

P (Aj
i ) = Ej ,

P (Cj) = Ej ,
P (Bj

i ) = Fj ,
P (Dj) = Fj ,
P (Xi) = A1

i , . . . , A
1
i︸ ︷︷ ︸

a1
i times

, . . . , Am
i , . . . , A

m
i︸ ︷︷ ︸

am
i times

, B1
i , . . . , B

1
i︸ ︷︷ ︸

b1i times

, . . . , Bm
i , . . . , B

m
i︸ ︷︷ ︸

bm
i times

.

Finally, for every i ∈ [1, n] and every s ∈ [1, l] such that ps = xi ≤ xj · xk ∈ SP , P (Us
i ) = ε.

(4) We define the attribute function R as follows: for every j ∈ [1,m], R(Ej) = R(Fj) = {@e}. In
addition, for every i ∈ [1, n], R(Xi) = {@e}, and for every s ∈ [1, l] such that ps = xi ≤ xj · xk ∈ SP ,
R(Us

i ) = {@c,@d}. For all other element type τ , let R(τ) be empty.
For example, Figure 3.1 (a) shows an XML tree conforming to the DTD constructed from the set of

equations SL = {2x1 ≤ x2 + 4} and SP = {x1 ≤ x2 · x3}. We note that this tree codes solution x1 = 1,
x2 = 2, x3 = 1 for this system of equations.

Given DTD D, we define a set Σ of AC∗,1
PK ,FK -constraints over D. For each j ∈ [1,m], Σ includes keys

Ej .@e → Ej , Fj .@e → Fj and foreign key Ej .@e ⊆FK Fj .@e. Furthermore, for every i, j, k ∈ [1, n] and
s ∈ [1, l] such that ps = xi ≤ xj · xk ∈ SP , Σ includes the following constraints:

Us
i [@c,@d] → Us

i , Us
i .@c ⊆FK Xj .@e, Us

i .@d ⊆FK Xk.@e.

Clearly, the set Σ is primary, i.e., for any element type τ there is at most one key defined. In fact, we use
copies Us

i of Xi just to ensure that Σ is primary.
We next show that the encoding is indeed a reduction from PDE to SAT(AC∗,1

PK ,FK ). Suppose that S
has a nonnegative solution. Then we construct an XML tree T conforming to D as shown in Figure 3.1 (a).
That is, for each i ∈ [1, n] we let |ext(Xi)| be the value of the variable xi in the solution. We note that, by
the definition of D, this implies that for every s ∈ [1, l] such that ps = xi ≤ xj · xk ∈ SP , |ext(Us

i )| is also
equal to the value of xi in the solution. For every i ∈ [1, n] and every Xi-element x in T , we let x.@e be a
distinct value such that in T , |values(Xi.@e)| = |ext(Xi)|. For every j ∈ [1,m] and every Ej-element x in
T , we let x.@e be a distinct value such that in T , |values(Ej.@e)| = |ext(Ej)|. Likewise, we assign values
to the @e-attribute of the nodes in ext(Fj) in such a way that |values(Fj .@e)| = |ext(Fj)| in T . Finally, for
every i, j, k ∈ [1, n] and s ∈ [1, l] such that ps = xi ≤ xj · xk ∈ SP , and for every node x in T of type Us

i , we
14



let x[@c,@d] be a distinct list of string values from values(Xj.@e) × values(Xk.@e). This is possible since
xi ≤ xj · xk ∈ SP and by the definition of T , |ext(Us

i )| = |ext(Xi)| = xi, |values(Xj.@e)| = |ext(Xj)| = xj

and |values(Xk.@e)| = |ext(Xk)| = xk. Since T codes a solution of S, it is straightforward to prove that
T |= CΣ, the set of cardinality constraints determined by Σ. Thus, by Lemma 3.3 we conclude that there
exists an XML tree T ′ such that T ′ |= (D,Σ) and, hence, (D,Σ) is consistent. Conversely, suppose that
there exists an XML tree T such that T |= (D,Σ). We construct a solution of S by letting variable xi equal
|ext(Xi)| in T . By the definitions of D and Σ, it is easy to verify that this is indeed a nonnegative integer
solution for S. In particular, each ps = xi ≤ xj · xk in SP holds because T |= (D,Σ) and, thus, |ext(Xi)| =
|ext(Us

i )| ≤ |values(Us
i .@c)| · |values(Us

i .@d)| ≤ |values(Xj.@e)| · |values(Xk.@e)| ≤ |ext(Xj)| · |ext(Xk)|.
We observe that the previous reduction is not polynomial since constants aj

i , b
j
i (i ∈ [1, n], j ∈ [1,m])

and cj , dj (j ∈ [1,m]) are coded in unary. To overcome this problem, next we show how to code in a DTD
the binary representation of a number. We introduce this coding separately to simplify the presentation of
this proof.

Assume that a =
∑k

i=0 ai ·2i, where each ai (i ∈ [0, k−1]) is either 0 or 1 and ak = 1, that is, the binary
representation of a is akak−1 · · · a1a0. To code a in a DTD we include element types A, Y0, . . . , Yk and we
define P on these elements as follows:

P (Yi) =

{
ε i = 0
Yi−1, Yi−1 Otherwise

and P (A) = Yi1 , . . . , Yil
, where i1 > · · · > il ≥ 0 and {i1, . . . , il} is the set of indexes {j ∈ [0, k] | aj = 1}.

We note that the size of this set of rules is polynomial in the size of a. Furthermore, if an XML tree T
conforms to this DTD, then |ext(Y0)| = a in T . For example, if a = 5, then P (A) = Y2, Y0, P (Y2) = Y1, Y1,
P (Y1) = Y0, Y0 and P (Y0) = ε and an XML tree conforming to these rules is of the form shown in Figure
3.1 (b).

Thus, by using this coding in our original reduction of PDE to SAT(AC∗,1
PK ,FK ) we can show that there

is a PTIME reduction from PDE to SAT(AC∗,1
PK ,FK ). This completes the proof of Theorem 3.1.

It is known that the linear integer programming problem is NP-hard and PDE is in NEXPTIME. Thus from
Theorem 3.1 it follows immediately:

Corollary 3.5. SAT(AC∗,1
PK ,FK ) is NP-hard, and can be solved in NEXPTIME. �

Obviously we cannot obtain the exact complexity of SAT(AC∗,1
PK ,FK ) without resolving the corresponding

question for PDE, which appears to be quite hard [21]. The result of Theorem 3.1 can be generalized to
disjoint AC∗,1

K ,FK -constraints: that is, a set Σ of AC∗,1
K ,FK -constraints in which for every element type τ and

every two distinct keys τ [X ] → τ and τ [Y ] → τ in Σ (including key dependencies defined by foreign key
constraints), X ∩ Y = ∅. The proof of Theorem 3.1 applies almost verbatim to show the following.

Corollary 3.6. The restriction of SAT(AC∗,1
K ,FK ) to disjoint constraints is polynomially equivalent to

PDE and, thus, it is NP-hard and can be solved in NEXPTIME. �

3.2. Consistency of Regular Expression Constraints. Specifications of AC∗,∗
K ,FK -constraints are

associated with element types. We next consider ACreg
K ,FK , the class of unary keys and foreign keys defined

in terms of regular path expressions. For SAT(ACreg
K ,FK ), we are able to establish both an upper and a lower

bound. The lower bound already indicates that the problem is perhaps infeasible in practice, even for very
simple DTDs. Finding the precise complexity of the problem remains open, and does not appear to be easy.
In fact, even the current proof of the upper bound is quite involved, and relies on combining the techniques
from [16] for coding DTDs and constraints with integer linear inequalities, and from [1] for reasoning about
constraints given by regular expressions by using the product automaton for all the expressions involved in
the constraints.

Theorem 3.7.
a) SAT(ACreg

K ,FK ) can be solved in 2-NEXPTIME.
b) SAT(ACreg

K ,FK ) is PSPACE-hard, even for non-recursive no-star DTDs. �

Proof. We reduce SAT(ACreg
K ,FK ) to the existence of solution of an (almost) instance of linear integer

programming, which happens to be of double-exponential size; hence the 2-NEXPTIME bound. For the
lower bound, we encode the quantified boolean formula problem (QBF) as an instance of SAT(ACreg

K ,FK ).
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Proof of a) The proof is a bit long, so we first give a rough outline. The idea is similar to the proof of the
NP membership for SAT(ACK ,FK ) [16]: we code both the DTD and the constraints with linear inequalities
over integers. However, compared to the proof of [16], the current proof is considerably harder due to the
following. First, regular expressions in DTDs (“horizontal” regular expressions) interact in a certain way
with regular expressions in integrity constraints (those correspond to “vertical” paths through the trees). To
eliminate this interaction, we first show how to reduce the problem to that over narrow DTDs, in which no
wide horizontal regular expressions are allowed. The next problem is that regular expressions in constraints
can interact with each other. Thus, to model them with linear inequalities, we extend the approach of [16]
by taking into account all possible Boolean combinations of regular languages given by expressions used in
constraints. The last problem is coding the DTDs in such a way that variables corresponding to each node
have the information about the path leading to the node, and its relationship with the regular expressions
used in constraints. For that, we adopt the technique of [1], and tag all the variables in the coding of DTDs
with states of a certain automaton (the product automaton for all the automata corresponding to the regular
expressions used in constraints).

Now it is time to fill in all the details. First, we need some additional notation. For every regular
expression β and every attribute @l, we write values(β.@l) to denote the set {y.@l | y ∈ nodes(β) and y.@l
is defined}. Observe that for any τ ∈ E \ {r}, and @l ∈ R(τ), values(r. ∗.τ.@l) corresponds to our original
definition of values(τ.@l)

We say that a DTD D is one-attribute if D contains only one attribute and no element type τ such that
P (τ) = S. We start by showing that SAT(ACreg

K ,FK ) can be reduced to the consistency problem for regular
expression constraints over one-attribute DTDs. Let D = (E, A, P , R, r) be a DTD and Σ a set of ACreg

K ,FK -
constraints overD. First, define DTD DU = (EU , AU , PU , RU , r) as follows. For every τ ∈ E and @l ∈ R(τ),
assume that τ@l is a fresh element type symbol. Then define EU as E ∪ {τ@l | τ ∈ E and @l ∈ R(τ)} and
AU = {@e}, where @e is a fresh attribute symbol. Furthermore, define functions PU and RU as:

• For every τ ∈ E such that P (τ) = S, if R(τ) = {@l1, . . . ,@ln}, where n ≥ 0, then PU (τ) =
τ@l1 , . . . , τ@ln and RU (τ) = ∅.

• For every τ ∈ E such that P (τ) is a regular expression over E, if R(τ) = {@l1, . . . ,@ln}, where
n ≥ 0, then PU (τ) = P (τ), τ@l1 , . . . , τ@ln and RU (τ) = ∅.

• For every τ ∈ E and @l ∈ R(τ), PU (τ@l) = ε and RU (τ@l) = {@e}.
We note that if P (τ) = S and R(τ) = ∅, then PU (τ) = ε.

Second, define the set ΣU of ACreg
K ,FK -constraints over DU as follows. For every key constraint β.τ.@l →

β.τ in Σ, we include β.τ.τ@l.@e→ β.τ.τ@l in ΣU , and for every foreign key constraint β.τ.@l ⊆FK β′.τ ′.@l′

in Σ, we add β.τ.τ@l.@e ⊆FK β′.τ ′.τ ′@l′ .@e to ΣU .
Lemma 3.8. Let D be a DTD, Σ be a set of ACreg

K ,FK -constraints over D, and DU , ΣU be as defined
above. Then there exists an XML tree T1 such that T1 |= (D,Σ) iff there exists an XML tree T2 such that
T2 |= (DU ,ΣU ).

Proof. (⇒) Let T1 = (V1, lab1, ele1, att1, root) be an XML tree such that T1 |= (D,Σ). We define
an XML tree T2 from T1 such that T2 |= (DU ,ΣU ). More specifically, T2 = (V2, lab2, ele2, att2, root),
where V2, lab2, ele2 and att2 are defined as follows. Let v be a node in T1 such that lab1(v) = τ ∈ E
and R(τ) = {@l1, . . . ,@lk}. Then V2 contains node v and fresh nodes v@l1 , . . ., v@lk such that lab2(v) = τ
and lab2(v@li) = τ@li , for every i ∈ [1, k]. Furthermore, if ele1(v) = [s], where s ∈ S, then ele2(v) =
[v@l1 , . . . , v@lk ]. Otherwise, ele1(v) = [v1, . . . , vn], where n ≥ 0 and each vi is an element node, and ele2(v) =
[v1, . . . , vn, v@l1 , . . . , v@lk ]. Finally, att2(v,@e) is not defined and att2(v@li ,@e) = att1(v,@li), for every
i ∈ [1, k]. Next we show that T2 |= (DU ,ΣU ).

By the definition of DU and given that T1 |= D, it is easy to see that T2 |= DU . Assume that T2 �|= ΣU .
Then there exists ϕ ∈ ΣU such that T2 �|= ϕ. (1) If ϕ is a key β.τ.τ@l.@e→ β.τ.τ@l, then there exists distinct
v1, v2 ∈ nodes(β.τ.τ@l) in T2 such that att2(v1,@e) = att2(v2,@e). Let u1, u2 be the parents of v1, v2 in T2,
respectively. By the definition of DU and given that v1 �= v2, we have that u1 �= u2. Thus, by the definition
of T2, u1 and u2 are nodes in T1 such that u1, u2 ∈ nodes(β.τ) and att1(u1,@l) = att1(u2,@l) = att2(v1,@e).
Therefore, T1 �|= β.τ.@l → β.τ , which contradicts the assumption that T1 |= Σ. (2) If ϕ is a foreign key
β.τ.τ@l.@e ⊆FK β′.τ ′.τ ′@l′ .@e, then either T2 �|= β′.τ ′.τ ′@l′ .@e → β′.τ ′.τ ′@l′ or there exists v ∈ nodes(β.τ.τ@l)
such that att2(v,@e) �∈ values(β′.τ ′.τ ′@l′ .@e) in T2. In the former case, we reach a contradiction as in (1).
In the latter case, assume that u is the parent of v in T2. By the definition of T2, we have that u is a
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node in T1 such that u ∈ nodes(β.τ) and att1(u,@l) = att2(v,@e). Thus, given that values(β′.τ ′.τ ′@l′ .@e)
in T2 is equal to values(β′.τ ′.@l′) in T1, we conclude that att1(u,@l) �∈ values(β′.τ ′.@l′) in T1. Therefore,
T1 �|= β.τ.@l ⊆FK β′.τ ′.@l′, which contradicts the assumption that T1 |= Σ.

(⇐) Let T2 = (V2, lab2, ele2, att2, root) be an XML tree such that T2 |= (DU ,ΣU ). We define an
XML tree T1 from T2 such that T1 |= (D,Σ). More specifically, T1 = (V1, lab1, ele1, att1, root), where
V1, lab1, ele1 and att1 are defined as follows. Let v be a node in T2 such that lab2(v) = τ , τ ∈ E and
R(τ) = {@l1, . . . ,@lk}. Then V1 also contains node v with lab1(v) = τ . Furthermore, if P (τ) = S, then
ele2(v) = [v@l1 , . . . , v@lk ], where lab(v@lj) = τ@lj (j ∈ [1, k]), and we define ele1(v) as [s], where s is an
arbitrary string in S , and we define att1(v,@li) as att2(v@li ,@e), for every i ∈ [1, k]. Otherwise, P (τ) is
a regular expression over E and ele2(v) = [v1, . . . , vn, v@l1 , . . . , v@lk ], where lab(vi) ∈ E (i ∈ [1, n]) and
lab(v@lj ) = τ@lj (j ∈ [1, k]), and we define ele1(v) as [v1, . . . , vn] and att1(v,@li) as att2(v@li ,@e), for every
i ∈ [1, k]. Next we show that T1 |= (D,Σ).

By the definition of DU and given that T2 |= DU , it is easy to see that T1 |= D. Assume that T1 �|= Σ.
Then there exists ϕ ∈ Σ such that T1 �|= ϕ. (1) If ϕ is a key β.τ.@l → β.τ , then there exists distinct
u1, u2 ∈ nodes(β.τ) in T1 such that att1(u1,@l) = att1(u2,@l). By the definition of T1, u1 and u2 are also in
nodes(β.τ) in T2. Let v1, v2 be the children of u1, u2 in T2 of type τ@l, respectively. Given that u1 �= u2, we
have that v1 �= v2. Thus, by the definition of T1, v1 and v2 are nodes in T2 such that v1, v2 ∈ nodes(β.τ.τ@l)
and att2(v1,@e) = att2(v2,@e) = att1(u1,@l). Therefore, T2 �|= β.τ.τ@l.@e→ β.τ.τ@l, which contradicts the
assumption that T2 |= ΣU . (2) If ϕ is a foreign key β.τ.@l ⊆FK β′.τ ′.@l′, then either T1 �|= β′.τ ′.@l′ → β′.τ ′

or there exists u ∈ nodes(β.τ) such that att1(u,@l) �∈ values(β′.τ ′.@l′) in T1. In the former case, we
reach a contradiction as in (1). In the latter case, assume that v is the child of u in T2 of type τ@l (u
is a node of T2 by the definition of T1). By the definition of T1, we have that v ∈ nodes(β.τ.τ@l) and
att2(v,@e) = att1(u,@l). Thus, given that values(β′.τ ′.τ ′@l′ .@e) in T2 is equal to values(β′.τ ′.@l′) in T1,
we conclude that att2(v,@e) �∈ values(β′.τ ′.τ ′@l′ .@e) in T2. Therefore, T2 �|= β.τ.τ@l.@e ⊆FK β′.τ ′.τ ′@l′ .@e,
which contradicts the assumption that T2 |= ΣU . This concludes the proof of the lemma.

By Lemma 3.8, from now on we consider only one-attribute DTDs. Let D = (E, {@l}, P , R, r) be a
one-attribute DTD and DN = (EN , {@l}, PN , RN , r) be the narrow DTD of D (defined in the proof of
Theorem 3.1). Observe that DN is also one-attribute. Furthermore, observe that an XML tree T valid w.r.t.
D may not conform to DN and vice versa. In addition, an ACreg

K ,FK -constraint ϕ over D may be satisfied
by T but it may not be satisfied by any XML tree conforming to DN . To explore the connection between
XML trees conforming to D and those conforming to DN , we replace ACreg

K ,FK -constraints over D by new
ACreg

K ,FK -constraints over DN . More precisely, given a set Σ of ACreg
K ,FK -constraints over D, we define a set

ΣN of ACreg
K ,FK -constraints over DN , referred to as the narrowed set of constraints of Σ, as follows. Let

f be a substitution for the element types in E defined as f(τ) = τ.(EN \ E)∗ for every τ ∈ E. Then for
every key constraint β.τ.@l → β.τ in Σ, f(β).τ.@l → f(β).τ is in ΣN , and for every foreign key constraint
β1.τ1.@l ⊆FK β2.τ2.@l in Σ (recall that @l is the only attribute of D), f(β1).τ1.@l ⊆FK f(β2).τ2.@l is in
ΣN .

We are now ready to establish the connection between D and DN , which allows us to consider only
narrow DTDs from now on.

Lemma 3.9. Let D be a one-attribute DTD, DN the narrowed DTD of D, Σ a set of ACreg
K ,FK -constraints

over D and ΣN the narrowed set of constraints of Σ. Then there exists an XML tree T1 such that T1 |= (D,Σ)
iff there exists an XML tree T2 such that T2 |= (DN ,ΣN ).

Proof. It suffices to show the following:
Claim: Given any XML tree T1 |= D one can construct an XML tree T2 by modifying T1 such that T2 |= DN ,
and vice versa. Furthermore, for any regular expression β.τ over D and @l ∈ R(τ), |nodes(f(β).τ)| in T2

equals |nodes(β.τ)| in T1, and values(f(β).τ.@l) in T2 equals values(β.τ.@l) in T1, where f is the substitution
defined above.

For if the claim holds, we can show the lemma as follows. Assume that there exists an XML tree T1

such that T1 |= (D,Σ). By the claim, there is T2 such that T2 |= DN . Suppose, by contradiction, there
is ϕ ∈ ΣN such that T2 �|= ϕ. (1) If ϕ is a key f(β).τ.@l → f(β).τ , then there exist two distinct nodes
x, y ∈ nodes(f(β).τ) in T2 such that x.@l = y.@l. In other words, |values(f(β).τ.@l)| < |nodes(f(β).τ)| in
T2. Since T1 |= ϕ, it must be the case that |values(β.τ.@l)| = |nodes(β.τ)| in T1 because the value x.@l of
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each x ∈ nodes(β.τ) uniquely identifies x among nodes(β.τ). This contradicts the claim that |nodes(f(β).τ)|
in T2 equals |nodes(β.τ)| in T1 and values(f(β).τ.@l) in T2 equals values(β.τ.@l) in T1. (2) If ϕ is a foreign
key: f(β1).τ1.@l ⊆FK f(β2).τ2.@l, then either T2 �|= f(β2).τ2.@l → f(β2).τ2 or there is x ∈ nodes(f(β1).τ1)
such that for all y ∈ nodes(f(β2).τ2) in T2, x.@l �= y.@l. In the first case, we reach a contradiction as in (1).
In the second case, we have x.@l �∈ values(f(β2).τ2.@l) in T2. By the claim, x.@l ∈ values(β1.τ1.@l) in T1.
Since T1 |= ϕ, x.@l ∈ values(β2.τ2.@l) in T1. Again by the claim, we have x.@l ∈ values(f(β2).τ2.@l) in T2,
which contradicts the assumption. The proof for the other direction is similar.

We next verify the claim. Given an XML tree T1 = (V1, lab1, ele1, att, root) such that T1 |= D, we
construct an XML tree T2 by modifying T1 such that T2 |= DN . Consider a τ -element v in T1. Let
ele1(v) = [v1, ..., vn] and w = lab1(v1) . . . lab1(vn). Recall Nτ and Pτ , the set of nonterminals and the set of
production rules generated when narrowing τ → P (τ) (see proof of Theorem 3.1). Let Qτ be the set of E
symbols that appear in Pτ . We can view G = (Qτ , Nτ ∪ {τ}, Pτ , τ) as an extended context free grammar,
where Qτ is the set of terminals, Nτ ∪ {τ} the set of nonterminals, Pτ the set of production rules and τ the
start symbol3. Since T1 |= D, we have w ∈ P (τ). By a straightforward induction on the structure of PN (τ)
it can be verified that w is in the language defined by G. Thus there is a parse tree T (w) w.r.t. the grammar
G for w, and w is the frontier (the list of leaves from left to right) of T (w). Without loss of generality, assume
that the root of T (w) is v, and the leaves are v1, . . . , vn. Observe that the internal nodes of T (w) are labeled
with element types in Nτ except that the root v is labeled τ . Intuitively, we construct T2 by replacing each
element v in T1 by such a parse tree. More specifically, let T2 = (V2, lab2, ele2, att, root). Here V2 consists
of nodes in V1 and the internal nodes introduced in the parse trees. For each x in V2, let lab2(x) = lab1(x) if
x ∈ V1, and otherwise let lab2(x) be the node label of x in the parse tree where x belongs. Note that nodes
in V2 \V1 are elements of some type in EN \E. For every x ∈ V1, let ele2(x) be the list of its children in the
parse tree having x as root. For every x ∈ V2 \V1, let ele2(x) be the list of its children in the parse tree of an
element in V1 that contains x. Note that att remains unchanged. By the construction of T2 it can be verified
that T2 |= DN ; and moreover, for every regular expression β.τ over D and @l ∈ R(τ), |nodes(f(β).τ)|
in T2 equals |nodes(β.τ)| in T1 and values(f(β).τ.@l) in T2 equals values(β.τ.@l) in T1 because, among
other things, (1) if a string r.τ1. · · · .τn.τ over E is in β.τ , then for every sequence of strings w0, . . ., wn in
(EN \E)∗, r.w0.τ1.w1. · · · .τn.wn.τ is in f(β).τ ; (2) if a string r.w0.τ1.w1. · · · .τn.wn.τ is in f(β).τ , where τ1,
. . ., τn, τ are element types in E and w0, . . ., wn are strings in (EN \ E)∗, then r.τ1. · · · .τn.τ is in β.τ ; (3)
none of the new nodes, i.e., nodes in V2 \ V1, is labeled with an E type; (4) no new attributes are defined;
and (5) the ancestor-descendant relation on T1-elements is not changed in T2.

Conversely, assume that there is T2 = (V2, lab2, ele2, att, root) such that T2 |= DN . We construct an
XML tree T1 by modifying T2 such that T1 |= D. For any node v ∈ V2 with lab(v) = τ and τ ∈ EN \ E,
we replace v in ele2(v′) by the children of v, where v′ is the parent of v. In addition, we remove v from V2,
lab2(v) from lab2, and ele2(v) from ele2. Observe that by the definition of DN , no attributes are defined for
elements of any type in EN \ E. We repeat the process until there is no node labeled with element type in
EN \ E. Now let T1 = (V1, lab1, ele1, att, root), where V1, lab1 and ele1 are V2, lab2 and ele2 at the end
of the process, respectively. Observe that att and root remain unchanged. By the definition of T1 it can be
verified that T1 |= D; and in addition, for any regular expression β.τ over D and @l ∈ R(τ), |nodes(β.τ)|
in T1 equals |nodes(f(β).τ)| in T2, and values(β.τ.@l) in T1 equals values(f(β).τ.@l) in T2, because of (1)
and (2) above and, among other things, the fact that none of the nodes removed is labeled with a type of E
and the attribute function att is unchanged.

We now move to encoding of DTDs, more specifically, narrow one-attribute DTDs. Let D =
(E, {@l}, P, R, r) be a narrow one-attribute DTD and Σ a set of ACreg

K ,FK -constraints over D. We en-
code D with a system ΨΣ

D of integer constraints such that there exists an XML tree conforming to D
iff ΨΣ

D admits a nonnegative solution. The coding is developed w.r.t. Σ. More specifically, assume that
β1.τ1.@l, . . . , βk.τk.@l is an enumeration of all regular expressions and attributes that appear in Σ and Θ be
the set of functions θ : {1, . . . , k} → {0, 1} which are not identically 0. For every θ ∈ Θ, define a regular

3As in the proof of Lemma 3.2, if τ is in P (τ), then we need to rename τ in Qτ to ensure that Qτ and Nτ ∪{τ} are disjoint.
It is straightforward to handle that case.
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expression:

rθ =
( ⋂

i : θ(i)=1

βi.τi

)
∩

( ⋂
j : θ(j)=0

βj .τj

)
, (3.1)

where βj .τj is the complement βj .τj . We allow intersection and complement operators only in regular
expressions rθ. We note that for every i ∈ [1, k]:4

βi.τi =
⋃

θ : θ(i)=1

rθ.

Then to capture the interaction between D and constraints of Σ, the system ΨΣ
D has a variable |nodes(βi.τi)|,

for every i ∈ [1, k], and |nodes(rθ)|, for every θ ∈ Θ. In other words, ΨΣ
D specifies the dependencies imposed

by D on the number of elements reachable by following βi.τi (i ∈ [1, k]) and rθ (θ ∈ Θ).
To capture βi.τi (i ∈ [1, k]) and rθ (θ ∈ Θ) in ΨΣ

D, consider, for each regular expression βi.τi (i ∈ [1, k]), a
deterministic automaton that recognizes that expression. Let M be the deterministic automaton equivalent
to the product of all these automata. We refer to M as the DFA for Σ. Let sM be the start state of M and
δ be its transition function. Given an XML tree T conforming to D, for each node x in T we define state(x)
as s, if there is a simple path ρ over D such that T |= ρ(root, x) and s = δ(sM , ρ). The connection between
M and T w.r.t. βi.τi (i ∈ [1, k]) is described by the following lemma:

Lemma 3.10. Let D be a narrow one-attribute DTD, Σ a set of ACreg
K ,FK -constraints over D, M the

DFA for Σ and βi.τi a regular expression in Σ. Then for every XML tree T conforming to D and every
τi-element x in T , x ∈ nodes(βi.τi) in T iff state(x) contains some final state fβi.τi of the automaton for
βi.τi.

In other words, nodes(βi.τi) in T consists of all τi-elements x such that state(x) (which is a tuple
of states of automata corresponding to regular expressions in Σ) contains some final state fβi.τi of the
automaton for βi.τi. A similar idea was exploited in [1].

Proof. Since T is a tree, there exists a unique simple path ρ over D such that T |= ρ.τi(root, x). Thus
x ∈ nodes(β.τi) in T iff ρ.τi ∈ β.τi. If x ∈ nodes(β.τi) in T , then ρ.τi ∈ β.τi and, therefore, there must be
a final state fβ.τi in the automaton for β.τi and a state s in M such that s = δ(sM , ρ.τi) and s contains
fβi.τi. Thus state(x) = s contains some final state fβi.τi of the automaton for βi.τi. Conversely, if state(x)
contains a final state fβi.τi in the automaton for βi.τi, then ρ.τi ∈ β.τi since s = δ(sM , ρ.τi). Therefore,
x ∈ nodes(βi.τi) in T .

We next define a system ΨΣ
D of integer constraints. The variables used in the constraints of ΨΣ

D are as
follows. Let τ ∈ E be an element type and s = δ(sM , ρ.τ) for some simple path ρ.τ ∈ E∗. For each such pair
we create a distinct variable xs

τ . Intuitively, in an XML tree T conforming to D, we use xs
τ to keep track of

the number of τ -elements with state s. Furthermore, define Y s
τ as the set of pairs (τ ′, s′) such that τ ′ ∈ E,

s′ = δ(sM , ρ.τ ′) for some simple path ρ.τ ′ ∈ E∗, τ is mentioned in P (τ ′) and s = δ(s′, τ). For each such
pair (τ ′, s′), we create a variable xs,s′

τ,τ ′ . Intuitively, in an XML tree T conforming to D, we use xs,s′
τ,τ ′ to keep

track of the number of τ -elements with state s that are children of a node of type τ ′ with state s′. There
are exponentially many variables (in the size of D and Σ) in total since M is a DFA. Using these, we define
an integer constraint to specify τ → P (τ) at state s as follows. Let us use Ψs

τ to denote the set of integer
constraints defined for τ at s.

• If P (τ) = τ1, then Ψs
τ includes xs

τ = xs1,s
τ1,τ , where s1 = δ(s, τ1).

• If P (τ) = (τ1, τ2), then Ψs
τ includes xs

τ = xs1,s
τ1,τ and xs

τ = xs2,s
τ2,τ , where si = δ(s, τi) for i = 1, 2.

Referring to the XML tree T , these assure that each τ -element in T must have a τ1-subelement and
a τ2-subelement.

• If P (τ) = (τ1|τ2), then Ψs
τ includes xs

τ = xs1,s
τ1,τ + xs2,s

τ2,τ , where si = δ(s, τi) for i = 1, 2. This assures
that each τ -element in T must have either a τ1-subelement or a τ2-subelement, and thus the sum
of the number of these τ1-subelements and the number of τ2-subelements equals the number of
τ -elements.

4Recall that the regular language defined by a regular expression β is denoted by β as well.
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• If P (τ) = τ∗1 , then Ψs
τ includes (xs1,s

τ1,τ > 0) → (xs
τ > 0), where s1 = δ(s, τ1).

In addition, Ψs
τ includes xs

τ =
∑

(τ ′,s′)∈Y s
τ

xs,s′
τ,τ ′.

Recall that β1.τ1.@l, . . . , βk.τk.@l is an enumeration of all regular expressions and attributes that appear
in Σ, that Θ is the set of functions θ : {1, . . . , k} → {0, 1} which are not identically 0 and that for each such
function θ, rθ is a regular expression defined as in (3.1). For each i ∈ [1, k], we define Fβi.τi as the set of
states s = (s1, . . . , sk) of the DFA for Σ such that si is a final state of the DFA for βi.τi. Notice that by
Lemma 3.10, for every XML tree T conforming to D and every node x of T , x ∈ nodes(βi.τi) in T if and
only if state(x) ∈ Fβi.τi . Furthermore, for each θ ∈ Θ, we define Fθ as the set of states s = (s1, . . . , sk) of
the DFA for Σ such that for every i ∈ [1, k], si is a final state of the DFA for βi.τi if and only if θ(i) = 1.
Notice that by Lemma 3.10, for every XML tree T conforming to D and every node x of T , x ∈ nodes(rθ) in
T if and only if state(x) ∈ Fθ. Finally, for each rθ �= ∅, we have that for every i, j ∈ [1, k], if θ(i) = θ(j) = 1,
then τi = τj . In this case, we define τθ as τi, for an arbitrary i ∈ [1, k] such that θ(i) = 1.

By our restriction on regular expressions regarding element type r, there is a unique variable xs
r associated

with r, where s = δ(sM , r). We write xr for xs
r. Then we define the set of cardinality constraints determined

by DTD D w.r.t. a set Σ of ACreg
K ,FK -constraints over D, denoted by ΨΣ

D, as follows:

• For each τ ∈ E and each state s given above, ΨΣ
D contains all the constraints in Ψs

τ .
• ΨΣ

D contains constraint xr = 1; i.e., there is a unique root in each XML tree conforming to D.
• For every i ∈ [1, k], ΨΣ

D contains constraint |nodes(βi.τi)| =
∑

s : s∈Fβi.τi

xs
τi
.

• For every θ ∈ Θ such that rθ �= ∅, ΨΣ
D contains constraint |nodes(rθ)| =

∑
s : s∈Fθ

xs
τθ

.

• For every θ ∈ Θ such that rθ = ∅, ΨΣ
D contains constraint |nodes(rθ)| = 0.

Note that ΨΣ
D can be computed in EXPTIME in the size of D and Σ. We say that ΨΣ

D is consistent iff it
has a nonnegative solution. We next show that ΨΣ

D indeed characterizes narrow one-attribute DTD D.
Lemma 3.11. Let D be a narrow one-attribute DTD, Σ a set of ACreg

K ,FK -constraints over D and ΨΣ
D

the set of cardinality constraints determined by D w.r.t. Σ. Then ΨΣ
D is consistent iff there is an XML tree

T such that T |= D. In addition, for every i ∈ [1, k] and θ ∈ Θ, |nodes(βi.τi)| and |nodes(rθ)| in T equal the
value of variables |nodes(βi.τi)| and |nodes(rθ)| given by the solution to ΨΣ

D.
Proof. First, assume that there is an XML tree T = (V, lab, ele, att, root) conforming to D. We

define a nonnegative solution of ΨΣ
D as follows. For each variable xs,s′

τ,τ ′ in ΨΣ
D, let its value be the number

of τ -elements x in T such that x is a child of a node y of type τ ′ with state(x) = s and state(y) = s′.
Furthermore, let xr be 1 and for every variable xs

τ in ΨΣ
D, let xs

τ be the sum of the variables xs,s′
τ,τ ′ where

(τ ′, s′) ∈ Y s
τ . Finally, for every i ∈ [1, k] and every θ ∈ Θ, let |nodes(βi.τi)| and |nodes(rθ)| be

∑
s : s∈Fβi.τi

xs
τi

and
∑

s : s∈Fθ
xs

τθ
, respectively. This defines a nonnegative assignment since T is finite. It can be verified

that the assignment is a solution of ΨΣ
D. Indeed, it satisfies the constraint xr = 1 and constraints of the form

xs
τ =

∑
(τ ′,s′)∈Y s

τ
xs,s′

τ,τ ′ , |nodes(βi.τi)| =
∑

s : s∈Fβi.τi
xs

τi
and |nodes(rθ)| =

∑
s : s∈Fθ

xs
τθ

by the definition of
the assignment. Moreover, one can verify that it also satisfies the constraints of each Ψs

τ , by considering
four different cases corresponding to the four different types of regular expressions in D. In particular, it
satisfies constraints of the form (xs1,s

τ1,τ > 0) → (xs
τ > 0) for each τ → τ∗1 in P , since if xs1,s

τ1,τ > 0, then there
exists a τ1-node in T having as its parent a τ -node y with state(y) = s. Thus, xs

τ > 0 by the definition of
the assignment. Therefore, ΨΣ

D is consistent. Moreover, by Lemma 3.10, for every i ∈ [1, k] and θ ∈ Θ, the
values of variables |nodes(βi.τi)| and |nodes(rθ)| in the solution are indeed |nodes(βi.τi)| and |nodes(rθ)| in
T .

Conversely, assume that ΨΣ
D admits a nonnegative solution. We show that there exists an XML tree

T = (V, lab, ele, att, root) such that T |= D. To do so, for each element type τ and state s for τ , we create
xs

τ many distinct τ -elements. Let ext(τ) denote the set of all τ -elements created above and

V =
⋃

τ∈E

ext(τ).
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Then function lab is defined as lab(v) = τ if v ∈ ext(τ), and function att is defined as follows:

att(v, @l) =

{
empty string if @l ∈ R(lab(v))
undefined otherwise

It is easy to verify that these functions are well defined. Let root be the node labeled r, which is unique
since xr = 1 is in ΨΣ

D. Finally, to define function ele, we do the following. For each xs,s′
τ,τ ′ in ΨΣ

D, we choose

xs,s′
τ,τ ′ many distinct vertices labeled τ and mark them with xs,s′

τ,τ ′ . Note that every τ -element in V can be

marked once and only once. Starting at root, for each τ -element x marked with xs,s′
τ,τ ′ for some (τ ′, s′) ∈ Y s

τ ,
consider P (τ) and constraints of ΨΣ

D
5. If P (τ) is τ1 ∈ E, then we choose a distinct τ1-element y marked

with xs1,s
τ1,τ and let ele(x) = [y], where xs

τ = xs1,s
τ1,τ is in ΨΣ

D. If P (τ) = (τ1, τ2), then we choose a τ1-element
y1 marked with xs1,s

τ1,τ and a τ2-element y2 marked with xs2,s
τ2,τ and let ele(x) = [y1, y2], where xs

τ = xs1,s
τ1,τ and

xs
τ = xs2,s

τ2,τ are in ΨΣ
D. If P (τ) = (τ1|τ2), then we choose an element y marked with either xs1,s

τ1,τ or xs2,s
τ2,τ and

let ele(x) = [y], where xs
τ = xs1,s

τ1,τ + xs2,s
τ2,τ is in ΨΣ

D. If P (τ) = τ∗1 , then we choose a list [y1, . . . , yn] (n ≥ 0)
of τ1-elements marked with xs1,s

τ1,τ and let ele(x) = [y1, . . . , yn], where (xs1,s
τ1,τ > 0) → (xs

τ > 0) is in ΨΣ
D. By

the constraints in ΨΣ
D, each element of V can be chosen once and only once. One can verify that T defined

in this way is indeed an XML tree and T |= D. Hence, there exists an XML tree conforming to D.

Finally, to see that for every i ∈ [1, k] and θ ∈ Θ, |nodes(βi.τi)| and |nodes(rθ)| in T equals the values of
variables |nodes(β.τ)| and |nodes(rθ)| in the solution, respectively, it suffices to show, by Lemma 3.10, that
for each node x in T , if x is marked with xs,s′

τ,τ ′ in the construction, then state(x) = s. Since T is a tree, there
is a unique simple path ρ ∈ E∗ such that T |= ρ(root, x). We show the claim by induction on the length
|ρ| of ρ. If |ρ| = 1, i.e., ρ = r, then x is the root and obviously, state(x) = δ(sM , r). Assume the claim for
ρ and we show that the claim holds for ρ.τ . Let y be the τ ′-element in T such that T |= ρ(root, y) and y

is the parent of x. Suppose that y is marked with xs′,s′′
τ ′,τ ′′ in the construction. By the induction hypothesis

state(y) = s′. It is easy to see state(x) = δ(s′, τ). By the definition of Ψs′
τ ′, we have that s is precisely the

state δ(s′, τ). Thus state(x) = s. This proves the claim and thus the lemma.

We now move to encoding ACreg
K ,FK -constraints in terms of integer constraints. Let D be a DTD

(E, {@l}, P, R, r) and Σ a set of ACreg
K ,FK -constraints over D. By Lemmas 3.8 and 3.9, we assume, with-

out loss of generality, that D is a narrow one-attribute DTD. To encode Σ, let β1.τ1.@l, . . . , βk.τk.@l
be an enumeration of all regular expressions and attributes that appear in Σ, and for every function
θ : {1, . . . , k} → {0, 1} which is not identically 0, let regular expression rθ be defined as in (3.1). Then
for every nonempty Ω ⊆ Θ, we introduce a new variables zΩ. In any XML tree conforming to D, the
intended interpretations of zΩ is the cardinality of

( ⋂
θ : θ∈Ω

values(rθ.@l)
)
\

( ⋃
θ : θ∈Θ\Ω

values(rθ.@l)
)
. (3.2)

Note that the number of new variables is double-exponential in the number of regular expression in Σ.
Using these variables, we define the set of the cardinality constraints determined by Σ, denoted by CΣ, which
consists of the following:

5We assume that root is marked with xs
r, where s = δ(sM , r) and sM is the initial state of the DFA for Σ.
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∑
Ω : θ∈Ω

zΩ = |values(rθ.@l)| for every θ ∈ Θ,

∑
Ω : Ω∩{θ|θ(i)=1}�=∅

zΩ = |values(βi.τi.@l)| for every i ∈ [1, k],

|values(βi.τi.@l)| = |nodes(βi.τi)| for every βi.τi.@l → βi.τi in Σ,

|values(βj.τj .@l)| = |nodes(βj .τj)| for every βi.τi.@l ⊆FK βj .τj .@l in Σ,

∑
Ω : Ω∩{θ|θ(i)=1}�=∅,

Ω∩{θ′|θ′(j)=1}=∅

zΩ = 0 for every βi.τi.@l ⊆FK βj .τj .@l in Σ,

|values(βi.τi.@l)| ≤ |nodes(βi.τi)| for every i ∈ [1, k],

|values(rθ.@l)| ≤ |nodes(rθ)| for every θ ∈ Θ.
Note that the size of CΣ is double-exponential in the size of Σ.

We now combine the encodings for constraints and the DTDs, and present a system Ψ(D, Σ) of linear
integer constraints for a DTD D and a set Σ of ACreg

K ,FK -constraints. Assuming that D and Σ are as above,
the set Ψ(D, Σ), called the set of cardinality constraints determined by D and Σ, is defined to be:

ΨΣ
D ∪ CΣ ∪ {(|nodes(βi.τi)| > 0) → (|values(βi.τi.@l)| > 0) | i ∈ [1, k]} ∪

{(|nodes(rθ)| > 0) → (|values(rθ.@l)| > 0) | θ ∈ Θ},

where CΣ is the set of cardinality constraints determined by Σ, and ΨΣ
D is the set of cardinality constraints

determined by D w.r.t. Σ. The system Ψ(D, Σ) is said to be consistent iff it has a nonnegative solution that
satisfies all of its constraints. Observe that Ψ(D, Σ) can be partitioned into two sets: Ψ(D, Σ) = Ψl(D, Σ)∪
Ψd(D, Σ), where Ψl(D, Σ) consists of linear integer constraints, and Ψd(D, Σ) consists of constraints of the
form (x > 0 → y > 0). Also note that the size of Ψ(D, Σ) is double-exponential in the size of D and Σ.

We next show that Ψ(D, Σ) indeed characterizes the consistency of D and Σ.
Lemma 3.12. Let D be a narrow one-attribute DTD, Σ a finite set of ACreg

K ,FK -constraints over D and
Ψ(D, Σ) the set of cardinality constraints determined by D and Σ. Then Ψ(D, Σ) is consistent if and only
if there is an XML tree T such that T |= (D,Σ).

Proof. Suppose that there exists an XML tree T such that T |= (D,Σ). Then by Lemma 3.11, there exists
a nonnegative solution for ΨΣ

D such that for every i ∈ [1, k] and θ ∈ Θ, the values of variables |nodes(rθ)|
and |nodes(βi.τi)| in this solution coincide with |nodes(rθ)| and |nodes(βi.τi)| in T , respectively. From this
solution, it is easy to generate a solution to Ψ(D,Σ) by assigning to variable |values(rθ.@l)| the size of
values(rθ.@l) in T , for every θ ∈ Θ, assigning to variable |values(βi.τi.@l)| the size of values(βi.τi.@l)
in T , for every i ∈ [1, k], and then assigning to each variable zΩ the cardinality of set (3.2) above. It is
straightforward to verify that this assignment is a solution to Ψ(D, Σ).

Conversely, suppose that Ψ(D, Σ) has an integer solution. We show that there is an XML tree T
such that T |= (D,Σ). By Lemma 3.11, given an integer solution to Ψ(D, Σ), we can construct an XML
tree T ′ = (V, lab, ele, att′, root) such that T ′ |= D. Moreover, for every i ∈ [1, k], there are exactly nβi.τi

elements in T ′ reachable by following βi.τi, where nβi.τi is the value of the variable |nodes(βi.τi)| in Ψ(D, Σ),
and for every θ ∈ Θ, there are exactly nrθ

elements in T ′ reachable by following rθ, where nrθ
is the value

of the variable |nodes(rθ)| in Ψ(D, Σ). We modify the definition of the function att′, while leaving V ,
lab, ele and root unchanged, to generate a tree T = (V, lab, ele, att, root) such that T |= (D,Σ). More
specifically, we modify att′(v,@l) if v is in nodes(β.τ) for some regular expression β.τ mentioned in Σ, and
leave att′(v,@l) unchanged otherwise. To do this, for each variable zΩ we create a set sΩ of distinct string
values such that |sΩ| = zΩ and sΩ ∩ sΩ′ = ∅ if Ω �= Ω′. Then for every Ω ⊆ Θ, we let values(rθ.@l) in T
to contain sΩ if and only if θ ∈ Ω. This is possible because (1)

∑
Ω : θ∈Ω zΩ = |values(rθ.@l)| is in CΣ, for

every θ ∈ Θ; (2)
∑

Ω : Ω∩{θ|θ(i)=1}�=∅ zΩ = |values(βi.τi.@l)| is in CΣ, for every i ∈ [1, k]; (3) if rθ = ∅, then
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|nodes(rθ)| = 0 is in ΨΣ
D, for every θ ∈ Θ; (4) |values(βi.τi.@l)| ≤ |nodes(βi.τi)| is in CΣ, for every i ∈ [1, k];

(5) |values(rθ.@l)| ≤ |nodes(rθ)| is in CΣ, for every θ ∈ Θ; and (6) nodes(β) in T equals nodes(β) in T ′, for
every regular expression β over D.

We next show that T has the desired properties. It is easy to verify T |= D given the construction
of T from T ′ and the assumption T ′ |= D. By the definition of T , we have that for every i ∈ [1, k] and
θ ∈ Θ, |nodes(βi.τi)|, |values(βi.τi.@l)|, |nodes(rθ)| and |values(rθ.@l)| in T equal the value of variables
|nodes(βi.τi)|, |values(βi.τi.@l)|, |nodes(rθ)| and |values(rθ.@l)| given by the solution to Ψ(D,Σ). We use
this property to show that T |= Σ. Let ϕ be a constraint in Σ. (1) If ϕ is a key βi.τi.@l → βi.@l, it is
immediate from the definition of T that T |= ϕ since |values(βi.τi.@l)| = |nodes(βi.τi)| is a constraint in
CΣ and, hence, |values(βi.τi.@l)| = |nodes(βi.τi)| in T . That is, each x ∈ nodes(βi.τi) in T has a distinct
@l-attribute value and thus the value of its @l-attribute uniquely identifies x among nodes in nodes(βi.τi).
(2) If ϕ is βi.τi.@l ⊆FK βj .τj .@l, it is easy to see that in T :

values(βi.τi.@l) \ values(βj.τj .@l) =
⋃

Ω : Ω∩{θ|θ(i)=1}�=∅,Ω∩{θ′|θ′(j)=1}=∅
sΩ,

Since sΩ ∩ sΩ′ = ∅ if Ω �= Ω′,

|values(βi.τi.@l) \ values(βj.τj .@l)| =
∑

Ω : Ω∩{θ|θ(i)=1}�=∅,Ω∩{θ′|θ′(j)=1}=∅
zΩ.

Thus, given that ∑
Ω : Ω∩{θ|θ(i)=1}�=∅, Ω∩{θ′|θ′(j)=1}=∅

zΩ = 0

is in CΣ (since βi.τi.@l ⊆FK βj .τj .@l ∈ Σ), we have |values(βi.τi.@l) \ values(βj.τj .@l)| = 0 in T , that is,
values(βi.τi.@l) ⊆ values(βj.τj .@l) in T . Furthermore, T |= βj .τj .@l → βj .τj since |values(βj.τj .@l)| =
|nodes(βj .τj)| is a constraint in CΣ. Thus T |= ϕ. This concludes the proof of the lemma.

We need another lemma for a mild generalization of linear integer constraints.
Lemma 3.13. Given a system A�x ≤ �b of linear integer constraints together with conditions of the form

(xi > 0) → (xj > 0), where A is an n×m matrix on integers, �b is an n-vector on integers and 1 ≤ i, j ≤ m,
the problem of determining whether the system admits a nonnegative integer solution is in NP.

Proof. Let c1, . . . , cp enumerate the conditions of the form (x > 0) → (y > 0), ck being (x1
k > 0) →

(x2
k > 0). Consider 2p instances Ij of integer linear programming obtained by adding, for each k ≤ p, either

x1
k = 0, or x2

k > 0 to A�x ≤ �b. Clearly, the original system of constraints has a solution iff some Ij has a
solution. By [27], Ij has a solution iff it has a solution whose size is polynomial in A, �b and p. Hence, to
check if the original system of constraints has a solution, it suffices to guess a system Ij and then guess a
polynomial size solution for it; thus, the problem is in NP.

We now conclude the proof of the first part of the theorem. By Lemma 3.8, given an arbitrary DTD
D and a set Σ of ACreg

K ,FK -constraints over D, it is possible to compute a one-attribute DTD D′ and a set
Σ′ of ACreg

K ,FK -constraints over D′ such that (D,Σ) is consistent iff (D′,Σ′) is consistent. By Lemma 3.9,
one can compute a narrow one-attribute DTD D′

N and a set Σ′
N of ACreg

K ,FK -constraints over D′
N such that

(D′,Σ′) is consistent iff (D′
N ,Σ

′
N ) is consistent. By Lemma 3.12, (D′

N ,Σ
′
N ) is consistent iff Ψ(D′

N ,Σ
′
N ) has

a nonnegative integer solution. Thus, (D,Σ) is consistent iff Ψ(D′
N ,Σ

′
N ) has a nonnegative integer solution.

Note that (D′,Σ′) can be computed in polynomial time on |D|+|Σ|, (D′
N ,Σ

′
N ) can be computed in polynomial

time on |D′|+ |Σ′|, and Ψ(D′
N ,Σ

′
N ) can be computed in double-exponential time on |D′

N |+ |Σ′
N |. Thus, by

Lemma 3.13, one can check in 2-NEXPTIME whether there exists an XML tree T such that T |= (D,Σ).

Proof of b) We establish the PSPACE-hardness by reduction from the QBF-CNF problem. An instance
of QBF-CNF is a quantified boolean formula in prenex conjunctive normal form. The problem is to determine
whether this formula is valid. QBF-CNF is known to be PSPACE-complete [20, 28].

Let θ be a formula of the form

Q1x1 · · ·Qmxmψ, (3.3)
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Fig. 3.2. An XML tree conforming to the DTD constructed from ∀x1∃x2∀x3(x1 ∨ x2 ∨ ¬x3).

where each Qi ∈ {∀, ∃} (1 ≤ i ≤ m) and ψ is a propositional formula in conjunctive normal form, say
C1 ∧ · · · ∧ Cn, that mentions variables x1, . . . , xm. We construct a DTD Dθ and a set Σθ of ACreg

K ,FK -
constraint such that θ is valid if and only if there is an XML tree conforming to Dθ and satisfying Σθ.

We construct a DTD Dθ = (E, A, P, R, r) as follows. E = {r, C} ∪ ⋃m
i=1{xi, x̄i, Nxi , Pxi}, A = {@l}

and P is defined by considering the quantifiers of θ. We use Q1 to define P on the root:

P (r) =

{
(Nx1 |Px1), C Q1 = ∃
(Nx1 , Px1), C Q1 = ∀

In general, for each 1 ≤ i ≤ m− 1, we consider quantifier Qi+1 to define P (Nxi) and P (Pxi):

P (Nxi) = P (Pxi) =

{
Nxi+1|Pxi+1 Qi+1 = ∃
Nxi+1, Pxi+1 Qi+1 = ∀

We represent formula ψ as a regular expression. Given a clause Cj =
∨p

i=1 yi ∨
∨q

i=1 ¬zi (j ∈ [1, n]), tr(Cj)
is defined to be the regular expression y1| · · · |yp|z̄1| · · · |z̄q. We define P on element types Nxm and Pxm

as P (Nxm) = P (Pxm) = tr(C1), . . . , tr(Cn). For the remaining elements of E, we define P as ε. We define
function R as follows:

R(r) = R(Pxi) = R(Nxi) = ∅ 1 ≤ i ≤ m
R(C) = R(xi) = R(x̄i) = {@l} 1 ≤ i ≤ m.

Finally, Σθ contains the following foreign keys:
r. ∗.Nxi .

∗.xi.@l ⊆FK r.C.C.@l, r. ∗.Pxi .
∗.x̄i.@l ⊆FK r.C.C.@l, i ∈ [1,m].

For instance, for the formula ∀x1∃x2∀x3(x1∨x2∨¬x3), an XML tree conforming to D is shown in Figure 3.2.
In this tree, a node of type Nxi represents a negative value (0) for the variable xi and a node of type Pxi

represents a positive value (1) for this variable. Thus, given that the root has two children of types Nx1 and
Px1 , the values 0 and 1 are assigned to x1 (representing the quantifier ∀x1). Nodes of type Nx1 have one
child of type either Nx2 or Px2 , and, therefore, either 0 or 1 is assigned to x2 (representing the quantifier
∃x2). The same holds for nodes of type Px2 . The fourth level of the tree represents the quantifier ∀x3. Note
that in any XML tree T conforming to D, there is no node in T reachable by following the path r.C.C.

In Figure 3.2, every path from the root r to a node of type either Nx3 or Px3 represents a truth
assignment for the variables x1, x2, x3. For example, the path from the root to the node u represents the
truth assignment σu: σu(x1) = 0, σu(x2) = 1 and σu(x3) = 0. To verify that all these assignments satisfy
the formula x1 ∨ x2 ∨ ¬x3 we use the set of constraint Σθ.

Next we prove that θ, defined in (3.3), is valid if and only if there is an XML tree T conforming to Dθ

and satisfying Σθ. We show only the “if” direction. The “only if” direction is similar.
Suppose that there is an XML tree T such that T |= (Dθ,Σθ). To prove that θ is valid, it suffices to

prove that each path from the root r to a node of type either Nxm or Pxm represents a truth assignment
24



satisfying ψ. Let p be one of these paths and let v be the node of type either Nxm or Pxm reachable from
the root by following p. We define the truth assignment σp as follows:

σp(xi) =

{
1 p contains a node of type Pxi

0 Otherwise.

We have to prove that σp(Ci) = 1 for each i ∈ [1, n]. Given that T |= Dθ, v has as a child a node v′ whose
type is in tr(Ci). If the type of v′ is xj , then given that T |= r. ∗.Nxj .

∗.xj .@l ⊆FK r.C.C.@l and that there
exists no node in T reachable by following the path r.C.C, p contains a node of type Pxj , and, therefore,
σp(Ci) = 1 since σp(xj) = 1. If the type of v′ is x̄j , then given that T |= r. ∗.Pxj .

∗.x̄j .@l ⊆FK r.C.C.@l,
p contains a node of type Nxj and it does not contain a node of type Pxj , and, therefore, σp(Ci) = 1 since
σp(¬xj) = 1. Thus, we conclude that θ is valid. This concludes the proof of part b) of the theorem.

4. Relative integrity constraints. Since XML documents are hierarchically structured, one may be
interested in the entire document as well as in its sub-documents. The latter gives rise to relative integrity
constraints [5], that only hold on certain sub-documents. Below we define relative keys and foreign keys.
Recall that we use RC to denote various classes of such constraints. We use the notation x ≺ y when x and
y are two nodes in an XML tree and y is a descendant of x.

We first define unary relative keys and foreign keys associated with element types. Let D =
(E, A, P, R, r) be a DTD. A relative key is an expression ϕ of the form τ(τ1.@l → τ1), where @l ∈ R(τ1).
It says that relative to each node x of element type τ , @l is a key for all the τ1-nodes that are descendants
of x. That is, if a tree T conforms to D, then T |= ϕ if

∀x ∈ ext(τ) ∀y, z ∈ ext(τ1)
(
(x ≺ y) ∧ (x ≺ z) ∧ (y.@l = z.@l) → y = z

)
.

A relative foreign key is an expression ϕ of the form τ(τ1.@l1 ⊆FK τ2.@l2), where @li ∈ R(τi), i = 1, 2. It
indicates that for each x in ext(τ), @l1 is a foreign key of descendants of x of type τ1 that references a key
@l2 of τ2-descendants of x. That is, T |= ϕ if T |= τ(τ2.@l2 → τ2) and T satisfies

∀x ∈ ext(τ) ∀y1 ∈ ext(τ1)
(
(x ≺ y1) → ∃y2 ∈ ext(τ2) ((x ≺ y2) ∧ y1.@l1 = y2.@l2)

)
.

Here τ is called the context type of ϕ. Note that absolute constraints are a special case of relative constraints
when τ = r: i.e., r(τ.@l → τ) is the usual absolute key. Thus, the consistency problem for multi-attribute
relative constraints is undecidable [16], and hence we only consider unary relative constraints here.

Following the notations for AC, we use RCK ,FK to denote the class of all unary relative keys and foreign
keys defined for element types; RCPK ,FK means the primary key restriction. For example, the constraints
given in Section 1 over the country/province/capital DTD can be expressed in RCK ,FK as follows:

country.@name → country,
country(province.@name → province),

country(capital .@inProvince → capital ),
country(capital .@inProvince ⊆FK province.@name).

A more general form of unary relative constraints is defined in terms of regular path expressions, along the
same lines as ACreg

K ,FK . For example, the constraints given in Section 1 over the country/province/capital
DTD are instances of this general form of relative constraints. Since RCK ,FK constraints are a special
case of the general regular-expression relative constrains (by substituting ∗.τ for τ), the lower bound for
SAT(RCK ,FK ) carries over to the consistency problem for unary relative constraints defined in terms of
regular path expressions.

Recall that SAT(ACK ,FK ), the consistency problem for absolute unary constraints, is NP-complete. One
would be tempted to think that SAT(RCK ,FK ), the consistency problems for relative unary constraints, is
decidable as well. We next show, however, that there is an enormous difference between unary absolute
constraints and unary relative constraints: while clearly SAT(RCK ,FK ) is r.e., it turns out that one cannot
lower this bound.
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Theorem 4.1. SAT(RCK ,FK ) is undecidable. �

Proof. We establish the undecidability of the consistency problem for unary relative keys and foreign
keys by reduction from the Hilbert’s 10th problem [24]. To do this, we consider a variation of the Diophantine
problem, referred as the positive Diophantine quadratic system problem. An instance of the problem is

P1(x1, . . . , xk) = Q1(x1, . . . , xk) + c1

P2(x1, . . . , xk) = Q2(x1, . . . , xk) + c2

...

Pn(x1, . . . , xk) = Qn(x1, . . . , xk) + cn

where for 1 ≤ i ≤ n, Pi and Qi are polynomials in which all coefficients are positive integers; the degree of
Pi is at most 2 and the degree of each of its monomial is at least 1; each polynomial Qi satisfies the same
condition, and each ci is a nonnegative integer constant. The problem is to determine, given any positive
Diophantine quadratic system, whether it has a nonnegative integer solution.

The positive Diophantine quadratic system problem is undecidable. To prove this, it is straightforward to
reduce to it another variation of the Diophantine problem, the positive Diophantine equation problem, which
is known to be undecidable. An instance of this problem is R(ȳ) = S(ȳ), where R and S are polynomials
in which all coefficients are positive integers, and the problem is to determine whether it has a nonnegative
integer solution.

In what follows, we show a reduction from the positive Diophantine quadratic system problem to
SAT(RCK ,FK ). More precisely, given a quadratic equation we show how to represent it by using a DTD and
a set of constraints. It is straightforward to extend this representation to consider an arbitrary number of
quadratic equations.

Consider the following equation:
m∑

i=1

aixαi +
n∑

i=m+1

aixαixβi =
p∑

i=1

bixγi +
q∑

i=p+1

bixγixδi + o. (4.1)

In this equation, for every i ∈ [1, n] and j ∈ [m+1, n], ai is a positive integer and xαi , xβj represent variables,
where αi, βj ∈ [1, k]. Furthermore, for every i ∈ [1, q] and j ∈ [p+ 1, q], bi is a positive integer and xγi , xδj

are variables, where γi, δj ∈ [1, k]. Finally, o is a nonnegative integer.
To code the previous equation, we need to define a DTD D = (E,A, P,R, r) and a set of RCK ,FK -

constraints Σ. Here D includes the following elements and attributes:

E = {r,X, Y } ∪
k⋃

i=1

{ni} ∪
n⋃

i=1

{αi} ∪
n⋃

i=m+1

{α′
i, βi, ci, di, ei} ∪

q⋃
i=1

{γi} ∪
q⋃

i=p+1

{γ′i, δi, fi, gi, hi},

A = {@v}.
In this DTD, r is the root. Intuitively, referring to an XML tree conforming to D, we use |ext(ni)| to code
the value of the variable xi, and we use |ext(X)| and |ext(Y )| to code the values of the left and the right
hand sides of (4.1), respectively.

We define P (r) as follows:

P (r) = n∗
1, . . . , n

∗
k, α

∗
1, . . . , α

∗
m, (ε|αm+1), . . . , (ε|αn), γ∗1 , . . . , γ

∗
p , (ε|γp+1), . . . , (ε|γq), Y, . . . , Y︸ ︷︷ ︸

o times

We define the function P on αi and βi as follows:
P (αi) = X, . . . ,X︸ ︷︷ ︸

ai times

1 ≤ i ≤ m

P (αi) = (βi, ci, ci, X, . . . , X︸ ︷︷ ︸
ai times

)∗, α′
i m+ 1 ≤ i ≤ n

P (γi) = Y, . . . , Y︸ ︷︷ ︸
bi times

1 ≤ i ≤ p

P (γi) = (δi, fi, fi, Y, . . . , Y︸ ︷︷ ︸
bi times

)∗, γ′i p+ 1 ≤ i ≤ q
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To code (4.1) we need to capture the multiplication operator. To do this, we use α′
i and γ′i:

P (α′
i) = (βi, di, di)∗, (αi|(ci, ei)∗) m+ 1 ≤ i ≤ n

P (γ′i) = (δi, gi, gi)∗, (γi|(fi, hi)∗) p+ 1 ≤ i ≤ q
For all the other element types τ in D, P (τ) is defined as ε:

P (βi) = ε m+ 1 ≤ i ≤ n P (δi) = ε p+ 1 ≤ i ≤ q P (X) = ε
P (ci) = ε m+ 1 ≤ i ≤ n P (fi) = ε p+ 1 ≤ i ≤ q P (Y ) = ε
P (di) = ε m+ 1 ≤ i ≤ n P (gi) = ε p+ 1 ≤ i ≤ q P (ni) = ε 1 ≤ i ≤ k
P (ei) = ε m+ 1 ≤ i ≤ n P (hi) = ε p+ 1 ≤ i ≤ q

Finally, we include the following attributes:
R(r) = ∅ R(βi) = R(ci) = R(di) = R(ei) = {@v} m+ 1 ≤ i ≤ n
R(ni) = {@v} 1 ≤ i ≤ k R(δi) = R(fi) = R(gi) = R(hi) = {@v} p+ 1 ≤ i ≤ q
R(X) = R(Y ) = {@v} R(α′

i) = ∅ m+ 1 ≤ i ≤ n
R(αi) = {@v} 1 ≤ i ≤ n R(γ′i) = ∅ p+ 1 ≤ i ≤ q
R(γi) = {@v} 1 ≤ i ≤ q

To ensure that XML documents that conform to D indeed code equation (4.1) we need to define a set of
RCK ,FK -constraints Σ. This set contains the following absolute keys:

r(X.@v → X) r(Y.@v → Y )
r(αi.@v → αi) for every 1 ≤ i ≤ n r(γi.@v → γi) for every 1 ≤ i ≤ q
r(βi.@v → βi) for every m+ 1 ≤ i ≤ n r(δi.@v → δi) for every p+ 1 ≤ i ≤ q
r(ci.@v → ci) for every m+ 1 ≤ i ≤ n r(fi.@v → fi) for every p+ 1 ≤ i ≤ q
r(di.@v → di) for every m+ 1 ≤ i ≤ n r(gi.@v → gi) for every p+ 1 ≤ i ≤ q
r(ei.@v → ei) for every m+ 1 ≤ i ≤ n r(hi.@v → hi) for every p+ 1 ≤ i ≤ q
r(ni.@v → ni) for every 1 ≤ i ≤ k

Σ contains the following absolute foreign keys:
r(X.@v ⊆FK Y.@v), r(Y.@v ⊆FK X.@v)
r(ns.@v ⊆FK αi.@v), r(αi.@v ⊆FK ns.@v) 1 ≤ i ≤ n and the value of αi in (4.1) is equal

to s
r(ns.@v ⊆FK ei.@v), r(ei.@v ⊆FK ns.@v) m + 1 ≤ i ≤ n and the value of βi in (4.1) is

equal to s
r(ns.@v ⊆FK γi.@v), r(γi.@v ⊆FK ns.@v) 1 ≤ i ≤ q and the value of γi in (4.1) is equal

to s
r(ns.@v ⊆FK hi.@v), r(hi.@v ⊆FK ns.@v) p + 1 ≤ i ≤ q and the value of δi in (4.1) is

equal to s
Finally, Σ contains the following relative foreign keys:

αi(βi.@v ⊆FK di.@v), αi(di.@v ⊆FK βi.@v) m+ 1 ≤ i ≤ n
α′

i(βi.@v ⊆FK ci.@v), α′
i(ci.@v ⊆FK βi.@v) m+ 1 ≤ i ≤ n

γi(δi.@v ⊆FK gi.@v), γi(gi.@v ⊆FK δi.@v) p+ 1 ≤ i ≤ q
γ′i(δi.@v ⊆FK fi.@v), γ′i(fi.@v ⊆FK δi.@v) p+ 1 ≤ i ≤ q

We show next that there is an XML tree T such that T |= (D,Σ) if and only if there exists a nonnegative
integer solution for (4.1). To do this, we prove that every XML tree T satisfying D and Σ codifies equation
(4.1). More precisely, if the value of every variable xi is vi and |ext(ni)| = vi, for i ∈ [1, k], then

|ext(X)| =
m∑

i=1

aivαi +
n∑

i=m+1

aivαivβi , (4.2)

|ext(Y )| =
p∑

i=1

bivγi +
q∑

i=p+1

bivγivδi + o. (4.3)

Let T be an XML tree conforming to D. Then every node of type X in T appears as a child of some node
of type αi (i ∈ [1, n]). Thus, to prove (4.2) it suffices to show that the number of X-nodes that are children
of some node of type αi (i ∈ [1, n]) is equal to the i-th term of (4.2), that is,

|{x | x is an X-node in T and x is a child of a node of type αi}| = aivαi 1 ≤ i ≤ m,
|{x | x is an X-node in T and x is a child of a node of type αi}| = aivαivβi m+ 1 ≤ i ≤ n.
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αi

r1

(βi, ci, ci, X, ..., X)∗ α′
i

r2

(βi, di, di)
∗ αi

r3

(βi, ci, ci, X, ..., X)∗ α′
i

r4

(ci, ei)
∗(βi, di, di)

∗

Fig. 4.1. Part of the XML tree used in the proof of Theorem 4.1.

Analogously, to show that (4.3) holds, we have to prove that the number of Y -nodes that are children of
some node of type γi (i ∈ [1, q]) is equal to the i-th term of (4.3). We will only consider here the case of
X-nodes, being the other case similar.

First, let i ∈ [1,m] and s be the value of αi in (4.2). Given that r(ns.@v ⊆FK αi.@v), r(αi.@v ⊆FK

ns.@v) are in Σ, by the definition of P (αi) the total number of X-nodes that are children of a node of type
αi is equal to aivαi . Second, let i ∈ [m+ 1, n] and s, t be the values of αi and βi in (4.1), respectively. Next
we prove that |{x | x is an X-node in T and x is a child of a node of type αi}| = aivsvt.

Given that r(ns.@v ⊆FK αi.@v), r(αi.@v ⊆FK ns.@v) are in Σ, |ext(αi)| in T is equal to |ext(ns)| = vs.
Thus, in T there are exactly vs nodes of type αi, each of them having exactly one child of type α′

i. Hence,
there are exactly vs nodes of type α′

i, being the last one of the form shown in Figure 4.1 (see node r4). By
the definition of P (α′

i), |{x | x is a child of r4 of type ci}| = |{x | x is a child of r4 of type ei}|. Given that
r(nt.@v ⊆FK ei.@v), r(ei.@v ⊆FK nt.@v) are in Σ and that every node of type ei in T is a child of r4,
|{x | x is a child of r4 of type ci}| = |ext(nt)|. Thus, since r4 is a node of type α′

i and α′
i(βi.@v ⊆FK ci.@v),

α′
i(ci.@v ⊆FK βi.@v) are in Σ, |{x | x is a child of r4 of type βi}| = |ext(nt)| = vt. In addition, by the

definition of P (α′
i), the number of children of r4 of type di is 2vt.

Given that r3 is a node of type αi and αi(βi.@v ⊆FK di.@v), αi(di.@v ⊆FK βi.@v) are in Σ, |{x | x is a
child of r3 of type βi}| = vt, since there are 2vt descendants of r3 of type di and vt children of r4 of type βi.
Furthermore, by the definition of P (αi), the number of children of r3 of type X is aivt and the number of chil-
dren of r3 of type ci is 2vt. We can use the same argument to prove that the number of children of r2 of types
βi and di are vt and 2vt, respectively. Thus, the number of children of r1 of type X is aivt and the number of
descendants of r1 of typeX is 2aivt. If we continue with this process we can prove, by induction, that the num-
ber of X-nodes in T that are children of some node of type αi is vsaivt, since there are vs nodes of type αi in
T . This conclude the proof, since |{x | x is an X-node in T and x is a child of a node of type αi}| = aivsvt.
In the proof of Theorem 4.1, all relative keys are primary. Thus, we obtain:

Corollary 4.2. SAT(RCPK ,FK ), the restriction of SAT(RCK ,FK ) to primary keys, is undecidable. �

5. Extended DTDs. In this section, we consider a slight extension of DTDs which captures unranked
tree automata. An extended DTD [32, 29] ED is a tuple (D′, f, E), where D′ = (E′, A′, P ′, R′, r′) is a DTD,
E is a finite set of element types such that E ∩ E′ = ∅ and f is a surjective mapping f : E′ → E such that
for every τ1, τ2 ∈ E′, we have that R′(τ1) = R′(τ2) if f(τ1) = f(τ2). We say that a tree T conforms to ED if
there exists a tree T ′ that conforms to D′ such that T = f(T ′), that is, T can be obtained by replacing each
label τ in T ′ by f(τ). Extended DTDs support a subtyping mechanism (specialization), and have proven
useful in data migration and integration, among other things (see, e.g., [29] for examples of extended DTDs
and their applications in data integration). It is also known that extended DTDs capture precisely MSO
definable trees and the regular tree languages of finite unranked trees [26, 29].

A constraint ϕ is said to be defined over extended DTD ED if every element type τ mentioned in ϕ is
in E.

The consistency problem for extended DTDs is defined exactly as in the case of DTDs: Given a speci-
fication (ED ,Σ), the problem is to verify whether there exists a tree T conforming to ED and satisfying Σ.
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Class AC∗,∗
K ,FK [16] AC∗,1

PK ,FK ACreg
K ,FK ACK ,FK [16]

description multi-attribute primary unary regular unary keys and
keys and multi-attribute keys, path constraints foreign keys
foreign keys unary foreign keys (keys, foreign keys)

Upper bound undecidable NEXPTIME 2-NEXPTIME NP
Lower bound undecidable NP PSPACE NP

Fig. 6.1. Complexity of the consistency problem for absolute constraints

Class RC∗,∗
K ,FK [16] RCK ,FK RCPK ,FK

description multi-attribute unary keys and primary unary keys
keys and foreign keys and foreign keys
foreign keys

Lower bound undecidable undecidable undecidable

Fig. 6.2. Complexity of the consistency problem for relative constraints

Next we show that the consistency problem for extended DTDs can be efficiently reduced to the consistency
problem for DTDs.

Let ED = (D′, f, E) be an extended DTD, where D′ = (E′, A′, P ′, R′, r′), and Σ be either a set of
AC∗,∗

K ,FK -constraints over ED or a set of ACreg
K ,FK -constraints over ED . We consider here only absolute

constraints since, by Theorem 4.1, the consistency problem for extended DTDs and relative constraints is
already undecidable for unary keys and foreign keys without regular expressions. We define DTD D(ED) =
(EED , A

′, PED , RED , r
′) as follows. Let EED = E′ ∪ E and

PED (τ) =

{
f(τ), P ′(τ) τ ∈ E′

ε τ ∈ E
RED (τ) =

{
∅ τ ∈ E′

R′(τ ′) τ ∈ E and f(τ ′) = τ

Notice that RED is well defined since f is a surjective mapping such that R′(τ1) = R′(τ2) whenever f(τ1) =
f(τ2). Moreover, we define a set of keys and foreign keys Γ(ED ,Σ) over DTD D(ED) as follows. If Σ is a
set of AC∗,∗

K ,FK -constraints, then Γ(ED ,Σ) = Σ. Otherwise, Σ is a set of ACreg
K ,FK -constraints and for every

ϕ ∈ Σ we have the following constraint ψ in Γ(ED ,Σ). For every element type τ ∈ E, define the image
of substitution h on τ as h(τ) = (τ1 ∪ · · · ∪ τn), where {τ1, . . . , τn} is the set of element types τ ′ ∈ E′

such that f(τ ′) = τ . If ϕ is a key β.τ.@l → β.τ , then ψ = h(β.τ).τ.@l → h(β.τ).τ . If ϕ is a foreign key
β1.τ1.@l1 ⊆FK β2.τ2.@l2, then ψ = h(β1.τ1).τ1.@l1 ⊆FK h(β2.τ2).τ2.@l2. The following simple lemma shows
that the consistency problems for (ED ,Σ) and (D(ED),Γ(ED ,Σ)) are equivalent.

Lemma 5.1. Let ED = (D′, f, E) be an extended DTD and Σ either a set of AC∗,∗
K ,FK -constraints over

ED or a set of ACreg
K ,FK -constraints over ED. Then (ED ,Σ) is consistent if and only if (D(ED),Γ(ED ,Σ))

is consistent.
We note that if C is one of ACPK ,FK , ACK ,FK , AC∗,1

PK ,FK , and ACreg
K ,FK , and Σ is a set of C-constraints over

an extended DTD ED , then Γ(ED ,Σ) is a set of C-constraints over D(ED). Thus, given that D(ED) and
Γ(ED ,Σ) can be constructed in polynomial time from (ED ,Σ), we obtain the following corollary from the
previous lemma, Theorem 4.7 and Corollary 4.8 in [16], Corollary 3.5 and Theorem 3.7.

Corollary 5.2.
a) The consistency problem for extended DTDs and ACK ,FK -constraints (ACPK ,FK -constraints) is NP-

complete.
b) The consistency problem for extended DTDs and AC∗,1

PK ,FK -constraints is NP-hard, and can be solved
in NEXPTIME.

c) The consistency problem for extended DTDs and ACreg
K ,FK -constraints is PSPACE-hard, and can be

solved in 2-NEXPTIME. �

6. Conclusion. We have studied the problem of statically checking XML specifications, which may
include various schema definitions as well as integrity constraints. As observed earlier, such static validation
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is quite desirable as an alternative to dynamic checking, which would attempt to validate each document;
indeed, in the case of repeated failures, one does not know whether the problems lies in the documents or
in the specification. Our main conclusion is that, however desirable, the static checking is hard: even with
very simple document definitions given by DTDs, and (foreign) keys as constraints, the complexity ranges
from NP-hard to undecidable.

The main results are summarized in Figures 6.1, 6.2 (we also included the main results from [16] in those
figures for completeness). When one deals with absolute constraints, which hold in an entire document, the
general consistency problem is undecidable. It is solvable in NEXPTIME if foreign keys are single-attribute,
and is NP-complete if so are all the keys as well. However, if regular expressions are allowed in single-attribute
constraints, the lower bounds becomes at least PSPACE. For relative constraints, which are only required
to hold in a part of a document, the situation is quite bleak, as even the very simple case of single-attribute
constraints is undecidable.

Although most of the results of the paper are negative, the techniques developed in the paper help study
consistency of individual XML specification with type and constraints. These techniques include, e.g., the
connection between regular expression constraints and integer linear programming and automata.

One open problem is to close the complexity gaps. However, these are by no means trivial: for example,
SAT(AC∗,1

PK ,FK ) was proved to be equivalent to a problem related to Diophantine equations whose exact
complexity remains unknown. In the case of SAT(ACreg

K ,FK ), we think that it is more likely that our lower
bounds correspond to the exact complexity of those problems. However, the algorithms are quite involved,
and we do not yet see a way to simplify them to prove the matching upper bounds.

Another topic for future work is to study the interaction between more complex XML constraints, e.g.,
those defined in terms of XPath [37], and more complex schema specifications such as XML Schema [38] and
the type system of XQuery [39]. Our lower bounds apply to those settings, but it is open whether upper
bounds remain intact.
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