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Abstract. Several notions of constraint qualifications are generalized from the setting of convex

inequality systems to that of convex generalized equations. This is done and investigated in terms

of the coderivatives and the normal cones, and thereby we provide some characterizations for convex

generalized equations to have the metric subregularity. As applications, we establish formulas of the

modulus of calmness and provide several characterizations of the calmness. Extending the classical

concept of extreme boundary, we introduce a notion of recession cores of closed convex sets. Using this

concept, we establish global metric subregularity (i.e. error bound) results for generalized equations.
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1. Introduction. Let X and Y be Banach spaces and F : X → 2Y a closed
multifunction. Following Dontchev and Rockafellar [7], the multifunction F is said to
be metrically subregular at a for b ∈ F (a) if there exists τ ∈ [0, +∞) such that

d(x, F−1(b)) ≤ τd(b, F (x)) for all x close to a. (1.1)

The metric subregularity has been already studied by many authors under various
names (cf. [2,15,20,24,30]). Let A be a closed subset of X and b be a given point in
Y . Consider the generalized equation with constraint

(GEC) b ∈ F (x) subject to x ∈ A,

which includes most of systems in optimization. Let S denote the solution set of
(GEC), that is, S = {x ∈ A : b ∈ F (x)}. We say that (GEC) is metrically subregular
at a ∈ S if there exists τ ∈ (0, ∞) such that

d(x, S) ≤ τ(d(b, F (x)) + d(x,A)) for all x close to a. (1.2)

When F (x) = [f(x), +∞), b = 0 and A = X, (GEC) reduces to the inequality system
f(x) ≤ 0 and (1.2) means that this inequality has a local error bound at a. Another
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special case is when F (x) = [f(x), +∞) and b = inf{f(x) : x ∈ A}. In this case,
(GEC) reduces to the following optimization problem

(OP) min f(x) subject to x ∈ A

and (1.2) means that a is weak sharp minimum of (OP). Error bounds and weak
sharp minima have important applications in mathematical programming and have
been extensively studied (cf. [3,17,18,20,30,31]). In this paper, we mainly study the
metric subregularity of (GEC) in the case when F and A are convex.

The notion of the basic constraint qualification (BCQ) of systems of continu-
ous convex inequalities plays an important role in convex optimization and has been
studied by many researchers (see, e.g., [11, pp.307-309] and [18,19]). Dropping the
continuity assumption and adopting the singular subdifferential, the authors [32] in-
troduced and discussed the generalized BCQ and the strong BCQ. Very recently, Hu
[12] further studied the generalized BCQ and the strong BCQ. In Section 3, in terms of
the coderivative, we extend the concept of the generalized BCQ and the strong BCQ
to cover the case of generalized equation with constraint (GEC). Using the BCQ and
the strong BCQ, we provide several characterizations of the metric subregularity of
(GEC).

A stronger condition is the metric regularity of a multifunction that has been well
studied in variational analysis (see [13,15,21,28] and references therein). Explicitly, F
is metrically regular at a for b ∈ F (a) if there exists τ ∈ (0, +∞) such that

d(x, F−1(y)) ≤ τd(y, F (x)) for all (x, y) close to (a, b). (1.3)

It is well-known, as the Robinson-Ursescu theorem, that (1.3) holds if F is a closed
convex multifunction and b ∈ int(F (X)). Under the assumption that both X and Y

are finite dimensional, Mordukhovich [21] proved that F is metrically regular at a for
b ∈ F (a) if and only if D∗F (a, b)−1(0) = {0}; moreover

inf{τ : (1.3) holds} = ‖D∗F (a, b)−1‖+ = lim sup
(x,y)

Gr(F )−→ (a,b)

‖D∗F (x, y)−1‖+, (1.4)

where D∗F (a, b) is the coderivative of F at (a, b) and

‖D∗F (a, b)−1‖+ = sup
x∗∈BX∗

sup
y∗∈D∗F (a,b)−1(x∗)

‖y∗‖.

To the best of our knowledge, no one has considered duality formulas similar to (1.4)
for the modulus of the metric subregularity. In Section 3, we provide such formulas
under the convexity assumption but no finite dimension assumption.

Similar to relationship between Aubin’s pseudo-Lipschitz property and the metric
regularity, the calmness is related very closely to the metric subregularity. In Sec-
tion 4, as applications of results obtained in Section 3, we consider the calmness of
convex multifunctions. We establish formulas of the modulus of the calmness and
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present several characterizations of the calmness in terms of the normal cone and the
coderivative. In this section, we also provide characterizations of the strong calmness.
Reducing to special kinds of convex multifunctions such as that recently considered
by Henrion and Jourani in [8], our approach sheds light on some existing results on
the calmness; in fact Corollary 4.1 provides a version that is sharper than the main
result in [8].

The notion of the extreme point set of a convex set is very useful in convex
analysis. In Section 5, as an extension of an extreme point set, we introduce and
discuss the notion of a recession core. In terms of recession cores, we study the
global metric subregularity. In particular, we show that (GEC) is globally metrically
subregular if and only if (GEC) has the τ -strong BCQ at each point of some recession
core of the solution set S for some τ ∈ (0, +∞). When the solution set S is a
polyhedron, we obtain a sharp result that (GEC) is globally metrically subregular
if and only if (GEC) has the BCQ at each point of some recession core of S. This
implies in particular that if the graph of F is a polyhedron then (GEC) is always
globally metrically subregular; thus we improve the classical Hoffman result on error
bound for linear inequality systems.

2. Preliminaries. Throughout this paper, we assume that X and Y are Banach
spaces. Let A be a closed convex subset of X. For a ∈ A, we use T (A, a) to denote the
tangent cone of A at a in the sense of convex analysis. Thus v ∈ T (A, a) if and only if
there exist a sequence {an} in A and a sequence {tn} of positive numbers convergent
to 0 such that an−a

tn
converges to v. We denote by N(A, a) the normal cone of A at

a, that is,

N(A, a) := {x∗ ∈ X∗ : 〈x∗, x− a〉 ≤ 0 for all x ∈ A}.

Let F : X → 2Y be a multifunction and denote by Gr(F ) the graph of F , that is,

Gr(F ) := {(x, y) ∈ X × Y : y ∈ F (x)}.

As usual, F is said to be closed (resp. convex) if Gr(F ) is a closed (resp. convex)
subset of X × Y . It is known that F is convex if and only if

tF (x1) + (1− t)F (x2) ⊂ F (tx1 + (1− t)x2) ∀x1, x2 ∈ X and ∀t ∈ [0, 1].

Let F be a closed convex multifunction and (x, y) ∈ Gr(F ). The tangent derivative
DF (x, y) of F at (x, y) is defined by

DF (x, y)(u) = {v ∈ Y : (u, v) ∈ T (Gr(F ), (x, y))} ∀u ∈ X (2.1)

(cf. [1]). Let D∗F (x, y) denote the coderivative of F at (x, y), which is defined by

D∗F (x, y)(y∗) := {x∗ ∈ X∗ : (x∗,−y∗) ∈ N(Gr(F ), (x, y))} ∀y∗ ∈ Y ∗ (2.2)

(cf. [21,22,28]). Let G : X → 2Y be a sublinear multifunction (i.e., Gr(G) is a convex
cone in X ×Y ). Let BX denote the closed unit ball of X. As in Dontchev, Lewis and
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Rockafellar [6], the outer norm and the inner norm of G are respectively defined as
follows

‖G‖+ = sup
x∈BX

sup
y∈Gx

‖y‖ and ‖G‖− := sup
x∈BX

inf
y∈Gx

‖y‖,

with the usual convention that the infimum and the supremum over an empty set are
+∞ and −∞, respectively. For a convex cone C in X, let ‖G|C‖+ and ‖G|C‖− be
respectively defined by

‖G|C‖+ := sup
x∈BX∩C

sup
y∈Gx

‖y‖ and ‖G|C‖− := sup
x∈BX∩C

inf
y∈Gx

‖y‖. (2.3)

We denote by bd(A) the topological boundary of a subset A of X. The following
lemma is known (cf. [23, Proposition 1.3] or [24, Lemma 2.1]) and useful for us.

Lemma 2.1. Let X be a Banach space and A a closed convex nonempty subset
of X. Then, for any β ∈ (0, 1) and any x ∈ X \ A there exist z ∈ bd(A) and
x∗ ∈ N(A, z) with ‖x∗‖ = 1 such that

β‖x− z‖ < d(x,A) and β‖x− z‖ < 〈x∗, x− z〉.

3. BCQ, strong BCQ and metric subregularity. Throughout this section,
we assume that F : X → 2Y is a closed convex multifunction, A is a closed convex
subset of X and that b is a given point in X. Recall that S = {x ∈ A : b ∈ F (x)} is
the solution set of the corresponding generalized equation with constraint (GEC).

Recently, in dealing with the inequality defined by a proper lower semicontinuous
convex function, the authors [32] introduced and discussed the generalized BCQ and
the strong BCQ.

In terms of the coderivative replacing the subdifferential and the singular subd-
ifferential, we can extend the concept of the generalized BCQ and the strong BCQ
to the case of generalized equation with constraint (GEC). Explicitly, we say that
(GEC) has the BCQ at a ∈ S if

N(S, a) = D∗F (a, b)(Y ∗) +N(A, a) (3.1)

and (GEC) has the strong BCQ at a ∈ S if there exists τ ∈ (0, +∞) such that

N(S, a) ∩BX∗ ⊂ τ(D∗F (a, b)(BY ∗) +BX∗ ∩N(A, a)). (3.2)

The following Theorem establishes relationship between the metric subregularity
and the strong BCQ.

Theorem 3.1. Let a ∈ S. Then, generalized equation (GEC) is metrically
subregular at a if and only if there exist τ, δ ∈ (0, +∞) such that (GEC) has the
strong BCQ at all points in bd(S) ∩ B(a, δ) with the same constant, where B(a, δ)
denotes the open ball with center a and radius δ.
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Proof. Suppose that (GEC) is metrically subregular at a. Then there exist τ, δ ∈
(0, +∞) such that (1.2) holds. For any (x, y) ∈ X×Y , let ‖(x, y)‖τ := τ+1

τ ‖x‖+‖y‖.
Then ‖ · ‖τ is a norm on X × Y inducing the product topology, and the unit ball of
the dual space of (X × Y, ‖ · ‖τ ) is ( τ

τ+1BX∗)×BY ∗ . We claim that

d(x, S) ≤ τ(d‖·‖τ
((x, y),Gr(F )) + ‖y− b‖+ d(x,A)) ∀(x, y) ∈ B(a,

δ

2
)× Y, (3.3)

where the distance d‖·‖τ
is with respect to the norm ‖ · ‖τ . Suppose to the contrary

that (3.3) does not hold. Then there exists (x0, y0) ∈ B(a, δ
2 )× Y such that

d(x0, S) > τ [d‖·‖τ
((x0, y0),Gr(F )) + ‖y0 − b‖+ d(x0, A)].

It follows that there exists u ∈ X such that

d(x0, S) > τ

(
τ + 1
τ

‖u− x0‖+ d(y0, Fu) + ‖y0 − b‖+ d(x0, A)
)
,

and hence

d(x0, S) > ‖u− x0‖+ τ(d(b, Fu) + d(u,A)).

Noting that

‖u− a‖ ≤ ‖u− x0‖+ ‖x0 − a‖ < d(x0, S) + ‖x0 − a‖ ≤ 2‖x0 − a‖ < δ,

it follows from (1.2) and the triangle inequality that

d(x0, S) > ‖u− x0‖+ d(u, S) ≥ d(x0, S),

which is a contradiction. Hence (3.3) holds. We will establish the necessary part by
showing that

N(S, z) ∩BX∗ ⊂ τ(D∗F (z, b)(BY ∗) +BX∗ ∩N(A, z)) ∀z ∈ B(a,
δ

2
) ∩ S. (3.4)

To do this, let z ∈ S ∩ B(a, δ
2 ) and x∗ ∈ BX∗ ∩ N(S, z). Since A is convex, BX∗ ∩

N(S, z) = ∂d(·, S)(z) (cf. [4, Theorem 1]). Thus,

〈x∗, x− z〉 ≤ d(x, S)− d(z, S) = d(x, S) for all x ∈ X.

It follows from (3.3) that

〈x∗, x−z〉 ≤ τ(d‖·‖τ
(x, y),Gr(F ))+‖y−b‖+d(x,A)) ∀(x, y) ∈ B(z,

δ

2
−‖z−a‖)×Y.

Together with the convexity of F and A, this implies that (x∗

τ , 0) ∈ ∂φ(z, b), where φ
is the convex function defined by

φ(x, y) := d‖·‖τ
((x, y),Gr(F )) + ‖y − b‖+ d(x,A) ∀(x, y) ∈ X × Y.
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Noting that

∂d‖·‖τ
(·,Gr(F ))(z, b) ⊂ N(Gr(F ), (z, b)),

it follows from [5, Proposition 2.3.2] that

(
x∗

τ
, 0) ∈ N(Gr(F ), (z, b)) + {0} ×BY ∗ + (BX∗ ∩N(A, z))× {0}.

This implies that x∗ ∈ τ(D∗F (z, b)(BY ∗)+BX∗∩N(A, z)), and hence that (3.4) holds
as required to show.

Conversely, suppose that there exist τ ′, δ′ ∈ (0, +∞) such that (GEC) has the
strong BCQ at each point of bd(S)∩B(a, δ′) with the constant τ ′. Let x ∈ B(a, δ′

2 )\S.
Then, d(x, S) ≤ ‖x− a‖ < δ′

2 . Let β ∈ ( 2d(x,S)
δ′ , 1). Then, by Lemma 2.1 there exists

u ∈ bd(S) and x∗ ∈ N(S, u) with ‖x∗‖ = 1 such that β‖x− u‖ ≤ d(x, S) and

β‖x− u‖ ≤ 〈x∗, x− u〉. (3.5)

Thus, ‖x − u‖ < δ′

2 . Hence ‖u − a‖ ≤ ‖u − x‖ + ‖x − a‖ < δ′, and so (GEC)
has the strong BCQ at u with the constant τ . Therefore, there exists y∗ ∈ BY ∗ ,
x∗1 ∈ D∗F (u, b)(y∗) and x∗2 ∈ BX∗ ∩ N(A, u) = ∂d(·, A)(u) (by [4,Theorem 1]) such
that x∗ = τ ′(x∗1 + x∗2). By the convexity of F and A, one has

〈x∗1, x− u〉 ≤ 〈y∗, y − b〉 ∀y ∈ F (x) and 〈x∗2, x− u〉 ≤ d(x,A)− d(u,A) = d(x,A).

Hence,

〈x∗, x− u〉 ≤ τ ′(〈y∗, y − b〉+ d(x,A)) ≤ τ ′(‖y − b‖+ d(x,A)) ∀y ∈ F (x).

This and (3.5) imply that β‖x − u‖ ≤ τ ′(d(b, F (x)) + d(x,A)). It follows from
u ∈ S that βd(x, S) ≤ τ ′(d(b, F (x)) + d(x,A)). Since β can be arbitrarily close
to 1, d(x, S) ≤ τ ′(d(b, F (x)) + d(x,A)). This shows that (GEC) is metrically subreg-
ular at a. This completes the proof.

Theorem 3.1 recaptures some earlier results dealing with only numerical valued
functions. Let f : X → R∪{+∞} be a proper lower semicontinuous convex function.
When F (x) = [f(x), +∞), b = 0 and A = X, Theorem 3.1 was obtained in [32]. A
slightly earlier result is due to Burke and Deng who showed in [3, Theorem 5.2] that
if X is a Hilbert space, F (x) = [f(x), +∞), b = inf

x∈X
f(x) and A = X, then (GEC) is

metrically subregular at a if and only if there exists τ ∈ [0, +∞) such that

N(S, x) ∩BX∗ ⊂ τcl∗(∂f(a)),

where cl∗ denotes the weak∗ closure.
Remark 3.1. Let τ(F, a, b;A) := inf{τ > 0 : (1.2) holds}. For u ∈ S, let

γ(F, u, b;A) := inf{τ > 0 : (GEC) has the strong BCQ at u with the constant τ}.
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By the proof of Theorem 3.1, one can see that

τ(F, a, b;A) = lim sup
u

bd(S)−→ a

γ(F, u, b;A) ≥ γ(F, a, b;A). (3.6)

In general, (GEC) is not necessarily metrically subregular at a if (GEC) has the
strong BCQ only at a (see [32, Example 2]). But, when S is assumed to be ”locally
conical” at a, Theorem 3.1 and (3.6) can be sharpened. To do this, we need the
following lemma.

Lemma 3.1. Let s1, s2 ∈ S be such that 〈u∗, s1〉 = 〈u∗, s2〉. Then,

u∗ ∈ D∗F (s1, b)(BY ∗) +BX∗ ∩N(A, s1) ⇔ u∗ ∈ D∗F (s2, b)(BY ∗) +BX∗ ∩N(A, s2).

Proof. Obviously we need only to prove one direction of the implications, say
“ ⇒”. Let

ψ(x, y) := ‖y − b‖+ d(x,A) + δGr(F )(x, y) for all (x, y) ∈ X × Y,

where δGr(F ) denotes the indicator function of Gr(F ). It follows from [4, Theorem 1]
and [5, Proposition 2.3.2] that

∂ψ(s, b) = {0}×BY ∗ +(BX∗ ∩N(A, s))×{0}+N(Gr(F ), (s, b)) ∀s ∈ S. (3.7)

Suppose that u∗ ∈ D∗F (s1, b)(BY ∗) + BX∗ ∩ N(A, s1). Then, by (3.7), one has
(u∗, 0) ∈ ∂ψ(s1, b). Hence,

〈u∗, x− s1〉 ≤ ψ(x, y)− ψ(s1, b) for all (x, y) ∈ X × Y.

Since 〈u∗, s1〉 = 〈u∗, s2〉 and ψ(s1, b) = ψ(s2, b) = 0,

〈u∗, x− s2〉 ≤ ψ(x, y)− ψ(s2, b) for all (x, y) ∈ X × Y.

Therefore, (u∗, 0) ∈ ∂ψ(s2, b). It follows from (3.7) that u∗ ∈ D∗F (s2, b)(BY ∗) +
BX∗∩N(A, s2). This shows that the implication “ ⇒ ” holds. The proof is completed.

Theorem 3.2. Let a ∈ S. Suppose that there exist a cone C and a neighborhood
V of a such that S ∩ V = (a+ C) ∩ V . Then

τ(F, a, b;A) = γ(F, a, b;A).

Consequently, (GEC) is metrically subregular at a if and only if (GEC) has the strong
BCQ at a.

Proof. In view of (3.6), we need only to show that

lim sup
u

bd(S)−→ a

γ(F, u, b;A) ≤ γ(F, a, b;A). (3.8)
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Let δ > 0 be such that B(a, δ) ⊂ V . To prove (3.8), it suffices to show that for any
u ∈ S ∩B(a, δ),

γ(F, u, b;A) ≤ γ(F, a, b;A). (3.9)

We first show that

N(S, u) ⊂ N(S, a) for all u ∈ S ∩B(a, δ). (3.10)

To do this, let u ∈ S ∩B(a, δ) and x∗ ∈ N(S, u). Noting that V is a neighborhood of
u, we have

N(S, u) = N(S ∩ V, u) = N((a+ C) ∩ V, u) = N(a+ C, u).

Choosing cu ∈ C such that u = a+ cu, it follows that

〈x∗, a+ cu〉 = sup{〈x∗, a+ c〉 : c ∈ C}.

Since C is a cone, it follows that 〈x∗, cu〉 = 0 and hence

〈x∗, u〉 = 〈x∗, a〉 = sup{〈x∗, a+ c〉 : c ∈ C}. (3.11)

This implies that x∗ ∈ N(a + C, a) = N(S, a). Therefore, (3.10) holds. Since (3.9)
trivially holds if γ(F, a, b;A) = +∞, we assume henceforth that γ(F, a, b;A) < +∞.
Let r ∈ (γ(F, a, b;A), +∞). Then,

BX∗ ∩N(S, a) ⊂ r(D∗F (a, b)(BY ∗) +BX∗ ∩N(A, a)).

Let u ∈ S ∩B(a, δ) and x∗ ∈ BX∗ ∩N(S, u). By (3.10), one has

x∗ ∈ r(D∗F (a, b)(BY ∗) +BX∗ ∩N(A, a)).

It follows from (3.11) and Lemma 3.1 that x∗ ∈ r(D∗F (u, b)(BY ∗) +BX∗ ∩N(A, u)).
Therefore,

BX∗ ∩N(S, u) ⊂ r(D∗F (u, b)(BY ∗) +BX∗ ∩N(A, u)).

This implies that γ(F, u, b;A) ≤ r. Letting r → γ(F, a, b;A), one sees that (3.9) holds.
The proof is completed.

Remark 3.2. If the solution set S is a polyhedron then for each a ∈ S there
exist a cone C and a neighborhood V of a such that S ∩ V = (a+C) ∩ V ; in fact, in
this case we can choose C to be the tangent cone of S at a.

Theorem 3.3. Let a ∈ S,

τ1 := inf{τ > 0 : d(x, a+ T (S, a)) ≤ τ(d(b, F (x)) + d(x,A)) for all x close to a}
8



and

τ2 := inf{τ > 0 : d(h, T (S, a)) ≤ τ(d(0, DF (a, b)(h)) + d(h, T (A, a))) ∀h ∈ X}.

Then

τ1 = τ2 = γ(F, a, b;A).

Moreover,

τ2 < +∞ =⇒ T (S, a) = T (A, a) ∩DF (a, b)−1(0). (3.12)

Consequently, (GEC) has the strong BCQ at a if and only if the sublinear generalized
equation (with constraint)

0 ∈ DF (a, b)(x) subject to x ∈ T (A, a)

is metrically subregular at 0.
Proof. We first show that τ1 = τ2. Let h ∈ X, y ∈ DF (a, b)(h), u ∈ T (A, a) and

ε > 0. Then, there exists t > 0 small enough such that

(h, y) ∈ Gr(F )− (a, b)
t

+ εBX × εBY and u ∈ A− a

t
+ εBX .

Therefore, there exists z ∈ BX such that

b+ ty ∈ F (a+ th+ tεz) + tεBY and a+ tu ∈ A+ tεBX .

This implies that

d(b, F (a+ th+ tεz)) ≤ t‖y‖+ tε and d(a+ th+ tεz, A) ≤ t‖h− u‖+ 2tε.

Considering an arbitrary τ > τ1 and noting that t > 0 is small enough, it follows that

τt(‖y‖+ ‖h− u‖+ 3ε) ≥ d(a+ th+ tεz, a+ T (S, a))

≥ d(th, T (S, a))− tε

= td(h, T (S, a))− tε,

where the last equality holds because T (S, a) is a cone. Therefore,

d(h, T (S, a)) ≤ τ(d(0, DF (a, b)(h)) + d(h, T (A, a))) + (3τ + 1)ε.

Letting ε→ 0 and τ → τ1, one has

d(h, T (S, a)) ≤ τ1(d(0, DF (a, b)(h)) + d(h, T (A, a))).

Hence τ2 ≤ τ1.
Conversely, by the convexity of F , one has

Gr(F )− (a, b) ⊂ T (Gr(F ), (a, b)) = Gr(DF (a, b)).
9



Then, for any x ∈ X, F (x)− b ⊂ DF (a, b)(x− a), and so

d(0, DF (a, b)(x− a)) ≤ d(b, F (x)).

On the other hand, the convexity of A implies that

d(x− a, T (A, a)) ≤ d(x− a,A− a) ≤ d(x,A).

Hence, for any x ∈ X,

d(x−a, T (S, a)) ≤ τ2(d(0, DF (a, b)(x−a))+d(x−a, T (A, a))) ≤ τ2(d(b, F (x))+d(x,A)).

Therefore τ1 ≤ τ2 and so τ1 = τ2 is shown. Next we show that γ(F, a, b;A) = τ2. By
the definition of τ2, we have

d(x, T (S, a)) ≤ τ2(d(0, DF (a, b)(x)) + d(x, T (A, a))) for all x ∈ X.

In the case when τ2 < +∞, this implies that T (A, a) ∩DF (a, b)−1(0) ⊂ T (S, a) and
hence (3.12) is seen to hold as the converse inclusion is easily verified by the convexity
of F and A. From (3.12) it is straightforward to verify that

γ(F, a, b;A) = γ(DF (a, b), 0, 0;T (A, a)) and τ2 = τ(DF (a, b), 0, 0;T (A, a)).

This and Theorem 3.2 imply that τ2 = γ(F, a, b;A). In the case when τ2 = +∞,
suppose to the contrary that τ2 6= γ(F, a, b;A). Then, γ(F, a, b;A) < +∞. Let
x ∈ X \ T (S, a) and β ∈ (0, 1). By Lemma 2.1 there exist u ∈ T (S, a) and x∗ ∈
N(T (S, a), u) such that

‖x∗‖ = 1 and 〈x∗, x− u〉 ≥ β‖x− u‖. (3.13)

Noting that N(T (S, a), u) ⊂ N(T (S, a), 0) (because T (S, a) is a closed convex cone),
it follows that x∗ ∈ N(T (S, a), 0) = N(S, a) and 〈x∗, u〉 = 0. Take a fixed η in
(γ(F, a, b;A), ∞). Then there exist y∗ ∈ ηBY ∗ , x∗1 ∈ D∗F (a, b)(y∗) and x∗2 ∈ ηBX∗ ∩
N(A, a) such that x∗ = x∗1 + x∗2. Equipping the product space X × Y with norm
‖(x, y)‖η = η

1+η‖x‖+ ‖y‖ for all (x, y) ∈ X × Y and noting that the unit ball of the
dual space of (X×Y, ‖·‖η) is (η+1

η BX∗)×BY ∗ , it follows from (2.1) and the convexity
of DF (a, b) and A that

1
η

(x∗1,−y∗) ∈ N(Gr(F ), (a, b)) ∩ ((
η + 1
η

BX∗)×BY ∗)

= N(Gr(DF (a, b)), (0, 0)) ∩ ((
η + 1
η

BX∗)×BY ∗)

= ∂d‖·‖η
(·,Gr(DF (a, b)))(0, 0)

and

1
η
x∗2 ∈ BX∗ ∩N(A, a) = BX∗ ∩N(T (A, a), 0) = ∂d(·, T (A, a))(0).
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Therefore,

1
η
〈x∗1, x〉 ≤ d‖·‖η

((x, 0),Gr(DF (a, b)) ≤ d(0, DF (a, b)(x))

and 1
η 〈x

∗
2, x〉 ≤ d(x, T (A, a)). Noting that 〈x∗, u〉 = 0, it follows from (3.13) that

β‖u− x‖
η

≤ d(0, DF (a, b)(x)) + d(x, T (A, a)).

Therefore, βd(x,T (S,a))
η ≤ d(0, DF (a, b)(x)) + d(x, T (A, a)). Letting β → 1, one has

d(x, T (S, a)) ≤ η(d(0, DF (a, b)(x)) + d(x, T (A, a))).

This contradicts τ2 = +∞. The proof is completed.

Let φ : X → R ∪ {+∞} be a proper lower semicontinuous convex function.
Consider the special case when A = X and F (x) = [φ(x), +∞) for all x ∈ X. In this
case, N(A, x) = {0} for any x ∈ A. For a ∈ dom(φ), let ∂∞φ(a) denote the singular
subdifferential of φ at a, namely ∂∞φ(a) = D∗F (a, φ(a))(0). It is easy to verify from
the convexity of φ that dom(D∗F (a, φ(a))) ⊂ R+. Thus, noting that

D∗F (a, φ(a))(1) = ∂φ(a) and ∂φ(a) = ∂φ(a) + ∂∞φ(a)

and adopting the convention that R+∂φ(a) and [0, 1]∂φ(a) are {0} if ∂φ(a) = ∅, one
has

D∗F (a, φ(a))(R) = D∗F (a, φ(a))(0)
⋃
D∗F (a, φ(a))(R+ \ {0})

= D∗F (a, φ(a))(0)
⋃
R+D

∗F (a, φ(a))(1)

= ∂∞φ(a) +R+∂φ(a)

and

D∗F (a, φ(a))([−1, 1]) = ∂∞φ(a) + [0, 1]∂φ(a).

Therefore, our definitions of the BCQ and the strong BCQ for generalized equations
are respectively natural generalization of the BCQ and the strong BCQ of a convex
inequality system (cf. [17-19, 32]). Thus, Theorems 3.1 and 3.3 extend Theorems 2.2
and 2.3 in [32] from the setting of a convex inequality to that of a convex generalized
equation with constraint.

Since the strong BCQ implies the BCQ, the following proposition shows that the
converse also holds in some interesting cases.

Proposition 3.1. Let a ∈ S and suppose that N(S, a) is a polyhedron in a finite
dimensional subspace of X∗. Then (GEC) has the BCQ at a if and only if it has the
strong BCQ at a.
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Proof. We need only to show the necessity part. Suppose that (GEC) has the
BCQ at a. It suffices to show that there exists τ > 0 such that

BX∗ ∩N(S, a) ⊂ τ(D∗F (a, b)(BY ∗) +BX∗ ∩N(A, a)). (3.14)

Let E be a finite dimensional subspace of X∗ such that N(S, a) ⊂ E. Let

L := N(S, a) ∩ −N(S, a),

namely L is the largest subspace contained in N(S, a). Take a subspace L⊥ of E such
that

L ∩ L⊥ = {0} and E = L+ L⊥. (3.15)

Since N(S, a) is a polyhedral cone in E, by [27, Theorem 19.1] there exists a polyhe-
dron cone C ⊂ L⊥ containing no lines such that

N(S, a) = C + L. (3.16)

On the other hand, dim(E) <∞ and (3.15) imply that there exists δ ∈ (0, +∞) such
that BX∗ ∩ (C + L) ⊂ δ(BX∗ ∩ C +BX∗ ∩ L). It follows from (3.16) that

BX∗ ∩N(S, a) ⊂ δ(BX∗ ∩ C +BX∗ ∩ L) (3.17)

Since L is a finite dimensional space, there exist l1, · · · , lm ∈ L such that

BX
∗ ∩ L ⊂ co(l1, · · · , lm). (3.18)

Take c1, · · · , cn ∈ C such that C = R+co(c1, · · · , cn) and 0 6∈ co(c1, · · · , cn) (be-
cause C is a finite dimensional polyhedron cone containing no lines). Without loss of
generality we assume that BX∗ ∩ co(c1, · · · , cn) = ∅. We note that

BX
∗ ∩ C ⊂ co(0, c1, · · · , cn). (3.19)

By (3.16) and the BCQ assumption, there exist

{y∗1 , · · · , y∗n, ỹ∗1 , · · · , ỹ∗m} ⊂ Y ∗ and {a∗1, · · · , a∗n, ã∗1, · · · , ã∗m} ⊂ N(A, a)

such that

ci ∈ D∗F (a, b)(y∗i ) + a∗i , 1 ≤ i ≤ n and lj ∈ D∗F (a, b)(ỹ∗j ) + ã∗j , 1 ≤ j ≤ m.

Let κ := max
1≤i≤n,1≤j≤m

‖y∗i ‖ + ‖a∗i ‖ + ‖ỹ∗j ‖ + ‖ã∗j‖. It follows from (3.18) and (3.19)

that

BX∗ ∩ C +BX∗ ∩ L ⊂ κ(D∗F (a, b)(BY ∗) +N(A, a) ∩BX∗)

This and (3.17) imply that (3.14) holds with τ = δκ.

12



Corollary 3.1. Let f1, · · · , fn : X → R∪{+∞} be proper lower semicontinuous
convex functions and consider generalized equation (GEC) with A = X, Y = Rn,
b = (b1, · · · , bn) ∈ Rn and F being defined by

F (x) = (f1(x), · · · , fn(x)) +Rn
+ for all x ∈ X.

Suppose that each fi is differentiable at a ∈ S. Then, for the said generalized equation,
the BCQ and the strong BCQ are equivalent at a.

Proof. In view of Proposition 3.1, it suffices to show that

D∗F (a, b)(Rn) = R+co{f ′i(a) : i ∈ J(a)}, (3.20)

where J(a) := {1 ≤ i ≤ n : fi(a) = bi}. To do this, we first note that dom(D∗F (a, b)) =
Rn

+ (because each convex function fi is differentiable at a). Let (r1, · · · , rn) ∈ Rn
+\{0}

and x∗ ∈ D∗F (a, b)(r1, · · · , rn). Then

〈x∗, x〉 −
n∑

i=1

ri(fi(x) + ti) ≤ 〈x∗, a〉 −
n∑

i=1

ribi

for any x ∈ X and (t1, · · · , tn) ∈ Rn
+. Noting that fi(a) = bi for any i ∈ J(a),

fi(a) < bi for any i 6∈ J(a) and a ∈ int(dom(fi)) for 1 ≤ i ≤ n, it follows that ri = 0
for any i 6∈ J(a) and

〈x∗, x− a〉 ≤
∑

i∈J(a)

rif(x)−
∑

i∈J(a)

rifi(a)

for all x ∈ X. This implies that x∗ =
∑

i∈J(a)

rif
′
i(a). Thus, x∗ ∈ R+co{f ′i(a) : i ∈

J(a)}. This shows that D∗F (a, b)(Rn) ⊂ R+co{f ′i(a) : i ∈ J(a)}. Conversely, let
x∗ ∈ R+co{f ′i(a) : i ∈ J(a)}. Then there exists (c1, · · · , cn) ∈ Rn

+ with ci = 0 for all

i 6∈ J(a) such that x∗ =
n∑

i=1

cif
′
i(a). Noting that for each i,

〈cif ′i(a), x− a〉 ≤ ci(fi(x) + ti − bi) ∀x ∈ X and ∀ti ≥ 0.

it follows that x∗ ∈ D∗F (a, b)(c1, · · · , cn). This shows that

R+co{f ′i(a) : i ∈ J(a)} ⊂ D∗F (a, b)(Rn).

Hence (3.20) holds.

4. Calmness of convex multifunctions. Throughout this section, let M :
Y → 2X be a closed convex multifunction and A be a closed convex subset of X. Let
ȳ ∈ Y and x̄ ∈ M(ȳ) ∩ A. Recall (cf. [8-10] and [15]) that M is said to be calm at
(ȳ, x̄) if there exists a constant  L > 0 such that

d(x,M(ȳ)) ≤ L‖y − ȳ‖ for all (y, x) ∈ Gr(M) close to (ȳ, x̄). (4.1)
13



More generally, M is said to be calm at (ȳ, x̄) over A if there exists a constant  L > 0
such that

d(x,M(ȳ)∩A) ≤ L(‖y− ȳ‖+d(x,A)) for all (y, x) ∈ Gr(M) close to (ȳ, x̄). (4.2)

Let M̃ : Y ×X → 2X be defined by

M̃(y, z) = M(y) ∩ (−z +A) for any (y, z) ∈ Y ×X

and Y ×X be equipped with the norm ‖(y, z)‖ = ‖y‖+ ‖z‖ for any (y, z) ∈ Y ×X.
Then, as observed by one of the referees, (4.2) holds if and only if

d(x, M̃(ȳ, 0)) ≤ L‖(y, z)− (ȳ, 0)‖ for all (y, z;x) ∈ Gr(M̃) close to (ȳ, 0; x̄).

Hence, M is calm at (ȳ, x̄) over A if and only if M̃ is calm at (ȳ, 0; x̄). A more general
intersection map have been studied by Klatte and Kummer [16]. Since d(x, ∅) = +∞
and d(x,M(ȳ)) ≤ ‖x− x̄‖, it is easy to verify that (4.2) holds if and only if

d(x,M(ȳ) ∩A) ≤ L(d(ȳ,M−1(x)) + d(x,A)) for all x close to x̄ (4.3)

Letting b = ȳ and F (x) = M−1(x), it follows that (GEC), defined by the data
(F,A, b), is metrically subregular at x̄ if and only if M is calm at (ȳ, x̄) over A. Thus,
by Theorems 3.1 and 3.3, we have the following results.

Theorem 4.1. The following statements are equivalent.
(i) M is calm at (ȳ, x̄) over A.
(ii) There exist τ, δ ∈ (0, +∞) such that for all u ∈ B(x̄, δ) ∩ bd(M(ȳ) ∩A),

N(M(ȳ) ∩A, u) ∩BX∗ ⊂ τ(D∗M−1(x̄, ȳ)(BY ∗) +N(A, u) ∩BX∗).

(iii) There exists δ ∈ (0, +∞) such that for all u ∈ bd(M(ȳ) ∩ A) close to x̄, the
tangent derivative DM(ȳ, u) is calm at (0, 0) over T (A, u) with the same constant.

Imitating the notion of the strong metric regularity (cf. [7]), we say that M is
strongly calm at (ȳ, x̄) over A if there exists L ∈ [0, +∞) such that

‖x− x̄‖ ≤ L(‖y − ȳ‖+ d(x,A)) for all (y, x) ∈ Gr(M) close to (ȳ, x̄). (4.4)

From the convexity of M(ȳ) ∩ A, it is not difficult to verify that M is strongly calm
at (ȳ, x̄) over A if and only if M(ȳ)∩A = {x̄} and M is calm at (ȳ, x̄) over A. Using
Theorem 4.1, we can establish some characterization of the strong calmness.

Corollary 4.1. The following statements are equivalent.
(i) M is strongly calm at (ȳ, x̄) over A.
(ii) There exists L ∈ [0, +∞) such that

‖x− x̄‖ ≤ L(‖y − ȳ‖+ d(x,A)) for all (y, x) ∈ Gr(M)
14



(iii) The tangent derivative DM(ȳ, x̄) is strongly calm at (0, 0) over T (A, x̄).
(iv) 0 ∈ int(D∗M−1(x̄, ȳ)(Y ∗) +N(A, x̄)).
(v) There exists r > 0 such that

rBX∗ ⊂ D∗M−1(x̄, ȳ)(BY ∗) +BX∗ ∩N(A, x̄).

Proof. It is clear that (ii)=⇒(i) and (v)=⇒(iv). We show next that (i)⇔(v).
By the evident fact N({x̄}, x̄) = X∗ and by Theorem 4.1, we need only show that
(v)⇒M(ȳ) ∩ A = {x̄}. Take an arbitrary x ∈ M(ȳ) ∩ A and x∗ ∈ BX∗ such that
‖x − x̄‖ = 〈x∗, x − x̄〉. By (v), there exist y∗ ∈ BY ∗ , x∗1 ∈ D∗M−1(x̄, ȳ)(y∗) and
x∗2 ∈ N(A, x̄) ∩BX∗ such that rx∗ = x∗1 + x∗2. Hence

r‖x− x̄‖ = 〈x∗1, x− x̄〉+ 〈x∗2, x− x̄〉.

Noting that 〈x∗1, x−x̄〉 ≤ 〈y∗, ȳ−ȳ〉 = 0 and 〈x∗2, x−x̄〉 ≤ 0, it follows that r‖x−x̄‖ ≤ 0
for any x ∈M(ȳ) ∩A. This shows that M(ȳ) ∩A = {x̄}; thus (i)⇔(v).

Noting that D∗M−1(x̄, ȳ) = D∗(DM(ȳ, x̄))−1(0, 0), we have (iii)⇔(v) by (i)⇔(v),
applied to DM(ȳ, x̄) in place of M .

Suppose that (i) holds. Then there exists L ∈ [0, +∞) such that (4.4) holds. Let
(y, x) be an arbitrary element in Gr(M) and t ∈ (0, 1) be small enough such that
(ty + (1− t)ȳ, tx+ (1− t)x̄) close enough to (ȳ, x̄). By (4.4) and the convexity of M ,
one has

‖tx+ (1− t)x̄− x̄‖ ≤ L(‖ty + (1− t)ȳ − ȳ‖+ d(tx+ (1− t)x̄, A)).

It follows from the convexity of A and x̄ ∈ A that ‖x − x̄‖ ≤ L(‖y − ȳ‖ + d(x,A)).
This shows that (i)=⇒(ii).

It remains to show that (iv)⇒(v). Suppose that (iv) holds. Since N(A, x) and
D∗M−1(x, ȳ)(Y ∗) are cones,

X∗ = D∗M−1(x̄, ȳ)(Y ∗) +N(A, x̄) =
∞⋃

n=1

(D∗M−1(x̄, ȳ)(nBY ∗) +N(A, x̄) ∩ nBX∗).

Noting that, by the Alaoglu theorem, each set D∗M−1(x̄, ȳ)(nBY ∗)+N(A, x̄)∩nBX∗

is weak∗ closed, it follows from the well-known Baire category theorem and (iv) that

0 ∈ int(D∗M−1(x̄, ȳ)(BY ∗) +N(A, x̄) ∩BX∗).

Hence there exists r > 0 such that (v) holds. The proof is completed.

Remark. In a recent paper [8] Henrion and Jourani considered the calmness of
the convex multifunction M0 of the following type

M0(y) = {x ∈ C : f(x) ≤ y} for all y ∈ R, (4.5)
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where C is a closed convex subset of X and f : X → R ∪ {+∞} is a proper lower
semicontinuous convex function. In particular, as a main result, they established the
following result .

Theorem HJ ([8, Theorem 3.3]). Let M0 be defined by (4.5). Then M0 is calm
at (0, x̄) ∈ Gr(M0) if one of the following conditions is satisfied:
(C1) f(x̄) < 0.
(C2) bd∂f(x̄) ∩ bdN(C, x̄) 6= ∂f(x̄) ∩N(C, x̄).
(C3) bd∂f(x̄) ∩ bdN(C, x̄) = ∅ and (CD∗) (see [8] for the definition of condition
(CD∗)).

As observed by Henrion and Jourani [8], (C3)=⇒(C2) or (C1) and

(C2) =⇒ int∂f(x̄) ∩ −N(C, x̄) 6= ∅ or ∂f(x̄) ∩ −intN(C, x̄) 6= ∅.

Hence (C2) =⇒ 0 ∈ int(∂f(x̄) + N(C, x̄)). Considering that (C1)=⇒the calmness
of M0 at (0, x̄) is an immediate consequence of the Robinson-Ursescu theorem (cf.
[25,29]), the main part of Theorem HJ can be rewritten as follows.

Theorem HJ′. M0 is calm at (0, x̄) ∈ Gr(M0) if

f(x̄) = 0 and 0 ∈ int(∂f(x̄) +N(C, x̄)). (4.6)

Let A = C, Y = R and M(y) = {x ∈ X : f(x) ≤ y} for all y ∈ Y . It is clear
that M0 is calm at (0, x̄) if M is calm at (0, x̄) over A. Since

∂f(x̄) = D∗M−1(x̄, f(x̄))(1) ⊂ D∗M−1(x̄, f(x̄))(Y ∗),

(4.6) is stronger than (v) in Corollary 4.1. Hence Corollary 4.1 improves Theorem HJ′.
Similarly, one can see that Corollary 4.1 improve [8, Theorem 4.3] when 0 6∈ int(C−D).
As in the beginning of the proof of [8, Theorem 4.3], it is an immediate consequence
of the Robinson-Ursescu theorem when 0 6∈ int(C −D).

The calmness modulus of M at (ȳ, x̄) is denoted by η(M ; ȳ, x̄) and is defined by

η(M ; ȳ, x̄) := inf{L ∈ (0, +∞) : (4.1) holds}.

As applications of Theorems 3.1 and 3.2, we establish formulas representing η(M ; ȳ, x̄).
Theorem 4.2. η(M ; ȳ, x̄) = lim sup

u
bd(M(ȳ))−→ x̄

‖D∗M(ȳ, u)|−N(M(ȳ),u)‖−

Proof. Since (4.2)⇔(4.3), η(M ; ȳ, x̄) = τ(M−1, x̄, ȳ;X). By (3.6), it suffices to
show that

γ(M−1, u, ȳ;X) = ‖D∗M(ȳ, u)|−N(M(ȳ),u)‖− ∀u ∈M(ȳ). (4.7)

Let u ∈M(ȳ) and τ > γ(M−1, u, ȳ;X). Noting that N(X,u) = {0}, one has

N(M(ȳ), u) ∩BX∗ ⊂ D∗M−1(u, ȳ)(τBY ∗).
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Hence, for any x∗ ∈ N(M(ȳ), u) ∩ BX∗ there exists y∗ ∈ BY ∗ such that x∗ ∈
D∗M−1(u, ȳ)(τy∗), that is, −τy∗ ∈ D∗M(ȳ, u)(−x∗). It follows that

‖D∗M(ȳ, u)|−N(M(ȳ),u)‖− ≤ τ.

Therefore, ‖D∗M(ȳ, u)|−N(M(ȳ),u)‖− ≤ γ(M−1, u, ȳ;X). To prove the converse in-
equality, let τ > ‖D∗M(ȳ, u)|−N(M(ȳ),u)‖− and x∗ ∈ N(M(ȳ), u) ∩ BX∗ . Then,
there exists y∗ ∈ D∗M(ȳ, u)(−x∗) such that ‖y∗‖ < τ ; this implies that x∗ ∈
D∗M−1(u, ȳ)(τBY ∗). Hence, N(M(ȳ), u) ∩ BX∗ ⊂ D∗M−1(u, ȳ)(τBY ∗). It follows
that γ(M−1, u, ȳ;X) ≤ τ . Therefore,

γ(M−1, u, ȳ;X) ≤ ‖D∗M(ȳ, u)|−N(M(ȳ),u)‖−.

This shows that (4.7) holds.

Remark. In contrast to formula (1.4) of the modulus of the metric regularity,
η(M ; ȳ, x̄) is not necessarily equivalent to ‖D∗M(ȳ, x̄)|−N(M(ȳ),x̄)‖− even when Y =
R2 and X = R (cf. [30, Example 2]). Nevertheless, the following theorem shows an
interesting case for which the equality holds.

Theorem 4.3. Suppose that there exist a cone C and a neighborhood V of x̄ such
that M(ȳ) ∩ V = (x̄+ C) ∩ V . Then η(M ; ȳ, x̄) = ‖D∗M(ȳ, x̄)|−N(M(ȳ),x̄)‖−.

The proof of Theorem 4.3 is similar to that of Theorem 4.2 but using Theorem
3.2 in place of Theorem 3.1.

5. Recession core and global metric subregularity. Let K be a closed
convex subset of X. Recall that e ∈ K is called an extreme point of K if x1 = x2

whenever e = tx1 + (1 − t)x2 with x1, x2 ∈ K and t ∈ (0, 1). We denote by ext(K)
the set of all extreme points of K (usually ext(K) is called the extreme boundary of
K). Let K∞ denote the recession cone of K, that is,

K∞ := {h ∈ X : K + th ⊂ K for all t ≥ 0}.

It is known that K∞ is a closed convex cone, and

K∞ = {h ∈ X : x+R+h ⊂ K for some x ∈ K}

= {h ∈ X : ∃xn ∈ K and ∃tn > 0 such that tn → 0 and tnxn → h}.

Clearly, K + K∞ = K. It is well known that if K is a closed convex subset of Rn

containing no lines then K = co(ext(K)) + K∞. As a generalization of co(ext(K)),
the authors [24] introduced the concept of recession property: a convex subset A of
K is said to have the recession property if K = A + K∞. Simplifying the recession
property, now we can give a generalization of ext(K): a subset C of K is said to be
a recession core of K if

K = co(C) +K∞. (5.1)
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Thus, C is a recession core of K if and only if co(C) is a subset of K with recession
property. Let “ ≤K∞” denote the order induced by the cone K∞, that is, x1 ≤K∞ x2

if and only if x2−x1 ∈ K∞. Let A be a subset of X. We say that a ∈ A is a minimal
element of A with respect to “ ≤K∞” if a ≤K∞ x whenever x ∈ A and x ≤K∞ a. We
denote by Min(A,K∞) the set of all minimal elements of A. Let

Lin(K) := K∞ ∩ −K∞.

Then

Lin(K) = {h ∈ X : K +Rh ⊂ K} = {h ∈ X : x+Rh ⊂ K for some x ∈ K}.

Moreover, K = K + Lin(K) and L ⊂ Lin(K) whenever L is a subspace of X such
that K = K + L. Therefore, K contains no lines if and only if Lin(K) = {0}.

Proposition 5.1. Let X be a reflexive Banach space and K a closed convex
nonempty subset of X. Suppose that there exists a closed convex bounded set Θ such
that

Lin(K) ∩Θ = ∅ and K∞ = Lin(K) +R+Θ. (5.2)

Then

K = Min(K,K∞) +K∞. (5.3)

In particular, Min(K,K∞) is a recession core of K.
Proof. By the reflexivity of X, the bounded closed convex set Θ is weakly

compact. Letting K0 := R+Θ, it follows that K0 is a closed convex pointed cone. Let
x be an arbitrary point in K. We claim that K ∩ (x−K0) is bounded. If this is not
the case, then there exist a sequence {sn} in R+ and a sequence {θn} in Θ such that
sn →∞ and x− snθn ∈ K for all n. Thus, for any t > 0,

x− tθn = (1− t

sn
)x+

t

sn
(x− snθn) ∈ K for all n large enough.

By the weak compactness of Θ, without loss of generality we can assume that {θn}
converges weakly to some θ ∈ Θ. Therefore, x − tθ ∈ K for any t ≥ 0. This im-
plies that −θ ∈ K∞. On the other hand, by the second equality in (5.2), one has
θ ∈ K∞, and so θ ∈ Lin(K). This contradicts the first equality in (5.2) and therefore
K ∩ (x − K0) must be bounded (and hence weakly compact). It follows from [14,
Corollary 3.1.16]) that Min(K ∩ (x−K0),K0) 6= ∅. Take x′ ∈ Min(K ∩ (x−K0),K0).
Then x′ ∈ Min(K,K0) and x ∈ x′ +K0. Hence K ⊂ Min(K,K0) +K0. Now to show
(5.3), it suffices to show that Min(K,K0) ⊂ Min(K,K∞). Let z ∈ Min(K,K0) and
y ∈ K with y ≤K∞ z. Then z− y ∈ K∞. By the second equality of (5.2), there exists
e ∈ Lin(K) such that z − y − e ∈ K0, that is, y + e ≤K0 z. Noting that y + e ∈ K,
one has that y + e− z ∈ K0 and hence y − z ∈ Lin(K) +K0 = K∞. This shows that
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z ∈ Min(K,K∞). The proof is completed.

In the case when X is finite dimensional, the assumption made in (5.2) automat-
ically holds (by K = Lin(K) + C and Klee’s Theorem (cf. [14]), where C is a closed
convex pointed cone). The following example shows that the reflexivity of X cannot
be removed in Proposition 5.1.

Example. Let X = l1 and K = {x = (t1, t2, · · · ) ∈ l1 : tn ≥ −n, ∀n}. It is
easy to verify that Lin(K) = {0} and K∞ = {x = (t1, t2, · · · ) ∈ l1 : tn ≥ 0, ∀n}.
Let Θ := {x = (t1, t2, · · · ) ∈ K∞ :

∞∑
n=1

tn = 1}. Then, Θ is a bounded closed

convex set, Lin(K) ∩ Θ = ∅ and K∞ = R+Θ. But Min(K,K∞) = ∅, and hence
K 6= Min(K,K∞) +K∞. Indeed, let x = (t1, t2, · · · ) be any point in K. Noting that
∞∑

n=1
|tn| < ∞, there exists a natural number n0 such that |tn| < n0 for all n ≥ n0.

Take x0 = (s1, s2, · · · ) to satisfy sn = tn for any n 6= n0 and sn0 = −n0. It is clear
that x0 ∈ K \ {x} and x − x0 ∈ K∞. It follows that x 6∈ Min(K,K∞). This shows
that Min(K,K∞) = ∅.

It is clear that K has no extreme points if K contains lines. This motivates us
to introduce a new concept of what we shall refer to as “generalized extreme points”.
Let X be a Hilbert space. For a closed convex subset K of X, let

Lin(K)⊥ := {x ∈ X : 〈x, y〉 = 0, ∀y ∈ Lin(K)}.

We say that e is a generalized extreme point of K if e ∈ K ∩ Lin(K)⊥ and

x1, x2 ∈ K and e =
x1 + x2

2
=⇒ x1 − x2 ∈ Lin(K). (5.4)

We denote by extE(K) the set of all generalized extreme points of K. Clearly,
extE(K) = ext(K) if K contains no lines (i.e., Lin(K) = {0}). Moreover, one has
that

extE(K) ⊂ Min(K,K∞). (5.5)

To see this, let e ∈ extE(K) and x ∈ K with x ≤K∞ e. Then e− x ∈ K∞ and hence
2e−x = e+(e−x) ∈ K. Since e = x+(2e−x)

2 , it follows that 2(e−x) ∈ Lin(K), which
means x − e ∈ Lin(K) ⊂ K∞. Hence e ≤K∞ x. This shows that e ∈ Min(K,K∞).
Thus (5.5) is true.

Proposition 5.2. Let X be a Hilbert space and K a closed convex subset of X.
Then

extE(K) = ext(K ∩ Lin(K)⊥). (5.6)

Proof. By definition it is clear that extE(K) ⊂ ext(K ∩ Lin(K)⊥). Conversely,
let e ∈ ext(K ∩ Lin(K)⊥) and x1, x2 ∈ K satisfy e = x1+x2

2 . Noting that for each
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x ∈ X there exists a unique pair (u, v) ∈ Lin(K) × Lin(K)⊥ such that x = u + v.
Take (u1, v1), (u2, v2) ∈ Lin(K)× Lin(K)⊥ such that x1 = u1 + v1 and x2 = u2 + v2.
Then e = u1+u2

2 + v1+v2
2 . It follows from e ∈ ext(K ∩ Lin(K)⊥) that u1 + u2 = 0 and

e = v1 = v2. Thus, x1 − x2 = u1 − u2 ∈ Lin(K) and hence e ∈ extE(K). This shows
that extE(K) ⊃ ext(K ∩ Lin(K)⊥), and (5.6) is proved.

Proposition 5.3. Let K be a closed convex subset of a Hilbert space X and
∏

be the project operator to Lin(K)⊥. Suppose that C is a recession core of K. Then
extE(K) ⊂

∏
(C).

Proof. Let e ∈ extE(K). Then, by (5.1) there exist x1, · · · , xn ∈ C, t1, · · · , tn ∈
[0, 1] with

n∑
i=1

ti = 1 and h ∈ K∞ such that e =
n∑

i=1

tixi + h. Then,

e =
(

n∑
i=1

tixi + 1
2h) + (

n∑
i=1

tixi + 3
2h)

2
.

Thus, by (5.4), one has h ∈ Lin(K). It follows from the linearity of
∏

that

e =
∏

(e) =
∏

(
n∑

i=1

tixi + h) =
n∑

i=1

ti
∏

(xi) ∈
∏

(C).

This shows that extE(K) ⊂
∏

(C).

The following proposition shows that extE(K) is a recession core of K when X

is finite dimensional.

Proposition 5.4. Let K be a closed convex nonempty subset of Rn. Then

K = co(extE(K)) +K∞. (5.7)

Proof. Let h ∈ Rn be such that x + Rh ⊂ K ∩ Lin(K)⊥ for some x ∈ Rn. Then
h ∈ Lin(K), and hence 〈x+ th, h〉 = 0 for all t ∈ R. It follows that h = 0. Therefore
K∩Lin(K)⊥ is a closed convex subset containing no lines. It follows from [27, Theorem
18.5] that

K ∩ Lin(K)⊥ = co(ext(K ∩ Lin(K)⊥)) + (K ∩ Lin(K)⊥)∞.

This and Proposition 5.2 imply that K ∩Lin(K)⊥ ⊂ co(extE(K))+K∞. Noting that
K∞ + Lin(K) = K∞, one then has

K ∩ Lin(K)⊥ + Lin(K) ⊂ co(extE(K)) +K∞. (5.8)

Let x ∈ K and take x1 ∈ Lin(K) and x2 ∈ Lin(K)⊥ such that x = x1+x2. Hence x2 ∈
x+ Lin(K) ⊂ K and so x2 ∈ K ∩ Lin(K)⊥. Therefore, K ⊂ Lin(K) +K ∩ Lin(K)⊥.
It follows from (5.8) that

K ⊂ co(extE(K)) +K∞.
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Thus (5.7) holds as the converse inclusion is obvious.

Remark. Proposition 5.4 shows that extE(K) is a recession core of K, and has
the minimality property “up to Lin(K)” in the sense as indicated in Proposition 5.3.
In particular, if K contains no lines then extE(K) = ext(K) is the least recession core
of K.

In terms of recession cores and the BCQs, we now study the global metric sub-
regularity of generalized equation (GEC). Hoffman, in his pioneering work, proved
that (GEC) has an error bound (or equivalently, is globally metrically subregular) if
A = X = Rn and F (x) := Qx+Rn

+ for all x ∈ Rn, where Q is a m× n matrix. The
research on error bounds, especially for inequality systems, has attracted the interest
of many researchers and there are a vast number of publications reporting progress
in this area. For more details, see [17,18,20,23,24,30,31] and a special issue of Math-
ematical Programming (Vol.88, No.2, 2000). In what follows, we assume that X,Y
are general Banach spaces (except explicitly stated otherwise), F is a closed convex
multifunction from X to Y and that A is a closed convex subset of X. In the case
when A = X, while the equivalence of (iv) with (v) in the following result is [24,
Theorem 3.1], we can now sharpen the result by considering recession cores of S.

Theorem 5.1. Let C be a recession core of the solution set S of (GEC) and
τ ∈ [0, +∞). Then the following statements are equivalent.
(i) (GEC) has the strong BCQ at each x ∈ C with the constant τ .
(ii) (GEC) has the strong BCQ at each x ∈ S with the constant τ .
(iii) (GEC) is metrically subregular at each point in C with the constant τ .
(iv) (GEC) is metrically subregular at each point in S with the constant τ .
(v) (GEC) is globally metrically subregular with the constant τ .

Proof. (i)⇒(ii) Let x ∈ S. Since C is a recession cone of S, there exist
x1, · · · , xn ∈ C, t1, · · · , tn ∈ [0, +∞) and e ∈ S∞ such that

n∑
i=1

ti = 1 and x =
n∑

i=1

tixi + e. (5.9)

Let x∗ ∈ N(S, x) ∩BX∗ . Then 〈x∗,
n∑

i=1

tixi + e〉 = max{〈x∗, z〉 : z ∈ S}. Noting that
n∑

i=1

tixi +R+e ⊂ S, it follows that

〈x∗, e〉 = 0 and 〈x∗,
n∑

i=1

tixi〉 = max{〈x∗, z〉 : z ∈ S}.

This implies that for each integer i ∈ [1, n],

〈x∗, x〉 = 〈x∗, xi〉 = max{〈x∗, z〉 : z ∈ S},

and hence x∗ ∈ N(S, xi) ∩BX∗ . By (i), one has

x∗ ∈ τ(D∗F (xi, b)(BY ∗) +BX∗ ∩N(A, xi)), i = 1, · · · , n.
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It follows from Lemma 3.1 that x∗ ∈ τ(D∗F (x, b)(BY ∗) +BX∗ ∩N(A, x)). Therefore,

N(S, x) ∩BX∗ ⊂ τ(D∗F (x, b)(BY ∗) +BX∗ ∩N(A, x)).

This shows that (ii) holds.
(ii)⇒(i), (iv)⇒(iii) and (v)⇒(iv) are trivial. (iii)⇒(i) and (ii)⇒(iv) are consequences
of formula (3.6) in Remark 3.1. The proof of (iv)⇒(v) is similar to that of [24, The-
orem 3.1]. The proof is completed.

In the special case when A = X, Y = R, F (x) = [f(x), +∞) for all x ∈ X and
b = inf{f(x) : x ∈ X} with f being a proper lower semicontinuous convex function
from X to R∪{+∞}, Burke and Deng [3, Theorem 2.3] proved that (GEC) is globally
τ -metrically subregular if and only if

N(S, z) ∩BX∗ ⊂ cl∗(∂f(z)) for all z ∈ S.

Since extE(S) is a recession core of S if X = Rn, the following corollary is a
consequence of Theorem 5.1.

Corollary 5.1. Let X = Rn. Then (GEC) is globally metrically subregular
if and only there exists τ ∈ (0, +∞) such that (GEC) has the strong BCQ at each
generalized extreme point of S with the constant τ .

Similar to the proof of the equivalent relation (i)⇔(ii) in Theorem 5.1, one can
prove the following result.

Proposition 5.5. Let C be a recession core of S. Then (GEC) has the BCQ at
each point in C if and only if (GEC) has the BCQ at each point in S.

As in the finite dimensional case, let us say that a subset P of X is a polyhedron
if there exist x∗n, · · · , x∗n ∈ X∗ and c1, · · · , cn ∈ R such that

P = {x ∈ X : 〈x∗i , x〉 ≤ ci, i = 1, · · · , n}.

It is known that

N(P, x) =

 ∑
i∈I(x)

tix
∗
i : ti ≥ 0, i ∈ I(x)

 ∀x ∈ P, (5.10)

where I(x) := {1 ≤ i ≤ n : 〈x∗i , x〉 = ci}. We say that a multifunction F : X → 2Y

is polyhedral if its graph is a polyhedron in X × Y . If F is polyhedral, it is easy to
verify from (5.10) that

N(F−1(b), x) = D∗F (x, b)(Y ∗) ∀x ∈ F−1(b). (5.11)

Theorem 5.2. Let C be a recession core of the solution set S of (GEC). Suppose
that S is a polyhedron in X. Then (GEC) is globally metrically subregular if and only
if (GEC) has the BCQ at each point in C.
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Proof. By Theorem 5.1, it suffices to prove the sufficiency. Suppose that (GEC)
has the BCQ at each point in C. Then, (GEC) has the BCQ at each point of S (by
Proposition 5.5). Since S is a polyhedron, there exist x∗n, · · · , x∗n and c1, · · · , cn ∈ R
such that

S = {x ∈ X : 〈x∗i , x〉 ≤ ci, i = 1, · · · , n}.

Let X1 := {x ∈ X : 〈x∗i , x〉 = 0, i = 1, · · · , n}. Then X1 is a closed subspace of
X with finite codimension. Thus, there exists a finite dimensional subspace X2 of X
such that X = X1 +X2 and X1 ∩X2 = {0}. Let

P := {z ∈ X2 : 〈x∗i , z〉 ≤ ci, i = 1, · · · , n}.

It is easy to verify that S = P+X1 and P is a polyhedron containing no lines inX2. By
[27, Theorems 18.5 and 19.1], P = co(ext(P ))+P∞. Hence S = co(ext(P ))+P∞+X1.
Noting that P∞ + X1 ⊂ (S)∞, it follows that ext(P ) is a recession core of S. Let
e ∈ ext(P ). Then, by (5.10), N(S, e) is a polyhedron in a finite dimensional subspace
of X∗. It follows from Proposition 3.1 that there exists τe ∈ (0, +∞) such that
(GEC) has the strong BCQ with the constant τe. Do this for each e in ext(P ) and
let τ := max{τe : e ∈ ext(P )}. Then τ < +∞ because ext(P ) is a finite set (cf. [27,
Theorem 19.1]). Hence (GEC) has the strong BCQ at each point of ext(P ) with the
constant τ . Since ext(P ) is a recession core of S, it follows from Theorem 5.1 that
(GEC) is globally metrically subregular. The proof is completed.

In view of the proof of Theorem 5.2, one sees that any polyhedron in a Banach
space has a recession core consisting of finitely many elements.

Robinson [26] studied the continuity properties of polyhedral multifunctions. In
particular, under the finite-dimension assumption, he [26, Corollary] proved that if
the graph of F is the union of finitely many polyhedra and b ∈ F (X) then there exists
ε, τ ∈ [0, +∞) such that

d(x, F−1(b)) ≤ τd(b, F (x)) for all x ∈ Xwith d(b, F (x)) < ε.

This result can be regarded as a generalization of Hoffman’s classical error bound the-
orem. In the setting of Theorem 5.2, F is not required to be polyhedral but merely the
solution set S is required to be polyhedral. When F is a convex polyhedral multifunc-
tion and A = X, (5.11) implies that generalized equation (GEC) has the BCQ at each
x ∈ S = F−1(b). Hence, in this case, Theorem 5.2 improves the above Robinson’s
result. But, in the nonconvex case, one cannot use Theorem 5.2 to deduce Robinson’s
result.

Remark. Let M : Y → 2X be a closed convex multifunction and with (ȳ, x̄) ∈
Gr(M). We say that M is globally calm at ȳ over A if there exists τ ∈ (0, +∞) such
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that

d(x,M(ȳ) ∩A) ≤ τ(‖y − ȳ‖+ d(x,A)) for all (x, y) ∈ Gr(M).

Let C be a recession core of M(ȳ)∩A. Theorems 5.1 implies that M is globally calm
at ȳ over A if and only if there exists τ ∈ (0, +∞) such that

N(M(ȳ) ∩A, u) ∩BX∗ ⊂ τ(D∗M−1(u, ȳ)(BY ∗) +N(A, u) ∩BX∗) ∀u ∈ C.

In the case when M(ȳ) ∩ A is a polyhedron, Theorem 5.2 implies that M is globally
calm at ȳ over A if and only if

N(M(ȳ) ∩A, u) = D∗M−1(u, ȳ)(Y ∗) +N(A, u) ∀u ∈ C.

To end this paper, we provide a procedure to find the generalized extreme points
of a polyhedron in a finite dimensional space. Let a1, · · · , am ∈ Rn, c1, · · · , cm ∈ R

and let P denote the polyhedron determined by ai and ci (i = 1, · · · ,m), that is,

P = {x ∈ Rn : 〈ai, x〉 ≤ ci, i = 1, · · · ,m}.

For convenience, let I := {1, · · · ,m} and I(x) = {i ∈ I : 〈ai, x〉 = ci} for x ∈ P . Let
M(I) denote the family of all subsets D of I with the property that {ai : i ∈ D} is
a maximal linearly independent subset of {ai : i ∈ I}. Thus elements of M(I) can
be obtained by the Gram-Schmidt Process. For each D ∈ M(I), the following linear
equation system ∑

j∈D

〈ai, aj〉tj = ci, ∀i ∈ D

has a unique solution which will be denoted by (t̄j)j∈D; we shall also write eD for∑
j∈D

t̄jaj . Let

E(I) = {D ∈M(I) : 〈ai, eD〉 ≤ ci, i ∈ I \D}.

Theorem 5.3. extE(P ) = {eD : D ∈ E(I)}.
Proof. Note that Lin(P ) = {x ∈ Rn : 〈ai, x〉 = 0, i ∈ I}. Hence,

Lin(P )⊥ = span{ai : i ∈ I} = span{ai : i ∈ D} ∀D ∈M(I), (5.12)

where spanA denotes the linear hull of A. Let e ∈ extE(P ) and pick a D0 ⊂ I(e)
such that {ai : i ∈ D0} is a maximal linearly independent subset of {ai : i ∈ I(e)}.
We claim that D0 ∈ M(I). Indeed, if this is not the case, then span{ai : i ∈ I(e)}
is a proper subspace of span{ai : i ∈ I}. It follows from the first equality of (5.12)
that there exists h ∈ Lin(P )⊥ \ {0} such that 〈ai, h〉 = 0 for all i ∈ I(e). Since
〈ai, e〉 < ci for all i ∈ I \ I(e), there exists ε > 0 small enough such that e± εh ∈ P .
Since e = e+εh+(e−εh)

2 , it follows from (5.4) that 2εh ∈ Lin(P ). This contradicts
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h ∈ Lin(P )⊥ \{0}. Hence D0 ∈M(I). Noting that e ∈ Lin(P )⊥ (by Proposition 5.2),
it follows from (5.12) that there exists (t̄j)j∈D0 ∈ R|D0| such that e =

∑
j∈D0

t̄jaj , where

|D0| denotes the number of elements of D0. It follows from e ∈ P and D0 ⊂ I(e) that
D0 ∈ E(I) and e = eD0 . Therefore, extE(P ) ⊂ {eD : D ∈ E(I)}. It remains to show
that {eD : D ∈ E(I)} ⊂ extE(P ). To do this, let D ∈ E(I). Then eD ∈ P ∩ Lin(P )⊥

(by (5.12) and the definition of eD). Let x1, x1 ∈ P satisfy eD = x1+x2
2 . It follows

that 〈ai, x1〉 = 〈ai, x2〉 = ci for all i ∈ D, and so 〈ai, x1 − x2〉 = 0 for all i ∈ D. Since
{ai : i ∈ D} is a maximal linearly independent subset of {ai : i ∈ I}, 〈ai, x1−x2〉 = 0
for all i ∈ I. Hence x1 − x2 ∈ Lin(P ). This shows that eD ∈ extE(P ). The proof is
completed.
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