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Abstract

A multi-scale characterization of the field concentrations inside composite and poly-

crystalline media is developed. We focus on gradient fields associated with the intensive

quantities given by the temperature and the electric potential. In the linear regime

these quantities are modeled by the solution of a second order elliptic partial dif-

ferential equation with oscillatory coefficients. The characteristic length scale of the

heterogeneity relative to the sample size is denoted by ε and the intensive quantity is

denoted by uε. Field concentrations are measured using the Lp norm of the gradient

field ‖∇uε‖Lp(D) for 2 ≤ p < ∞. The analysis focuses on the case when 0 < ε ≪ 1.

Explicit lower bounds on lim infε→0 ‖∇uε‖Lp(D) are developed. These bounds provide a

way to rigorously assess field concentrations generated by the microgeometry without

having to compute the actual field uε.

Key words. Composite materials, polycrystalline media , homogenization, field concen-
trations, Young measures
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1 Introduction

The initiation of failure inside heterogeneous media is a multi-scale phenomena. Loads ap-
plied at the structural scale are often amplified by the microstructure creating local zones
of high field concentration. The local amplification of the applied field creates conditions
that are favorable for failure initiation [10]. This paper focuses on gradient fields associated
with the intensive quantities given by the temperature and the electric potential inside het-
erogeneous media. The local integrability of the gradient directly correlates with singularity
strength which influences the onset of failure such as dielectric breakdown.

In this work it is shown how to assess the Lp integrability of the gradient fields in mi-
crostructured media by investigating the multi-scale integrability of suitably defined quan-
tities. The analysis is carried out with minimal regularity assumptions on the coefficients
describing the local properties inside the heterogeneous media. The results are described in
terms of the pth order moments of the solution of two-scale corrector problems. The quan-
tities are sensitive to microscopic field concentrations and can become divergent for p > 2.
This is in contrast to the well known effective constitutive properties which are based upon
local averages and are bounded above independently of the microgeometry.

1

http://arxiv.org/abs/math/0603172v1


The results given here are presented in the context of two-scale homogenization [1], [20].
We consider a bounded domain Ω in Rn, n ≥ 2. A common microstructure that admits a
two-scale description is a simple generalization of a uniformly periodic microstructure and is
described as follows. Consider a partition of the domain Ω made up of measurable subsets Ωℓ,
ℓ = 1, 2, . . . , K such that Ω = ∪K

ℓ=1Ωℓ. Inside each subdomain Ωℓ we place a different periodic
microstructure made from N anisotropic heat conductors. This type of microstructure will
be referred to as a piece wise periodic microstructure. Well known engineering composites
that are modeled by piecewise periodic microstructures include multi-ply fiber reinforced
laminates [8], [21] and [23].

The thermal conductivity tensor for the piecewise periodic microstructure is described as
follows. The indicator function for each of the subdomains Ωℓ is denoted by χΩℓ

(x), taking
the value 1 for points in Ωℓ and zero outside. In order to describe the periodic microstructure
inside the ℓth subdomain we introduce the unit period cell Q. The configuration of the N
phases inside Q is described by the indicator functions χi

ℓ(y), i = 1, . . . , N associated with
each phase. Here χi

ℓ(y) = 1 for points inside the ith phase and zero outside. The length scale
of the microstructure relative to the size of the domain Ω is given by εk = 1/k, k = 1, 2 . . ..
The microstructure is obtained by rescaling the configuration inside the unit period cell. The
indicator function of the ith conductor in the microstructured composite is given by

χεk
i (x) = χi(x,x/εk) =

K
∑

ℓ

χΩℓ
(x)χi

ℓ(x/εk). (1.1)

The local conductivity tensor Aεk has a two-scale structure and is given by

Aεk(x) = A(x,x/εk) =
N
∑

i

Aiχi(x,x/εk). (1.2)

Other heterogeneous media that are amenable to similar or more general two-scale de-
scriptions include polycrystalline materials such as metals and ceramics. We state the general
hypotheses under which the two-scale homogenization theory applies, see [1] and [2]. It is
assumed that A(x,y) is a matrix defined on Ω×Q and there exist positive numbers α < β
such that for every vector η in R3 that

α|η|2 ≤ A(x,y) ≤ β|η|2. (1.3)

The conductivity Aij(x,y) is Q-periodic in the second variable, such that Aij(x,x/εk) is
measurable, satisfies

lim
εk→0

∫

Ω

∣

∣

∣

∣

Aij(x,
x

εk
)

∣

∣

∣

∣

2

dx =

∫

Ω×Q

|Aij(x,y)|
2 dxdy (1.4)

and for any suitable two scale trial field ψ(x,y) that

lim
εk→0

∫

Ω

Aij(x,
x

εk
)ψ(x,x/εk) dx =

∫

Ω×Q

Aij(x,y)ψ(x,y) dxdy. (1.5)
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The convergence given by (1.5) is a weak convergence and is known as two-scale convergence
[1] [20]. The space of suitable two-scale trials is denoted by L2[D;Cper(Q)]. Here Cper(Q)
denotes Q-periodic continuous functions defined on R3 and the space L2[D;Cper(Q)] is the
space of functions h : Ω → Cper(Q) which are measurable and satisfy

∫

Ω
‖h(x)‖2

Cper(Q)
dx <∞.

The norm ‖h(x)‖Cper(Q) is defined by supy∈Q |h(x,y)|. In what follows no other regularity
hypothesis on the conductivity matrix A(x,y) is made.

The temperature field uεk associated with the conductivity tensor fieldAεk(x) = A(x,x/εk)
is the solution of the equilibrium equation

− div (Aεk(x)∇uεk) = f in Ω (1.6)

with the boundary conditions given by uεk = 0 on ∂ΩD and n · Aεk∇uεk = g on ∂ΩN with
∂Ω = ∂ΩD ∪ ∂ΩN .

In what follows we consider the limit as εk tends to zero. We fix a subdomain D of Ω
and derive lower bounds on

lim inf
εk→0

‖∇uεk‖Lp(D). (1.7)

The lower bound is expressed in terms of a two-scale integral that encodes the field
amplification properties of the microstructure. It is formulated in terms of the solution of
the homogenized problem together with a local corrector matrix that captures the interaction
between the periodic microstructure and the gradients of the homogenized temperature field.
The bounds introduced here provide a rigorous way to assess field concentrations generated
by the microgeometry without having to compute the full solution uεk .

The lower bound is given in terms of the solutions wi(x,y) to the local periodic problem.
For each x in Ω the function wi(x,y) is a Q periodic function of the second variable y and
is a solution of

div y

(

A(x,y)(∇yw
i(x,y) + ei)

)

= 0, (1.8)

with
∫

Q
wi(x,y) dy = 0. The corrector matrix P (x,y) is defined by

Pij(x,y) = ∂yjw
i(x,y) + eij . (1.9)

The associated effective conductivity tensor AE(x) is given by

AE(x) =

∫

Q

A(x,y)P (x,y) dy. (1.10)

The two-scale homogenization theory gives the following theorem [1].

Theorem 1.1. Two-scale Homogenization Theorem
The sequence of solutions {uεk}εk>0 of (1.6) converges weakly to uH(x) in H1(Ω) where uH

is the solution of the homogenized problem

− div
(

AE(x)∇uH(x)
)

= f(x), in Ω,

uH(x) = 0, on ∂ΩD , and

n ·AE∇uH = g, on ∂ΩN . (1.11)
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The field concentration functions of order p are defined by

fp(x,∇u
H(x)) ≡

(
∫

Q

|P (x,y)∇uH(x)|p dy

)1/p

, 2 ≤ p ≤ ∞ (1.12)

and fp(x,∇u
H(x)) ≤ fq(x,∇u

H(x)) for p ≤ q. It is clear that fp corresponds to a pth order
moment of the corrector matrix (1.9) and

f∞(x,∇uH(x)) ≡ lim
p→∞

(
∫

Q

|P (x,y)∇uH(x)|p dy

)1/p

. (1.13)

Theorem 1.2. Lower Bounds on Field Concentrations
For 2 ≤ p <∞

(
∫

D

(

fp(x,∇u
H(x))

)p
dx

)1/p

≤ lim inf
εk→0

‖∇uεk‖Lp(D). (1.14)

For multi-phase conductivity problems with coefficients described by (1.2) the field con-
centration functions of order p are defined for each phase and are given by

f i
p(x,∇u

H(x)) ≡

(
∫

Q

χi(x,y)|P (x,y)∇u
H(x)|p dy

)1/p

, i = 1, . . . , N, 2 ≤ p ≤ ∞ (1.15)

and f i
p(x,∇u

H(x)) ≤ f i
q(x,∇u

H(x)) for p ≤ q. As before one defines

f i
∞
(x,∇uH(x)) ≡ lim

p→∞

(
∫

Q

χi(x,y)|P (x,y)∇u
H(x)|p dy

)1/p

. (1.16)

For this case lower bounds on

lim inf
εk→0

‖χεk
i ∇uεk‖Lp(D) (1.17)

are given by the following theorem.

Theorem 1.3. Lower Bounds for Multi-phase Composites
For 2 ≤ p <∞

(
∫

D

(

f i
p(x,∇u

H(x))
)p
dx

)1/p

≤ lim inf
εk→0

‖χεk
i ∇uεk‖Lp(D). (1.18)

The bounds can be applied to develop a Chebyshev Inequality for the distribution func-
tions associated with the sequence {χεk

i |∇uεk|}εk>0. Here the distribution function λεki (D, t)
gives the measure of the set inside D where χεk

i |∇uεk| > t.
Arguing as in Proposition 2.1 of [14] and combining with (1.18) gives the following
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Theorem 1.4. Homogenized Chebyshev Inequality

lim sup
εk→0

λεki (D, t) ≤ t−p
(∫

D

(

f i
p(x,∇u

H(x))
)p
dx

)

≤ t−p lim inf
εk→0

‖χεk
i ∇uεk‖pLp(D).

(1.19)

It is pointed out that Theorems 1.2 and 1.3 are obtained using the minimum regularity
assumptions on the coefficients Aεk . Because of this the hypotheses of (Theorem 2.6, [1]) do
not apply and one can not take advantage of the strong convergence given in that Theorem.
Instead the theorems are proved using a perturbation approach introduced in [13], [15], see
Section 2.

The lower bounds are sensitive to the presence of singularities generated by the mi-
crostructure. To illustrate this we consider a microstructure made from a periodic distribu-
tion of uniaxial crystallites embedded in an isotropic matrix of unit conductivity. The period
cell for the composite is illustrated in Figure 1. Each crystallite occupies a sphere and has
conductivity λ1 in the radial direction and λ2 in the tangential direction. The dispersion of
the N crystallites is specified by ∪N

ℓ B(yℓ, rℓ) where B(yℓ, rℓ) denotes the ℓ
th sphere centered

at yℓ with radius rℓ. Each crystallite has a conductivity tensor given by

A(y) = λ1n⊗ n+ λ2(I − n⊗ n), (1.20)

where n = (y − yℓ)/|y − yℓ| for y in B(yℓ, rℓ) and I is the 3 × 3 identity. Outside the
crystallites we set A(y) = I. It is supposed that the aggregate of crystallites occupy an
area fraction 0 < θ < 1 of the unit period cell. It is noted that the conductivity inside each
crystallite is precisely the one employed in the Schulgasser sphere assemblage [24].

When a constant gradient field is applied to a single isolated crystallite and λ1 > λ2 the
crystallite exhibits a gradient field singularity at its center. In what follows we use the lower
bound (1.14) to show how this local information effects the integrability of the sequence
{∇uεk}εk>0. We form Aεk = A(x/εk) and consider solutions uεk of (1.6). To fix ideas we
choose f to be in Lr(Ω) for r > 3 and g to be in L2(∂ΩN ). In what follows λ2 is restricted to
lie in the interval 1/2 < λ2 < 1 and λ1 = 1/(2λ2 − 1). For this choice it is shown in Section
3 that the homogenized temperature field uH is the solution of (1.11) with AE = I.

For D compactly contained in Ω it follows from the Lp theory [17], that ‖∇uH‖Lp(D) <∞
for every 1 ≤ p <∞. On the other hand calculation and application of Theorem 1.2 shows
that

LB(p)× ‖∇uH‖Lp(D) ≤ lim inf
εk→0

‖∇uεk‖Lp(D), (1.21)

where

LB(p) =

{

3pθ(2λ2−1)

2(1−λ2)(
3

2(1−λ2)
−p)

+ (1− θ), for, p < 3
2(1−λ2)

,

+∞, for, p ≥ 3
2(1−λ2)

. (1.22)
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For a fixed choice of λ2 the value pc =
3

2(1−λ2)
satisfies 3 < pc < +∞ and

lim inf
εk→0

‖∇uεk‖Lp(D) = +∞, for p ≥ pc. (1.23)

This is in stark contrast to the Lp integrability of the the gradient of the homogenized solution
which holds for any p < +∞. It is clear for this example that the information carried by
the homogenized problem is not adequate and misses the singular behavior exhibited by the
sequence {∇uεk}εk>0. This example shows that failure initiation criteria based solely upon
the solution of the homogenized equations will be optimistic. The inequalities given above
are established in Section 3.

The maximum integrability exponent for the gradient of the solution of the local problem
(1.8) is referred to as the threshold exponent for the composite. The threshold exponent is
introduced in the work of Milton [18] and measures the worst singularity of the gradient field.
The threshold exponent is precisely pc for the local problem considered here and corresponds
to the divergence in the lower bound for p ≥ pc.

1

Figure 1: Unit period cell with Schulgasser crystallites embedded inside a material with unit
thermal conductivity.

Next we consider an example for which the sequence {∇uεk}εk>0 is uniformly bounded
in Lp for some class of coefficients and right hand sides f . For this case we show that the
lower bound given in Theorem 1.2 is attained. In this example we make use of the a priori
estimates for {∇uεk}εk>0 developed in the Theorem 4 of Avellaneda and Lin [3]. Let Ω be
a C1,α domain (0 < α ≤ 1) and suppose for 0 < γ ≤ 1, C > 0, that A(y) ∈ Cγ(Rn) and
‖A(y)‖Cγ(Rn) ≤ C. Then we choose Aεk = A(x/εk). For δ > 0 suppose 2 ≤ q ≤ n + δ and

f ∈ Lq and set 1/q̂ = 1/q−1/(n+ δ). Given these choices we consider the W 1,2
0 (Ω) solutions

uεk of

− div (Aεk(x)∇uεk) = f in Ω. (1.24)

It is shown in Section 4 that (1.14) holds with equality for every p such that p < q̂. In fact
it is seen more generally that for p < q̂ and any Caratheodory function ψ : D × Rn → R

6



satisfying

|ψ(x, η)| ≤ |η|p, for a.e. x ∈ D and η ∈ R3, (1.25)

that

lim
εk→0

∫

D

ψ(x,∇uεk(x)) dx =

∫

D

∫

Q

ψ(x, P (y)∇uH(x)) dydx. (1.26)

This is established in Section 4.
It is anticipated that there are several classes of conductivity coefficients and right hand

sides f for which the lower bounds are attained. In this direction we point out the the recent
higher regularity results given in [5], [6], [9], [11], [12] and [25].

We conclude noting that the analogues of the field concentration functions (1.12) and
(1.15) have appeared earlier in the contexts of G-convergence and random media, see [13]
and [14]. In those treatments they are shown to provide upper bounds for the distribution
function of the local stress and electric field for G-convergent sequences of elasticity tensors
and random dielectric tensors.

2 Derivation of the lower bounds

We recall the weak formulation of the εk > 0 problem given by (1.6). Let V denote the
closure in H1(Ω) of all smooth functions that vanish on ∂ΩD. We suppose that f is in L2(Ω)
and g belongs to L2(∂ΩN ). The function uεk belonging to V is the solution of the weak
formulation of the boundary value problem given by

∫

Ω

A(x,x/εk)∇u
εk · ∇ϕdx =

∫

Ω

fϕ dx+

∫

∂ΩN

gϕ ds, (2.1)

for every ϕ in V . Here ds is an element of surface area.
In order to express the two-scale weak formulation of (1.11) we introduce the following

function spaces. The space of square integrable Q-periodic mean zero functions with square
integrable derivatives is denoted by H1

per(Q)/R. The norm of an element v in this space
is denoted by ‖v‖H1

per(Q)/R. The space of measurable functions h from Ω to H1
per(Q)/R

for which
∫

Ω
‖h(x)‖2

H1
per(Q)/R

dx < ∞ is denoted by L2[Ω;H1
per(Q)/R]. This function space

was introduced for the description of the two-scale homogenized problem in [20]. The weak
formulation of the two-scale homogenized problem (1.11) is given by the unfolded variational
principle [1], [7], [16].

Theorem 2.1. Unfolded Variational Principle
The pair (uH, u1) is the unique solution in V × L2[Ω;H1

per(Q)/R] of

∫

Ω

∫

Q

A(x,y)(∇uH(x) +∇yu1(x,y)) · (∇ϕ(x) +∇yϕ1(x,y)) dy dx

=

∫

Ω

fϕ dx+

∫

∂ΩN

gϕ ds, (2.2)
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for every (ϕ, ϕ1) in V × L2[Ω;H1
per(Q)/R]. Moreover

∇uH +∇yu1(x,y) = P (x,y)∇uH(x). (2.3)

In order to establish Theorems 1.2 and 1.3 we recall the function spaces used in the
description of two-scale convergence [16]. The space Cper(Q) denotes Q-periodic continu-
ous functions defined on R3. For 1 ≤ r < ∞ the space Lr[D;Cper(Q)] is the space of
functions h : D → Cper(Q) which are measurable and satisfy

∫

D
‖h(x)‖r

Cper(Q)
dx < ∞.

Here ‖h(x)‖Cper(Q) = supy∈Q |h(x,y)|. The intersection of the spaces L∞(D × Q) and
Lr[D;Cper(Q)] is denoted by by V r. For 1 < r < ∞ we introduce 1 < r′ < ∞ such
that 1

r
+ 1

r′
= 1. We establish Theorems 1.2 and 1.3 with the aid of the following Lemmas.

Lemma 2.1. Localization Lemma
Fix a domain of interest D inside Ω. Let q(x,y) be any test function in V r then one can
pass to the limit εk → 0 in the sequence of solutions {uεk}εk>0 of (1.6) to obtain:

lim
εk→0

∫

D

q(x,x/εk) |∇u
εk|2 dx =

∫

D

∫

Q

q(x,y) |P (x,y)∇uH(x)|2 dy dx. (2.4)

For multi-phase composites with coefficients described by (1.2) we restrict attention inside
each phase and state the following lemma.

Lemma 2.2. Localization Lemma in Multi-phase Composites
Let q(x,y) be any test function in V r then one can pass to the limit εk → 0 in the sequence
of solutions {uεk}εk>0 of (1.6) to obtain:

lim
εk→0

∫

D

q(x,x/εk)χ
εk
i (x) |∇uεk|2 dx

=

∫

D

∫

Q

q(x,y)χi(x,y) |P (x,y)∇u
H(x)|2 dy dx. (2.5)

The proofs of Lemmas 2.1 and 2.2 are given at the end of this section.
To illustrate the ideas we use Lemma 2.2 to establish Theorem 1.3 noting that Theorem

1.2 follows from Lemma 2.1 in the same way.
Proof of Theorem 1.3. For each εk > 0 we apply Hölder’s inequality to the left side

of (2.5) to obtain

∫

D

∫

Q

q(x,y)χi(x,y) |P (x,y)∇u
H(x)|2 dy dx

≤ lim
εk→0

(
∫

D

|q(x,x/εk)|
r dx

)1/r

lim inf
εk→0

(
∫

D

χεk
i (x) |∇uεk|2r

′

dx

)1/r′

. (2.6)
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Noting [16] that

lim
εk→0

(
∫

D

|q(x,x/εk)|
r dx

)1/r

=
(

∫

D

∫

Q
|q(x,y)|r dy dx

)1/r

≡ ‖q(x,y)‖Lr(D×Q) (2.7)

we obtain
∫

D

∫

Q
q(x,y)χi(x,y) |P (x,y)∇u

H(x)|2 dy dx

‖q(x,y)‖Lr(D×Q)

≤ lim inf
εk→0

(
∫

D

χεk
i (x)|∇uεk|2r

′

dx

)1/r′

.(2.8)

Since V r is dense in Lr(D×Q) we take the supremum of the left hand side of (2.8) over V r

to find that

(
∫

D

∫

Q

χi(x,y) |P (x,y)∇u
H(x)|2r

′

dy dx

)1/r′

≤ lim inf
εk→0

(
∫

D

χεk
i (x)|∇uεk|2r

′

dx

)1/r′

.(2.9)

Theorem 1.3 follows for 2 < p <∞ upon taking the square root on both sides of (2.9). The
case p = 2 follows immediately upon choosing q(x,y) = 1 in Lemma 2.2.

We conclude by providing the proof of Lemma 2.2 and note that the proof of Lemma 2.1
is identical.

Proof of Lemma 2.2. The indicator function of the set of interest D is denoted by
χD(x). We choose a test function q(x,y) in V r and set p(x,y) = χD(x)χi(x,y)q(x,y). For
δβ > 0 we form the perturbed conductivity tensor Ãij(x,y) = Aij(x,y) + δβp(x,y)δij. We
choose δβ sufficiently small so that Ã(x,y) satisfies (1.3). By construction Ã(x,x/εk) is
measurable and satisfies (1.4) and (1.5). Consider the associated solution ũεk in V of the
weak formulation of the boundary value problem given by

∫

Ω

Ã(x,x/εk)∇ũ
εk · ∇ϕdx =

∫

Ω

fϕ dx+

∫

∂ΩN

gϕ ds, for every ϕ in V . (2.10)

Set ũεk = uεk + δuεk and subtraction of (2.1) from (2.10) gives

∫

Ω

Ã(x,x/εk)∇δu
εk · ∇ϕdx+

∫

Ω

δβ p(x,x/εk)∇u
εk · ∇ϕdx = 0. (2.11)

Choosing ϕ = uεk in (2.11) and application of the identity

∫

Ω

A(x,x/εk)∇u
εk · ∇δuεk dx =

∫

Ω

fδuεk dx+

∫

∂ΩN

gδuεk ds, (2.12)

gives

δβ ×

∫

Ω

p(x,x/εk)|∇u
εk|2 dx+ T εk = −

∫

Ω

fδuεk dx−

∫

∂ΩN

gδuεk ds, (2.13)

where

T εk = δβ ×

∫

Ω

p(x,x/εk)(∇δu
εk) · ∇uεk dx. (2.14)

9



Next set ϕ = δuεk in (2.11) and it follows from Cauchy’s inequality and (1.3) that

‖∇δuεk‖L2(Ω) ≤ Cδβ, (2.15)

where here and throughout C denotes a generic a constant independent of εk. From this it
is evident that

|T εk | < Cδβ2. (2.16)

Next we pass to the εk → 0 limit and apply Theorems 1.1 and 2.1 to find that the
sequence {ũεk}εk>0 converges weakly in H1(Ω) to ũH , where (ũH, ũ1) is the solution in
V × L2[Ω;H1

per(Q)/R] of

∫

Ω

∫

Q

Ã(x,y)(∇ũH(x) +∇yũ1(x,y)) · (∇ϕ(x) +∇yϕ1(x,y)) dy dx

=

∫

Ω

fϕ dx+

∫

∂ΩN

gϕ ds, (2.17)

for every (ϕ, ϕ1) in V ×L2[Ω;H1
per(Q)/R]. Set ũH−uH = δuH , ũ1−u1 = δu1 and subtraction

of (2.2) from (2.17) gives

∫

Ω

∫

Q

Ã(x,y)(∇δuH(x) +∇yδu1(x,y)) · (∇ϕ(x) +∇yϕ1(x,y)) dy dx

+

∫

Ω

∫

Q

δβp(x,y)(∇uH(x) +∇yu1(x,y)) · (∇ϕ(x) +∇yϕ1(x,y)) dy dx = 0.(2.18)

Choosing (ϕ, ϕ1) = (uH , u1) in (2.18) together with the identity
∫

Ω

∫

Q

A(x,y)(∇uH(x) +∇yu1(x,y)) · (∇δu
H(x) +∇yδu1(x,y)) dy dx

=

∫

Ω

fδuH dx+

∫

∂ΩN

gδuH ds. (2.19)

gives

δβ ×

∫

Ω

∫

Q

p(x,y)|P (x,y)∇uH(x)|2 dy dx+ T̃

= −

∫

Ω

fδuH dx−

∫

∂ΩN

gδuH ds, (2.20)

where

T̃ = δβ ×

∫

Ω

∫

Q

p(x,y)(∇δuH +∇yδu1(x,y)) · (∇u
H +∇yu1(x,y)) dx. (2.21)

Next set (ϕ, ϕ1) = (δuH , δu1) in (2.18) and it follows from Cauchy’s inequality and (1.3) that

‖∇δuH +∇yδu1‖L2(Ω×Q) ≤ Cδβ (2.22)
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and it follows easily that

|T̃ | < Cδβ2. (2.23)

Taking the εk → 0 limit in (2.13) noting that limεk→0 δu
εk = δuH (weakly in H1(Ω)) and

recalling (2.16) gives

δβ × lim
εk→0

∫

Ω

p(x,x/εk)|∇u
εk|2 dx+O(δβ2) = −

∫

Ω

fδuH dx−

∫

∂ΩN

gδuHds.(2.24)

Lemma 2.2 now follows immediately from (2.20), (2.23) and (2.24) and identifying like powers
of δβ.

3 Explicit lower bounds for aggregates of Schulgasser

crystallites

In this section we derive the lower bound (1.22) for the microstructure consisting of Schul-
gasser crystallites embedded within a homogeneous matrix with unit thermal conductivity.
The temperature field inside the unit period cell Φi(y) = wi(y) + yi is the solution of the
local problem

div y

(

A(y)(∇yw
i(y) + ei)

)

= 0, (3.1)

with wi Q-periodic and
∫

Q
wi(y) dy = 0. For this microstructure A(y) is given by (1.20) for

y in B(yℓ, rℓ) and A(y) = I outside. Here we restrict λ2 to the interval (1/2, 1) and choose
λ1 so that λ1 = 1/(2λ2 − 1). A calculation shows that the solution Φi(y) is given by

Φi =

{

yi, y ∈ Q \ ∪N
ℓ=1B(yℓ, rℓ),

r1−α
ℓ |y− yℓ|α−1(yi − yℓ

i) + yℓ
i , y ∈ B(yℓ, rℓ)

, (3.2)

where α = 2λ2 − 1. The corrector matrix P (y) is given by

P (y) =

{

I, y ∈ Q \ ∪N
ℓ=1B(yℓ, rℓ),

r1−α
ℓ |y − yℓ|α−1(I + (α− 1)n⊗ n), y ∈ B(yℓ, rℓ)

, (3.3)

where n = (y − yℓ)/|y − yℓ| for y ∈ B(yℓ, rℓ). A direct calculation shows that

AE =

∫

Q

A(y)P (y) dy = I. (3.4)

Next we provide the lower bound for
∫

Ω

∫

Q
|P (y)∇uH(x)|p dy dx. Note for any η in R3 that

P T (y)P (y)η ·η = |P (y)η|2 and the smallest eigenvalue λ(y) of P T (y)P (y) delivers the lower
bound λ(y)|η|2 ≤ |P (y)η|2 and

∫

Ω

∫

Q

λ(y)p/2|∇uH(x)|p dy dx ≤

∫

Ω

∫

Q

|P (y)∇uH(x)|p dy dx. (3.5)

Calculation shows that

λ(y) = α2r
2(1−α)
ℓ |y− yℓ|2(α−1) (3.6)

for y ∈ B(yℓ, rℓ) and λ(y) = 1 for y ∈ Q \ ∪N
ℓ B(yℓ, rℓ). The lower bound (1.22) follows

upon substitution of (3.6) into (3.5).
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4 Optimality of the lower bounds

Conditions are presented on f and A(y) for which the lower bound (1.14) is attained for
a range of exponents 2 < p < q̂. We suppose as in Avellaneda and Lin [3] that Ω is a
C1,α domain (0 < α ≤ 1) and suppose for 0 < γ ≤ 1, 0 < C, that A(y) ∈ Cγ(Rn) and
‖A(y)‖Cγ(Rn) ≤ C. We set Aεk = A(x/εk). For δ > 0 suppose 2 ≤ q ≤ n + δ and f ∈ Lq

and set 1/q̂ = 1/q− 1/(n+ δ). Given these choices we consider the W 1,2
0 (Ω) solutions uεk of

− div (Aεk(x)∇uεk) = f in Ω. (4.1)

Theorem 4 of [3] shows that there exists a constant independent of εk for which

‖∇uεk‖Lq̂(Ω) ≤ C‖f‖Lq(Ω) (4.2)

holds for every εk > 0. Subject to these hypotheses it will be shown that the lower bound
(1.14) is attained for p < q̂.

Passing to a subsequence if necessary we start by considering the Young measure ν
associated with the sequence {P (x/εk)∇u

H(x)}εk>0. Here ν is represented by a family
of probability measures ν = {νx}x∈Ω depending measurably on x. We denote the set of
continuous functions ϕ defined on Rn such that limη→∞ ϕ(η) = 0 by C0(R

n). Elementary
arguments show that

< νx, ϕ >=

∫

Rn

ϕ(η)dνx(η) =

∫

Q

ϕ(P (z)∇uH(x))dz, a.e. x ∈ Ω (4.3)

for every ϕ in C0(R
n). From corrector theory [19] there exists an exponent r ≥ 1 for which

one has the strong convergence

lim
εk→0

‖∇uεk − P (x/εk)∇u
H‖Lr(Ω) = 0. (4.4)

The strong convergence (4.4) shows that both sequences {∇uεk}εk>0 and {P (x/εk)∇u
H(x)}εk>0

share the same Young measure see for example Lemma 6.3 of [22]. From (4.2) it follows on
passage to a subsequence if necessary that {|∇uεk|p}εk is weakly convergent in L1(Ω) thus

lim
εk→0

∫

D

|∇uεk|p dx =

∫

D

∫

Rn

|η|p dνx(η) dx =

∫

D

∫

Q

|P (z)∇uH(x)|p dz dx, (4.5)

and optimality follows. Last, it follows immediately from Proposition 6.5 of [22] that for
every Caratheodory function ψ(x, η) satisfying the growth condition (1.25) that (on passage
to a subsequence if necessary)

lim
εk→0

∫

D

ψ(x,∇uεk) dx =

∫

D

∫

Rn

ψ(x, η) dνx(η) dx (4.6)

and (1.26) follows since (4.3) implies that
∫

D

∫

Rn

ψ(x, η) dνx(η) dx =

∫

D

∫

Q

ψ(x, P (z)∇uH(x)) dz dx. (4.7)
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1997.

[23] P. Raghaven, S. Moorthy, S. Ghosh and N.J. Pagano (2001), Revisiting the composite
laminate problem with an adaptive multi-level computational model, Comp. Sci. Tech.,
61, pp. 1017–1040.

[24] K. Schulgasser (1983), Sphere assemblage model for polycrystals and symmetric mate-
rials, Journal of Applied Physics, 54, pp. 1380–1382.

[25] B. Schweizer (2000), Uniform estimates in two periodic problems, Comm. Pure Appl.
Math., 53, pp. 1153–1176.

14


	Introduction
	Derivation of the lower bounds
	Explicit lower bounds for aggregates of Schulgasser crystallites
	Optimality of the lower bounds
	Acknowledgments

