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Abstract

In a number of applications, certain computations to be done with a given matrix

are performed by replacing this matrix by its best low rank approximation. This has

the effect of yielding the most relevant part of the desired solution while discarding

noise and redundancies. One such application is that of regularization where the right-

hand side of the original linear system is noisy or inaccurate while the coefficient matrix

is very ill-conditioned. Solving such linear systems accurately is counter-productive as

the noise tends to be amplified. A common remedy is to compute the pseudo-inverse

solution in which the inverses of the smallest singular values are replaced by zeros

or small quantities. A similar procedure is also used in methods related to Principal

Component Analysis, such as in Latent Semantic Indexing in information retrieval.

Here the low-rank approximation to the original matrix is used to analyze similarities

with a given query vector. This paper presents a few conjugate-gradient like methods

to provide solutions to these two types of problems by iterative procedures which utilize

only matrix-vector products.

Keywords: Conjugate Residual, Conjugate Gradient, Polynomial Filtering, Principal Com-
ponent Analysis, LSI, Regularized solutions, Tychonov, SVD, TSVD.

1 Introduction

The approximate solution of the linear system

Ax = b (1)

given at the k-th step of a Krylov subspace method, takes the form

xk = x0 + sk−1(A)r0
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where sk−1 is a polynomial of degree ≤ k − 1. The solution polynomial sk−1 is typically
obtained from exploiting optimality. Thus, if x∗ is the exact solution, the conjugate gradient
method computes sk−1 so that the A-norm of the error x∗ − xk is minimized while GMRES
[25] computes sk−1 so that the 2-norm of the residual b − Axk = A(x∗ − xk) is minimized.
While this approach works well in standard cases, there are many instances where it is
unsatisfactory. The best known of these situations is when A is very ill-conditioned and
the right-hand side b is perturbed with noise. Solving such systems accurately will have the
effect of amplifying the noise and will yield a solution that is useless in general. Examples
of typical applications of this nature are in discrete inverse problems for image recovery
and in tomography. Regularization methods deal with this issue by computing a filtered
solution, i.e., by solving the system accurately only in the space associated with the large
singular values. Two prototypes of these methods are the Truncated Singular Value (TSVD)
technique, and Tychonov regularization [14].

A second type of problems which require filtering arises when computing the vector Akb,
where Ak is a k-rank approximation to A, and b a certain vector. Typically, Ak is the rank-k
approximation that is the closest to A in the 2-norm sense, and it can be obtained from
the Singular Value Decomposition of A. These methods include all the techniques based on
Principal Component Analysis, such as for example Latent Semantic Indexing (LSI, [5]).

In the simplest situation when A is square, symmetric, and semi-definite both classes of
methods amount to to computing an approximation to the problem in the form

s(A)b (2)

where s is a certain desired polynomial. In the case of regularization what is wanted is that
λs(λ) be close to one for the largest eigenvalues and to zero for the smallest ones. Thus,
we want λs(λ) to approximate a function φ such as the one shown in Figure 1. This means
that the polynomial s should approximate 1/λ for the largest eigenvalues only. For PCA,
the requirement is that the polynomial s, instead of λs(λ), approximates the filter φ.

Classical methods based on the Singular Value Decomposition, whether for regularization
or for PCA, consist of approximating A† (regularization) or A (PCA), by a rank-k matrix
obtained by retaining only the k largest singular values in the SVD. For example, if A =
UΣV T is the SVD of A, where U and V are unitary and Σ is diagonal, then PCA methods
replace A by Ak = UΣkV

T where Σk is obtained from Σ by setting all singular values σi < σk,
to zero. In regularization, A† = V Σ†UT is replaced by A†

k = V Σ†
kU

T . This Truncated SVD
(TSVD) method for regularization amounts to replacing A†b by an approximation of the
form (2) where s is such that λs(λ) is exactly the step function shown in Figure 1. Similarly,
SVD-based PCA is equivalent to replacing Ab by s(A)b where s(λ) equals the step function
of Figure 1. An obvious limitation of the SVD-based approach is its excessive computational
cost for large matrices. Indeed, this approach would entail a (complete or partial) SVD
factorization of A.

Alternatives have been developed which are based on Krylov subspace methods. For
example, in Tychonov regularization [27, 26, 14] the original system is replaced by the
regularized system

(

AT A + ρ2I
)

x = AT b

which is typically solved by the conjugate gradient algorithm. Because the matrix AT A is
shifted, the number of CG steps that are required is likely to be moderate. In the symmetric
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Figure 1: Step-function filter

case, the (converged) solution xρ of the above system is given by

xρ =
(

A2 + ρ2I
)−1

Ab ≡ sρ(A)b . (3)

So, xρ = sρ(A)b, where λsρ(λ) ≡ φρ(λ) is the Tychonov filter function

φρ(λ) =
λ2

λ2 + ρ2
,

which can be viewed as a parameterized approximation to the step function φ of Figure 1.
A related method in regularization that is quite common in the case of low noise, is

simply to use the conjugate gradient method for solving AT Ax = AT b and stop the process
prematurely, i.e., well before convergence of the approximate solution [14].

The algorithms to be described in the next sections are based on polynomial filtering. A
smooth “base filter” φ is selected and then a sequence of least-squares polynomial approxi-
mations to this base function is constructed, from which a sequence of approximate solutions
is extracted. One of the main goals of this paper is to express these approximations in a
form which resembles the well-known Conjugate Gradient or Conjugate Residual algorithms.
The algorithms to be described can be used to compute solutions for both the problem of
regularization and that of PCA within the same framework. In addition, they can easily
be extended to other applications. As an example, by selecting the filter function to be the
exponential function, the algorithms will yield a method for computing approximations to
exp(A)b.

2 Polynomial Filtering

Two distinct problems which have important applications are addressed in this paper. The
first can be formulated as the computation of the matrix vector product

x = Ab, (4)

where A is an n × n matrix, and b is a vector. This computation in itself is trivial, except
that it is the goal of many techniques to only extract the vector x̃ obtained from a low rank
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approximation of the matrix A, typically the one associated with the largest singular values.
The second problem is to compute the pseudo-inverse solution

x = A†b . (5)

Again this computation is to be done approximately in the subspace associated with a few
of the dominant singular values of A.

A representative case for (4) is in information retrieval, see, e.g., [5]. There, b represents
a query vector and s the similarity vector, which is (after rescaling) the vector of cosines of
all rows of A with the query b (typically this is formulated as x = AT b instead of (4) as a
query is closer to a document - column of A in the usual notation used in LSI.). However,
it has been observed that literal matching based on using these cosines directly faces many
difficulties due to word usage. Latent Semantic Indexing solves this problem by computing
Ab by Akb where Ak is obtained by only keeping the k largest singular values in the SVD of
A, replacing the others with zeros.

Similarly, a representative for problem (5) would be any of the “regularization” methods
[14]. These methods attempt to compute filtered pseudo-inverse solutions to (5) whereby
the matrix is first approximated by its best low rank approximationAk before computing x.
In other words one strives to compute x̃k = A†

kb instead of the exact pseudo-inverse solution
x in (5).

Consider first the problem of computing a regularized solution for a least-squares problem
where A is not necessarily square. A polynomial filter approach to the problem consists of
computing an approximation to A†b in the form

A†b ≈ xs ≡ AT s(AAT )b,

where s is a certain polynomial. Note that the residual vector satisfies

b − Axs = ρ(AT A)b with ρ(λ) ≡ 1 − λ s(λ) .

If A = UΣV is the SVD of A, then we have

b − Axs = V ρ(ΣT Σ)V T b =
m

∑

j=1

ρ(σ2
j )vj(v

T
j b).

What is typically wanted is that the residual polynomial be small for the larger singular
values. The requirements for the small singular values vary but it is typical to require that
s(σj) ≈ 0 for σj ≈ 0. In this paper we will seek residual polynomials ρ which are such that

ρ(σ2
j ) ≈

{

0 for large σj

1 for small σj
. (6)

In other words, the residual polynomial ρ has characteristics opposite to those of the step
function shown in Figure 1: it is a low-pass filter instead of a high-pass filter. The solution
polynomial s(λ) is close to the function zero in the neighborhood of zero and 1/λ for the
larger singular values (second interval).
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Consider now Problem (4). It is interesting to notice that for a residual polynomial ρ
which satisfies the conditions (6), the polynomial 1 − ρ(λ) = λs(λ) has the desired charac-
teristics of the polynomial that is needed for Problem (4), namely it is close to one for the
small singular values and to zero for the larger ones. For this reason, it is possible to only
consider one of the two problems with this formalism as the solution to both problems will
be provided by the same algorithm. This viewpoint will be exploited throughout the paper.

In summary, given a high pass filter function φ (close to one for large values, to zero
for small values), we seek s so that ‖φ(λ) − λ s(λ)‖w is small - as measured by a certain
norm w. Thus, the polynomial λs(λ) approximates the filter φ instead of the constant 1,
as is done in standard methods. Equivalently, we can say that the goal is to minimize
‖(1 − φ) − (1 − λ s(λ))‖w over all polynomials s of degree ≤ k. The focus is now on the
residual polynomial 1 − λs(λ) and the goal is to make this polynomial close to the function
1−φ, a low-pass filter. While the vector s(A)b provides a filtered solution to the system (5),
the vector b−As(A)b = ρ(A)b provides a filtered matrix-vector product which approximates
(4).

2.1 Polynomial filters

In this section, we focus on the problem of filtered iterations for regularization. We begin with
some notation as well as a rationale for the approach to be taken. The approximate solution
vector obtained from Krylov subspaces is of the form sj(A)r0 where sj is a polynomial of
degree ≤ j. The corresponding residual vector is ρj+1(λ) = 1 − λsj(λ). This polynomial is
of degree j + 1 and has value one at λ = 0.

We examine two ways to filter a solution. The first one uses a filter function φ explicitly:
As discussed above, it will select λsj(λ) so that it is close to close to φ(λ) on the spectrum.
The second does not use a filter function explicitly. Instead, it makes the function λsj(λ)
close to one on the spectrum, but changes the L2 inner product. Specifically, this approach
combines a discrete and a continuous inner products. Both approaches will be based on
formal Conjugate Gradient or Conjugate Residual algorithms described in polynomial spaces,
and this is discussed next.

2.2 Conjugate Residual algorithms in polynomial spaces

We consider a CG-like (actually CR-like) method which uses an arbitrary inner product
of functions. The main reason why we seek to write the solution algorithm by exploiting
the CR/CG framework, is that we already know some of the good algorithmic properties
of these methods. In particular, the solution and residual vectors are available at each step
and the solution vector at step k is easily updated from the solution vector at step k − 1.
The numerical properties of the algorithms are also well understood, both in practice and in
theory.

In the standard CR algorithm, the solution polynomial sj minimizes ‖(I − As(A))r0‖2

which is nothing but a discrete least-squares norm when expressed in the eigenbasis:

‖(I − As(A))r0‖2 =

[

N
∑

1

(1 − λis(λi))
2

]1/2

≡ ‖1 − λs(λ)‖D .
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It is possible to write a CR-like algorithm which minimizes ‖1−λs(λ)‖w for any least-squares
norm associated with a (proper) inner product

〈p, q〉w .

The generic algorithm is given below for reference.

Algorithm 2.1 Formal Conjugate Residual Algorithm

0. Compute r0 := b − Ax0, p0 := r0 π0 = ρ0 = 1
1. Compute λπ0

2. For j = 0, 1, . . . , until convergence Do:

3. αj := 〈ρj, λρj〉w/〈λπj, λπj〉w
4. xj+1 := xj + αjpj

5. rj+1 := rj − αjApj ρj+1 = ρj − αjλπj

6. βj := 〈ρj+1, λρj+1〉w/〈ρj, λρj〉w
7. pj+1 := rj+1 + βjpj πj+1 := ρj+1 + βjπj

8. Compute λπj+1

9. EndDo

It is easy to show that the residual polynomial ρj generated by this algorithm minimize
‖ρ(λ)‖w among all polynomials of the form ρ(λ) = 1 − λs(λ) where s is any polynomial of
degree ≤ j−1. In other words, ρj minimizes ‖ρ(λ)‖w among all polynomials ρ of degree ≤ j
such that ρ(0) = 1. It is also easy to show that the polynomials λπj are orthogonal to each
other.

Proposition 2.1 The solution vector xj+1 computed at the j-th step of Algorithm 2.1 is of
the form xj+1 = x0 + sj(A)r0, where sj is the j-th degree polynomial

sj(λ) = α0π0(λ) + · · · + αjπj(λ) . (7)

The polynomials πj and the residual polynomials ρj+1(λ) satisfy the following orthogonality
relations,

〈λπj(λ), λπi(λ)〉w = 〈λρj(λ), ρi(λ)〉w = 0 for i 6= j. (8)

In addition, the residual polynomial ρj+1 = 1 − λsj(λ) minimizes ‖1 − λs(λ)‖w among all
polynomials s of degree ≤ j.

A formal proof is not necessary, but one can exploit the analogy with the usual CR algorithm.
In CR, see, e.g. [24], it is known that the vectors Apj are orthogonal to each other. Writing
a member of the affine Krylov subspace x0 + Kj as x = x0 + s(A)r0 where the degree of s is
≤ j, then the vectors rj+1 minimize the 2-norm of all residuals b−Ax = r0 −As(A)r0 for x
in x0 + Kj.

It is useful to comment on implementation aspects. In the usual CR algorithm (see [24])
we would compute Apj+1 in Line 8 using the relation which follows from Line 7:

Apj+1 = Arj+1 + βjApj,
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in order to avoid an additional matrix-vector product. The vector Arj+1 is computed after
Line 5 (and saved for the next step to get αj+1), and Apj+1 is then obtained from it using
the above formula. Generally, this needs to be done in the situation when the computation
of the scaler αj in Line 3 requires the vector Apj as well as the vector Arj. In the very first
step, p and r are the same, so computing Ap0 in Line 1 will suffice. Thereafter, it is necessary
to compute Arj (before Line 3) and update Apj+1 as was just explained. This strategy is
not necessary here because the updates and computations of polynomials require relatively
few operations.

We would like to modify the algorithm shown above in order to incorporate filtering.
As it is written the algorithm does not lend itself to filtering. Indeed, filtering amounts to
minimizing some norm of φ(λ)−λs(λ) where φ is the filter function and one must remember
that φ(A)v may be practically difficult to evaluate for a given vector v. In particular, φ(A)r0

may not be available.
We omit the discussion of CG-type iterations - but it is clear that a conjugate gradi-

ent algorithm in polynomial space can also be written. The residual polynomials will be
orthogonal, while the πjs will be conjugate (〈λπj, πi〉w = 0 for i 6= j).

2.3 Filtered Conjugate Residual polynomial iterations

Given a certain filter function φ, the method to be described in this section consists of finding
an approximate solution xj whose residual polynomial ρj(λ) approximates the function ψ ≡
1 − φ, in the least-squares sense. The function ψ is a low-pass filter whose value is close
to one near zero and near zero for large eigenvalues. To make the computation tractable,
the function φ will be chosen to be a piecewise continuous function, though this is not an
essential requirement. This will be discussed in more detail in Section 2.5. In mathematical
terms, we seek a polynomial sj(λ) such that

‖φ(λ) − λsj(λ)‖w = min
s ∈ Pj

‖φ(λ) − λs(λ)‖w . (9)

Here the w-norm is associated with an inner product of the form

〈p, q〉w =

∫ β

0

p(λ)q(λ)w(λ)dλ .

Note that the left bound of the interval is taken to be zero without loss of generality. For
the sake of clarity, the discussion of the choice of the weight function is deferred to a later
section. For now, all that needs to be said is that w is selected primarily to enable an easy
computation of an inner product of any two functions involved in the algorithms, without
resorting to numerical integration.

The condition for the polynomial sj to be the solution to (9) is that

〈φ(λ) − λsj(λ), λq(λ)〉w = 0 ∀q ∈ Pj .

In order to construct the sequence of approximate solutions, we can generate the sequence of
polynomials of the form λπj which are orthogonal. The sequence satisfies a 3-term recurrence
and the approximation can be directly expressed in this basis. This was the approach taken
in [10, 19].
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As a slight alternative, we can try to proceed as in the CR algorithm by updating sj

from sj−1 as
sj(λ) = sj−1(λ) + αjπj(λ) . (10)

The scalar αj can be obtained by expressing the condition that φ(λ) − λsj(λ) is orthogonal
to λπj(λ), or 〈φ(λ) − λsj(λ), λπj(λ)〉w = 0, which, with the use of (10), leads to

αj =
〈φ(λ) − λsj−1(λ), λπj(λ)〉w

〈λπj(λ), λπj(λ)〉w
. (11)

The orthogonality of the set {λπi} can be exploited to observe that λsj−1(λ) is orthogonal
to λπj. In the end the above expression simplifies to

αj =
〈φ(λ), λπj(λ)〉w
〈λπj(λ), λπj(λ)〉w

. (12)

This is a different expression from that obtained from the usual CR algorithm. However, it
is possible to express it differently and this will be explored later for a different algorithm.

After αj is computed in this manner, we proceed to update the solution xj and the
residual vector rj+1 as in steps 4, and 5 of Algorithm 2.1. The polynomial ρj+1 is also
updated accordingly. Next, we must compute πj+1. In the usual CG and CR algorithms,
πj+1 is computed in the form πj+1(λ) = ρj+1(λ)+βjπj(λ), but this will not work here because
such an expression exploits the orthogonality of ρj+1 against all λπi’s with i ≤ j which is no
longer satisfied. Instead, we could just use a Stieljes-type procedure of the form:

βj+1πj+1(λ) = λπj(λ) − ηjπj(λ) − βjπj(λ) .

Note that −αjλπj(λ) = ρj+1(λ) − ρj(λ) so, if we need the leading coefficients of πj+1 and
ρj+1 to be the same we can use the formula:

πj+1(λ) = −αj [λπj(λ) − ηjπj(λ) − βjπj−1(λ)] . (13)

and select the scalars ηj and βj to make λπj+1 orthogonal to both λπj and λπj−1. Assume
by induction that the λπi(λ)’s are orthogonal for i ≤ j. Then, we find that

ηj =
〈λ2πj, λπj〉w
〈λπj, λπj〉w

and βj =
〈λ2πj, λπj−1〉w
〈λπj−1, λπj−1〉w

.

Algorithm 2.2 Minimal pseudo-residual algorithm

0. Compute r0 := b − Ax0, p0 := r0 π0 = ρ0 = 1
1. Compute λπ0, λ2π0

2. For j = 0, 1, . . . , until convergence Do:

3. αj :=
〈φ,λπj〉w

〈λπj ,λπj〉w

4. xj+1 := xj + αjpj

5. rj+1 := rj − αjApj ρj+1 = ρj − αjλπj

6. ηj :=
〈λ2πj ,λπj〉w
〈λπj ,λπj〉w

βj :=
〈λ2πj ,λπj−1〉w
〈λπj−1,λπj−1〉w

7. pj+1 := −αj[Apj − ηjpj − βjpj−1] πj+1 := −αj [λπj − ηjπj − βjπj−1]
8. Compute λπj+1, λ

2πj+1

9. EndDo
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This approach is a slight variation of the one presented in [10, 19]. The main difference,
is that the algorithms in [10, 19] focus on the solution polynomial instead of the residual
polynomial, i.e., they do not explicitly compute or exploit residual polynomials. However,
the two algorithms are mathematically equivalent. Note that when φ(λ) ≡ 1, the algorithm
should give the same iterates (and same auxiliary vectors) as those of Algorithm 2.1 in exact
arithmetic.

The polynomials λπj are orthogonal by construction. On the other hand, the residual
polynomials ρj do not satisfy any orthogonality relation but optimality implies that 〈φ −
λsj(λ), λπi〉w = 0 for i ≤ j, so we have

〈(1 − φ) − ρj+1, λπi〉w = 0 , i ≤ j .

2.4 Corrected CR algorithm

We now consider an alternative implementation of the above algorithm which can be viewed
as a corrected version of the standard CR algorithm. The derivation is based on the following
observation. After Line 5 of Algorithm 2.2, the residual vector rj+1 is no longer used. This
particular residual vector is not all that useful since a convergence test cannot employ it. It
would have been more meaningful to compute [φ(A) − As(A)]b but this is not practically
computable. Therefore, we can generate instead of rj another residual polynomial which will
help obtain the pi’s: the one that would be obtained from the actual CR algorithm, i.e., the
same r vectors as those of Algorithm 2.1. It is interesting to note that with this sequence of
residual vectors, which will be denoted by r̃j, it is easy to generate the directions pi which are
the same for both algorithms. So the idea is straightforward: obtain the auxiliary residual
polynomials ρ̃j that are those associated with the standard CR algorithm and exploit them to
obtain the πi’s in the same way as in the CR algorithm. The polynomials λπj are orthogonal
and therefore the expression of the desired approximation is the same. The algorithm is
described next where now ρ̃j is the polynomial associated with the auxiliary sequence r̃j.

Algorithm 2.3 Filtered Conjugate Residual Polynomials Algorithm

0. Compute r̃0 := b − Ax0, p0 := r̃0 π0 = ρ̃0 = 1
1. Compute λπ0

2. For j = 0, 1, . . . , until convergence Do:

3. α̃j := 〈ρ̃j, λρ̃j〉w/〈λπj, λπj〉w
4. αj := 〈φ, λπj〉w/〈λπj, λπj〉w
5. xj+1 := xj + αjpj

6. r̃j+1 := r̃j − α̃jApj ρ̃j+1 = ρ̃j − α̃jλπj

7. βj := 〈ρ̃j+1, λρ̃j+1〉w/〈ρ̃j, λρ̃j〉w
8. pj+1 := r̃j+1 + βjpj πj+1 := ρ̃j+1 + βjπj

9. Compute λπj+1

10. EndDo

It is remarkable that the only difference with a generic Conjugate Residual-type algorithm
(see, e.g. Algorithm 2.1) is that the updates to xj+1 use a different coefficient αj from the
one of the update to the vectors r̃j+1. Observe that the residual vectors r̃j obtained by
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the algorithm are just auxiliary vectors that do not correspond to the original residuals
rj = b−Axj. Needless to say, these residuals, the rj’s, can also be generated after Line 5 (or
6) from rj+1 = rj − αjApj. Depending on the application, it may or may not be necessary
to include these computations.

Proposition 2.2 The solution vector xj+1 computed at the j-th step of Algorithm 2.3 is of
the form xj+1 = x0 + sj(A)r0, where sj is the j-th degree polynomial:

sj(λ) = α0π0(λ) + · · · + αjπj(λ) . (14)

The polynomials πj and the auxiliary polynomials ρ̃j(λ) satisfy the orthogonality relations,

〈λπj(λ), λπi(λ)〉w = 〈λρ̃j(λ), ρ̃i(λ)〉w = 0 for i 6= j . (15)

In addition, the filtered residual polynomial φ − λsj(λ) minimizes ‖φ − λs(λ)‖w among all
polynomials s of degree ≤ j − 1.

Proof. The first observation is that the polynomials ρ̃j and πj are identical with the poly-
nomials ρj and πj of Algorithm 2.1, so the orthogonality property (15) is trivially satisfied.
The relation (7) uses scalars αj that are different from those denoted by α̃j of the se-
quence ρ̃j. From this relation, we have that φ − λsj(λ) = φ − ∑j

i=0 αiλπi(λ). From the
optimality condition, the best polynomial is given when the scalars αi satisfy the relation
〈φ − λsj(λ), λπi(λ)〉w = 0, which, by exploiting (7) and the orthogonality of the system
{λπi}i=0,...,j, yields,

αj = 〈φ, λπj〉w / 〈λπj, λπj〉w .

It is worth exploring the formula (12), which defines the scalars αj, a little further. In the
standard CR algorithm, the expression (11) is modified by exploiting orthogonality relations
to lead to the standard expression of Line 3 of Algorithm 2.1. However, this is no longer
possible here, essentially because the polynomial sj−1 in (12) uses the scalars αi’s (formula
(14)), and there are no orthogonality relations satisfied with the corresponding residual
polynomials ρj. It is, however, possible to express the scalar αj as a modification to the
scalar α̃j. Indeed, define s̃j ≡

∑j
i=0 α̃iπi which is the solution polynomial of Algorithm 2.1,

and observe that 〈λs̃j−1, λπj〉w = 0, because λπj is orthogonal to all polynomials λqi for
polynomials qi of degree i ≤ j − 1. Then, we can rewrite the numerator of (12) as

〈φ, λπj〉w = 〈φ − λs̃j−1, λπj〉w = 〈(φ − 1) + 1 − λs̃j−1, λπj〉w = 〈ρ̃j, λπj〉w − 〈1 − φ, λπj〉w .

Since ρ̃j and πj have the same leading coefficient, by exploiting orthogonality, we readily
obtain the relation 〈ρ̃j, λπj〉w = 〈ρ̃j, λρ̃j〉w which yields the following alternative formula for
αj:

αj = α̃j −
〈1 − φ, λπj〉w
〈λπj, λπj〉w

. (16)

The only merit of this expression, as a substitute to (12), is that it clearly establishes
Algorithm 2.3 as a ‘corrected version’ of the standard Algorithm 2.1. In the special situation
when φ ≡ 1, αi = α̃i, and the two algorithms coincide as expected.
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Figure 2: A typical filter function φ and its dual filter ψ ≡ 1 − φ

2.5 The base filter function

The solutions computed by the algorithms just seen are based on generating polynomial
approximations to a certain base filter function φ. As was already mentioned it is generally
not a good idea to use as φ the step function shown in Figure 1. This is because this function
is discontinuous and approximations to it by high degree polynomials will exhibit very wide
oscillations, known as Gibbs oscillations. It is preferable to take as a “base” filter, i.e., the
filter which is ultimately approximated by polynomials, a smooth function such as the one
show in Figure 2.

The filter function in Figure 2 can be a piecewise polynomial consisting of two parts: A
function which increases smoothly from zero to one when λ increases from 0 to α, and the
constant function unity in the interval [α, β]. Alternatively, the function can consist of three
parts, one on each of the intervals [0, α0], [α0, α1] and [α1, β], with 0 < α0 < α1 < β. It
will begin with the constant value zero in the interval [0 α0], then increase smoothly from 0
to one in a second interval [α0 α1], and finally take the constant value one in [α1, β]. This
second part of the function (the first part for the first scenario) bridges the values zero and
one by a smooth function and was termed a “bridge function” in [10]. In what follows we
focus on obtaining bridge functions for the generic case, i.e., for an interval [α0, α1].

A systematic way of generating base filter functions is to use bridge functions obtained
from Hermite interpolation. The bridge function is an interpolating polynomial (in the
Hermite sense) depending on two integer parameters m0,m1, and denoted by Θ[m0,m1] which
satisfies the following conditions:

Θ[m0,m1](α0) = 0; Θ′
[m0,m1](α0) = · · · = Θ

(m0)
[m0,m1](α0) = 0

Θ[m0,m1](α1) = 1; Θ′
[m0,m1](α1) = · · · = Θ

(m1)
[m0,m1](α1) = 0.

(17)

Thus, Θ[m0,m1] has degree m0 + m1 + 1 and m0, m1 define the degree of smoothness at the
points 0 and α respectively.

Such polynomials can be easily determined by the usual finite difference tables in the
Hermite sense. To find a closed form for the polynomials Θ[m0,m1] it is useful to change
variables in order to exploit symmetry. We translate everything for the variable in the
interval [−1, 1], and shift down the function by 1/2. If the corresponding function is denoted

11
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Figure 3: Left: Dual base filter ψ defined on two intervals: 1−Θ[4,4] in [0, 2] and zero in [2,
8]; Right: its polynomial approximation of degree 15.

by η, then the above conditions become

η(−1) = −1/2 η(+1) = 1/2
η(i)(−1) = 0 for i = 1, . . . ,m0 η(i)(+1) = 0 for i = 1, . . . ,m1 .

The derivative function η′ can be expressed as η′(t) = c (1 − t)m1(1 + t)m0 and as a result,
we have a closed form expression of η(t):

η(t) = −1

2
+

∫ t

−1
(1 − s)m1(1 + s)m0 ds

∫ 1

−1
(1 − s)m1(1 + s)m0 ds

(18)

The first and second derivatives of η are

η′(t) =
(1 − t)m1(1 + t)m0

∫ 1

−1
(1 − s)m1(1 + s)m0 ds

; η′′(t) =

[

m0

1 + t
− m1

1 − t

]

η′(t) . (19)

So there is an inflexion point at

t =
m0 − m1

m0 + m1

.

Since the maximum value of the derivative is required for the convergence analysis, it will
be useful to determine it. The derivative increases from its value at the point -1, to a certain
peak, reached at the inflexion point and then it decreases from there to its final value at the
point 1. The peak value and an approximation to it are given by the following lemma.

Lemma 2.1 The maximum value of the derivative of the function η in the interval [−1, 1]
is given by

η′
max =

m0 + m1 + 1

2

mm1

1 mm0

0

(m0 + m1)m0+m1 ×
(

m0

m0+m1

) . (20)
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Figure 4: Left: Dual base filter ψ defined on two intervals: 1 − Θ[10,2] in [0, 2] and zero in
[2, 8]; Right: its polynomial approximation of degree 15.

For large values of m0 and m1, the maximum derivative is approximately

η′
max ≈ m0 + m1

2
√

2π

√

1

m0

+
1

m1

. (21)

Proof. The integral in the denominator of η in (19) can be computed by successive integra-
tion by parts to be:

∫ 1

−1

(1 − s)m1(1 + s)m0 ds =
m1!m0!

(m0 + m1)!
× 2m0+m1+1

m0 + m1 + 1
.

Evaluating the derivative η′ at the inflexion point, yields

η′
max =

(2m1)m1 (2m0)m0

(m0+m1)m0+m1

m1!m0!
(m0+m1)!

× 2m0+m1+1

m0+m1+1

=
m0 + m1 + 1

2

mm1

1 mm0

0

(m0 + m1)m0+m1 ×
(

m0

m0+m1

) .

which is the first result. This can be rewritten as

η′
max = =

m0 + m1 + 1

2

m
m0
0

m0!
× m

m1
1

m1!

(m0+m1)m0+m1

(m0+m1)!

.

Using Sterling’s formula m! ≈
√

2πm (m/e)m, yields (21) after simplifications.

This result must now be translated into the original interval [α0, α1]. The function Θ
(indices m0,m1 are omitted) and its derivative in terms of η and η′ are

Θ(λ) =
1

2
+ η

(

2
λ − α0

α1 − α0

− 1

)

Θ′(λ) =
2

α1 − α0

η′

(

2
λ − α0

α1 − α0

− 1

)

.
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and so,

Θ′
max =

2

α1 − α0

η′
max .

As an example of a bridge function, the case when m0 = m1 = 2, yields,

η(t) =

(

t − 2
t3

3
+

t5

5

)

× 15

16
.

which, for the interval [0, α] translates into the function

Θ[2,2](t) =
1

2
+

15

16

(

2
t

α
− 1

)

− 5

8

(

2
t

α
− 1

)3

+
3

16

(

2
t

α
− 1

)5

.

Similarly, for m0 = m1 = 3:

Θ[3,3](t) =
1

2
+

35

32

(

2
t

α
− 1

)

− 35

32

(

2
t

α
− 1

)3

+
21

32

(

2
t

α
− 1

)5

− 5

32

(

2
t

α
− 1

)7

.

As was seen, the ratio m1

m0
determines the localization of the inflexion point. Making the

polynomial increase rapidly from 0 to 1 in a small interval, can be achieved by taking high
degree polynomials but this has the effect of slowing down convergence toward the desired
filter as it tends to cause undesired oscillations.

Two examples of (dual) filter functions are shown in Figures 3 and 4. A third example
shows a situation where 3 intervals are used. In the first interval [0 1.7] and third interval
[2.3, 8], the filter takes the constant values 1 and 0 respectively. In the middle interval [1.7,
2.3] φ is defined by the Hermite polynomial 1−Θ[5,5] in [1.72.3]. This time we plot a higher
degree polynomial approximation to ψ to show the quality of the resulting polynomial. For
higher degree polynomials (say 80) there is no visible difference between the base filter φ and
its polynomial approximation. We also computed many polynomials using Legendre weights
in each interval instead of Chebyshev weights and, in all cases, there was no significant
difference.

2.6 The weight function w

Denoting the l sub-intervals of [0, β], by [αi−1, αi] i = 1, . . . , l, we define the inner-product
on each sub-interval (αl−1, αl) using Chebyshev weights,

〈ψ1, ψ2〉αl−1,αl
=

∫ αl

αl−1

ψ1(t)ψ2(t)
√

(t − αl−1)(αl − t)
dt.

Then the inner product on the interval [0, β] ≡ [α0, α1] ∪ [α1, α2] · · · ∪ [αl−1, αl], is defined
as a weighted sum of the inner products on the smaller intervals,

〈ψ1, ψ2〉w =
l

∑

i=1

µi

∫ αi

αi−1

ψ1(t)ψ2(t)
√

(t − αi−1)(αi − t)
dt. (22)
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Figure 5: Left: Dual base filter ψ defined on three intervals: 1 in [0, 1.7], 1 − Θ[5,5] in [1.7,
2.3] and 0 in [2.3, 8]; Right: its polynomial approximation of degree 70.

For example for two intervals the weight function is defined as

〈ψ1, ψ2〉w = µ1

∫ α

0

ψ1(t)ψ2(t)
√

t(α − t)
dt + µ2

∫ β

a

ψ1(t)ψ2(t)
√

(t − α)(β − t)
dt. (23)

The µi’s can be chosen to emphasize or de-emphasize specific sub-intervals. In most of our
tests we took the µi to be either equal to the constant one or to the inverse of the width
of each subinterval. Note that we can also use Legendre polynomials, or indeed any other
orthogonal polynomials, instead of Chebyshev polynomials. We found very little difference
in performance (convergence) between Legendre and Chebyshev polynomials.

The issue of obtaining orthogonal polynomials from sequences of orthogonal polynomials
on other intervals was addressed in [11] and [22]. One of the main problems is to avoid
numerical integration. In [22] this was achieved by expanding the desired functions in a
basis of Chebyshev polynomials on each of the subintervals. Note that the expansions are
redundant - but cost is not a major issue. Let ς(l) be the mapping which transforms the
interval [αl−1, αl] into [−1, 1]:

ς(l)(λ) =
2

αl − αl−1

λ − αl + αl−1

αl − αl−1

.

Denote by Ci the i-th degree Chebyshev polynomial of the first kind on [−1, 1] and define

C
(l)
i (λ) = Ci

(

ς(l)(λ)
)

i ≥ 0.

When all polynomials are expanded in the above Chebyshev bases on each interval,
then all operations involved in Algorithms 2.1, 2.2, and 2.3 are easily performed with the
expansion coefficients. Thus, adding and scaling two expanded polynomials is a trivial
operation. Consider now inner products of two polynomials. Recall that on each interval the

scaled and shifted Chebyshev polynomials
(

C
(l)
k

)

k∈N

constitute an orthogonal basis since,

〈C(l)
i , C

(l)
j 〉αl−1,αl

=







0 if i 6= j,
π if i = j = 0,
π
2

if i = j 6= 0.
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As a result, if two polynomials ψ1, ψ2 are expanded in the above Chebyshev bases for each
interval, the inner products (22) of these polynomials are trivially obtained from their ex-
pansion coefficients in the bases.

The only remaining operation to consider is that of multiplying a polynomial by λ (e.g.,
Line 9 of Algorithm 2.3). Multiplying a polynomial ψ expanded in the Chebyshev bases by
the variable λ, can be easily done by exploiting the following relations:

λ C
(l)
i (λ) =

αl − αl−1

4
C

(l)
i+1(λ) +

αl + αl−1

2
C

(l)
i (λ) +

αl − αl−1

4
C

(l)
i−1(λ) i ≥ 1

λ C
(l)
0 (λ) =

αl − αl−1

2
C

(l)
1 (λ) +

αl + αl−1

2
C

(l)
0 (λ) .

These come from the recurrences obeyed by Chebyshev polynomials: 2tCi(t) = Ci+1(t) +
Ci−1(t) for i > 0, and tC0(t) = C1(t).

2.7 Convergence

It is desirable to know how fast the polynomial ρj converges to the low-pass filter function
1−φ. Convergence results of this type utilize uniform norm results. We will restrict ourselves
to a simple result derived from the Jackson theorems, see [8]. A common notation adopted
in the theory of approximation of functions is the following. For a given continuous function
f , define the degree of approximation of f by,

En(f) = min
p ∈ Pn

‖f − p‖∞,

where ‖g‖∞ is the infinity norm of a continuous function g, on the interval [α, β],

‖g‖∞ = max
t∈ [α β]

|g(t)| .

The Weierstrass theorem states that any continuous function f can be uniformly approxi-
mated by polynomials [8]. In particular this means that limn→∞ En(f) = 0. In the early
1900s, Jackson proved a number of theorems which give further information on this con-
vergence. The following is the third of the Jackson theorems. Another definition is needed
before stating the theorem. The modulus of continuity of a bounded function f on an interval
[α, β] is defined as

ωf (δ) = sup
|t1−t2| ≤δ

|f(t1) − f(t2)| . (24)

Theorem 2.1 (Jackson’s theorem III) For all functions f ∈ C[0 2π],

En(f) ≤ ωf

(

π

n + 1

)

. (25)

See [8] for proofs and additional details. For an arbitrary interval [α, β] the above theorem
translates into

En(f, [α, β]) ≤ ωf

(

β − α

2(n + 1)

)

. (26)

Applying the above result to base filter functions is easy.
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Lemma 2.2 Let the base filter function φ be the spline function constructed as

φ(t) =







0 for t ∈ [0, α0)
Θ[m0,m1] for t ∈ [α0, α1)
1 for t ∈ [α1, β]

.

Then,

ωφ(δ) ≤
2η′

max

α1 − α0

δ,

where η′
max is given by (20), and is approximated by (21) for large values of m0,m1.

Substituting this result into Jackson’s theorem, we obtain the following bound.

Proposition 2.3 Let φ the base filter function defined in Lemma 2.2. Then,

En(φ) ≤ β η′
max

(n + 1)(α1 − α0)
. (27)

where η′
max is given by (20), and is approximated by (21) for large values of m0,m1.

The above result is about convergence in the ∞ norm. Obtaining a result for the L-2
norm with the weight function w is straightforward and standard because the norms are
related to each other in a simple way. Specifically, the following is easily shown:

‖g‖w ≤ K‖g‖∞ with K = ‖1‖w .

For example, if we have l intervals and the µi’s are equal to one in (22) then K =
√

l π.

2.8 Hybrid dot products

Returning to Section 2.2, we recall that the inner product 〈., .〉w can be essentially any
(non-degenerate) L2 dot product, whether discrete or continuous. As is well-known, in the
Hermitian case, standard Krylov subspace methods such as the CG algorithm, amount to
minimizing a certain discrete norm of the error or the residual vector, taken in the eigenba-
sis. In contrast, methods such as the Chebyshev algorithm use a purely continuous weight
function to achieve a certain minimization of the error or the residual. It is also possible to
have a hybrid method which mixes the two weights though this does not seem to have been
considered so far in the literature.

We now consider a filtering technique which works by altering the discrete inner product
used by these algorithms. Specifically, we can consider mixing a discrete and continuous
inner products by defining

〈p, q〉w = (1 − µ) (p(A)r0, q(A)r0) + µ

∫ β

α

p(λ)q(λ)w(λ)dλ . (28)

Although not clear from the above definition it is possible to filter a solution by carefully
selecting the continuous weigtht function. The rationale for this choice is that we sometimes
need the procedure to be biased toward the eigenvalues in the interval [α, β] without sacri-
ficing completely the accuracy in the interval [0, α]. When µ = 0 we recover the usual CR
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algorithm, while µ = 1 yields a pure (continuous) least-squares approach which will tend to
make residual components small in the interval [α, β].

That the above constitutes a non-degenerate inner product “in general” is a consequence
of the fact that, under some mild conditions on r0 and the degree j, both parts of (28) are
proper inner products, when considered individually.

3 Applications and extensions

Polynomial filtering has many applications in numerical linear algebra and related areas. In
fact, we may state that the number of these applications is likely to increase because of the
growing need to solve regularized least-squares problems as well as to apply various forms
of Principal Component Analysis. In [19], we have considered the use of polynomial filters
in information retrieval. The paper [18] exploits similar ideas for the problem of eigenfaces.
Here we examine a few other applications which may also benefit from polynomial filtering.
Though we will show a few supporting experiments shortly, the ideas are exposed here only
to describe the rationale and the concepts, and some of these ideas will be further explored
in forthcoming articles.

3.1 Computing a large invariant subspace

In electronic structures calculations one is faced with the problem of computing an orthogonal
basis of the invariant subspace associated with the k lowest eigenvalues of a Hamiltonian
matrix. This particular problem was the original motivation for this work. The Hamiltonian
is (real) symmetric. A major difficulty with these calculations is that the dimension k of
the subspace can be quite large. A typical example would be that k = 1, 000 and N , the
dimension of the matrix is N ≈ 1, 000, 000. Methods based on standard restarted Lanczos
procedures tend to suffer from the need to save a very large set of basis vectors as well as from
the need for a very large number of costly restarts and reorthogonalizations. An alternative
considered recently is to forego the restarts and not focus on individual eigenvectors [2]. This
approach is usually faster than the implicit restarted version of Lanczos but it may require
the use of secondary storage as the Lanczos basis can be quite large.

In this section we show how polynomial filtering can be used to compute very large
invariant subspaces of symmetric real (or Hermitian complex) matrices. Specifically, the
following problem is addressed: Compute an orthonormal basis of the invariant subspace
associated with all eigenvalues below a bound α. It is assumed that an upper bound β for
the spectrum is available, and, without loss of generality, that all eigenvalues are ≥ 0.

The simplest solution to the problem is to use the Lanczos algorithm for the matrix
q(A), where q is a low-pass filter polynomial such that q(λ) is large for 0 ≤ λ ≤ α and
small for α < λ ≤ β. To reduce cost, the polynomial should not be of high degree. What
might happen with this approach is that the Lanczos procedure will quickly produce a good
invariant subspace associated with the largest eigenvalues of q(A). If enough steps are taken,
then clearly this subspace should include the desired subspace which could be easily extracted
by a simple Rayleigh-Ritz projection. The main point is that a shorter basis will be required
because the Lanczos algorithm will converge faster, and this will lead to a much lower cost
due to much less expensive orthogonalization steps. In case of large k, the additional cost
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of matrix vector products (now replaced by a product with q(A) at each step) is outweighed
by the gain from these other computations.

As an illustration consider a hypothetical situation where, for example, m = 2000 Lanczos
vectors are required by a standard Lanczos procedure to compute a subspace of dimension
k = 100. The cost of orthogonalization will be 0.5m2 × N which is 2 × 106 × N operations.
If in contrast only 200 vectors are required, the new cost will 104 × N plus the additional
cost of matrix-vector products. If degree 10 polynomials are used and the matrix has,
say, 13 nonzero entries per row, then this additional cost is roughly: 200 ∗ 10 ∗ 13N =
26000N . So the total adds up to ≈ 36, 000N operations versus 2, 000, 000N . Of course this
example is hypothetical and somewhat extreme, but it underscores the unacceptable cost
of orthogonalization for large bases. One counter argument to this is that a much smaller
basis can also be used for the restarted Lanczos method. Though this situation is much
harder to analyze, it is important to realize that restarting is expensive because eigenvectors
are repeatedly (implicitly) computed. It is not the goal of this paper to compare these
approaches. This will be done in a forthcoming article where these comparisons will be
undertaken for realistic problems arising from electronic structures calculations [3].

The procedure just described can be enhanced by filtering the initial vector of the Lanczos
procedure. The reason why this could be useful is the observation that if v has a zero
component with respect to λi > α then since q(λi) is close to zero, then the components of
the Lanczos vectors will also remain close to zero throughout the algorithm. We can use a
high degree polynomial to filter the initial vector and then a low degree polynomial for the
inner loop of the Lanczos procedure. Initial results show that this process works as predicted
and leads to substantial savings in time when compared with standard approaches.

3.2 Computing f(A)v

The procedures described earlier compute approximations to φ(A)v where φ is a specific
spline function on two or three intervals. There is of course no reason why one should be
limited a to spline function which approximates a step function. In fact the approach can
extended to many other situations where a vector of the form f(A)v is to be computed. The
problem of approximating f(A)v has been extensively studied, see, e.g., [28, 23, 4, 16, 15],
though the attention was primarily focussed on the the case when f is analytic (e.g., f(t) =
exp(t)). Problems which involve non continous functions, such as the step function, or the
sign function can also be important. The approach described in this paper can be trivially
extended to the case where φ is a general spline function, although we do not know of
specific practical application where general splines other than the ones used in this paper are
required. However, one can certainly imagine situations where a certain vector f(A)v is to be
evaluated where f is some complex function known through an accurate piecewise polynonial
approximation. The framework developed in this paper is ideally suited for handling this
situation. The only extensions required are that the filter has several intervals now instead
of 2 or three, and the polynomials in each interval are those of the spline function.

Another interesting application is when φ is the sign function. Computing the sign
function of a matrix has important applications in QMC (quantum chromo dynamics), see,
e.g. [12]. In order to solve the linear system associated with the matrix s(A), we can use
the same approach as that of the regularized solutions, except that the base filter is now
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a function which approximates the sign function instead of the step function. In this case
it is important to use 3 intervals. For example, [a− d−], [d− d+], [d+ a+], where d−, a− are
negative and d+, a+ are positive. The difficulty here is to compute estimates for the interior
values d− and d+.

3.3 Estimating the number of eigenvalues in an interval

The most common way to compute the number of eigenvalues inside an interval, is to exploit
the Sylvester inertia theorem and the LDLT factorization [13]. However, for large matrices
this is not always practically feasible or it may be too expensive.

It is sometines useful to obtain just a rough idea of the number of eigenvalues of a
Hermitian matrix that are located inside a given interval. This information can be used for
example for the case when the smallest k eigenvalues of A must be computed by using a form
of polynomial filtering. In this situation an interval [0, α] must be found which contains
these k eigenvalues. A guess for α can be given and then refined by answering the question:
How many eigenvalues are located on the left of α?

An easy solution to this can be given by the Lanczos procedure. One can simply run
the Lanczos algorithm with partial reorthogonalization and record the number nα of all
eigenvalues below α of the tridiagonal matrix Tm obtained from the Lanczos algorithm.
When this number stabilizes (i.e., all eigenvalues below α converge) then nα will represent
the desired number. The problem with this approach is that it may be very expensive when
the number nα is large.

A rough approximation of nα can be easily obtained from statistical arguments, using
polynomial filtering. This technique is an adaptation of methods described elsewhere for
estimating the trace of certain operators, see for example, [17, 20, 1]. Consider a low-pass
polynomial filter such as the one shown in Figure 5, and an arbitrary vector v of 2-norm
unity. Expand the vector v in the eigenbasis as,

v =
n

∑

i=1

αiui,

and consider the inner product of v with p(A)v:

(v, p(A)v) =
nα
∑

i=1

α2
i p(λi)

2 +
n

∑

i=nv+1

α2
i p(λi)

2

If the polynomial p is selected so that it is close to one on [0 α] and to zero in (α, β], then
clearly the second sum in the above expression should be close to zero, and the first close
to the sum

∑nα

i=1 α2
i . If the vector v is a random vector, then the αi’s are unbiased and

therefore, the ratio
∑nα

i=1 α2
i /

∑n
i=1 α2

i should be close to nα/n. In the end we can estimate
nα by

nα ≈ n × (v, p(A)v) . (29)

Of course, a unique sample may not be good enough and several trials should be taken and
averaged in some way. The numerical experiments sections explores this approach a little
further. It should be emphasized that, as is always the case, it is expensive to obtain an
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accurate answer by statistical methods in general. Accordingly, this approach may be useful
only when a rough estimate of nα is wanted and other methods cannot be considered. Two
appealing features of the method, are its exclusive reliance on matrix-vector products and
its highly parallel nature.

4 Numerical Tests

Applications of filtered polynomial iterations to information retrieval and face recognition
have been reported elsewhere [18, 19]. In addition, the use of these ideas for computing large
eigenspaces will be reported in a forthcoming article [3]. The goals of the tests discussed
in this section are (1) to examine the convergence of the process; (2) to show and compare
the techniques discussed earlier for the problem of obtaining regularized solutions of linear
systems; and (3) to demonstrate the use of polynomial filtering for approximating inertia of
shifted matrices (see Section 3.3).

All tests were performed with matlab version 6.5 on a Linux computer (running Debian)
and equipped with two 1.7 Ghz Xeon processors (with 256KB cache) and 1 GB of main
memory.

4.1 Convergence

In this test we generate a matrix obtained from the discretization of a Laplacean using
centered differences on a 20 × 15 mesh. We then compute the vector v which has all com-
ponents equal to one in the eigenbasis, i.e., v is the sum of all the (normalized) eigenvec-
tors. This vector is then filtered with a chosen low-pass base filter ψ = 1 − φ and we plot
‖φ(A)v − Ask−1(A)v‖2 for k = 1, . . . , 200. This is referred to as the ‘filtered residual’. The
low-pass filter ψ = 1 − φ is selected as follows:

ψ(t) =







1 for t ∈ [0, α0)
1 − Θ[m0,m1] for t ∈ [α0, α1)
0 for t ∈ [α1, β] .

(30)

A first run used the values : m0 = m1 = 10, β = 8, α0 = 1.9, α1 = 2.1 and the second used
the same values for m0, m1, and β, and changed α0, α1 to α0 = 1.8, α1 = 2.2. The plot in
Figure 6 shows three curves. The first two show the progress of the filtered residual norm for
the two runs (solid line and dashed line respectively). The third one (dash-dot) shows the
coefficient in the right-hand side of (27) corresponding to the first test case ( m0 = m1 = 10,
β = 8, α0 = 1.9). Here, η′

max is estimated by (21), where for m0 = m1 = 10, we find that
η′

max ≈
√

m0/π. So the third curve shows exactly the sequence

8
√

10/π

0.4 ∗ (i + 1)
i = 1, . . . , 200 .

Two observations are important to make. The first is that for the second run, the behavior
is not at all predicted by the bounds. It has an exponential character which is not at all
reflected by the bounds obtained in Section 2.7. The second observation is the big difference
in convergence between two seemingly close situations. If the middle interval increases in
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width we can get very fast convergence. However, note that taking a wide middle interval
may yield a function that is not desirable from other viewpoints, i.e., there may be situations
when this interval must be taken to be small. In information retrieval this is not critical [19].
When computing invariant subspaces on the other hand, it is undesirable to have a wide gap
since it will include eigenvalues that need to be eliminated by some other means.

0 20 40 60 80 100 120 140 160 180 200
10

−3

10
−2

10
−1

10
0

10
1

F
ilt

er
ed

 R
es

id
ua

l N
or

m

Iterations

25x15 Laplacean − Filtered CR iteration

[a0,a1] = [1.9, 2.1]
[a0,a1] = [1.7, 2.3]
Bound coef.

Figure 6: Convergence of filtered Polynomial CR algorithm for two different cases and com-
parison with the coefficient of the bound (27).

4.2 Tests with regularization

In this test we construct a linear system that is ill-conditioned and whose exact solution is
known. We then perturb the right-hand side and solve the linear system with five techniques
and compare the resulting norms of the errors. The matrix is generated from a discretization
of a Laplacean on a 35 × 45 rectangular mesh. This matrix, call it B, is then shifted and
squared to yield the desired ill-conditioned coefficient matrix A:

A = (B − 0.01)2 .

The smallest eigenvalue of B is ≈ 0.0123, so the the smallest eigenvalue of A is close to
0.00232 = 5.167e − 06. Since the largest eigenvalue is close to 63.64 this yields a condition
number for A of ≈ 1.2e + 07.

The right-hand side is generated so that the solution is known. Specifically the solution
is taken to be the discretization of the function f(x1, x2) = x1(1−x1)x2(1−x2). The discrete
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version of the above exact solution is normalized to have inf-norm equal to one. The resulting
vector is denoted by x∗. This vector is then multiplied by A to obtain an unperturbed right-
hand side b∗. This right hand-side is now perturbed by normally distributed pseudo-random
numbers multiplied by 0.05 (using the mat lab function randn(n,1)). This is a relatively
large perturbation – the largest entry of the perturbing vector is about 0.05*2.7= 0.135. The
exact solution of the system will be dominated by errors because A is quite ill-conditioned.
Solving the system exactly yielded an error norm of ‖x − A−1b‖2 = 18.67.

Figure 7 shows the behavior of ‖xk − x∗‖∞ for 5 different iterative schemes. Here k
denotes the iteration number and x∗ is the original solution of the unperturbed system. A
few details are given for the methods used in this test. The simplest methods to use are
simply the Conjugate Gradient or the Conjugate Residual algorithms. For perturbed and ill-
conditioned systems, it is known that these algorithms should not be iterated to convergence,
since this would otherwise introduce the part of the solution in the subspace associated with
the smallest eigenvalues, which leads to amplifying the noise. This is verified in the plots of
the CG and CR error curves. One remedy is to use Tychonov regularization as discussed in
the introduction. In Tychonov regularization, the CG algorithm is used to solve the system
(A2 + σI)x = Ab. We have selected to take σ = 0.1. The CR filtered polynomial approach
is based on two intervals, with the function Θ determined by m0 = 5,m1 = 10 on the first
interval.

The method labeled Hybrid uses hybrid inner products as described in Section 2.8. The
coefficient µ used in the inner product (28) had to be set relatively large to obtain a behavior
that shows a noticeable difference with the standard CG. Specifically, we took µ = 1.e + 08.
So when norms are considered, then the continuous part weighs 4 orders of magnitude more
than the discrete part. This is to be expected because the first part is not scaled by the
number of points, which is n = 1, 575.

Notice that all methods except the ones based on polynomial filtering and Tychonov
regularization end up with increasing values of the error norm after a certain iteration.
For CG the errors jump back rather steeply after the bottom, more so than with CR. This
underscores the difficulty in trying to use the standard CG (or CR) algorithms, but exploit an
early termination. The Hybrid algorithm seems to be a compromise between the regularized
approaches (filtered iterations and Tychonov) and the non-regularized iterations (CG and
CR). Tychonov and filtered CR reach about the same level of error, though the error with
the filtered CR algorithm decreases more rapidly at the start. Interestingly, the minimum
error reached during all steps for each of the 5 methods is quite close: they are all in the
range 0.77 – 0.79.

4.3 Estimating the number of eigenvalues in an interval

This section reports on a test with the stochastic estimator of the inertia of a shifted matrix,
i.e., the number of eigenvalues of a matrix that are below a certain number α. Section 3.3
suggested a simple algorithm for this calculation for the case when a rough estimate of this
number is wanted.

For this test we took a matrix from the Harwell-Boeing collection [9], namely the matrix
bcspwr09. This matrix is of size n = 1, 723 and has nnz = 6, 511 entries. The sparsity
pattern of the matrix is shown on the left side of Figure 8. This matrix has all its eigenvalues
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Figure 7: Behavior of five different techniques for solving a perturbed ill-conditioned linear
system.

in the interval [-3.117.., 5.971..]. The question one may ask is: How many eigenvalues are
negative? The correct answer is 512. We shifted everything by 3.2 (so A becomes A + 3.2I
and we sought the number of eigenvalues of the shifted matrix that are below α = 3.2. A
dual filter ψ using 3 intervals, defined as in Equation (30), was used with the parameters:
m0 = m1 = 10. The interval bounds given were 0, α0 = 3.15, α1 = 3.25, β = 6. The degree
of the polynomial used was m = 20.

The right side of Figure 8 shows a test with 50 runs (each using a polynomial of degree
20 and a different unit random vector v). The number nα reported for given k in the x-axis,
is simply the average of the numbers given by formula (29) over all previous k tests:

nα(k) =
n

k
×

k
∑

i=1

(vi, p(A)vi) .

The small circles in the figure are the values of n × (vi, p(A)vi) obtained from each (single)
sample. The dashed horizontal line represents the correct answer which is 512. Notice that
there are a few outliers, e.g., the smallest single estimate obtained was close to 428 and
the largest close to 590 but the average over several runs quickly converges to a reasonable
estimate. So after 30 runs (a total of 600 matrix-vector products), a fairly good estimate is
reached.
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5 Conclusion

Polynomial filtering is a useful and versatile tool in computational linear algebra. It is most
appealing in situations where rough solutions to various matrix problems are sought. We
have shown a few such applications, and hinted at others, where the approximations to the
matrix problem are sought which are restricted to be in a small space.

Apart from the methods related to low-rank approximations mentioned above, polynomial
filtering has also been tried in the past with limited success in the more traditional areas of
matrix computations, for example for the problem of preconditioning. Polynomial filtering is
not a panacea, but it can play a significant role in specific cases. Perhaps the most important
of these is the computation of large invariant subspaces. This will be reported elsewhere [3]
along with a software release.

There are many other potential applications of polynomial filtering in numerical linear al-
gebra beyond those discussed here. Many computations require the solution of least-squares
systems with regularization. In some cases these problems come with a set of constraints and
it would be quite useful to extend the ideas of this paper to this situation. As an example, a
primary technique used in adaptive airborne radar and called Space-Time Adaptive Process-
ing (STAP), finds weights which minimize ‖Xw‖2 subject to the constraint ST

T w = 1, where
both X (space-time data snapshot) and ST (space-time steering vector) are given [7, 21, 6].
The problem is to solve this constrained least-squares system in the subspace corresponding
to the largest singular values (called the ‘interference space’). The techniques described in
this paper can be extended to handle constraints by simply using a penalty technique.
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