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Abstract. We present a structural characterization of all tournaments T = (V,A) such that,
for any nonnegative integral weight function defined on V , the maximum size of a feedback vertex
set packing is equal to the minimum weight of a triangle in T . We also answer a question of Frank
by showing that it is NP -complete to decide whether the vertex set of a given tournament can be
partitioned into two feedback vertex sets. In addition, we give exact and approximation algorithms
for the feedback vertex set packing problem on tournaments.
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1. Introduction. A rich variety of combinatorial optimization problems falls
within the general framework of packing and covering in hypergraphs. A hypergraph
is a pair H = (V, E), where V is a finite set and E is a family of subsets of V . Elements
of V and E are called the vertices and edges of H, respectively. A vertex cover of H is
a vertex subset that intersects all edges of H. Let w be a nonnegative integral weight
function defined on V . A family S of edges (repetition is allowed) of H is called a
w-packing of H if each v ∈ V belongs to at most w(v) members of S. Let νw(H)
denote the maximum size of a w-packing of H, and let τw(H) denote the minimum
total weight of a vertex cover. Clearly νw(H) ≤ τw(H); this inequality, however,
need not hold equality in general. We say that H is Mengerian if the min-max
relation νw(H) = τw(H) is satisfied for any nonnegative integral function w defined
on V . Many celebrated results and conjectures in combinatorial optimization can be
rephrased by saying that certain hypergraphs are Mengerian (see section 79.1 of [19]),
so Mengerian hypergraphs have been subjects of extensive research. As conjectured
by Edmonds and Giles [9, 18] and proved recently by Ding, Feng, and Zang [4], the
problem of recognizing Mengerian hypergraphs is NP -hard in general, and hence it
cannot be solved in polynomial time unless NP = P . In this paper we study a
special class of Mengerian hypergraphs; our work is a continuation of those done in
[1, 2, 3, 5, 6].

Let G = (V,E) be a graph (directed or undirected), and let CG = (V, E), where E
consists of V (C), for all induced cycles C in G. Throughout this paper, by a cycle in
a digraph we always mean a directed one. In [6], Ding and Zang obtained a structural
description of all undirected graphs G for which CG is Mengerian. Due to the long
list of forbidden structures, to find a good characterization of all digraphs G with
Mengerian CG seems to be extremely difficult. While this characterization problem
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924 XUJIN CHEN, XIAODONG HU, AND WENAN ZANG

Fig. 1. Forbidden subtournaments F1 and F2, where the two arcs not shown in F1 may take
any directions.

remains open in general, it was completely solved on tournaments by Cai, Deng, and
Zang [1], where a tournament is an orientation of an undirected complete graph.

Theorem 1.1 ([1]). Let T be a tournament. Then hypergraph CT is Mengerian
if and only if T has no subtournament isomorphic to F1 nor F2.

(Note that F2 is the tournament in which every vertex is incident with precisely
two incoming arcs and two outgoing arcs.) One objective of this paper is to establish
a closely related min-max relation which is motivated as follows.

Every hypergraph H = (V, E) is naturally associated with another hypergraph
b(H) = (V, E ′), where E ′ consists of all minimal (with respect to set inclusion) vertex
covers of H. Usually b(H) is called the blocker of H. Although in general the blocker
of a Mengerian hypergraph does not have to be Mengerian (see section 79.2 of [19]),
the famous max-flow-min-cut theorem and a Fulkerson theorem [11] (see p. 115 of
[18]) assert that both the hypergraph of r-s paths in a graph and its blocker are
Mengerian; so are the hypergraph of r-arborescences and its blocker by Edmonds’
disjoint arborescence theorem [7] and Fulkerson’s optimum arborescence theorem [12].
Recently, Chen et al. [3] managed to characterize all undirected graphs G for which
b(CG) is Mengerian; it turns out that b(CG) is Mengerian if and only if CG is. So a
natural question is to ask: What is the blocker version of Theorem 1.1?

Theorem 1.2. Let T be a tournament. Then hypergraph b(CT ) is Mengerian if
and only if T has no subtournament isomorphic to F1 nor F2 (see Figure 1).

An immediate corollary of Theorems 1.1 and 1.2 is the following.
Corollary 1.3. Let T be a tournament. Then b(CT ) is Mengerian if and only

if CT is.
Let us define a few terms before presenting an equivalent of the above statements.

Let G = (V,E) be a digraph with a nonnegative integral weight w(v) on each vertex
v. A feedback vertex set (FVS) of G is a vertex subset that intersects each cycle in G,
and a w-FVS packing of G is a collection F of minimal FVSs (repetition is allowed)
such that each vertex v is contained in at most w(v) members of F . Similarly, a w-
cycle packing of G is a collection C of induced cycles (repetition is allowed) such that
each vertex v is contained in at most w(v) members of C. The weight of a cycle (resp.,
an FVS) is the sum of weights of all vertices in this cycle (resp., FVS). Observe that
every minimal FVS of G uniquely corresponds to an edge of b(CG), and vice versa.
So there is 1 − 1 correspondence between a w-FVS packing of G and a w-packing of
b(CG) and 1 − 1 correspondence between a w-cycle packing of G and a w-packing of
CG. Moreover, if G is a tournament, then every cycle in a cycle packing is a triangle
(a cycle of length three), and hence a cycle packing is actually a triangle packing.

Let Z+ denote the set of nonnegative integers. Then Theorems 1.1 and 1.2 can
be restated as follows.
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A MIN-MAX THEOREM ON TOURNAMENTS 925

Theorem 1.4. The following three statements are equivalent for a tournament
T = (V,A):

(i) For any weight function w ∈ ZV
+, the minimum weight of an FVS in T is

equal to the maximum size of a w-triangle packing of T ;
(ii) for any weight function w ∈ ZV

+, the minimum weight of a triangle in T is
equal to the maximum size of a w-FVS packing of T ;

(iii) T has no subtournament isomorphic to F1 nor F2.
It is worthwhile pointing out that the above statement (i) is closely related to the

famous Lucchesi–Younger theorem [15], which, when restricted to a planar digraph
G = (V,E), is equivalent to saying that for any w ∈ ZE

+ the minimum weight of a
feedback arc set in G is equal to the maximum size of a cycle packing of G, where
a feedback arc set of G is a set of arcs that intersects each cycle in G; statement (ii)
is closely related to the well-known Woodall conjecture [20] on packing feedback arc
sets and the Edmonds–Giles conjecture [8, 17] on packing directed cut covers.

Given a digraph G = (V,E) with a nonnegative integral weight w(v) on each
vertex v, the FVS packing problem is to find a w-FVS packing of maximum size in G.
In connection with this problem, Frank suggested the following question.

Question 1.5 ([10]). Given a digraph G, can we decide in polynomial time
whether each vertex of G can be colored by red or blue so that every cycle contains
at least one red vertex and at least one blue vertex? Or is this an NP-complete
problem?

Our next theorem states that Frank’s problem is NP -complete even when G is
restricted to a tournament.

Theorem 1.6. It is NP-complete to decide whether the vertex set of a given
tournament can be partitioned into two feedback vertex sets.

We shall also present algorithms for the FVS packing problem.
Theorem 1.7. The FVS packing problem on a tournament T = (V,A) with no

F1 nor F2 can be solved exactly in O(|V |4) time.
For the problem on a general tournament, we shall give an approximation algo-

rithm.
Theorem 1.8. The FVS packing problem on a general tournament can be ap-

proximated within a factor of 2/5.
The remainder of this paper is organized as follows: In section 2, we give a proof

of Theorem 1.2, which relies heavily on the structural description of tournaments with
no F1 nor F2 obtained in [1]. In section 3, we prove Theorem 1.6 by using the so-called
Not-All-Equal 3-Satisfiability problem as the source problem. In section 4, we
present an exact algorithm for the FVS packing problem on tournaments with no
F1 nor F2 and describe a 2/5-approximation algorithm for the problem on general
tournaments. In section 5, we conclude this paper with some open problems.

2. Min-max relation. The purpose of this section is to prove Theorem 1.2. We
break the proof into a series of lemmas and shall implicitly and frequently use the
fact that a vertex subset of a tournament is an FVS if and only if it intersects every
triangle. As usual, a digraph G is called strongly connected if, for any two vertices x
and y, there exist a (directed) path from x to y and a (directed) path from y to x in
G. Our proof relies heavily on the following structural description obtained in [1].

Lemma 2.1 ([1]). Let T = (V,A) be a strongly connected tournament. Then T
has no subtournament isomorphic to F1 nor F2 if and only if V can be partitioned
into V1, V2, . . . , Vk for some 3 ≤ k ≤ |V |, which have the following properties:

(i) For any i, j with 1 ≤ i ≤ j−2 ≤ k−2, each arc between Vi and Vj is directed
from Vj to Vi.
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926 XUJIN CHEN, XIAODONG HU, AND WENAN ZANG

F1

u1

u4u5

u2 u3

F1

u1

u5

u2

u4

u3

F2

u5

u3

u2

u4

u1

Fig. 2. Three triangles u1u2u3u1, u2u3u4u2, and u1u4u5u1 in F1 and F2.

(ii) For any triangle xyzx in T , there exists an i with 1 ≤ i ≤ k − 2 such that
x ∈ Vi, y ∈ Vi+1, and z ∈ Vi+2 (renaming x, y, and z if necessary).

We make two remarks on the above lemma: First, for notational convenience, the
order of the indices used in the above partition V1, V2, . . . , Vk is precisely the reverse
of the one used in [1]. Second, as depicted in Figure 2, the vertices of both F1 and F2

can be labeled as u1, u2, . . . , u5 such that {u1, u2, u3}, {u2, u3, u4}, and {u1, u4, u5}
are vertex sets of three triangles. Using these triangles, we can immediately see the
sufficiency.

Let T = (V,A) be a tournament and u, v ∈ V . The arc in T with tail u and head
v is written as (u, v) and called the arc from u to v. For any subtournament K of
T , let V (K) and A(K) denote the vertex set and arc set of K, respectively. For any
vertex u of T , let T\u denote the tournament obtained from T by deleting u, and
let T 〈u〉 denote the tournament obtained from T by introducing a new vertex u′ and
then adding arcs in such a way that

(1∗)
for each v ∈ V − {u}, (u′, v) is an arc in T 〈u〉 if and only if (u, v) is an arc in T .

(There is no direction constraint on the arc between u and u′.) We propose to call u′

the image of u and call T 〈u〉 an augmentation of T (with respect to u). It can be seen
from (1∗) that

(2∗) no triangle in T 〈u〉 contains {u, u′}.

Lemma 2.2. Let T 〈u〉 be an augmentation of a tournament T = (V,A). If T
contains no F1 nor F2, then neither does T 〈u〉.

Proof. Assume the contrary: T 〈u〉 contains a subtournament F isomorphic to F1

or F2. Let u′ be the image of u. Then F contains both u and u′, for otherwise, by
(1∗), V (F\u′) ∪ {u} would induce a subtournament in T isomorphic to F , which is a
contradiction.

(1) We may assume that T is strongly connected.
Suppose not, let K be the strongly connected component of T 〈u〉 that contains F

(such K is available since F is strongly connected). Then K\u′ is strongly connected,
for otherwise the vertex set of K\u′ can be partitioned into X and Y such that all
arcs between X and Y are directed to Y . Without loss of generality, we assume that
u ∈ X. Since u′ is the image of u, all arcs in K between X ∪ {u′} and Y are directed
to Y , contradicting the strong connectivity of K. Since K is an augmentation of K\u′

(with respect to u), we get (1); otherwise, replace T by K\u′ and T 〈u〉 by K.
It follows from (1) that the vertex set V of T admits a partition V1, V2, . . . , Vk with

properties (i) and (ii) as described in Lemma 2.1. Suppose u ∈ Vh. Let us partition the
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A MIN-MAX THEOREM ON TOURNAMENTS 927

vertex set V ∪{u′} of T 〈u〉 into k sets V ′
i such that V ′

h = Vh∪{u′} and V ′
j = Vj for all

other j with 1 ≤ j ≤ k. From (1∗), we see that the partition V ′
1 , V

′
2 , . . . , V

′
k satisfies

(i) in Lemma 2.1 with respect to T 〈u〉. Since F is contained in T 〈u〉, Lemma 2.1
guarantees the existence of a triangle xyzx in T 〈u〉 that violates (ii) in the lemma
with respect to the partition V ′

1 , V
′
2 , . . . , V

′
k. Note that {x, y, z} contains at most one

of u and u′ by (2∗). Set Q = {x, y, z} if u′ �∈ {x, y, z} and Q = ({x, y, z}−{u′})∪{u}
otherwise. Then Q would induce a triangle in T that violates Lemma 2.1(ii) with
respect to the partition V1, V2, . . . , Vk, which is a contradiction.

Let T = (V,A) be a tournament, and let S ⊆ V . We shall use the following
notations in our proof:

(3∗) DS := {C : Cis a triangle in T and |V (C) ∩ S| = 2},
(4∗) FS := {C : C is a triangle in T, V (C) ⊆ S, and

|V (C) ∩ V (C ′)| ≤ 1 for every C ′ ∈ DS},
(5∗) F+

S := {C : C is a triangle in T, V (C) ⊆ S, and
|V (C) ∩ V (C ′)| = 2 for some C ′ ∈ DS}.

Let C be a collection of some triangles in T . Write V (C ) = ∪C∈CV (C). It follows
from the definition that V (DS) − S �= ∅ if DS �= ∅ and that V (FS) ∪ V (F+

S ) ⊆ S.
Lemma 2.3. Let T = (V,A) be a tournament with no subtournament isomorphic

to F1 nor F2. Suppose S is a subset of V such that DS �= ∅ and that |S ∩ V (C)| ≥ 2
for every triangle C of T . Then there exists R ⊆ S such that |R∩V (C)| = 1 for every
triangle C ∈ DS. Moreover, given S, such an R can be found in O(|V |3) time.

Proof. Let us first construct an undirected graph G with vertex set S as follows:
uv is an edge of G if and only if there is a triangle C in T such that {u, v} = S∩V (C).
If G is a bipartite graph, let R be one color class of G, and then R is as desired. So
we assume that G is nonbipartite and aim to reach a contradiction. To this end, let
x1x2 . . . x2l+1x1 be the shortest odd cycle of G. From the construction of G, we see
that, for every i with 1 ≤ i ≤ 2l + 1, there exists a vertex yi in V − S such that
{xi, xi+1, yi} induces a triangle, denoted by �i, in DS . Note that yi’s may not be
distinct.

Let T0 denote the subtournament of T induced by vertex subset {xi, yi : 1 ≤ i ≤
2l + 1}. Then

(1) �i, for i = 1, 2, . . . , 2l + 1, are 2l + 1 triangles in T0, where x2l+2 = x1.
Let us perform a sequence of 2l + 1 augmentations in the following iterative

way: Ti := Ti−1〈yi〉; that is, Ti is an augmentation of Ti−1 with respect to yi, for
i = 1, 2, . . . , 2l+1. Let y′i be the image of yi involved in the construction of Ti, and let
Ci denote the triangle y′ixixi+1y

′
i if �i = yixixi+1yi and y′ixi+1xiy

′
i otherwise. Since

{x1, x2, . . . , x2l+1} ∩ {y1, y2, . . . , y2l+1} = ∅ = {y′1, y′2, . . . , y′2l+1} ∩ {y1, y2, . . . , y2l+1},
and since x1, x2, . . . , x2l+1, y

′
1, y

′
2, . . . , y

′
2l+1 are distinct vertices, by (1) we have

(2) Ci, for i = 1, 2, . . . , 2l+1, are 2l+1 triangles in T2l+1, with the property that
no vertex of T2l+1 is contained in more than two of them.

Since T0 is a subtournament of T , it contains no F1 nor F2. Repeated applications
of Lemma 2.2 yield the following:

(3) For any 0 ≤ i ≤ 2l + 1, tournament Ti contains no F1 nor F2.
Let us make one more simple observation.
(4) For any 0 ≤ i ≤ 2l+1, every triangle in Ti contains at least two vertices from

{x1, x2, . . . , x2l+1}.
To justify (4), we apply induction on i. For i = 0, since S ∩ V (T0) = {x1, x2, . . . ,

x2l+1} and |S ∩ V (C)| ≥ 2 for every triangle C of T0 (by hypothesis), the desired
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928 XUJIN CHEN, XIAODONG HU, AND WENAN ZANG

statement follows. Suppose we have established the assertion for Ti−1. Let us proceed
to the induction step for Ti. Let xyzx be an arbitrary triangle in Ti. Set Q = {x, y, z}
if y′i /∈ {x, y, z} and Q = ({x, y, z} − {y′i}) ∪ {yi} otherwise. It follows from (1∗) and
(2∗) that Q induces a triangle in Ti−1. So it contains at least two vertices from
{x1, x2, . . . , x2l+1} by induction hypothesis. We can thus deduce that the triangle
xyzx also contains at least two vertices from {x1, x2, . . . , x2l+1} as yi and y′i are both
outside {x1, x2, . . . , x2l+1}. So (4) is proved.

It can be seen from (2) that the minimum size of an FVS of T2l+1 is at least
l+ 1. In view of (3), Theorem 1.1 (which is equivalent to Theorem 1.4(i)) guarantees
the existence of at least l + 1 vertex-disjoint triangles in T2l+1. By (4), each of these
l + 1 triangles contains at least two vertices from {x1, x2, . . . , x2l+1}. Hence the size
of {x1, x2, . . . , x2l+1} is at least 2(l + 1), which is a contradiction.

Since there are O(|V |3) triangles altogether in T , it takes O(|V |3) time to find
the edge set of G. From the proof we see that G is a bipartite graph. Since the two
color classes of G can be obtained in linear time by using depth first search, R can be
found in O(|V |3) time.

Lemma 2.4. Let T = (V,A) be a tournament with no subtournament isomorphic
to F1 nor F2. Suppose S is a subset of V that contains at least two vertices from
every triangle in T . Then V (C) � V (DS) for every triangle C ∈ FS.

Proof. We may assume that T is strongly connected; otherwise, we turn to con-
sider the strongly connected components of T separately. Thus V admits a partition
V1, V2, . . . , Vk as described in Lemma 2.1. For every v ∈ V , we use l(v) to denote
the index i such that v ∈ Vi. Let D = (V,B) be the digraph obtained from T by
deleting all arcs from Vj to Vi with i ≤ j − 2; in other words, (u, v) ∈ B if and only if
(u, v) ∈ A and |l(u) − l(v)| ≤ 1. So each arc (u, v) in D falls into precisely one of the
following three categories: We call (u, v) an upward arc if l(u) = l(v)− 1, a downward
arc if l(u) = l(v) + 1, and a level arc if l(u) = l(v). By Lemma 2.1(ii), we have the
following:

(1) D contains no triangle. A (directed) path in D is called upward if it consists
of three vertices and two upward arcs. It follows from Lemma 2.1 that an upward
path P in D corresponds to a triangle in T (induced by V (P )), and vice versa. By
the hypothesis on S, we get

(2) |V (P ) ∩ S| ≥ 2 for any upward path P in D. We prove the lemma by
contradiction. Assume the contrary: {a, b, c} ⊆ V (DS) for some triangle abca ∈ FS .
Suppose i = l(a) = l(b)−1 = l(c)−2 for some 1 ≤ i ≤ k−2. Then (4∗) guarantees the
existence of three triangles xx′x′′x, yy′y′′y, and zz′z′′z in DS such that a ∈ {x, x′, x′′},
b ∈ {y, y′, y′′}, and c ∈ {z, z′, z′′} and that

(3) xx′x′′, yy′y′′, and zz′z′′ are upward paths; that is, l(x) = l(x′)−1 = l(x′′)−2,
l(y) = l(y′) − 1 = l(y′′) − 2, and l(z) = l(z′) − 1 = l(z′′) − 2.

Since each upward path in D corresponds to a triangle in T , it follows from (4∗)
that

(4) no upward path in D can go through two vertices in {a, b, c} and a vertex in
V − S. In particular, for any u ∈ V − S and v ∈ {a, b, c} with |l(u) − l(v)| = 1, the
arc between u and v is downward unless v ∈ {a, c} and l(u) = i + 1.

Using (1), (3), (4), and the fact |{x, x′, x′′} ∩ S| = |{y, y′, y′′} ∩ S| = |{z, z′, z′′} ∩
S| = 2 (by (3∗)), we can enumerate all possible configurations of the three triangles
xx′x′′x, yy′y′′y, and zz′z′′z, which are described in (5), (6), and (7), respectively;
see Figure 3 for an illustration, where vertices in S are indicated by black points and
those outside S by small circles.
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b

=cz''

a z

z' b

=cz'

z''

z

a

( )73. ( )74.

z'

z''

z c=

b

a

Fig. 3. Possible configurations of triangles xx′x′′x, yy′y′′y, and zz′z′′z.

(5) For triangle xx′x′′x, exactly one of the following holds:
(5.1) x ∈ Vi−2 − S, x′ ∈ Vi−1 ∩ S, x′′ = a ∈ Vi ∩ S;
(5.2) x ∈ Vi−1 ∩ S, x′ = a ∈ Vi ∩ S, x′′ ∈ Vi+1 − S, and downward (c, x′′) ∈ B,

level (b, x′′) ∈ B;
(5.3) x = a ∈ Vi ∩ S, x′ ∈ Vi+1 − S, x′′ ∈ Vi+2 ∩ S, and downward (c, x′) ∈ B,

level (b, x′) ∈ B;
(5.4) x = a ∈ Vi ∩ S, x′ ∈ Vi+1 ∩ S, x′′ ∈ Vi+2 − S, and downward (x′′, b) ∈ B,

level (x′′, c) ∈ B.
(6) For triangle yy′y′′y, exactly one of the following holds:
(6.1) y ∈ Vi−1 − S, y′ ∈ Vi ∩ S, y′′ = b ∈ Vi+1 ∩ S, and downward (a, y) ∈ B;
(6.2) y = b ∈ Vi+1 ∩ S, y′ = Vi+2 ∩ S, y′′ ∈ Vi+3 − S, and downward (y′′, c) ∈ B.
(7) For triangle zz′z′′z, exactly one of the following holds:
(7.1) z ∈ Vi −S, z′ ∈ Vi+1 ∩S, z′′ = c ∈ Vi+2 ∩S, and downward (b, z) ∈ B, level

(a, z) ∈ B;
(7.2) z ∈ Vi ∩ S, z′ ∈ Vi+1 − S, z′′ = c ∈ Vi+2 ∩ S, and downward (z′, a) ∈ B,

level (z′, b) ∈ B;
(7.3) z ∈ Vi+1 − S, z′ = c ∈ Vi+2 ∩ S, z′′ ∈ Vi+3 ∩ S, and downward (z, a) ∈ B,

level (z, b) ∈ B;
(7.4) z = c ∈ Vi+2 ∩ S, z′ ∈ Vi+3 ∩ S, z′′ ∈ Vi+4 − S.
(8) The following statements hold:
(8.1) Either (5.1) or (6.1) fails;
(8.2) either (6.2) or (7.4) fails;
(8.3) either (5.4) or (6.2) fails;
(8.4) either (6.1) or (7.1) fails.
To justify (8.1), suppose to the contrary that both (5.1) and (6.1) hold. Using

(1) and path x′x′′y = x′ay, we get level (x′, y) ∈ B, which in turn gives upward
(x, y) ∈ B (as path xx′y does not correspond to a triangle in D). Thus xyy′ is an
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upward path with x, y outside S, contradicting (2). Hence we have (8.1). Similarly,
the violation of (8.2) (resp., (8.3), (8.4)) would give {(y′′, z′), (y′′, z′′)} ⊆ B (resp.,
{(x′′, y′), (x′′, y′′)} ⊆ B, {(y′, z), (y, z)} ⊆ B) and upward path y′y′′z′′ (resp., x′x′′y′′,
yzz′), contradicting (2) again.

(9) The following statements hold:
(9.1) Either (5.1) or (7.1) fails;
(9.2) either (5.4) or (7.4) fails.
Indeed, if both (5.1) and (7.1) hold, then, using (1) and path x′az, we have upward

(x′, z) ∈ B and hence have the upward path xx′z with {x, z} ⊆ V − S, contradicting
(2). Similarly, if both (5.4) and (7.4) hold, then (x′′, z′) ∈ B, and so the upward path
x′′z′z′′ contradicts (2).

(10) The following statements hold:
(10.1) Either (5.4) or (7.2) fails;
(10.2) either (5.3) or (7.1) fails.
Indeed, if both (5.4) and (7.2) hold, then, using (1) and path z′ax′, we have level

(z′, x′) ∈ B. In view of path z′x′x′′, we further have upward (z′, x′′) ∈ B. Thus zz′x′′

contradicts (2). Similarly, if both (5.3) and (7.1) hold, then we have level (z′, x′) ∈ B
and upward (z, x′) ∈ B. It follows that the upward path zx′x′′ contradicts (2).

(11) The following statements hold:
(11.1) Either (5.4) or (7.3) fails;
(11.2) either (5.2) or (7.1) fails.
Indeed, if both (5.4) and (7.3) hold, then, using (1) and paths x′′cz′′ and zax′, we

have upward (x′′, z′′) ∈ B and level (z, x′) ∈ B, respectively. Using path zx′x′′, we
obtain upward (z, x′′) ∈ B. Thus the upward path zx′′z′′ contradicts (2). Similarly,
if both (5.2) and (7.1) hold, then we have {(x, z), (z′, x′′), (z, x′′)} ⊆ B. Thus the
upward path xzx′′ contradicts (2).

(12) Either (5.4) or (6.2) holds.
Suppose otherwise; then from (6) and (5), we see that (6.1) and one of (5.1)–(5.3)

hold. In view of (8.1), we further conclude that (5.2) or (5.3) holds. From (5.2) and
(5.3), it follows that {u} = {x′, x′′} ∩ Vi+1 ⊆ V − S and (b, u) ∈ B is level. Using (1)
and path y′y′′u, we have upward (y′, u) ∈ B and hence the upward path yy′u with
{y, u} ⊆ V − S, contradicting (2).

(13) Either (6.1) or (7.1) holds.
Suppose otherwise; then (6) and (7) imply that (6.2) and one of (7.2)–(7.4) hold.

Using (8.2), we further conclude that (7.2) or (7.3) holds. By (7.2) and (7.3), we have
{u} = {z, z′} ∩ Vi+1 − S and level (u, b) ∈ B. Using (1) and path uby′ = uyy′, we get
upward (u, y′) ∈ B and hence upward path uy′y′′, which contradicts (2).

(14) (6.2) holds (so (6.1) fails).
Suppose otherwise; (6.2) fails (so (6.1) holds by (6)). It follows from (12) and

(8.4) that (5.4) holds and (7.1) fails. Hence, by (7), one of (7.2), (7.3), and (7.4)
holds, which leads to a contradiction to one of (10.1), (11.1), and (9.2).

It follows from (14) and (13) that (7.1) holds, which, together with (9.1) and
(10.2), implies that neither (5.1) nor (5.3) holds. Moreover, the combination of (14)
and (8.3) yields the failure of (5.4). Thus from (5) we see that (5.2) holds, contra-
dicting (11.2).

Lemma 2.5. Let T = (V,A) be a tournament with no subtournament isomorphic
to F1 nor F2. Suppose S is a subset of V such that DS∪FS �= ∅ and that |S∩V (C)| ≥ 2
for every triangle C of T . Then there exists R ⊆ S such that |R∩V (C)| = 1 for every
triangle C in DS ∪FS. Moreover, given S, such an R can be found in O(|V |3) time.
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Proof. We prove by contradiction. Assume (T, S) is a counterexample with min-
imum |S|. It follows instantly from Lemma 2.3 that FS �= ∅. Let C0 be a triangle in
FS . Then Lemma 2.4 guarantees the existence of some v ∈ V (C0) with v �∈ V (DS).
By considering (T, S − {v}), we deduce from the minimality of S that there exists
R ⊆ S−{v} which contains exactly one vertex from each triangle in DS−{v}∪FS−{v}.
Note that C0 ∈ DS−{v}. So |R ∩ V (C)| = 1 for every triangle C in DS ∪ FS , which
is a contradiction.

Let s1, s2, . . . , sk be all of the vertices in S. We apply the following algorithm to
S. While i ≤ k, do: set S = S − {si} if si is contained in no triangle C such that
|V (C) ∩ S| = 2.

Since there are O(|V |2) triangles altogether in T containing si, each iteration takes
O(|V |2) time, and hence the whole algorithm runs in O(|V |3) time. Let S′ denote the
resulting S. From the above proof, we see that FS′ = ∅ and that DS′ = DS ∪ FS ,
where S is the initial one. By Lemma 2.3 (with S′ in place of S over there), we can
find a subset R of S′ in O(|V |3) time, such that |R ∩ V (C)| = 1 for every triangle
C ∈ DS′ . This R is clearly as desired.

Now we are ready to establish the min-max relation.
Proof of Theorem 1.2. We shall actually show that statements (ii) and (iii) in

Theorem 1.4 are equivalent. For convenience, we use the following notations in our
proof. Given a tournament T = (V,A) and a weight function w ∈ ZV

+, let τw denote
the minimum weight of a triangle in T , and let νw denote the maximum size of a
w-FVS packing of T . Recall that we always have

(1) νw ≤ τw.
(ii)⇒(iii) Suppose the contrary: T = (V,A) contains a subtournament F isomor-

phic to F1 or F2. Define w ∈ ZV
+ as w(v) = 1 for each v ∈ V . Then τw = 3. It is easy

to see that each FVS of T contains at least two vertices in F . Since |V (F )| = 5, we
have νw ≤ 2. Hence τw �= νw, contradicting (ii).

(iii)⇒(ii) Let T = (V,A) be a tournament with no F1 nor F2. To prove that
νw = τw for any w ∈ ZV

+, we apply induction on |V |.
The min-max relation holds trivially when |V | ≤ 3. So we proceed to the induction

step and assume that we have already proved the assertion for any tournament with
no F1 nor F2 and with fewer vertices than T .

To establish the induction step, we apply induction on τw. Clearly, τw = νw if
τw = 0. So we assume τw > 0 and distinguish between two cases.

Case 1. w(z) ≥ τw for some vertex z ∈ V . Set w′ = w|V−{z}. By the induction
hypothesis on T\z (with respect to the weight function w′), we get νw′ = τw′ . So it
can be seen that

• either T\z is acyclic,
• or there exists a w′-FVS packing S ′ of T\z with size τw (for τw′ ≥ τw).

In the former case, define S to be the multiset consisting of τw copies of {z}; in the
latter case, define S := {S′ ∪{z} : S′ ∈ S ′}. Then S is a collection of FVSs of T with
size τw, which clearly yields a w-FVS packing of T with size τw (by the assumption
of case 1). So by (1) we have νw = τw.

Case 2. w(z) < τw for any vertex z ∈ V . Set S := {v ∈ V : w(v) ≥ 1}. It follows
from the assumption of the present case that

(2) |S ∩ V (C)| ≥ 2 for every triangle C in T .
In view of (2), the set of triangles of T is the disjoint union of three sets DS , FS ,

and F+
S (recall (3∗)–(5∗)). It follows from the definition of F+

S that
(3) all triangles C with

∑
v∈V (C) w(v) = τw are contained in DS ∪ FS .

D
ow

nl
oa

de
d 

05
/1

2/
14

 to
 1

47
.8

.3
1.

43
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

932 XUJIN CHEN, XIAODONG HU, AND WENAN ZANG

By Lemma 2.5, there exists R ⊆ S such that |R ∩ V (C)| = 1 for every triangle
C in DS ∪ FS . From the definition of F+

S , we see that R is an FVS of T . Set

δ = min{w(v) : v ∈ R}. Then δ ≥ 1. Define w′ ∈ ZV
+ as w′(v) = w(v) − δ|R ∩ {v}|

for all v ∈ V .
(4) τw′ = τw − δ.
To justify (4), it suffices to show that |R ∩ V (C)| ≤ 2 for every C ∈ F+

S (by (3)
and the selection of R). It is the case since any such C shares with some triangle in
DS two vertices, one of which is in S −R. So (4) follows.

By the induction hypothesis on τw′ and by (4), T has a w′-FVS packing S of size
τw − δ. Clearly, {R,R, . . . , R}∪S is a collection of FVSs of T with size τw, where the
multiplicity of R is δ. This collection clearly yields a w-FVS packing of T with size
τw. So by (1) we have νw = τw.

Combining the above two cases, we complete the proof of the induction step and
hence our min-max theorem.

3. NP-completeness. For convenience, let us call the problem addressed in
Theorem 1.6 the partition problem. We show its NP -completeness in this section.

Proof of Theorem 1.6. Clearly, the partition problem is in NP . To prove the
assertion, we appeal to the following Not-All-Equal 3-Satisfiability problem
(Not-All-Equal-3SAT): Given n Boolean variables λ1, λ2, . . . , λn and m clauses
c1, c2, . . . , cm in CNF, each of which contains exactly three literals (variables or their
negation), determine whether there exists an assignment of Boolean values to the
variables such that for each clause at least one literal is true and at least one literal
is false. It was shown by Schaefer [16] that Not-All-Equal-3SAT is NP -complete.
Our objective is to reduce Not-All-Equal-3SAT to the partition problem.

For this purpose, let λ1, λ2, . . . , λn be the set of variables, and let c1, c2, . . . , cm
be the set of clauses in an arbitrary instance of Not-All-Equal-3SAT. We propose
to construct a tournament T with 5n + 3m + 3 vertices such that the vertex set of T
can be partitioned into two FVSs if and only if c1 ∧ c2 ∧ · · · ∧ cm is satisfiable (with
respect to Not-All-Equal-3SAT). The construction goes as follows (see Figures 4
and 5 for an illustration):

(i) To every variable λi, 1 ≤ i ≤ n, we associate a tournament Xi with vertex
set

V (Xi) = {xh
i : h = 1, 2, 3, 4, 5}

and arc set

A(Xi) = {(xg
i , x

h
i ) : 1 ≤ g < h ≤ 5 and

(g, h) �∈ {(1, 5), (2, 4)}} ∪ {(x5
i , x

1
i ), (x

4
i , x

2
i )};

(ii) to every clause cj = c1j ∨ c2j ∨ c3j , 1 ≤ j ≤ m, we associate a triangle Zj =

z1
j z

2
j z

3
j z

1
j ;

(iii) let V := (∪n
i=1V (Xi))∪V (Y )∪(∪m

j=1V (Zj)), where Y = y1y2y3y1 is a triangle,
and all Xi’s, Y , and Zj ’s are pairwise disjoint;

(iv) to every z = zkl ∈ ∪m
j=1V (Zj), 1 ≤ k ≤ 3, 1 ≤ l ≤ m, we associate an arc αz

from zkl to x1
i if ckl = λi and from zkl to x5

i if ckl = λ̄i;
(v) let A be the disjoint union of ∪n

i=1A(Xi), A(Y ), ∪m
j=1(A(Zj) ∪ {αz : z ∈

V (Zj)}), and {(u, v) : u and v satisfy one of (a)–(e)}:
(a) u ∈ V (Xi), v ∈ V (Xi′), and i < i′;
(b) u ∈ ∪n

i=1V (Xi) and v ∈ V (Y );
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Zj

xi
1 xi

2 xi
3 xi

4 xi
5

zj
1 zj

2 zj
3

Xi

z z= k
l

αz

z z= p
q

αz'

'

y1

y2

y
3

Y

. . .. . . . . .. . .

. . .. . .

Fig. 4. An illustration of constructions (i)–(iv), where ckl = λi and cpq = λ̄i.

.. . ... ... Y

Z1

X1 X2x2
1 X3x1

3
1 X4x4

1

z1 z2 z3
11 1

Z2

z1 z2 z3
22 2

.. .

...
...

x11
1 x5x5

1 x5
2 x5x5

3 x5
4

Fig. 5. Tournament T resulting from the instance (λ1 ∨ λ̄3 ∨ λ̄4) ∧ (λ̄1 ∨ λ2 ∨ λ̄4).

(c) u ∈ ∪n
i=1V (Xi), v ∈ ∪m

j=1V (Zj), and αv is not directed to u;
(d) u ∈ V (Y ) and v ∈ ∪m

j=1V (Zj);
(e) u ∈ V (Zj), v ∈ V (Zj′), and j < j′.

The construction is completed. It is easy to see that the construction can be ac-
complished in polynomial time, and the resulting digraph T = (V,A) is a tournament.
The tournament T resulting from the Not-All-Equal-3SAT instance with n = 4,
m = 2, c1 = λ1 ∨ λ̄3 ∨ λ̄4, and c2 = λ̄1 ∨ λ2 ∨ λ̄4 is illustrated in Figure 5.

Let us define a linear order ≺ on the vertex set of T as follows: x1
1 ≺ x2

1 ≺ x3
1 ≺

x4
1 ≺ x5

1 ≺ x1
2 ≺ x2

2 ≺ x3
2 ≺ x4

2 ≺ x5
2 ≺ · · · ≺ x1

n ≺ x2
n ≺ x3

n ≺ x4
n ≺ x5

n ≺ y1 ≺ y2 ≺
y3 ≺ z1

1 ≺ z2
1 ≺ z3

1 ≺ z1
2 ≺ z2

2 ≺ z3
2 ≺ · · · ≺ z1

m ≺ z2
m ≺ z3

m. Observe
(1) Set

B := {(x5
i , x

1
i ), (x

4
i , x

2
i ) : 1 ≤ i ≤ n} ∪ {(y3, y1)}

∪{(z3
j , z

1
j ) : 1 ≤ j ≤ m} ∪ {αz : z ∈ ∪m

j=1V (Zj)}.

(In Figure 4, the arcs in B are bold lined.) Then for any u, v ∈ V with u ≺ v,
arc (v, u) ∈ A if and only if (v, u) ∈ B;

(2) for every 1 ≤ i ≤ n, there are four triangles

X1
i = x2

ix
3
ix

4
ix

2
i and Xh

i = x1
ix

h
i x

5
ix

1
i , h = 2, 3, 4,

altogether in tournament Xi; and
(3) for every z ∈ ∪m

j=1V (Zj), there are three triangles Y i
z , i = 1, 2, 3, altogether

in T through αz and yi.
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It follows from (1) that every triangle in T contains one or two arcs in B. Fur-
thermore, since no two arcs in B − {αz : z ∈ ∪m

j=1V (Zj)} have a common end, from
the construction of T and (2) we see that

(4) every triangle of T is either in {Xh
i : 1 ≤ h ≤ 4, 1 ≤ i ≤ n} ∪ {Y } ∪ {Zj : 1 ≤

j ≤ m} or contains αz for some z ∈ ∪m
j=1V (Zj).

Now we are ready to show that the vertex set of T can be partitioned into two
FVSs if and only if the Not-All-Equal-3SAT instance c1∧c2∧· · ·∧cm is satisfiable.

Sufficiency. Suppose there is a truth assignment for {λ1, λ2, . . . , λn} such that
each clause cj , 1 ≤ j ≤ m, contains at least one true literal and at least one false
literal. Set

• X := {x1
i : λi is true, 1 ≤ i ≤ n} ∪ {x5

i : λi is false, 1 ≤ i ≤ n};
• X̄ := {x1

i : λi is false, 1 ≤ i ≤ n} ∪ {x5
i : λi is true, 1 ≤ i ≤ n};

• Z := {z ∈ ∪m
j=1V (Zj) : αz = (z, x), x ∈ X}; and

• Z̄ := ∪m
j=1V (Zj) − Z = {z ∈ ∪m

j=1V (Zj) : αz = (z, x), x ∈ X̄}.
It is easy to see that

(5) |X ∩ V (Xh
i )| = |X̄ ∩ V (Xh

i )| = 1 for every h = 2, 3, 4 and 1 ≤ i ≤ n;
(6) for every z ∈ ∪m

j=1V (Zj), if the head of αz is in X (resp., X̄), then its tail is

in Z (resp., Z̄); and
(7) V is the disjoint union of two sets

– S1 := X ∪ Z̄ ∪ {x2
i : 1 ≤ i ≤ n} ∪ {y1} and

– S2 := X̄ ∪ Z ∪ {x3
i , x

4
i : 1 ≤ i ≤ n} ∪ {y2, y3}.

We claim that both S1 and S2 are FVSs of T . To justify this, let C be an
arbitrary triangle C of T . Let us show that C meets both S1 and S2. By (5) and (6),
the statement holds if C ∈ {Xh

i : h = 2, 3, 4; 1 ≤ i ≤ n} or if C contains some αz. If
C = X1

i for some 1 ≤ i ≤ n, then we derive from (2) and (7) that x2
i ∈ V (C) ∩ S1

and x3
i ∈ V (C) ∩ S2. If C = Y , then y1 ∈ V (C) ∩ S1 and y2 ∈ V (C) ∩ S2. So by

(4) it remains to consider the case when C = Zj for some 1 ≤ j ≤ m. Recall that
chj is true and cij is false for some 1 ≤ h �= i ≤ 3. From (iv) and the definitions of

X and X̄, we deduce that x ∈ X and x′ ∈ X̄, where (zhj , x) and (zij , x
′) are arcs

associated to zhj and zij , respectively, as described in (iv). It follows from (6) and (7)

that zhj ∈ Z ∩ V (C) ⊆ S2 ∩ V (C) and zij ∈ Z̄ ∩ V (C) ⊆ S1 ∩ V (C). Therefore both
S1 and S2 are FVSs of T , as claimed. By (7), we are done.

Necessity. Suppose the vertex set of T can be partitioned into two FVSs S1 and
S2. For 1 ≤ i ≤ n, set λi to be true if x1

i ∈ S1 and false otherwise. Let us show that
this assignment enables every cj , 1 ≤ j ≤ m, to contain at least one true literal and
at least one false literal. To this end, we first show that

(8) |{x1
i , x

5
i } ∩ S1| = |{x1

i , x
5
i } ∩ S2| = 1 for all 1 ≤ i ≤ n.

Indeed, by (2), we have xg
i ∈ S1 ∩ V (X1

i ) and xh
i ∈ S2 ∩ V (X1

i ) for some 2 ≤
g �= h ≤ 4. This, in turn, implies that {x1

i , x
5
i } ∩ S2 �= ∅ and {x1

i , x
5
i } ∩ S1 �= ∅ by

considering triangles Xg
i = x1

ix
g
i x

5
ix

1
i and Xh

i = x1
ix

h
i x

5
ix

1
i . So (8) is established.

Next we observe that
(9) |{x, z} ∩ S1| = |{x, z} ∩ S2| = 1 for all αz = (z, x) with z ∈ ∪m

j=1V (Zj) and

x ∈ {x1
i , x

5
i : 1 ≤ i ≤ n}.

Indeed, by (iii) and the definition of S1 and S2, triangle y1y2y3y1 contains yg ∈ S1

and yh ∈ S2 for some 1 ≤ g �= h ≤ 3. Recall (3), T contains triangles Y i
z = xyizx, i =

1, 2, 3. Now using triangles Y g
z and Y h

z , we obtain {x, z}∩S2 �= ∅ and {x, z}∩S1 �= ∅.
Hence (9) holds.

For 1 ≤ j ≤ m, by (ii) triangle Zj contains some zgj ∈ S1 and zhj ∈ S2. Suppose

(zgj , x) and (zhj , x
′) are arcs associated to zgj and zhj , respectively, as described in (iv),
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where {x, x′} ⊆ {x1
i , x

5
i : 1 ≤ i ≤ n}. It follows from (9) that x ∈ S2 and x′ ∈ S1.

Suppose x ∈ {x1
i , x

5
i } for some 1 ≤ i ≤ n.

• If x = x1
i , then, by (iv), cgj = λi is false as x1

i �∈ S1;

• if x = x5
i , then, by (8), x1

i ∈ S1. So λi is true, and hence, by (iv), cgj = λ̄i is
false.

Therefore cgj is false (in either case). Similarly, it can be deduced from x′ ∈ S1 that

chj is true. Hence cj contains both false literal cgj and true literal chj ; equivalently,
c1 ∧ c2 ∧ · · · ∧ cm is satisfiable, completing the proof.

4. Algorithms. For simplicity, we use the same notations as introduced before.
In particular, given a tournament T = (V,A) and a weight function w ∈ ZV

+, let τw
denote the minimum weight of a triangle in T , and let νw denote the maximum size
of a w-FVS packing of T .

For the case when T contains no F1 nor F2, we present the following algorithm
for finding an optimal w-FVS packing of size νw.

Algorithm Opt Pack Optimal FVS Packing

Input A tournament T = (V,A) with no F1 nor F2 and a weight w ∈ ZV
+

Output A maximum w-FVS packing S of T with |S| = νw
1. τw ← the minimum weight of a triangle in T
2. if τw = 0 or T is acyclic, then return S ← ∅
3. if ∃ z ∈ V with w(z) ≥ τw, then
4. if T\z is acyclic, then return S ← {Si : Si = {z}, i = 1, 2, . . . , τw}
5. else {Si : 1 ≤ i ≤ τw|V −{z}} ← Opt Pack(T\z, w|V−{z})

return S ← {{z} ∪ Si : 1 ≤ i ≤ τw}
6. S ← {v ∈ V : w(v) ≥ 1}, R ← a subset of S with |R ∩ V (C)| = 1 for all

C ∈ DS ∪ FS

7. δ ← min{w(v) : v ∈ R}, w′(v) ← w(v) − δ|R ∩ {v}| for all v ∈ V
8. return S ← {Si : Si = R, i = 1, 2, . . . , δ}∪ Opt Pack(T,w′)

Remark. Note that S is a collection of FVSs of T with size νw, which obviously
yields a w-FVS packing of T with the same size.

Theorem 4.1. Let T = (V,A) be a tournament with no F1 nor F2. Then
Algorithm Optimal FVS Packing solves the FVS packing problem on T exactly in
O(|V |4) time.

Proof. The correctness of the algorithm follows instantly from the proof of The-
orem 1.2. Let us now estimate the time complexity of the algorithm.

Note that either in steps 3–5 one vertex z is eliminated from our consideration
or in step 7 the weight of at least one vertex becomes zero (from nonzero one). So
the whole algorithm takes O(|V |) iterations. From Lemma 2.5, we can conclude that
each iteration takes O(|V |3) time. Hence the total running time of the algorithm is
O(|V |4).

Let us proceed to the FVS packing problem on a general tournament T . For this
general case, we can easily obtain a 1/3-approximation algorithm: Set R = ∅. While
T contains a triangle C, do: let v be a vertex in V (C) of maximum weight. Set
R = R ∪ {v} and T = T\v. Obviously, {R,R, . . . , R}, where the multiplicity of R is
min{w(v) : v ∈ R}, is an FVS packing in the original T with size at least 1

3νw. By
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exploiting the structural characterization given in our min-max theorem and using
the above exact algorithm as a subroutine, we can obtain a better approximation
algorithm based on the subgraph removal technique.

Algorithm Apx Pack Approximate FVS Packing

Input A tournament T = (V,A) and a weight w ∈ ZV
+

Output A w-FVS packing S of T with |S| ≥ 2
5νw

1. τw ← the minimum weight of a triangle in T , R ← ∅
2. if τw = 0 or T is acyclic, then return S ← ∅
3. while T contains a subtournament F isomorphic to F1 or F2 do
4. v ← a vertex in V (F ) of maximum weight, R ← R ∪ {v}, T ← T\v
5. end-while
6. S ′ = {Si : 1 ≤ i ≤ τw|V (T )

} ← Opt Pack(T,w|V (T )), δ ← min{w(v) : v ∈ R}
7. if S ′ = ∅, then return S ← {Si : Si = R, i = 1, 2, . . . , δ}
8. else return S ← {Si ∪R : i = 1, 2, . . . ,min{τw|V (T )

, δ}}

Remark. Again S is a collection of FVSs of T , which obviously yields a w-FVS
packing of T with the same size.

Theorem 4.2. Let T = (V,A) be an arbitrary tournament. Then Algorithm
Approximate FVS Packing approximates the FVS packing problem on T within a
factor of 2/5 in O(|V |4) time.

Proof. Clearly, S is a collection of FVSs of T . To get the approximation ratio, it
suffices to prove that

(1) |S| ≥ 2
5νw.

For this purpose, we turn to show that
(2) δ ≥ 2

5νw if δ > 0.
To justify (2), let u be a vertex in R with w(u) = δ. Suppose u is added to R

because of subtournament F (recall the while-loop of the algorithm), and suppose S∗

is a w-FVS packing of T with size νw. Since we need to delete at least two vertices in
F in order to destroy all triangles in F , each FVS in S∗ contains at least two vertices
in F . From the definition of a w-FVS packing, we deduce that 2|S∗| ≤

∑
v∈V (F ) w(v).

Since u is a vertex with maximum weight in F and |V (F )| = 5, we have 2νw = 2|S∗| ≤
5w(u) = 5δ, yielding (2).

To establish (1), we may assume τw > 0, for otherwise the statement holds triv-
ially. So we have δ > 0 when R �= ∅. If S ′ = ∅, then it follows from (2) and step 7 of
the algorithm that (1) holds. Otherwise, τw|V (T )

in step 6 of the algorithm is at least
τw(≥ νw). Thus from step 8 of the algorithm we can also conclude (1).

It was shown in [1] that F in step 3 can be obtained in O(|V |2) time if it ex-
ists. Thus we deduce from Theorem 4.1 that Approximate FVS Packing runs in
O(|V |4) time.

It is easy to see that Theorems 1.7 and 1.8 follow from the above two theorems,
respectively.

5. Concluding remarks. In this paper we have characterized all tournaments
T with Mengerian hypergraph b(CT ). Coincidently, b(CT ) is Mengerian if and only if
CT is. Major open problems in this research direction are to characterize all digraphs
G with Mengerian CG and those with Mengerian b(CG). The arc versions of these
problems are equally interesting. While these problems are extremely hard in general,
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Guenin and Thomas [14] successfully characterized all digraphs that pack, where a
digraph G packs if for any subdigraph H of G the maximum number of disjoint cycles
is equal to the minimum number of vertices in a feedback vertex set in H. Guenin
strongly believes that the blocker version of their theorem holds on exactly the same
digraphs.

Conjecture 5.1 ([13]). A digraph G packs if and only if for any subdigraph H of
G the maximum number of disjoint feedback vertex sets is equal to the length of the
shortest cycle in H.

We close this paper by the aforementioned Woodall’s conjecture on packing feed-
back arc sets.

Conjecture 5.2 ([20]). In any planar digraph the maximum number of disjoint
feedback arc sets is equal to the length of the shortest cycle.

Certainly, these two beautiful conjectures deserve arduous research efforts.

Acknowledgment. The authors are grateful to two anonymous referees for their
invaluable comments and suggestions.
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