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CONTROL LYAPUNOV FUNCTIONS AND ZUBOV’S METHOD

FABIO CAMILLI, LARS GRÜNE, AND FABIAN WIRTH

Abstract. For finite dimensional nonlinear control systems we study the re-

lation between asymptotic null-controllability and control Lyapunov functions.

It is shown that control Lyapunov functions may be constructed on the domain
of asymptotic null-controllability as viscosity solutions of a first order PDE that

generalizes Zubov’s equation. The solution is also given as the value function

of an optimal control problem from which several regularity results may be
obtained.

1. Introduction

A fundamental question in the qualitative theory of dynamical systems concerns
the stability of fixed points or more generally attractors. In his seminal thesis
Lyapunov showed that a sufficient stability condition can be obtained in terms of
a positive definite function that decreases along the trajectories of the system, or
as we say today the existence of a Lyapunov function implies asymptotic stability.
Converse theorems state that certain stability properties imply the existence of a
Lyapunov function. Early results in this direction were obtained by Persidskii, see
the discussion in [19, Chapter VI], Massera [24] and Kurzweil [20]. However, in re-
cent times these results have been extended in several directions to cover perturbed
systems and differential inclusions [22, 11, 35].

While for linear systems a constructive procedure to find Lyapunov functions has
already been given by Lyapunov, the first general constructive procedure to find
Lyapunov functions was obtained by Zubov [37]. Namely, a Lyapunov function on
the domain of attraction of an asymptotically stable fixed point x∗ ∈ Rn of the
system

ẋ(t) = f(x(t)) , t ∈ R, x ∈ Rn

may be found by solving the 1st order PDE, called Zubov’s equation,

Dv(x)f(x) = −h(x)(1− v(x))
√

1 + ‖f‖2 x ∈ Rn ,

under the condition that v(0) = 0. Here h is an auxiliary function, see [37, 19]
for details. This method has been recently extended by the authors to the case of
perturbed systems, see [8] where also a discussion of the impact of Zubov’s result
may be found. Further constructive approaches valid for C2 systems and based
on approximations by radial basis functions, respectively on a linear programming
approach have recently been described in [17, 18].

In this paper we investigate the question of existence of Lyapunov functions for
systems with inputs or control systems. While for (perturbed) ordinary differential
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equations the property of interest is stability, for systems with control inputs a
basic question concerns the existence of control functions steering the system to a
desired target. Consider a control system

(1.1) ẋ(t) = f(x(t), u(t)) ,

where x ∈ Rn denotes the state, u ∈ Rm denotes the input, and where f is suffi-
ciently regular with f(0, 0) = 0. We call a point x0 ∈ Rn asymptotically controllable
to 0 if there exists a measurable, essentially bounded function u0 : R+ → Rm such
that the corresponding solution ϕ(t, x0, u0) of (1.1) satisfies ϕ(t, x0, u0) → 0 for
t→∞. The domain of asymptotic null-controllability is the collection of all points
that are asymptotically controllable to 0.

Also for this concept there is a Lyapunov theory which has received widespread
attention in recent years. In contrast to the case of ordinary differential equations,
where smooth Lyapunov functions always exist for asymptotically stable systems,
it is not reasonable to require too many regularity properties of Lyapunov functions
for controllability questions. For this reason it is now standard to formulate the
concept of a control Lyapunov function in nondifferential terms. To formulate this
recall that a function V : Rn → R is called positive definite, if V (x) ≥ 0 for all
x ∈ Rn and V (x) = 0 iff x = 0. The function V is proper if preimages of compact
sets are compact. A positive definite, proper function V is called a control-Lyapunov
function (CLF) for (1.1) if there is a positive definite function W such that for every
compact set X ⊂ Rn there is a compact set UX of control values so that V is a
continuous viscosity supersolution of

(1.2) max
u∈UX

−DV (x)f(x, u) ≥W (x) , x ∈ X .

For the definition of viscosity solutions we refer to [4]. In many articles control
Lyapunov functions are defined in terms of proximal subgradients of V , but the
two notions are in fact equivalent, [9].

While design techniques using Lyapunov functions have been popular in applied
control theory for a long time, the systematic study of control Lyapunov functions
only started with Artstein [1], who proved for the case of systems affine in the con-
trol term u that the existence of a smooth CLF is equivalent to stabilizability by
continuous state feedback. For general systems of the form (1.1) the existence of a
global continuous CLF is equivalent to global asymptotic null controllability [29].
Interestingly, the existence of a differentiable CLF is equivalent to the existence of
(discontinuous) stabilizing feedbacks that are robust with respect to measurements
in the state, [21]. Now in general asymptotic nullcontrollability does not imply the
existence of continuous stabilizing feedback as there may be topological obstruc-
tions to this which even carry over to the case of upper semicontinuous set-valued
feedbacks, [7, 12, 27]. For this reason discontinuous feedbacks and associated solu-
tion concepts have been one of the focal points of the research on CLF’s in recent
times starting with [10]. In this context it has been shown by Clarke et al. [9], Rif-
ford [25, 26] using tools from nonsmooth analysis that semiconcavity of the CLF is
an essential tool in order to establish the existence of feedback with nice properties.

Usually, the knowledge of a CLF requests a certain structure of the control sys-
tem, while a general procedure for its determination is not available. Constructive
approaches have therefore received widespread attention in literature, most notably
with techniques known as backstepping and forwarding [16, 28], which however, rely
heavily on the differentiability of the CLF that is obtained. In this article we aim to
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derive a constructive approach by going back to the original ideas for the construc-
tion of control Lyapunov functions. Here constructive is to be understood in the
way that we determine a class of PDEs which have unique solutions in the viscosity
sense that are control Lyapunov functions.

It is a classical approach to the problem to regard CLFs as solutions of a steady
state Hamilton-Jacobi (HJ) equation. In the uncontrolled case this may be regarded
as one of the central elements of the work of Zubov [19]. In [15] the connection
between smooth CLFs and HJ equations has been studied in detail. In particular,
it is shown in that paper that smooth CLFs may always be interpreted as value
functions of an appropriate optimal control problem. This ”inverse optimality”
property can be exploited in several ways [16]. In a different approach, in [14]
a CLF was obtained by truncating series expansion of analytical solutions of HJ
equations in an approach very similar to original studies around Zubov’s equation.

In the present paper we use ideas from [8] where, for the case of a perturbed
system, the classical Zubov method was reinterpreted using a suitable notion of
weak solution. For controlled or perturbed systems Zubov’s equation becomes a
nonlinear 1st order PDE of Hamilton-Jacobi type and it is well known that this class
of equations does not admit, in general, classical solutions. Therefore a suitable
concept of weak solution has to be introduced and the one of viscosity solution
seems to be appropriate, see [8], [23].

We use this generalization of Zubov’s method to construct a CLF for a finite
dimensional nonlinear control system, that is asymptotically null controllable in a
neighborhood of the origin. Our aim is to determine a CLF as (i) an optimal value
function of a suitable control problem and (ii) as unique viscosity solution to a
suitable HJ equations which is a generalization of the Zubov’s equation.

Concerning the first point, i.e. the connection between CLF and optimal control
problems, our procedure can be viewed as an extension of [29] where the equiva-
lence between asymptotic null controllability and the existence of a CLF has been
proved using an optimal control approach. The significant advantage of the charac-
terization of a CLF as unique viscosity solution of the generalized Zubov equation
is that it can used as the basis for its numerical approximation.

From the point of view of the PDE approach the equation presents some diffi-
culties when attacked using the standard theory of viscosity solution because of the
unbounded control set, see [5], [13], [34], [33] for related papers. In the proof of the
necessary comparison result we use the local asymptotic controllability to obtain a
local comparison result in a neighborhood of the origin. We then extend the com-
parison result to all Rn taking advantage, as in the classical Zubov method, of the
freedom in the choice of cost function of the associated control problem. For this
reason we can make rather general assumptions on the dependence of the dynamics
respect to the control variable compensating them with an appropriate choice of
the cost.

We proceed as follows: In the ensuing Section 2 the class of systems under consid-
eration is defined and we prove some preliminary results. In Section 3 the optimal
control problem that characterizes the domain of asymptotic null controllability is
introduced and it is shown that under suitable conditions the corresponding value
function is continuous, positive definite and proper on the domain of asymptotic
null-controllability. In Section 4 we show that the value function of the optimal
control problem is the unique viscosity solution of the generalized Zubov equation.
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In Section 5 we discuss an approximation of the problem with unbounded control
set with a sequence of problems with bounded control set. In the last section we
discuss the necessity of our assumptions at the hand of a few examples. It is also
shown that for the classical linear quadratic control problem the general equations
of this paper reduce to the standard algebraic Riccati equation.

2. The domain of null controllability

We consider nonlinear control systems of the type

(2.1) ẋ(t) = f(x(t), u(t))

where f : Rn × U → R is continuous, U ⊂ Rm is a closed set and the space of
admissible control functions is given by

u ∈ U := L∞([0,∞), U)

Solutions corresponding to an initial value x and a control u ∈ U at time t are
denoted by ϕ(t, x, u), which are defined on a maximal positive interval of definition
[0, Tmax(x, u)), where we do not exclude the case that Tmax(x, u)) < ∞. i.e. that
solutions explode. In the following the open ball of radius r around a point z ∈ Rp

is denoted by B(z, r).
Uniqueness of solutions is a consequence of our further standard assumption on

f These are formulated using comparison functions, a fashionable approach these
days.1

(H0)

There exists γ ∈ K∞ such that for any R > 0 there is CR > 0 with

‖f(x, u)− f(y, u)‖ ≤ CR(1 + γ(‖u‖))‖x− y‖ ,
for all x, y with ‖x‖, ‖y‖ ≤ R,

(H1) f(0, 0) = 0,

(H2)

There exists an open ball B(0, r), a constant ū > 0, and β ∈ KL
such that for any x ∈ B(0, r) there exists ux ∈ U with ‖ux‖∞ ≤ ū,
Tmax(x, ux) = ∞ and

‖ϕ(t, x, ux)‖ ≤ β(‖x‖, t) , ∀t ≥ 0 .

Remark 2.1. The Lipschitz assumption (H0) is weaker than the following assump-
tion:

(2.2)

For any R > 0 there exists CR > 0 with

‖f(x, u)− f(y, u)‖ ≤ CR(1 + ‖u‖)‖x− y‖ ,
for all x, y with ‖x‖, ‖y‖ ≤ R,

Assumption (2.2) is used in many papers on viscosity solutions, in particular in
[33, 34], whose results we will use later. In order to be able to use these results
under the weaker assumption (H0) we define the map R : Rm → Rm by R(u) =
γ−1(‖u‖)u/‖u‖ and consider the vector field

f̂(x, u) = f(x,R(u))

1As usual we call a function α of class K∞ if it is a homeomorphism of [0,∞), a continuous

function β in two real nonnegative arguments is called of class KL if it is of class K∞ in the first

and decreasing to zero in the second argument.



CONTROL LYAPUNOV FUNCTIONS AND ZUBOV’S METHOD 5

with u ∈ Ũ := R−1(U). This input transformed system satisfies

‖f̂(x, u)− f̂(y, u)‖ ≤ CR(1 + γ(‖R(u)‖))‖x− y‖ = CR(1 + ‖u‖)‖x− y‖,

i.e., (2.2). Hence by applying the results from [33, 34] to f̂ these immediately carry
over to f under the weaker assumption (H0).

Property (H2) is a local asymptotic controllability property, which ensures that
at least from a neighborhood of 0 the system may be steered to 0.

For certain systems it makes sense to strengthen this local asymptotic control-
lability property (H2) by requiring that ux is not only bounded but also converges
to 0 as t → ∞. In this case we can strengthen (H2) to the so-called small control
property

(H2’)
There exists an open ball B(0, r) and β ∈ KL such that for any
x ∈ B(0, r) there exists ux ∈ U with Tmax(x, ux) = ∞ and

‖ϕ(t, x, ux)‖+ ‖ux(t)‖ ≤ β(‖x‖, t) , a.e. t ≥ 0 .

Note that (H2’) implies (H2) with ū = β(r, 0). It is known [30] that for any
β ∈ KL there exist two functions α1, α2 ∈ K∞ such that β(r, t) ≤ α2(α1(r)e−t).
For ease of presentation we will work with these two functions from now on. Fur-
thermore, we will from now on tacitly assume that Tmax(x, u) = ∞, if we write
ϕ(t, x, u) → 0 as t→∞.

We define the domain of null controllability by

D0 := {x ∈ Rn | there exists u ∈ U with ‖ϕ(t, x, u)‖ → 0 for t→∞} ,
and the first hitting time with respect to B(0, r) by

t(x, u) := inf{t ≥ 0 |ϕ(t, x, u) ∈ B(0, r)} ,
with the convention inf ∅ = ∞. The following lemma shows how D0 and t(x, u) are
related.

Lemma 2.2. The set D0 is given by

D0 = {x ∈ Rn | inf
u∈U

t(x, u) <∞}.

Proof. If we find u ∈ U with t(x, u) < ∞ then for some t(x, u) < t1 we have
ϕ(t1, x, u) ∈ B(0, r) and we can concatenate u|[0,t1] with the control uϕ(t1,x,u) from
(H1), which implies ϕ(t, x, u) → 0. Hence we obtain

D0 ⊆ {x ∈ Rn | inf
u∈U

t(x, u) <∞}.

Conversely, if x ∈ D0 then we have ϕ(t, x, u) → 0 for some suitable u ∈ U , which
implies ϕ(t1, x, u) ∈ B(0, r) for some t1 > 0 and consequently t(x, u) ≤ t1 < ∞
which implies the converse direction. �

For the formulation of the next result recall that a set M is called viable (or
controlled or weakly invariant) if for every x ∈ M there is a u ∈ U such that
ϕ(t, x, u) ∈M for all t ≥ 0. In the following the convex hull of a set M is denoted
by convM .

Proposition 2.3. Assume (H0), (H1) and (H2) or (H2’). Then the following
properties hold.
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(i) clB(0, r) ⊂ D0,
(ii) the set D0 is open, connected and viable.

Proof. (i): It is clear that B(0, r) ⊂ D0 so assume that for some x ∈ ∂B(0, r)
we have x /∈ D0. Let {xn} ⊂ B(0, r) be a sequence with limn→∞ xn = x. By
assumption to each xn there exists a control un ∈ U ∩ L∞(R, B(0, ū)) such that
‖ϕ(t, xn, un)‖ ≤ α2(α1(r)e−t). This shows that on each compact interval the so-
lutions are bounded uniformly in n. Furthermore, they are equicontinuous by the
boundedness of f on clB(0, r) × (B(0, ū) ∩ U). Thus by the Arzela-Ascoli theo-
rem and a diagonal sequence argument we may choose a subsequence satisfying
x(·, xn, un) → y(·) uniformly on compact intervals. By [2, Theorem 2.2.1] it follows
that y is a solution of

ẏ ∈ conv f(y, U ∩B(0, ū)) .
By construction ‖y(t)‖ ≤ α2(α1(r)e−t), so that y(t) ∈ B(0, r/2) for some t large
enough. Now by [2, Theorem 2.4.2] there are controls vn ∈ U ∩L∞(R, B(0, ū)) such
that x(·, x, vn) converges uniformly to y on [0, t]. It follows that x(t, x, vn) ∈ B(0, r)
for some n large enough which shows that x can be asymptotically steered to 0.

(ii): Let x0 ∈ D0 and u ∈ U with ϕ(t, x0, u) → 0 for t → ∞. Then there exists
T > 0 such that ϕ(T, x0, u) ∈ B(0, r). By continuous dependence on the initial
value we obtain

ϕ(T, x, u) ∈ B(0, r)
for all x in a neighborhood of x0. Thus t(·, u) is finite on that neighborhood which
shows that it is contained in D0. As x0 was arbitrary this shows the assertion.

Since for any x ∈ D0 there exists a trajectory from x to B(0, r) we obtain that
D0 is connected.

In order to see viability, consider a point x ∈ D0 and the trajectory ϕ(t, x, u) → 0.
Clearly, each point x(t) = ϕ(t, x, u), t ≥ 0 can be controlled to the origin by the
control u(t + ·), thus x(t) ∈ D0 and hence ϕ(t, x, u) ∈ D0 for all t ≥ 0, i.e., D0 is
viable. �

Remark 2.4. Note that the domain of nullcontrollability D0 is in general not dif-
feomorphic to Rn. This is in contrast to the theory of domains of attraction of
(perturbed) ordinary differential equations. In the case of asymptotically stable
fixed points the domain of attraction is diffeomorphic to Rn even for perturbed
systems, see e.g. [8, 36].

3. Characterization of D0 using Optimal Control

In this section we describe how to characterize the domain of asymptotic null-
controllability via an optimal control problem and show continuity of the corre-
sponding value function. In order to set up the problem we need a running cost
g : Rn × U → R. The assumptions on g are as follows:

(H3)
The function g : Rn × U → R is continuous and satisfies (H0) with
the same γ ∈ K∞ as f . Furthermore, for all c > 0 we have

inf {g(x, u) | ‖x‖ ≥ c, u ∈ U} =: gc > 0 .

We need to ensure convergence of the integral cost that is introduced shortly
for the “right” stabilizing solutions. To this end using the simplification β(r, t) ≤
α2(α1(r)e−t) for β from (H2) and some arbitrary η > 0 we assume that there is a
constant C > 0 such that
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(H4) g(x, u) ≤ C(α−1
2 (‖x‖))η for all (x, u) ∈ B(0, r)×B(0, ū) .

(H5) g(x, u) ≥ ‖f(x, u)‖+ γ(‖u‖) whenever ‖x‖ ≥ 2r or ‖u‖ ≥ 2ū .

Remark 3.1. If the small control asymptotic controllability property (H2’) holds
then we can weaken assumption (H4) to

(H4’) g(x, u) ≤ C(α−1
2 (‖x‖+ ‖u‖))η for all (x, u) ∈ B(0, r)×B(0, ū) .

In what follows we will always assume that either (H2) and (H4) or (H2’) and
(H4’) hold.

We now define the functional

(3.1) J(x, u) :=
{∫∞

0
g(ϕ(t, x, u), u(t))dt , if Tmax(x, u) = ∞

∞ else ,

the (extended real valued) optimal value function

(3.2) V (x) := inf
u∈U

J(x, u) , x ∈ Rn ,

and the function

(3.3) v(x) := 1− e−V (x) , x ∈ Rn .

Note that both V and v satisfy appropriate dynamic programming principles,
i.e., for each T > 0 we have

(3.4) V (x) = inf
u∈U

{∫ T

0

g(ϕ(t, x, u), u(t))dt+ V (ϕ(T, x, u))

}
,

and

(3.5) v(x) = inf
u∈U

{1 +G(x, T, u)(v(ϕ(T, x, u))− 1)} ,

where

G(x, T, u) := exp

(
−
∫ T

0

g(ϕ(t, x, u), u(t))dt

)
.

We now investigate the properties of V and v. For this purpose we need the
following observation on the solutions of (2.1). Using the function γ from (H0) we
define for u ∈ U

‖u‖γ,T :=
∫ T

0

γ(‖u(t)‖)dt .

Lemma 3.2. Let T > 0. If x ∈ Rn and u ∈ U are such that ‖ϕ(t, x, u)‖ ≥ 2r, t ∈
[0, T ] or ‖u(t)‖ ≥ 2ū a.e. t ∈ [0, T ], then∫ T

0

g(ϕ(t, x, u), u(t))dt ≥ ‖ϕ(T, x, u)− x‖+ ‖u‖γ,T

Proof. Using (H5) we have that∫ T

0

g(ϕ(t, x, u), u(t))dt ≥
∫ T

0

‖f(ϕ(t, x, u), u(t))‖dt+
∫ T

0

γ(‖u(t)‖)dt ,

and the claim follows. �

Proposition 3.3. Assume (H0)–(H4) or (H0)–H(2’)–(H4’). Then
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(i) the inequalities V (x) <∞ and v(x) < 1 hold if and only if x ∈ D0,
(ii) if in addition (H5) holds, then V (x) = 0 ⇔ x = 0 and v(x) = 0 ⇔ x = 0.

Proof. From the definition of v it immediately follows that that the claims for V
and v are equivalent. We show the statements for V .

(i) Pick a point x ∈ D0. Then there exists u ∈ U and t1 > 0 such that
‖ϕ(t1, x, u)‖ ≤ α−1

1 ◦ α−1
2 (r). (Note that α−1

1 ◦ α−1
2 (r) ≤ r follows from the def-

inition of α1, α2.) By asumption (H1) we can assume (by changing u on [t1,∞)
if necessary) that ‖ϕ(t1 + t, x, u)‖ ≤ α2(α1(‖ϕ(t1, x, u)‖)e−t) ≤ r for all t ≥ 0.
Since u ∈ U = L∞([0,∞), U) is essentially bounded we can find ũ > 0 such that
‖u(t)‖ ≤ ũ for almost all t ≥ 0. Furthermore, by continuity of ϕ(t, x, u) in t we
find R > 0 such that ‖ϕ(t, x, u)‖ ≤ R for all t ∈ [0, t1]. Hence using (H4) we can
estimate

V (x) ≤
∫ t1

0

g(ϕ(t, x, u), u(t))dt+
∫ ∞

t1

g(ϕ(t, x, u), u(t))dt

≤ t1 sup
x∈B(0,R),u∈B(0,ũ)

g(x, u) +
∫ ∞

t1

C(α−1
2 (‖ϕ(t, x, u), u(t))‖))ηdt(3.6)

≤ t1 sup
x∈B(0,R),u∈B(0,ũ)

g(x, u) +
C

η
α1(‖ϕ(t1, x, u)‖)η < ∞ .

If (H2’) and (H4’) hold, then the proof is completely analogous.
Conversely, let x 6∈ D0. Then we obtain t(x, u) = ∞ for all u ∈ U which implies

J(x, u) =
∫ ∞

0

g(ϕ(t, x, u), u(t))dt ≥
∫ ∞

0

grdt = ∞

for each u ∈ U and thus also V (x) = infu∈U J(x, u) = ∞.
(ii) It is clear that V (0) = 0, so let x 6= 0. Assume to the contrary that there is

a sequence {uk} ⊂ U such that J(x, uk) → 0. Let c := ‖x‖/2 and denote

tk := inf{t ≥ 0 | ‖ϕ(t, x, uk)‖ ≤ c} .

By (H3) we have for all k that J(x, uk) ≥
∫ tk

0
g(ϕ(s, x, uk), uk(s))ds ≥ tkgc which

implies that tk → 0. Now ‖f‖ is bounded on B(0, 2r) × B(0, 2ū) by the constant
C := C2r(1 + γ(2ū))2r. Denote

E(k) := {t ∈ [0, tk] | (ϕ(t, x, uk), u(t)) ∈ B(0, 2r)×B(0, 2ū)} ,
which is well defined up to a set of measure zero. Then∫

E(k)

‖f(ϕ(t, x, uk), uk(t))‖dt ≤ tkC .

On the other hand we have for all k that∫ tk

0

‖f(ϕ(t, x, uk), uk(t))‖dt ≥ ‖x− ϕ(tk, x, uk)‖ ≥ c .

Using (H5) this implies that

J(x, uk) ≥
∫

[0,tk]\E(k)

g(ϕ(s, x, uk), uk(s))ds

≥
∫

[0,tk]\E(k)

‖f(ϕ(s, x, uk), uk(s))‖ds ≥ c− tkC .

As tk → 0 this contradicts J(x, uk) → 0. �
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Next we turn to the investigation of the regularity properties of the functions V
and v. We start by proving continuity properties for the trajectories of (2.1).

Lemma 3.4. Assume (H0) and let T > 0 and R > 0 be arbitrary constants. Then
for all x, y ∈ Rn and all u ∈ U satisfying

‖ϕ(t, x, u)‖ ≤ R, ‖ϕ(t, y, u)‖ ≤ R , ∀t ∈ [0, T ]

we have

(3.7) ‖ϕ(t, x, u)− ϕ(t, y, u)‖ ≤ eCR(‖u‖γ,t+t)‖x− y‖ ,
for all t ∈ [0, T ].

Proof. The assumption (H0) yields for almost all t ∈ [0, T ]
‖f(ϕ(t, x, u), u(t))− f(ϕ(t, y, u), u(t))‖ ≤
CR(1 + γ(‖u(t)‖))‖ϕ(t, x, u)− ϕ(t, y, u)‖.

(3.8)

Using (3.8) Gronwall’s Lemma we then obtain

‖ϕ(t, x, u)− ϕ(t, y, u)‖ ≤ eCR(
∫ t
0 (1+γ(‖u‖))dt)‖x− y‖ ,

and the assertion follows. �

Using this lemma we can prove the following continuity statement.

Proposition 3.5. Assume (H0)–(H5), where (H2) and (H4) can be replaced by
(H2’) and (H4’). Then V and v are continuous on D0.

Proof. We show the continuity of V , then the statement for v follows immediately
from its definition. The proof is performed in several steps. Throughout the proof
the constants CR, C etc. are those defined in (H0) and (H4), resp. (H4’).

First note that from (3.6) we have

(3.9) V (x) ≤ C

η
α1(‖x‖)η , for x ∈ B(0, α−1

1 ◦ α−1
2 (r)) .

(i) (Local boundedness of V on D0)
Pick an arbitrary x0 ∈ D0 and fix ε > 0. Then there exists a u0 ∈ U such that

J(x0, u0) ≤ V (x0) + ε. Since J(x0, u0) is finite it follows from (H3) there exists a
time T0 > 0 such that ‖ϕ(T0, x0, u0)‖ ≤ α−1

1 ◦ α−1
2 (r)/2. By continuity of ϕ in x

we can pick a ball B(x0, δ) such that

(3.10) ‖ϕ(T0, x, u0)‖ ≤ α−1
1 ◦ α−1

2 (r) , for all x ∈ clB(x0, δ).

We define the set

K = {ϕ(t, x, u0) |x ∈ clB(x0, δ), t ∈ [0, T0]}
which is compact since ϕ is continuous in t and x (recall that u0 is essentially
bounded). Using (3.10) we obtain from Bellman’s optimality principle for all x ∈
B(x0, δ) the inequality

V (x) ≤
∫ T0

0

g(ϕ(t, x, u), u(t))dt+ V (ϕ(T0, x, u))

≤ max
x∈K,u∈B(0,‖u0‖∞)

g(x, u)T +
C

η
α1(r)η,

where we have used (3.9). This shows that supx∈B(x0,δ) V (x) =: BV is finite.
(ii) (Bounds on ε–optimal controls and trajectories)
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For any x ∈ B(x0, δ) and any ε ∈ (0, 1] we pick an ε–optimal control function
ux,ε ∈ U , i.e.,

J(x, ux,ε) ≤ V (x) + ε .

We claim that for any ε, T > 0 the set

Kε := {ϕ(t, x, ux,ε) | t ≥ 0, x ∈ B(x0, δ)}

and the sets
{‖ux,ε‖γ,T | x ∈ B(x0, δ)}

are bounded. If the first set were unbounded then there would be an x ∈ B(x0, δ)
and t1 > 0 such that ‖ϕ(t1, x, ux,ε)‖ ≥ V (x) + 2ε + 2r. If t2 > t1 is the first time
at which ‖ϕ(t1, x, ux,ε)‖ = 2r again, then we obtain using Lemma 3.2 that

J(x, ux,ε) ≥
∫ t2

t1

g(ϕ(t, x, ux,ε), ux,ε(t))dt ≥ ‖ϕ(t1, x, ux,ε)−ϕ(t2, x, ux,ε)‖ ≥ V (x)+2ε ,

a contradiction.
On the other hand, if {‖ux,ε‖γ,T | x ∈ B(x0, δ)} is unbounded for a given T > 0,

then there have to be x, ux,ε such that ‖ux,ε‖γ,T ≥ V (x)+2ε+Tγ(2ū). This implies
that if we integrate over the (measurable) set

E := {t ∈ [0, T ] | ‖ux,ε(t)‖ ≥ 2ū} ,

then we obtain ∫
E

γ(‖ux,ε(t)‖)dt ≥ V (x) + 2ε ,

as the contribution of the integral over [0, T ] \ E to ‖ux,ε‖γ,T can be at most
Tγ(2ū). Using an estimate over the set E and again Lemma 3.2 we obtain again a
contradiction to J(x, ux,ε) ≤ V (x) + ε.

(iii) (Continuity of trajectories)
We denote by Rε an upper bound on the set Kε. By Lemma 3.4 we can conlude

that for x, y ∈ B(x0, δ) and all t ≥ 0 such that

‖x− y‖ ≤ Rε exp(−C2Rε
(‖ux,ε‖γ,t + t))

we have

(3.11) ‖ϕ(t, x, ux,ε)− ϕ(t, y, ux,ε)‖ ≤ exp(C2Rε(‖ux,ε‖γ,t + t)) ‖x− y‖ .

(iv) (Continuity of V )
We show the continuity of V on B(x0, δ). Since x0 ∈ D0 was arbitrary this

proves the proposition. So pick ε > 0 and assume without loss of generality that
ε < α−1

2 (r)C.
From the lower bound gc on g in (H3) and the boundedness of J(x, ux,ε) on

B(x0, δ) it follows that for any ρ > 0 there is a time Tρ such that for x ∈ B(x0, δ)
we have ϕ(t, x, ux,ε) ∈ B(0, ρ) for some t ≤ Tρ. Using (3.9) we may thus assume
that the controls ux,ε are chosen in such a way that there exists Tε > 0 (depending
on BV ) such that for all t ≥ Tε, x ∈ B(0, δ) we have

ϕ(t, x, ux,ε) ∈ B(0, α−1
1 (ε/C)/2) ⊂ B(0, α−1

1 ◦ α−1
2 (r)/2).

Denote
m := exp(−C2Rε( max

z∈B(x0,δ)
‖uz,ε‖γ,Tε + Tε)) ,
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and note that the right hand side is finite by (ii). Choose two points x, y ∈ B(x0, δ)
such that

‖x− y‖ ≤ Rεm.

Without loss of generality assume V (y) ≥ V (x). Abbreviating u := ux,ε, T := Tε

we obtain

|V (y)− V (x)| = V (y)− V (x)

≤ V (y)−
∫ ∞

0

g(ϕ(t, x, u), u(t))dt+ ε

≤
∫ T

0

|g(ϕ(t, y, u), u(t))− g(ϕ(t, x, u), u(t))|dt+ V (ϕ(T, y, u)) + ε

using the Lipschitz condition in (H3) and (3.11) we continue

≤
∫ T

0

C2Rε
(1 + γ(‖u(t)‖))m‖x− y‖dt+ V (ϕ(T, y, u)) + ε

and we obtain

≤ C2Rε
(T + ‖u‖γ,T )m‖x− y‖+ 2ε,

provided ‖y−x‖ ≤ α−1
1 (ηε1/η/C)/(2m), because in this case we obtain from (3.11)

that ϕ(T, y, u) ∈ B(0, α−1
1 (ηε1/η/C)) and thus from (3.9)

V (ϕ(T, y, u)) ≤ C

η
α1(‖ϕ(T, y, u)‖)η ≤ ε.

Thus for any ε ∈ (0, 1] and any x ∈ B(x0, δ) we can find δε > 0 such that |V (y)−
V (x)| ≤ 3ε, for all x, y ∈ B(x0, δ) with ‖x− y‖ ≤ δε. This implies continuity of V
in B(x0, δ) and, since x0 ∈ D0 was arbitrary, continuity on the whole set D0. �

The next proposition makes a statement of the behavior of V (x) near the bound-
ary of D0 or at ∞.

Proposition 3.6. Assume (H0)–(H5) or their respective variants from Remark
3.1. Then for any sequence xk which satisfies dist(xk, ∂D0) → 0 or ‖xk‖ → ∞ we
have V (xk) →∞ and v(xk) → 1. In particular, v is continuous on Rn.

Proof. If ‖xk‖ → ∞, then we have for every n either that xk /∈ D0, in which
case V (xk) = ∞ or xk ∈ D0. In the latter case we have by Lemma 3.2 that
V (xk) ≥ ‖xk‖ − 2r, for all k large enough. This shows the assertion for V and the
conclusion for v is immediate from the definition.

To prove the assertion for dist(xk, ∂D0) → 0, we may now assume that there
exists a sequence xk → x0 ∈ ∂D0 and some C > 0 such that V (xk) ≤ C holds for
all k ∈ N. Pick ε > 0 and for each k choose a control function uk ∈ U such that we
have

J(xk, uk) ≤ V (xk) + ε ≤ C + ε.

Following Step (ii) of the proof of Proposition 3.5 we obtain that {ϕ(t, xk, uk) | t ≥
0, k ∈ N} is bounded and that ‖uk‖γ,t is uniformly bounded in k for all t ≥ 0. Then
we may apply (3.11) as in Step (iv) of the proof of Proposition 3.5 to conclude that
for every t ≥ 0 and every δ > 0 there is a k0 such that ‖ϕ(t, xk, uk)−ϕ(t, x0, uk)‖ < δ
for all k ≥ k0.
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Because of the lower bound on g in (H3) we may assume that there exists T > 0
(independent of n) such that

ϕ(t, xk, uk) ∈ B(0, r/2) for all t ≥ T, k ∈ N.

This implies ϕ(T, x0, uk) ∈ B(0, r/2) for all sufficiently large k ∈ N which in turn
implies x0 ∈ D0. This contradicts x0 ∈ ∂D0 because D0 is open. �

4. Characterizations of V and v by Zubov’s Method

The aim of this section is to characterize the functions V and v introduced in
(3.2) and (3.3) as (the unique) viscosity solutions of the equations

(4.1) sup
u∈U

{−DV (x)f(x, u)− g(x, u)} = 0

and

(4.2) sup
u∈U

{−Dv(x)f(x, u)− (1− v(x))g(x, u)} = 0,

respectively (for the definition of viscosity solution we refer to [6, 4]).
Recalling that V is locally bounded in D0 and v is bounded in Rn, our first result

follows from a standard application of the dynamic programming principles (3.4)
and (3.5), see [4].

Proposition 4.1. Assume (H0) - (H5) or their respective variants. Then the
functions V and v defined in (3.2) and (3.3) are viscosity solutions of (4.1) in D0

and of of (4.2) in Rn, respectively.

Remark 4.2. Note that it follows from these characterizations that v is a control
Lyapunov function on D0 in the usual sense, [32]. In fact, a small calculation shows
that v is a viscosity supersolution on D0 of

inf
u∈U

Dv(x)f(x, u) ≤ −W (x)g‖x‖ ,

where 0 < W (x) < 1 − v(x) for x ∈ D0 \ {0} and g‖x‖ denotes the constant from
(H3) for c = ‖x‖.

The main result in this section will be a uniqueness statement for the equations
(4.1) and (4.2), showing that the above functions are the unique viscosity solutions
of these equations.

In order to obtain such a result we make use of the so called optimality prin-
ciples developed by Soravia [33, 34]. For the application of the results from these
references we need that our system is defined by a bounded vector field f . To this
end we introduce the following rescaled functions.

f̃(x, u) =
f(x, u)

1 + ‖f(x, u)‖
,

g̃(x, u) =
g(x, u)

1 + ‖f(x, u)‖
.

(4.3)

Remark 4.3. The introduction of the vector field f̃ and the running cost g̃ amounts
to nothing more than a rescaling of time, that does not change trajectories or values
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associated to a particular control. To see this let x ∈ Rn, u ∈ U be given. Now
introduce a new time variable τ through the differential equation

dt(τ)
dτ

=
1

1 + ‖f(φ(t(τ), x, u), u(t(τ)))‖
, a.e.,

and a control ũ(τ) := u(t(τ)), a.e. Then the function ψ(τ) := φ(t(τ), x, u) satisfies
the differential equation

dψ(τ)
dτ

=
f(φ(t(τ), x, u), u(t(τ)))

1 + ‖f(φ(t(τ), x, u), u(t(τ)))‖
= f̃(ψ(τ), ũ(τ)) .

So if we consider the system

(4.4) ẋ(t) = f̃(x(t), u(t)) ,

it is easy to see that if f satisfies (H0), (H1) and (H2) or (H2’) then also f̃ satisfies
these properties for suitably adjusted functions γ̃ and β̃. Also the domain of as-
ymptotic nullcontrollability D0 is the same for the systems defined through f and
f̃ .

Finally note, that g̃ clearly satisfies (H4) with a modified decay α̃2, as well as
the first statement of (H3), however, the lower bound gc from (H3) need not exist
because of the division by 1 + ‖f(x, u)‖. Hence below we will impose this property
as an additional assumption.

Consider now the optimal control problem for system (4.4) given by the running
cost g̃. If we assume that both the original as well as the rescaled functions satisfy
(H0)–(H4) then using standard transformation of integral formulas it is also easy
to see that if T (x, u) = ∞ then J̃(x, ũ) = J(x, u), where J̃ defines the value along a
trajectory using the running cost g̃ in the spirit of (3.1). If the solution explodes, i.e.
T (x, u) <∞ then we have so far simply defined the value to be infinity. However,
if we assume (H3) for g̃, then the associated integral of the transformed system also
diverges. In all, this implies the value functions v and V coincide for the optimal
control problems defined through (2.1) and (3.1), respectively (4.4) and using the
running cost g̃ provided it satisfies (H3).

Now we introduce the necessary assumption for our uniqueness statement.

(H6) The rescaled function g̃ satisfies (H3) and, in addition, g̃(x, u) → ∞
as ‖u‖ → ∞ for each x ∈ Rn.

To Zubov’s equations (4.1) and (4.2) we associate the Hamiltonians

HV : Rn × (Rn)∗ → R , HV (x, p) = sup
u∈U

{−f(x, u)p− g(x, u)} ,

and

Hv : Rn × R× (Rn)∗ → R , Hv(x, r, p) = sup
u∈U

{−f(x, u)p− (1− r)g(x, u)} .

From (H5) we obtain that the supremum in these Hamiltonians is attained in a
compact subset of U for r < 1 in the case of Hv. This implies that the Hamiltonians
HV and Hv are locally Lipschitz continuous with respect to their arguments, again
for r < 1 in the case of Hv.

In this section, we will prove the following main theorem of our paper.

Theorem 4.4. Assume that f and g satisfy the assumptions (H0)–(H6) (or their
respective variants from Remark 3.1). Then
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(i) The function v from (3.3) is the unique bounded viscosity solution of (4.2)
with v(0) = 0

(ii) There exists a unique couple (O, V ) such that O is an open set containing
the origin and V is a locally bounded, continuous viscosity solution of (4.1)
in O with V (0) = 0 and V (x) → +∞ for x→ ∂O. Here V is the function
from (3.2).

(iii) The functions v and V characterize the domain of asymptotic controllability
via

D0 = {x ∈ Rn | v(x) < 1} = {x ∈ Rn |V (x) <∞}.
(iv) The functions v and V satisfy v(xk) → 1 and V (xk) →∞ for all sequences

with xk → ∂D0 or ‖xk‖ → ∞.

Note that the condition (H6) in this theorem is on g̃ rather than on g. One way
in order to find such a g would be to construct a suitable function ḡ(x, u) meeting
the assumptions (H0)–(H5) for f and then define g := ḡ(1 + ‖f‖). In fact, this is
very similar to Zubov’s original approach, except that here we use the factor 1+‖f‖
instead of

√
1 + ‖f‖2.

In the proof of Theorem 4.4 we encounter two difficulties: the unbounded de-
pendence of the functions on the control variable and the vanishing of the cost g at
the origin.

To solve the first problem we use the rescaled functions from above. Associated
to these functions we introduce two rescaled equations which share with (4.1) and
(4.2) the same set of sub– and supersolutions.

Lemma 4.5. Assume (H0) for g and g̃ and consider the equations

(4.5) sup
u∈U

{−DṼ (x)f̃(x, u)− g̃(x, u)} = 0

and

(4.6) sup
u∈U

{−Dṽ(x)f̃(x, u)− (1− ṽ(x))g̃(x, u)} = 0.

Then
(i) Any viscosity subsolution of (4.1) is a viscosity subsolution for (4.5) and
vice versa.

(ii) Any viscosity supersolution of (4.1) is a viscosity supersolution for (4.5),
and, if in addition (H6) holds for g̃, then any viscosity supersolution of (4.5)
is also a viscosity supersolution for (4.1).

The same assertions hold for (4.6) and (4.2).

Proof. We prove the lemma for (4.1) and (4.5), the assertions for (4.2) and (4.6)
follow by the same arguments.

(i) If V − is a viscosity subsolution of (4.1), then for any supergradient p of V −

in x we have that
sup
u∈U

{−f(x, u)p− g(x, u)} ≤ 0.

This implies
−f(x, u)p− g(x, u) ≤ 0 for all u ∈ U

and since 1 + ‖f(x, u)‖ is positive, this implies

−f̃(x, u)p− g̃(x, u) = (1 + ‖f(x, u)‖)−1(−f(x, u)p− g(x, u)) ≤ 0 for all u ∈ U,
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which in turn implies
sup
u∈U

{−f̃(x, u)p− g̃(x, u)} ≤ 0,

hence V − is a viscosity supersolution of (4.5).
The converse direction follows by the same argument, since again we multiply

by a positive factor, now 1 + ‖f(x, u)‖.
(ii) Let V + be a viscosity supersolution of (4.1). Then for any subgradient p of

V + in x we have
sup
u∈U

{−f(x, u)p− g(x, u)} ≥ 0.

Now we distinguish two cases:
(a) We can find u∗ ∈ U such that

−f(x, u∗)p− g(x, u∗) ≥ 0

Since 1 + ‖f(x, u∗)‖ is positive we obtain

−f̃(x, u∗)p− g̃(x, u∗) = (1 + ‖f(x, u∗)‖)−1(−f̃(x, u∗)p− g̃(x, u∗)) ≥ 0.

This implies
sup
u∈U

{−f̃(x, u)p− g̃(x, u)} ≥ 0

hence V + is a viscosity supersolution of (4.5).
(b) For all u ∈ U the inequality

−f(x, u)p− g(x, u) ≤ 0

holds. In this case, since 1 + ‖f(x, u)‖ ≥ 1, for all u ∈ U we obtain

−f̃(x, u)p− g̃(x, u) = (1 + ‖f(x, u)‖)−1︸ ︷︷ ︸
≤1

(−f(x, u)p− g(x, u))︸ ︷︷ ︸
≤0

≥ −f(x, u)p− g(x, u).

This implies

sup
u∈U

{−f̃(x, u)p− g̃(x, u)} ≥ sup
u∈U

{−f(x, u)p− g(x, u)} ≥ 0.

Thus also in this case V + is a viscosity supersolution of (4.5).
Conversely, let V + be a viscosity supersolution of (4.5). Then for any subgradient

p of V + in x we have
sup
u∈U

{−f̃(x, u)p− g̃(x, u)} ≥ 0.

Since f̃ is bounded and g̃ grows unbounded in u due to (H6), the supremum over
u is contained in a compact set. Hence by continuity we can find a control value
u∗ ∈ U for which the maximum is attained, i.e.

−f̃(x, u∗)p− g̃(x, u∗) ≥ 0.

Since 1 + ‖f(x, u∗)‖ is positive we obtain

−f(x, u∗)p− g(x, u∗) = (1 + ‖f(x, u∗)‖)(−f̃(x, u∗)p− g̃(x, u∗)) ≥ 0.

This implies
sup
u∈U

{−f(x, u)p− g(x, u)} ≥ 0

hence V + is a viscosity supersolution of (4.1). �

The following corollary is a simple consequence of this lemma.
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Corollary 4.6. Assume (H0) for f and f̃ and (H6) for g̃. Then
(i) Any viscosity solution of (4.1) is a viscosity solution of (4.5) in D0 and vice
versa.
(ii) Any viscosity solution of (4.2) is a viscosity solution of (4.6) and vice versa.

Even if the coefficients of the rescaled equations have a better dependence on the
variable u, there is still the problem of the vanishing of g̃ at the origin. In order to
prove a uniqueness result for (4.5) and (4.6), we use a control theoretic argument
and some optimality principles introduced in [33, 34], as stated in the following
lemma.

Lemma 4.7. Assume (H0) and (H3) for f̃ and g̃ and let ϕ̃(t, x, u) be the solution
of (4.4). Define

G̃(x, t, u) := exp
(
−
∫ t

0

g̃(ϕ̃(τ, x, u), u(τ))dτ
)
.

Then the following properties hold.
(i) Any upper semicontinuous viscosity subsolution w− of (4.6) satisfies

(4.7) w−(x) ≤ inf
u∈U

inf
t∈[0,T ]

{
1 + G̃(x, t, u)(w−(ϕ̃(t, x, u))− 1)

}
.

for each T > 0.
(ii) Consider a continuous viscosity supersolution w+ of (4.6) and let Ω ⊂ Rn be

an open and bounded set with supx∈Ω w
+(x) < 1. Consider the first exit time from

Ω given by
Tex(x, u,Ω) = min{t ≥ 0 |ϕ(t, x0, u) 6∈ Ω} .

Then w+ satisfies

(4.8) w+(x) ≥ inf
u∈U

sup
t∈[0,Tex(x,u,Ω)]

{
1 + G̃(x, t, u)(w+(ϕ̃(t, x, u))− 1)

}
.

Proof. Let Ω ⊂ Rn be an open and bounded set and let Ũ be a compact subset
of U with the corresponding space of measurable control functions denoted by Ũ .
If w− is an upper semicontinuous viscosity subsolution of (4.6) in Rn, then the
restriction of w− to Ω is also a subsolution of (4.6) on Ω with Ũ instead of U . For
the restricted control value set Ũ equation 4.6 is continuous, furthermore f̃ , g̃ are
uniformly Lipschitz on Ω. Hence we can apply [34, Theorem 3.2 (i)] which for each
u ∈ Ũ yields

w−(x) ≤ inf
t∈[0,Tex(x,u,Ω)]

{
1 + G̃(x, t, u)(w−(ϕ̃(t, x, u))− 1)

}
,

where Tex(x, u,Ω) is the first exit time of ϕ̃(t, x0, u) from the set Ω defined in (ii).
Since f̃ is globally bounded, for any x ∈ Rn and any T > 0 we may find an open

and bounded set Ωx,T ⊂ Rn such that Tex(x, u,Ωx,T ) ≥ T for each u ∈ U . Since
each u ∈ U is essentially locally bounded, it lies in Ũ for an appropriate choice of
Ũ , which shows (i).

The proof of (ii) follows from [34, Theorem 3.2 (ii)] observing that the equation
(4.6) is continuous on Ω since w−(x) < 1, hence here we do not need to restrict the
control value set U . �
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Remark 4.8. Note that the asymmetry of the statements (i) and (ii) is due to the
fact that we imposed different conditions in order to obtain continuity of (4.6),
which is needed for the application of [34, Theorem 3.2]. In (i) we restrict the set
of control values U obtaining a result for arbitrary Ω (thus for arbitrary T ) and for
upper semicontinuous functions. In (ii) this restriction is not possible because the
supersolution property will not persists passing from U to Ũ . Thus here we ensure
continuity of (4.6) by considering suitable subsets Ω of the state space.

Using these inequalities we can now prove the following uniqueness results.

Lemma 4.9. Assume (H0) – (H6) and consider the functions V and v defined by
(3.2) and (3.3). Then

(i) v is the unique bounded continuous viscosity solution of (4.6) with v(0) = 0,
(ii) (D0, V ) is the unique couple of an open set containing the origin and a

locally bounded, continuous viscosity solution of (4.5) in the open set such
that V (0) = 0 and V (x) → +∞ for x→ ∂Õ.

Proof. We prove only (i), since the proof of assertion (ii) is similar. Note that by
Remark 4.3 the functions v and V can be taken to be defined through (4.4) and
the running cost g̃. In the following we work with this representation. Again by
ϕ̃(t, x, u) we denote the solutions of (4.4).
Claim 1: If w− is a bounded continuous subsolution of (4.6) on Rn with w−(0) ≤ 0,
then w− ≤ v.
By the upper semicontinuity of w− and w−(0) ≤ 0 we obtain that for every ε > 0
there exists a δ > 0 with w−(x) ≤ ε for all x ∈ Rn with ‖x‖ ≤ δ. Now we
distinguish two cases:
(i) x0 ∈ D0: We choose u∗ ∈ U such that v(x0) + ε > J̃(x0, u

∗) = 1− G̃(x0,∞, u∗).
In particular, using (H3) and the final statement of Remark 4.3 this implies that
there exists a sequence tk → ∞ such that ϕ̃(tk, x0, u

∗) → 0 as k → ∞. Thus it
follows from the lower optimality principle (4.7) and the definition of v that

w−(x0) ≤ lim sup
k→∞

1 + G̃(x0, tk, u
∗)(w−(ϕ̃(tk, x0, u

∗))− 1)

≤ 1 + G̃(x0,∞, u∗)(ε− 1) ≤ v(x0) + 2ε

which shows the claim as ε > 0 was arbitrary.
(ii) x0 6∈ D0: In this case by Proposition 3.3 it is sufficient to show that w−(x0) ≤ 1.
Let M be a bound on |w−|.
In the following we use t as the variable for (2.1) and τ for the time-variable of
(4.4) as in Remark 4.1. Since ϕ̃(τ, x0, u) 6∈ B(0, r) for all ũ ∈ U and all τ ≥ 0 by
(H3) and Remark 4.3 we have∫ τ

0

g̃(ϕ̃(s, x0, u), ũ(s))ds =
∫ t(τ)

0

g(φ(s, x0, u)ds ≥ grt(τ)

for the constant gr > 0 from (H3). Therefore G̃(x0, τ, ũ) ≤ exp(−g̃rt(τ)) for all
τ ≥ 0, ũ ∈ U . Hence

1 + G̃(x0, τ, ũ)(w−(ϕ̃(τ, x0, ũ))− 1) ≤ 1 + exp(−grt(τ))(M + 1)

for all ũ ∈ U and the result follows by (4.7) as the right hand side tends to 1 for
τ →∞.
Therefore Claim 1 is proved. To conclude the proof we now consider
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Claim 2: Let w+ be a bounded continuous supersolution of (4.2) on Rn with
w+(0) ≥ 0. Then w+ ≥ v.
Again we distinguish two cases.
(i) x0 6∈ D0: In this case we know v(x0) = 1 and it is sufficient to show w+(x0) ≥ 1.
In order to prove this inequality by contradiction, we assume w+(x0) = 1 − δ for
some suitable δ > 0 and pick the set Ω = {x ∈ Rn |w+(x) < 1 − δ/2}. Since
x0 6∈ D0, for all ũ ∈ U we have the inequality g̃(t, x0, ũ) ≥ gr for all t ≥ 0. Let
M > 0 be a bound on |w+|. Using (4.8) this implies

w+(x0) ≥ sup
τ∈[0,Tex(x0,ũ,Ω)]

{1 + G̃(x0, τ, ũ)(w+(ϕ̃(τ, x0, ũ))− 1)}

≥ sup
τ∈[0,Tex(x0,ũ,Ω)]

{[1− exp(−τgr)]− exp(−τgr)M}.

If Tex(x0, ũ,Ω) = ∞ then this expression equals 1, hence we obtain obtain w+(x0) ≥
1 which contradicts our assumption w+(x0) = 1 − δ < 1. If Tex(x0, ũ,Ω) is finite
then we obtain

w+(x0) ≥ sup
τ∈[0,Tex(x0,ũ,Ω)]

{1 + G̃(x0, τ, ũ)(w+(ϕ̃(τ, x0, ũ))− 1)}

≥ 1 + G̃(x0, Tex(x0, ũ,Ω), ũ)(1− δ/2− 1) ≥ 1− δ/2

(observing that G̃(x0, t, ũ) ≤ 1) which again contradicts our assumption w+(x0) =
1− δ.
(ii) x0 ∈ D0: In this case we know that v(x0) < 1, hence for w+(x0) ≥ 1 there is
nothing to show. Thus we can assume w+(x0) = 1− δ for some suitable δ > 0 and
again consider the set Ω = {x ∈ Rn |w+(x) < 1− δ/2}. Now fix ε > 0 with ε < δ/2
implying

(4.9) w+(x0) + ε < 1− δ/2.

Then (4.8) yields the existence of a control function uε ∈ U with

(4.10) w+(x0) + ε ≥ sup
t∈[0,Tex(x0,uε,Ω)]

{1 + G̃(x0, t, uε)(w+(ϕ̃(t, x0, uε))− 1)}.

If Tex(x0, uε,Ω) <∞ then (4.9), (4.10) and G̃(x0, t, uε) ≤ 1 imply

1− δ/2 > w+(x0) + ε ≥ 1 + G̃(x0, t, uε)(1− δ/2− 1) ≥ 1− δ/2,

i.e., a contradiction. Thus we obtain Tex(x0, uε,Ω) = ∞.
Now for each η > 0 we find t such that ‖ϕ̃(t, x0, uε)‖ ≤ η, because otherwise — as
in the first inequality of case (i), above — the right hand side in (4.10) would be
equal to 1 contradicting (4.9) . The continuity of w+ and the assumption w+(0) ≥ 0
imply that there exists a η1 > 0 such that

(4.11) w+(x) ≥ −ε for all ‖x‖ ≤ η1.

On the other hand, since v(0) = 0 and v is continuous we find η2 > 0 such that

(4.12) v(x) ≤ ε for all ‖x‖ ≤ η2.

Combining these results, we can conclude that for all sufficiently large times t > 0
we have

w̃+(ϕ̃(t, x0, uε)) ≥ v(ϕ̃(t, x0, uε))− 2ε.
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Thus using (4.10), (3.5) and the inequality G̃(x0, tn, un) ≤ 1 for sufficiently large
t > 0 we can conclude

w+(x0) ≥ 1 + G̃(x0, t, uε)(w+(ϕ̃(t, x0, uε))− 1)} − ε

≥ 1 + G̃(x0, t, uε)(v(ϕ̃(t, x0, uε))− 1)} − 3ε
≥ v(x0)− 3ε ,

which shows Claim 2, as ε > 0 is arbitrary.
Finally, since every viscosity solution w̃ is both sub– and supersolution, the com-
bination of Claim 1 and 2 proves the lemma. �

Proof. of Theorem 4.4 All properties follow from the fact that by Lemma 4.9 the
functions V and v defined by (3.2) and (3.3) are the unique continuous viscosity
solutions for (4.6) and (4.5), respectively.

(i) and (ii): By Corollary 4.6 all viscosity solutions to (4.6) and (4.5) equations
are also viscosity solutions of (4.2) and (4.1), respectively, and vice versa. Hence,
also the viscosity solutions of (4.2) and (4.1) must be unique.

(iii): By Proposition 3.3 applied to f̃ and g̃ we obtain that v = ṽ and V = Ṽ

characterize D0 for f̃ . Now every trajectory of f is also a trajectory of f̃ for a
suitably rescaled control function, and vice versa. Hence the respective domains of
null controllability coincide, thus v and V characterize this set.

(iv): The stated behavior at the boundary of D0 follows from Proposition 3.6,
since f̃ satisfies (H4b) because it is globally bounded. The behavior for ‖xk‖ → ∞
follows from Remark 3.2, again since f̃ is bounded. �

5. Approximation with bounded control values

In this section we consider the bounded approximations Uk = U ∩ clB(0, k)
of the (possibly) unbounded set U of control values and the corresponding set
Uk := L∞([0,∞), Uk) of control functions. Throughout this section we assume that
(H0)–(H2) holds which implies that we can find g meeting (H3)–(H6).

Proposition 5.1. Consider the functions

Vk(x) = inf
u∈Uk

J(x, u) and vk(x) = 1− eVk(x).

Then the relations

V (x) = inf
k∈N

Vk(x) and v(x) = inf
k∈N

vk(x)

hold.

Proof. Since Uk ⊆ U we obviously have the inequality Vk(x) ≥ V (x). Now let
x ∈ D0 and u ∈ U be such that

J(x, u) ≤ V (x) + ε

for some ε > 0. Since u ∈ U there exists k0 ∈ N such that ‖u‖∞ ≤ k0, hence
u ∈ Uk0 . This implies

inf
k∈N

Vk(x) ≤ Vk0(x) ≤ V (x) + ε.

Since ε was arbitrary this shows the claim on D0, both for V and v. For x 6∈ D0 we
have Vk(x) = V (x) = ∞ and vk(x) = v(x) = 1 which shows the claim also in this
case. �
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Remark 5.2. If the assumptions of Proposition 3.6 hold, then, since vk is decreasing
in k, Dini’s Theorem yields that vk converges to v locally uniformly on Rn.

For the following proposition recall the definition of set limits, which for a se-
quence of sets Xk are given by

lim sup
k→∞

Xk :=
⋂
k∈N

⋃
m≥k

Xm and lim inf
k→∞

Xk :=
⋃
k∈N

⋂
m≥k

Xm

and, if these two sets coincide,

lim
k→∞

Xk := lim sup
k→∞

Xk = lim inf
k→∞

Xk.

Proposition 5.3. Consider the sets

Dk := {x ∈ Rn | there exists u ∈ Uk with ‖ϕ(t, x, u)‖ → 0 for t→∞}.

Then the set limit limk→∞Dk exists and satisfies

D0 = lim
k→∞

Dk.

Proof. Since we have that V ≤ . . . ≤ Vk+1 ≤ Vk we obtain the inclusion

Dk ⊆ Dk+1 ⊆ . . . ⊆ D0.

It follows that
⋃

m≥k Dm ⊆ D0 for each k and hence

lim sup
k→∞

Dk =
⋂
k∈N

⋃
m≥k

Dm ⊆ D0.

On the other hand, if x ∈ D0 then for any ε > 0 there exists k0 ∈ N with Vk(x) ≤
V (x) + ε for all k ≥ k0. This implies that x ∈ Dk for all k ≥ k0 and consequently
x ∈

⋂
m≥k0

Dm. This implies

x ∈
⋃
k∈N

⋂
m≥k

Dm = lim inf
k→∞

Dk,

and since x ∈ D0 was arbitrary we obtain

D0 ⊆ lim inf
k→∞

Dk,

which shows the claim. �

Remark 5.4. This Proposition implies that for any compact set K ⊂ Rn the con-
vergence

dH(K ∩ Dk,K ∩ D0) → 0

in the Hausdorff metric holds (see e.g. [3, Proposition 1.1.5]). In particular, if D0 is
bounded then we obtain uniform convergence of Dk to D0 in the Hausdorff metric.

In particular, this implies that for any compact set K ⊂ D0 we obtain K ⊂ Dk

for all sufficiently large k. Thus, in order to steer the system to 0 from a compact
subset K ⊂ D0 it is sufficient to consider bounded control functions.
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6. Examples

In this section we discuss the necessity of some of our assumptions. Also it is
explained how the classical case of linear quadratic control fits within the present
framework.

Example 6.1. Consider the one dimensional dynamics

(6.1) ẋ(t) = (x(t)− 1)(u(t) + 1) + 1 = x(t)(u(t) + 1)− u(t) , t ≥ 0 ,

where U = R. The origin is an equilibrium point so that (H1) is satisfied, while
x = 1 is repulsive, in the sense that any trajectory starting from x0 ≥ 1 cannot
reach the origin. With this it is easy to see that D0 = (−∞, 1). Furthermore, (H0)
is satisfied with γ(u) = |u|.

Now consider the cost function g1(x, u) = |x|, which satisfies (H3) and (H4) but
neither (H5) nor (H6). For x0 ∈ (0, 1) and an arbitrary constant α > 0 choose

u(t) =
−α− 1
φ(t)− 1

χ[0,x0/α](t) ,

where χ[0,x0/α] denotes the indicator function of the interval [0, x0/α]. The corre-
sponding solution of (6.1) is given by

φ(t) = (x0 − αt)χ[0,x0/α](t) ,

Observe that for x0 close to 1 we need a very large control to start to move towards
the origin. This is because the control u is multiplied by x− 1.

Calculating the corresponding cost we obtain

V1(x0) ≤
∫ ∞

0

g1(φ(t), u(t))dt = x2
0/2α

and therefore sending α → +∞, it follows that V1(x0) = 0 for any x0 ∈ (0, 1). Of
course, V1(x) = ∞ for x ≥ 1. Summarizing this shows that v1 is discontinuous on
R and not a control Lyapunov function on D0.

On the other hand setting g2(x, u) = |x| + |u| a cost function satisfying (H6)
is obtained. To analyze the associated value functions fix x0 ∈ (0, 1) and choose
a control u such that φ(t) := φ(t, x, u) → 0. We will assume that φ is strictly
decreasing as otherwise it is clearly not optimal. Now let T > 0 be a time such
that φ(T ) > 0, then we have

J2(x, u) ≥
∫ T

0

φ(t) + u(t)dt =
∫ T

0

φ(t) +
φ(t)− φ̇(t)
1− φ(t)

dt ≥∫ T

0

−φ̇(t)
1− φ(t)

dt = log(1− φ(T ))− log(1− x0) .

(6.2)

As φ(T ) approaches 0 (in finite or infinite time) this calculation shows that V2(x0) ≥
− log(1−x0) for x0 ∈ (0, 1) so that in particular v2 is continuous on R and a control
Lyapunov function on D0 (where we leave the assertion for (−∞, 0) to the reader).

Finally note that a combination of the previous examples leads to an intermediate
situation. To this end let h : R → [0, 1] be a continuous function such that h(x) = 1
if x ∈ (−∞, 1/2], h(x) = 0 for x ∈ [3/4,∞) and let g3(x, u) = |x|+h(x)|u|. Then it
follows for x ∈ [0, 1/2] that V3(x) = V2(x) ≥ − log(1− x) by the considerations on
g2, whereas for x ∈ (3/4, 1) we have V3(x) = V (3/4) using that V1 is constant on
that interval. In this example (H5) and (H6) are not satisified, v is not continuous
and V is a control Lyapunov function only on a subset of D0.
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Example 6.2. Finally we show that the classical linear quadratic control problem
fits into our setup. This problem is obtained if we set

f(x, u) = Ax+Bu and g(x, u) = xTQx+ uTRu,

where A,B,Q,R are matrices of appropriate dimensions with Q and R being sym-
metric and positive definite.

By direct computations one sees that these functions satisfiy (H0) for any γ ∈
K∞, (H1), (H3) and (H5). The linear system also satisfies (H2’), because it is known
that local asymptotic controllability implies the existence of a feedback matrix F
such that A + BF is exponentially stable, i.e., this matrix has all its eigenvalues
in the open left half plane, which yields (H2’) with β(r, t) = Ke−λtr for suitable
constants K,λ > 0. Hence we obtain β(r, t) = α2(α1(r)e−t) with α2(r) = rλ which
implies (H4’) for our g with δ = 2/λ and C = ‖Q + R‖. Finally, (H6) is satisfied
because g grows quadratically in u while f only grows linearly in u. Thus, the
classical linear quadratic problem is a special case of our setup and the resulting
equation (4.1) is given by

(6.3) sup
u∈U

{−DV (x)(Ax+Bu)− xTQx− uTRu} = 0.

For the quadratic ansatz V (x) = xTPx with symmetric matrix P we obtain

DV (x)(Ax+Bu) = xTP (Ax+Bu) + (Ax+Bu)TPx.

Assuming U = Rm we can explicitly solve the maximization problem over u by
setting the first derivative of the resulting expression to 0 and obtain

u(x) = −R−1BTPx.

Plugging this into (6.3) and multiplying by −1 yields

xTPBR−1BTPx− xTPAx− xTATPx− xTQx = 0

which is equivalent to

PBR−1BTP − PA−ATP −Q = 0,

i.e., (4.1) reduces to the well known algebraic Riccati equation from linear optimal
control, see [31, Section 8.4].
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