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Abstract: We prove two limit relations between Schrödinger operators
perturbed by measures. First, weak convergence of finite real-valued
Radon measures µn −→ m implies that the operators −∆ + ε2∆2 + µn

in L2(Rd, dx) converge to −∆ + ε2∆2 + m in the norm resolvent sense,
provided d ≤ 3. Second, for a large family, including the Kato class, of
real-valued Radon measures m, the operators −∆+ ε2∆2+m tend to the
operator −∆+m in the norm resolvent sense as ε tends to zero. Explicit
upper bounds for the rates of convergences are derived. Since one can
choose point measures µn with mass at only finitely many points, a com-
bination of both convergence results leads to an efficient method for the
numerical computation of the eigenvalues in the discrete spectrum and
corresponding eigenfunctions of Schrödinger operators. The approxima-
tion is illustrated by numerical calculations of eigenvalues for one simple
example of measure m.

I Introduction

In this paper we are going to analyze convergence of Schrödinger operators perturbed
by measures. It is known that weak convergence of potentials implies norm-resolvent
convergence of the corresponding one-dimensional Schrödinger operators. This re-
sult from [6] may be interesting for several reasons. For instance every finite real-
valued Radon measure on R is the weak limit of a sequence of point measures with
mass at only finitely many points. There exist efficient numerical methods for the
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computation of the eigenvalues and corresponding eigenfunctions of one-dimensional
Schrödinger operators with a potential supported by a finite set; actually the effort
for the computation grows at most linearly with the number of points of the support
[9]. Since the norm resolvent convergence implies convergence of the eigenvalues in
the discrete spectra and corresponding eigenspaces, we get an efficient method for
the numerical calculation of the discrete spectra of one-dimensional Schrödinger op-
erators. Norm resolvent convergence has also other important consequences: locally
uniform convergence of the associated unitary groups and semigroups, convergence of
the spectral projectors (which implies the mentioned results on the discrete spectra)
etc.

Let us also mention a completely different motivation for studying convergence of
operators with point potentials. In quantum mechanics neutron scattering is often
described via so called zero-range Hamiltonians (the monograph [1] is an excellent
standard reference to this research area). In a wide variety of models the positions of
the neutrons are described via a family (Xj)

n
j=1 of independent random variables with

joint distribution µ. Usually the number n of neutrons is large and one is interested
in the limit when n tends to infinity and the strengths of the single size potentials
tend to zero. In the one-dimensional case this motivates to investigate the limits of
operators of the form

− d2

dx2
+
a

n

n∑

j=1

δXj(ω), ω ∈ Ω,

a 6= 0 being a real constant and (Ω,F ,P) a probability space. By the theorem of
Glivenko-Cantelli, for P-almost all ω ∈ Ω the sequence ( a

n

∑n
j=1 δXj(ω))n∈N converges

to the measure aµ weakly. By the mentioned result from [6], this implies that

− d2

dx2
+ aµ = lim

n−→∞

(
− d2

dx2
+
a

n

n∑

j=1

δXj(ω)

)

in the norm resolvent sense P-a.s.
It is the purpose of the present note to derive analogous results in the two-

and three-dimensional case. It was shown in [6] and [8] that one can approximate
Schrödinger operators perturbed by suitable measures by point potential Hamilto-
nian. However, the convergence there was in the strong resolvent sense, which is of
course a weaker result than the norm resolvent convergence.

If the dimension is higher than one, then it seems to be impossible to work directly
with operators of the form −∆ + µ, µ being a point measure. In fact, while the
operators − d2

dx2 +
∑n

j=1 ajδxj
can be defined in dimension one via Kato’s quadratic

form method as the unique lower semibounded self-adjoint operator associated to the
energy form

D(E) := H1(R),

E(f, f) :=

∫
|f ′(x)|2dx+

n∑

j=1

aj |f̃(xj)|2, f ∈ D(E),
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f̃ being the unique continuous representative of f ∈ H1(R), in higher dimension
d > 1, the quadratic form

D(E) := {f ∈ H1(Rd) : f has a continuous representative f̃},

E(f, f) :=

∫
|∇f(x)|2dx+

n∑

j=1

aj |f̃(xj)|2, f ∈ D(E),

is not lower semibounded and closable if at least one coefficient aj is different from
zero.

The strategy to overcome the mentioned problem in higher dimensions is based
on two simple observations:
1. The lower semibounded self-adjoint operator ∆2 + µ can be defined via Kato’s
quadratic form method for every real-valued finite Radon measure µ on Rd (if d ∈
{1, 2, 3}), including point measures.
2. −∆+ ε2∆2 −→ −∆ in the norm resolvent sense, as ε > 0 tends to zero.

We show the convergence claim in two steps. In section II we shall prove that the
sequence (−∆ + ε2∆2 + µn)n∈N converges to −∆ + ε2∆2 +m in the norm resolvent
sense provided d ≤ 3, ε > 0 and the finite real-valued Radon measures µn on Rd

converge to the finite real-valued Radon measure m weakly. Then, for a large class
of measures m we shall prove that

−∆+ ε2∆2 +m −→ −∆+m

in the norm resolvent sense as ε tends to zero, cf. section III. Actually, we will not
only prove convergence but also give explicit error estimates.

As approximating measures µn we can, in particular, choose point measures with
mass at only finitely many points. In section IV we will present formulae which make
it possible to calculate the eigenvalues and corresponding eigenspaces of operators
perturbed by a finite number point measures. Then similarly to [1, chapter II.2],
the spectral problem means to solve an implicit equation and the effort for these
computations grows at most as O(n3).

Putting both convergence results from sections II and III and formulae from sec-
tion IV together, we get an efficient method to calculate the eigenvalues in the discrete
spectrum and corresponding eigenspaces of Schrödinger operators −∆ + m numer-
ically. We apply the approximation to the simple two-dimensional example, where
measure m is negative and supported by a circle.

Our method does not only cover the case when m is absolutely continuous w.r.t.
the (d − 1)-dimensional volume measure of a manifold with codimension one but a
fairly large class of measures m containing the set of all finite real-valued measures
belonging to the Kato class. In particular, the absolutely continuous case dm = V dx
where −∆ + m = −∆ + V is a regular Schrödinger operator is contained in our
approach. We refer to [10] for related convergence results in the regular case.

Notation and auxiliary results: Let µ be a real-valued Radon measure on Rd.
By the Hahn-Jordan theorem, there exist unique positive Radon measures µ± on Rd
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such that

µ = µ+ − µ− and µ+(Rd \B) = 0 = µ−(B)

for some suitably chosen Borel set B. We put

‖ µ ‖:= µ+(Rd) + µ−(Rd) and |µ| := µ+ + µ−.

If µ is finite, then we define its Fourier transform µ̂ as

µ̂(p) := (2π)−d/2

∫
eipxµ(dx), p ∈ Rd.

Similarly, f̂ also denotes the Fourier transform of f ∈ L2(dx) := L2(Rd, dx), dx being
the Lebesgue measure.

For s > 0 we denote the Sobolev space of order s by Hs(Rd), i.e.

Hs(Rd) :=

{
f ∈ L2(dx) :

∫
(1 + p2)s|f̂(p)|2dp <∞

}
,

‖ f ‖Hs :=

(∫
(1 + p2)s|f̂(p)|2dp

)1/2

, f ∈ Hs(Rd).

We shall use occasionally the abbreviations L2(µ) := L2(Rd, µ) and Hs := Hs(Rd).
‖ T ‖H1,H2

denotes the operator norm of T as an operator from H1 to H2 and
‖ T ‖H:=‖ T ‖H,H. ‖ f ‖H and (f, h)H represent the norm and the scalar product in
the Hilbert H, respectively. If the reference to a measure is missing, then we tacitly
refer to the Lebesgue measure dx. For instance “integrable” means “integrable w.r.t.
dx” if not stated otherwise, ‖ T ‖, (f, h) and ‖ f ‖ denote the operator norm of T ,
scalar product and norm in the Hilbert space L2(dx), respectively. We denote by
C∞

0 (Rd) the space of smooth functions with compact support.
For arbitrary ε ≥ 0 (ε = 0 will be admitted only in section III) let Eε be the

nonnegative closed quadratic form in the Hilbert space L2(dx) associated to the
nonnegative self-adjoint operator −∆+ ε2∆2 in L2(dx). Obviously we have

D(Eε) = H2(Rd),

Eε(f, f) = ε2 (∆f,∆f) + (∇f,∇f) ≥ ε2 (∆f,∆f), f ∈ D(Eε),

for every ε > 0. Note that for ε = 0 the form domain is H1(Rd) and E0 is the classical
Dirichlet form. For any α > 0 we put

Eε,α(f, h) := Eε(f, h) + α(f, h), f, h ∈ D(Eε).
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II Operator norm convergence

Throughout this section let d ≤ 3 and µ be a finite real-valued Radon measure on
Rd. Then, by Sobolev’s embedding theorem, for every s > 3/2, and, in particular,
for s = 2, every f ∈ Hs(Rd) has a unique continuous representative f̃ and

‖ f̃ ‖∞:= sup{|f̃(x)| : x ∈ Rd} ≤ cs ‖ f ‖Hs , f ∈ Hs(Rd), (1)

for some finite constant cs. Note that cs ≤ 1 if s = 2. It follows that for every ε > 0
and every η > 0 there exists an α = α(ε, η) <∞ such that

‖ f̃ ‖2∞≤ η Eε(f, f) + α(f, f), f ∈ H2(Rd). (2)

Since µ is finite, for arbitrary ε, η > 0 and some finite α we get

|
∫

|f̃ |2dµ| ≤ η ‖ µ ‖ Eε(f, f) + α ‖ µ ‖ (f, f), f ∈ H2(Rd). (3)

We put

D(Eµ
ε ) := H2(Rd),

Eµ
ε (f, f) := Eε(f, f) +

∫
|f̃ |2dµ, f ∈ D(Eµ

ε ).

By (3) and the KLMN-theorem, Eµ
ε is a lower semibounded closed quadratic form in

L2(dx). We denote the lower semibounded self-adjoint operator in L2(dx) associated
to Eµ

ε by −∆+ ε2∆2 + µ.
Our main tool to prove convergence results will be a Krein-like formula which

expresses the resolvent (−∆+ ε2∆2 + µ+ α)−1 by means of the resolvent

Gε,α := (−∆+ ε2∆2 + α)−1.

The operator Gε,α has the integral kernel gε,α(x− y) with Fourier transform

ĝε,α(p) :=
1

ε2p4 + p2 + α
, p ∈ Rd.

For every ε ≥ 0 and α > 0, the function gε,α(x) is continuous on Rd \{0} and if d = 1
or if d ≤ 3 and ε > 0 it is continuous on whole Rd. Moreover, it is radially symmetric.
Finally, g0,α is the Green function of the free Laplacian in Rd and it is nonnegative.
By the dominated convergence theorem,

‖ gε,α ‖2H2=

∫
(1 + p2)2

|ε2p4 + p2 + α|2 dp −→ 0, as |α| −→ ∞ (4)

which, by Sobolev’s inequality, implies that

‖ gε,α ‖∞−→ 0, as |α| −→ ∞. (5)
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The fact that gε,α is the Green function of −∆+ ε2∆2 means that
∫
gε,α(x− y)(−∆+ ε2∆2 + α)h(y)dy = h(x) dx-a.e.

for all h ∈ D(−∆+ ε2∆2) = H4(Rd). The equation above does not only hold almost
everywhere w.r.t. the Lebesgue measure dx but even pointwise everywhere, as the
following lemma states.

LEMMA 1 Let Green function gε,α and operator −∆+ε2∆2+α be defined
as above. Then one has

∫
gε,α(x− y)(−∆+ ε2∆2 + α)h(y)dy = h̃(x), x ∈ Rd (6)

for all h ∈ H4(Rd).

Proof: In fact, we have only to show that the integral on the left hand side is
a continuous function of x ∈ Rd. We choose any sequence (fn)n∈N of continuous
functions with compact support converging to (−∆+ ε2∆2 + α)h in L2(dx). By (4),
gε,α ∈ H2(Rd) ⊂ L2(dx), therefore we can write
∫
gε,α(x− y)(−∆+ ε2∆2 + α)h(y)dy = lim

n−→∞

∫
gε,α(x− y)fn(y)dy, x ∈ Rd.

Obviously the mapping x 7→
∫
gε,α(x−y)fn(y)dy, Rd −→ C, is the unique continuous

representative G̃ε,αfn of Gε,αfn for every n ∈ N. Since Gε,α is a bounded operator
from L2(dx) to H2(Rd) (even to H4(Rd)), the sequence (Gε,αfn)n∈N converges in
H2(Rd) to Gε,α(−∆ + ε2∆2 + α)h = h. By Sobolev’s inequality (1), this implies

that the sequence (G̃ε,αfn)n∈N of the unique continuous representatives converges to
a continuous function uniformly. By the last equality, x 7→

∫
gε,α(x−y)(−∆+ε2∆2+

α)h(y)dy, Rd −→ C, is this continuous uniform limit and we have proved (6). ✷

We introduce following integral operator

Gµ
ε,αf(x) :=

∫
gε,α(x− y)f̃(y)µ(dy) dx-a.e., f ∈ H2(Rd).

We can prove several estimates of its operator norm.

LEMMA 2 The operator Gµ
ε,α is bounded on H2(Rd) and its operator norm

‖ Gµ
ε,α ‖H2 decays with α −→ ∞. The operator is bounded also w.r.t. other operator

norms, in particular there are finite real numbers ci, i = 1, 2, 3 such that

‖ Gµ
ε,αf ‖H2 ≤ c1(α) ‖ f̃ ‖∞

‖ Gµ
ε,αf ‖L2 ≤ c2(α) ‖ f̃ ‖L2(|µ|) f ∈ H2(Rd)

‖ G̃µ
ε,αf ‖L2(|µ|) ≤ c3(α) ‖ f̃ ‖L2(|µ|)

and all three numbers ci vanish in the limit α −→ ∞.
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Proof: Using Sobolev’s inequality we have for arbitrary f ∈ H2(Rd)

|̂̃fµ(p)|2 ≤ (2π)−d ‖ f̃ ‖2∞‖ µ ‖2≤ (2π)−d ‖ f̃ ‖2H2‖ µ ‖2, p ∈ Rd.

Then the convolution theorem yields

‖ Gµ
ε,αf ‖2H2 =

∫
|(1 + p2)2| |(gε,α ∗ f̃µ)̂(p)|2dp

= (2π)d
∫

(1 + p2)2

|ε2p4 + p2 + α|2 |
̂̃fµ(p)|2dp

≤
∫

(1 + p2)2

|ε2p4 + p2 + α|2 ‖ f̃ ‖2∞‖ µ ‖2 dp

≤
∫

(1 + p2)2

|ε2p4 + p2 + α|2 dp ‖ f̃ ‖2H2‖ µ ‖2<∞, f ∈ H2(Rd).

Therefore Gµ
ε,α is an everywhere defined bounded operator on H2(Rd) and we get an

upper bound for the norm

‖ Gµ
ε,α ‖H2,H2≤‖ µ ‖

(∫
(1 + p2)2

|ε2p4 + p2 + α|2dp
)1/2

, (7)

and the expression on the r.h.s. is also the uniform upper bound c1.
To determine the remaining upper bounds c2 and c3, we can write

∫
|Gµ

ε,αf(x)|2dx

=

∫
|
∫
gε,α(x− y)f̃(y)µ+(dy)−

∫
gε,α(x− y)f̃(y)µ−(dy)|2dx

≤ 2

∫
|
∫
gε,α(x− y)f̃(y)µ+(dy)|2dx+ 2

∫
|
∫
gε,α(x− y)f̃(y)µ−(dy)|2dx

≤ 2

∫ ∫
|gε,α(x− y)|2µ+(dy)

∫
|f̃(y)|2µ+(dy) dx

+ 2

∫ ∫
|gε,α(x− y)|2µ−(dy)

∫
|f̃(y)|2µ−(dy) dx

≤ 2

∫
|gε,α(x)|2dx ‖ µ ‖

∫
|f̃(y)|2|µ|(dy), f ∈ H2(Rd). (8)

In a similar way we arrive at

∫
|G̃µ

ε,αf(x)|2|µ|(dx) ≤ 2 ‖ gε,α ‖2∞‖ µ ‖2
∫

|f̃(y)|2|µ|(dy).

Finally, from (4) and (5) one concludes that all the upper bounds of the operator
norms tend to zero in the limit α −→ ∞. ✷
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General results of [3] (cf. also section III below) provide, in particular, an explicit
formula for the resolvent of the operator −∆ + ε2∆2 + µ. In this resolvent formula
there occur operators acting in different Hilbert spaces. This is inconvenient when we
investigate the convergence of sequences of such operators and we shall use a slightly
different resolvent formula:

(−∆+ ε2∆2 + µ+ α)−1 = Gε,α −Gµ
ε,α(I +Gµ

ε,α)
−1Gε,α. (9)

For the sake of completeness we present the proof of the above Krein’s formula in the
appendix. According to lemma 2, we can choose α > 0 such that ‖ Gµ

ε,α ‖H2,H2< 1.
Then the operator I + Gµ

ε,α is invertible and its inverse is everywhere defined on
H2(Rd) and bounded; here I denotes the identity on H2(Rd). By (3), we can choose
α > 0 such that, in addition,

Eµ
ε,α(f, f) := Eµ

ε (f, f) + α(f, f) ≥ (f, f), f ∈ D(Eµ
ε ). (10)

We are now prepared for the proof of the main theorem of this section:

THEOREM 3 Let m and µn, n ∈ N, be finite real-valued Radon measures
on Rd. Suppose that the sequence (µn)n∈N converges to m weakly and supn∈N ‖ µn ‖<
∞. Let ε, α > 0 and d ∈ {1, 2, 3}. Then the operators −∆ + ε2∆2 + µn converge to
−∆+ ε2∆2 +m in the norm resolvent sense.

Proof: Let ε > 0 be arbitrary. We choose 0 < c < 1 and α > 0 such that

‖ µn ‖2
∫

(1 + p2)2

|ε2p4 + p2 + α|2 dp ≤ c2, n ∈ N, (11)

and

‖ m ‖2
∫

(1 + p2)2

|ε2p4 + p2 + α|2 dp ≤ c2. (12)

According to (3), we can choose α > 0 such that, in addition,

Eµn

ε,α(f, f) ≥ (f, f), f ∈ H2(Rd), n ∈ N. (13)

Since (µn)n∈N converges to m weakly, (13) also holds when we replace µn by m. By
Lemma 2, in particular estimate (7), inequalities (11) and (12) yield

‖ Gµn

ε,α ‖H2,H2 ≤ c, n ∈ N,

‖ Gm
ε,α ‖H2,H2 ≤ c, (14)

‖ Gm
ε,αf ‖H2 ≤ c ‖ f̃ ‖∞, f ∈ H2(Rd).

Hence the resolvent formula (9) is valid both for µ = m and for µ = µn, n ∈ N. By
Lemma 2, we can choose α sufficiently large so that also
∫

|Gm
ε,αh(x)|2dx ≤ c2

∫
|h̃|2d|m| and

∫
|G̃m

ε,αh(x)|2|m|(dx) ≤ c2
∫

|h̃|2d|m| (15)
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for every h ∈ H2(Rd).
For notational brevity we put

g0 := g0,1, g := gε,α, G := Gε,α, Gµn := Gµn

ε,α and Gm := Gm
ε,α.

With this notation we have

(−∆+ ε2∆2 + µn + α)−1 − (−∆+ ε2∆2 +m+ α)−1

= Gm[I +Gm]−1G−Gµn [I +Gµn ]−1G

= (Gm −Gµn)[I +Gm]−1G+ (Gµn −Gm)[I +Gm]−1(Gµn −Gm)[I +Gµn ]−1G

+Gm[I +Gm]−1(Gµn −Gm)[I +Gµn ]−1G.

Since G is a bounded operator from L2(dx) to H2(Rd) we have only to show that

‖ Gm −Gµn ‖H2,L2(dx)−→ 0 as n −→ ∞, (16)

‖ Gm[I +Gm]−1(Gm −Gµn) ‖H2,L2(dx)−→ 0, as n −→ ∞. (17)

We introduce

νn := m− µn

νnx(dy) := g(x− y) νn(dy), x ∈ Rd, n ∈ N.

As d ≤ 3, the function

y 7→
∫
g0(y − a) f(a) da

is continuous and bounded for every f ∈ L2(dx); this well known fact can be proved
in the same way as (6). Since the function g is bounded and g0 is nonnegative it
follows that∣∣∣∣

∫
|g(x− y)|

∫
|g0(y − a)| |(−∆+ 1)h(a)| da ν±n (dy)

∣∣∣∣ <∞

for all x ∈ Rd and h ∈ H2(Rd). Hence by Fubini’s theorem, the function kνnx
: Rd −→

R, defined by

kνnx
(a) :=

{ ∫
g0(y − a) g(x− y) νn(dy), if defined,

0, otherwise,

is Borel measurable, the integral on the right hand side is defined and finite for almost
all a ∈ Rd (almost all w.r.t. the Lebesgue measure) and

|(Gνnh)̃(x)|2 = |
∫
g(x− y) h(y) νn(dy)|2

= |
∫
g(x− y)

∫
g0(y − a)(−∆+ 1)h(a) da νn(dy)|2

≤
∫

|kνnx
(a)|2da ·

∫
|(−∆+ 1)h(a)|2da

≤ 2 ‖ h ‖2H2

∫
|kνnx

(a)|2da, h ∈ H2(Rd), n ∈ N. (18)
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Thus in order to prove (16) we have only to show that
∫ ∫

|kνnx
(a)|2da dx −→ 0 as n −→ ∞. (19)

We have

∫ ∫
|kνnx

(a)|2da dx = (2π)d
∫ ∫

|ĝ0(p)|2|ν̂nx(p)|2dp dx
=

∫ ∫
1

|1+p2|2

∫
eipyg(x− y) νn(dy)

∫
e−ipzg(x− z)νn(dz) dp dx. (20)

Since |1 + p2|−2 and g are integrable w.r.t. the Lebesgue measure, g is bounded and
the Radon measures νn are finite, we can change the order of integration. Let us
rewrite (20) as

∫
f(y, z) h(y, z) νn ⊗ νn(dy dz).

The function

f(y, z) :=

∫
eipye−ipz 1

|1 + p2|2 dp, y, z ∈ Rd,

is bounded and continuous. It follows from the fact that it is (up to multiplication
by (2π)d/2) the inverse Fourier transform of the integrable function |1 + p2|−2 at the
point z − y.

Also the function

h(y, z) :=

∫
g(x− y) g(x− z) dx

is bounded and continuous for y, z ∈ Rd. This can be shown using following observa-
tion. Let y ∈ Rd and K be any compact neighborhood of y. Since |x|jgε,α(x) −→ 0
for every j ∈ N as |x| −→ ∞, there exists a constant a <∞ such that

|g(x− y) g(x− z)| ≤ a ‖ g ‖∞ dist(x,K)−4, x ∈ Rd \K, z ∈ Rd, y ∈ K.

By Stone-Weierstrass theorem, the set of functions of the form
∑N

j=1 fj(x)gj(y),
N ∈ N, where fj , gj are bounded and continuous, is dense in the space of bounded
continuous functions w.r.t. the supremum norm. Since the measures νn tend to zero
weakly and supn∈N ‖ νn ‖< ∞, this implies that the product measures νn ⊗ νn tend
to zero weakly, too. Hence by (20), we have proved (19) and therefore also (16).

It only remains to prove (17). For this purpose we first note that

cn :=

∫ ∫
|kνnx

(a)|2 da |m|(dx) −→ 0 as n −→ ∞.

This can be shown by mimicking the proof of (19). By (18), it follows that
∫

|(Gνnh)̃(x)|2 |m|(dx) ≤ 2cn ‖ h ‖2H2 , h ∈ H2(Rd).
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Thus, in order to prove (17), we have only to show that there exists a finite constant
C such that

‖ Gm(I +Gm)−1h ‖L2(dx)≤ C

(∫
|h̃|2d|m|

)1/2

, h ∈ H2(Rd). (21)

Using the estimates (14), we have

Gm(I +Gm)−1 = −
∞∑

j=1

(−Gm)j. (22)

According to (15),

‖ (Gm)j+1h ‖L2(dx)≤ c

(∫
| ˜(Gm)jh|2d|m|

)1/2

≤ c · cj
(∫

|h̃|2d|m|
)1/2

,

for every j ∈ N and hence

‖
∞∑

j=1

(−Gm)jh ‖L2(dx)≤
∞∑

j=1

cj
(∫

|h̃|2d|m|
)1/2

=
c

1− c

(∫
|h̃|2d|m|

)1/2

.

By (22), this implies (21) and the proof of the theorem is complete. ✷

REMARK 4 We have shown that

‖ (−∆+ ε2∆2 + µn + α)−1 − (−∆+ ε2∆2 +m+ α)−1 ‖2
≤ C1

∫ ∫
|
∫
g0,1(y − a)gε,α(x− y)(m− µn)(dy)|2da dx

+C2

∫ ∫
|
∫
g0,1(y − a)gε,α(x− y)(m− µn)(dy)|2da |m|(dx)

for some finite constants Cj = Cj(ε, α), j = 1, 2, which can be computed with the
aid of the proof of theorem 3. Thus the proof provides explicit upper bounds for the
error one makes when one replaces the operator −∆+ ε2∆2+m by −∆+ ε2∆2+µn.

REMARK 5 The essential spectrum of −∆+ ε2∆2 +m remains the same
for any finite real-valued Radon measure m on Rd

σess(−∆+ ε2∆2 +m) = σess(−∆+ ε2∆2) = [0,∞).

By Sobolev’s inequality and [4, Lemma 19], the mapping f 7→ f̃ from H2(Rd) to
L2(|m|) is compact. Therefore using estimate (8), one may conclude that Gµ

ε,α is
compact if regarded as an operator fromH2(Rd) to L2(dx). According to the resolvent
formula (9), this implies that the resolvent difference Gm

ε,α−Gε,α is compact and hence
the corresponding essential spectra coincide.
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III Dependence on the coupling constant

In this section we are going to prove that

−∆+ ε2∆2 +m −→ −∆+m as ε ↓ 0, (23)

in the norm resolvent sense. Here m denotes a real-valued Radon measure on Rd and
we assume, in addition, that for every η > 0 there exists a βη <∞ such that

∫
|f |2d|m| ≤ η

(∫
|∇f |2dx+ βη

∫
|f |2dx

)
, f ∈ C∞

0 (Rd). (24)

Note that we neither require that m is finite nor that d ≤ 3. On the other hand, the
condition (24) implies that m(B) = 0 for every Borel set B with classical capacity
zero and, for instance, it is excluded that m is a point measure if d > 1.

The inequality (24) holds, in particular, provided m belongs to the Kato class,
i.e.

sup
n∈Z

|m|([n, n+ 1]) < ∞, d = 1,

lim
ε→0

sup
x∈R2

∫

B(x,ε)

| log(|x− y|)| |m|(dy) = 0, d = 2,

lim
ε→0

sup
x∈R3

∫

B(x,ε)

1

|x− y| |m|(dy) = 0, d = 3,

with B(x, ε) denoting the ball of radius ε centered at x (cf. [11], Theorem 3.1). We
refer to [7, chapter 1.2], for additional examples of measures satisfying (24).

In general, the elements f in the form domain of −∆ do not possess a continuous
representative f̃ . Therefore we shall give a definition of Em

ε different from the one in
section II so that it works for all ε ≥ 0. Of course, both definitions are equivalent in
the special case of positive ε.

Since the space C∞
0 (Rd) of smooth functions with compact support is dense in the

Sobolev spaceH1(Rd), there exists a unique bounded linear mapping Jm : H1(Rd) −→
L2(|m|) satisfying

Jmf = f, f ∈ C∞
0 (Rd),

(strictly speaking Jm maps the dx-equivalence class of the continuous function f̃ ∈
C∞

0 (Rd) to the |m|-equivalence class of f̃). We put

D(Em
ε ) := D(Eε),

Em
ε (f, f) := Eε(f, f) + (AmJmf, Jmf)L2(|m|), f ∈ D(Em

ε ),

where D(Eε) = H1(Rd) for ε = 0, D(Eε) = H2(Rd) otherwise and

Amh(x) :=

{
h(x), x ∈ B,
−h(x), x ∈ Rd \B, h ∈ L2(|m|),

12



with B being any Borel set such that m+(Rd \ B) = 0 = m−(B). By (24) and the
KLMN-theorem, the quadratic form Em

ε in L2(dx) is lower semibounded and closed
and

Em
ε,β1

(f, f) ≥ 0, f ∈ D(Em
ε ).

Again, −∆+ε2∆2+m denotes the lower semibounded self-adjoint operator associated
to Em

ε and we put
Rm

ε,α := (−∆+ ε2∆2 +m+ α)−1

provided the inverse operator exists. Gε,α is defined the same way as in section II.
One key for the proof of the convergence result (23) is the observation that one

can decompose

ĝε,α(p) =
c(ε)

p2 + α(ε)
− c(ε)

p2 + β(ε)
,

whenever c(ε) is defined. The coefficients −α(ε) and −β(ε) are the roots of the
polynomial ε2x2 + x+ α; a simple calculation yields

c(ε) :=
1√

1− 4ε2α
−→ 1, as ε ↓ 0,

α(ε) :=
2α

1 +
√
1− 4ε2α

−→ α, as ε ↓ 0, (25)

β(ε) :=
1 +

√
1− 4ε2α

2ε2
−→ ∞, as ε ↓ 0.

Using the parameters introduced above, we arrive at

Gε,α = c(ε)G0,α(ε) − c(ε)G0,β(ε). (26)

In the proof of the convergence result (23) we will use again a Krein-like resolvent
formula, this time using the one from [3], cf.(28) below. First we need some prepara-
tion. Let α > 0 and ε ≥ 0. We introduce the operator Jm,ε,α from the Hilbert space
(D(Eε), Eε,α) to L2(|m|) as follows:

D(Jm,ε,α) := D(Eε),
Jm,ε,αf := Jmf, f ∈ D(Jm,ε,α).

By (24), the operator norm of Jm,ε,α is less than or equal to η provided α ≥ βη. Thus
we can choose α0 > 0 and c < 1 such that

‖ Jm,ε,α ‖(D(Eε),Eε,α),L2(|m|)≤
√
c, α ≥ α0. (27)

Due to (27), the hypothesis of Theorem 3 in [3] is satisfied and the theorem implies
that −α belongs to the resolvent set of −∆+ ε2∆2 +m and

Rm
ε,α = Gε,α − (Jm,ε,α)

∗Am(1 + JmJ
∗
m,ε,αAm)

−1JmGε,α, α ≥ α0. (28)

13



In fact, we can write

J∗
m,ε,α′ = (JmGε,α′)∗, α′ > 0, (29)

since we have

(J∗
m,ε,α′f, h) = Eε,α′(J∗

m,ε,α′f,Gε,α′h) = (f, Jm,ε,α′Gε,α′h)L2(|m|) = ((JmGε,α′)∗f, h)

for every h ∈ L2(dx), ε ≥ 0 and α′ > 0.

THEOREM 6 Letm be a real-valued Radon measure on Rd satisfying (24).
Then the operators −∆+ ε2∆2 +m converge to −∆+m in the norm resolvent sense
as ε ↓ 0.

Proof: Both resolvents are written by means of Krein’s formula (28), so we can
compare the first and second terms separately. To see that ‖ Gε,α − G0,α ‖L2(dx)

vanishes in the limit ε ↓ 0 is simple. It is enough to use the first resolvent formula,

G0,α(ε) −G0,α = (α− α(ε))G0,αG0,α(ε) (30)

and the fact that

‖ G0,α′ ‖2L2(dx),H1≤ k(α′), α′ > 0,

for some continuous function k vanishing at infinity (actually, k(x) = 1/x2 for x ≤ 2
and k(x) = 1/(4(x − 1)) for x > 2). Then the decomposition (26) of Gε,α and the
asymptotic behavior (25) of α(ε), β(ε) and c(ε) finish the argument.

The proof that also the difference of second terms in Krein’s formula tend to zero
as ε→ 0 can be reduced into two tasks

‖ JmGε,α − JmG0,α ‖L2(dx),L2(|m|) −→ 0 as ε ↓ 0,

‖ (1 + JmJ
∗
m,ε,αAm)

−1 − (1 + JmJ
∗
m,0,αAm)

−1 ‖L2(|m|) −→ 0 as ε ↓ 0.

The argument for the first line is similar to the one we have presented above for
Gε,α −G0,α, we only have to add that, by hypothesis (24), it follows that

‖ JmG0,α′ ‖2L2(dx),L2(|m|)≤ max(1, β1)k(α
′), α′ > 0, (31)

where function k(α′) is defined as above.
To show the second line we choose any α > α0, then from (27) we get

‖ (1 + JmJ
∗
m,ε,αAm)

−1 ‖L2(|m|)≤
1

1− c
, ε ≥ 0.

By the second resolvent identity

(1 + A)−1 − (1 +B)−1 = (1 + A)−1(B −A)(1 +B)−1,

14



it is sufficient to prove that

‖ JmJ∗
m,ε,α − JmJ

∗
m,0,α ‖L2(|m|)−→ 0 as ε ↓ 0. (32)

From (26) and (29) follows that

JmJ
∗
m,ε,α = c(ε)Jm(JmG0,α(ε))

∗ − c(ε)Jm(JmG0,β(ε))
∗,

note that c(ε) is real for sufficiently small ε. Using this expression and (30) and (29),
we get

‖ JmJ∗
m,ε,α − JmJ

∗
m,0,α ‖L2(|m|)

≤ ‖ (c(ε)− 1)Jm(JmG0,α(ε))
∗ ‖L2(|m|) + ‖ Jm(JmG0,α(ε))

∗ − Jm(JmG0,α)
∗ ‖L2(|m|)

+ ‖ c(ε)Jm(JmG0,β(ε))
∗ ‖L2(|m|)

= ‖ (c(ε)− 1)Jm,0,α(ε)J
∗
m,0,α(ε) ‖L2(|m|) + ‖ (α− α(ε))JmG0,α(JmG0,α(ε))

∗ ‖L2(|m|)

+ ‖ c(ε)Jm,0,β(ε)J
∗
m,0,β(ε) ‖L2(|m|), ε > 0.

According to (24), the mapping ‖ Jm,0,αJ
∗
m,0,α ‖L2(|m|) is locally bounded for α ∈

(0,∞) and tends to zero as α tends to infinity. Since α(ε) −→ α, c(ε) −→ 1 and
β(ε) −→ ∞ as ε ↓ 0, this implies, in conjunction with (31), that (32) holds. ✷

REMARK 7 By the proof above, ‖ Gm
ε,α −Gm

0,α ‖ is upper bounded by an
expression of the form c · (ε2 + η(m, ε)) where the finite constant c can be extracted
from the proof and η(m, ε) has to be chosen (and can be chosen) such that (24) holds
with η and β replaced by η(m, ε) and β(ε), respectively.

IV Eigenvalues and eigenspaces of the approxi-

mating operators

Throughout this section let d ≤ 3 and let m be a finite real-valued Radon measure
satisfying (24) (e.g., let m be from the Kato class). By the two preceding convergence
results, we can approximate the operator −∆+m in L2(Rd, dx) by operators of the
form −∆ + ε2∆2 + µ, where ε > 0 and µ is a point measure with mass at only
finitely many points. Since the convergence is in norm resolvent sense, we can thus
approximate the negative eigenvalues and corresponding eigenspaces of the former
operator by the corresponding eigenvalues and eigenfunctions of the latter one. Note
that we know from remark 5 and [5, Theorem 3.1] that the essential spectra coincide.

The following theorem shows how to compute the eigenvalues and corresponding
eigenspaces of the approximating operators.

THEOREM 8 Let d ≤ 3 and ε > 0. Let µ =
∑N

j=1 cjδxj
, where N ∈ N,

x1, . . . , xN are N distinct points in Rd and c1, . . . , cN are real numbers different from
zero. Then the following holds:
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a) The real number −α < 0 is an eigenvalue of −∆+ ε2∆2 + µ if and only if

det

(
δjk
ck

+ gε,α(xj − xk)

)

1≤j,k≤N

= 0.

b) For every eigenvalue −α < 0 the corresponding eigenfunctions have the following
form

N∑

k=1

hkgε,α(· − xk), (hk)
T
1≤k≤N ∈ ker

(
δjk
ck

+ gε,α(xj − xk)

)

1≤j,k≤N

Proof: Since D(Eε) = H2(Rd), the mapping Jµ can be understood as

Jµf := f̃ |µ|-a.e., f ∈ H2(Rd).

By (6),
∫
gε,α(· − y)f(y)dy is the unique continuous representative of Gε,αf . Hence

JµGε,α is the integral operator from L2(dx) to L2(|µ|) with kernel gε,α(x− y) and its
inverse operator (JµGε,α)

∗ is the integral operator from L2(|µ|) to L2(dx) with the
same kernel. Thus we get

Jµ(JµGε,α)
∗Aµh(xj) =

N∑

k=1

ckgε,α(xj − xk)h(xk), 1 ≤ j ≤ N, (33)

for every h ∈ L2(|µ|).
Due to Krein’s formula (28), −α < 0 belongs to the resolvent set of (−∆+ε2∆2+µ)

provided 1 + Jµ(JµGε,α)
∗Aµ is bijective. Since L2(|µ|) is finite dimensional and we

have expression (33), that is true if and only if

λ(α) := det(δjk + ckgε,α(xj − xk))1≤j,k≤N 6= 0,

with δj,k being the Kronecker delta. As gε,α(x) is a real analytic function of α ∈ (0,∞)
for every x ∈ Rd, the function λ(α) is also real analytic on (0,∞). By (5), it is different
from zero for all sufficiently large α. Thus the set of zeros on (0,∞) of this function
is discrete.

Since JµGε,α is surjective and (JµGε,α)
∗Aµ injective, the resolvent formula (28)

implies that any α0 > 0 satisfying λ(α0) = 0 is a pole of Rµ
ε,α. Thus we have proved

that −α0 is an eigenvalue of −∆ + ε2∆2 + µ if and only if λ(α0) = 0. Finally, the
expression

det(δjk + ckgε,α(xj − xk))1≤j,k≤N = ΠN
k=1ck · det(δjk/ck + gε,α(xj − xk))1≤j,k≤N

implies the assertion a).
By the preceding considerations and [3, Lemma 1],

h 7→ (JµGε,α)
∗Aµh

is a linear bijective mapping from ker(1+Jµ(JµGε,α)
∗Aµ) onto ker(−∆+ε2∆2+µ+α).

The assertion b) follows from a simple algebraic calculation. ✷
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REMARK 9 Since the Hilbert space L2(|µ|) is N -dimensional with N <
∞, the resolvent formula (28) implies that the difference Gµ

ε,α −Gε,α is a finite rank
operator with rank less than or equal to N . Thus the number, counting multiplicity,
of negative eigenvalues of −∆+ ε2∆2 + µ is less than or equal to N .

Let us illustrate the approximation by point measures on a simple example in
dimension two. Suppose that measure m is minus length measure supported by a
circle of radius R, i.e. m is constant and negative measure. This makes the choice of
approximating point measures very simple: we spread equidistantly N points along
the circle and all the points have the same coupling constant c

c = −γ2πR
N

.

Due to the symmetry, the spectrum of −∆+m for this specific measure is known;
it consists of the essential spectrum [0,∞) and a finite number of negative eigenvalues,
which are all except the lowest one twice degenerate, see [2]. To find the eigenvalues,
one has to decompose L2(R2) into angular momentum subspaces and then to look for
solutions of an implicit equation in each of the subspaces. Therefore we can compute
and compare both exact and approximate eigenvalues.
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(b)(a)

Figure 1: The dependence of the approximate eigenvalues on the number of point
potentials for circle with R = 10 and ε = 0.1 (a), ε = 0.01 (b). The dashed lines
represent the exact eigenvalues of −∆+m.
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Figure 2: The dependence of the approximate eigenvalues on the number of point
potentials for R = 10, using the standard two-dimensional point potentials. The
dashed lines represent the exact eigenvalues of −∆+m.

Each approximation is characterized by a pair of numbers, ε > 0 and N ∈ N. In
numerical calculations we fix ε and we let N grow. The results for one chosen radius
and two different parameters ε are depicted in figure 1, cases (a) and (b) correspond to
ε = 0.1 and ε = 0.01, respectively. We observe that below some threshold number of
points, the approximate discrete spectrum has no resemblance to the exact spectrum.
The approximate eigenvalues may be very large negative and their number may be
much higher than the number of exact eigenvalues (in figure 1, we even have not
plotted all the eigenvalues which exist only for small N .)

It appears that for larger ε, we get a fast convergence of eigenvalues, however,
they are all shifted from the exact ones. The reason is that since we work with fixed
ε, the limit operator is in fact −∆+ ε2∆2 +m instead of −∆+m. On the contrary,
small ε means that one need more points to obtain a qualitatively correct spectrum,
but then for a large number of points one gets much closer to the exact spectrum.

We can also compare this approximation to [8], where approximating operators
were Laplacians with point potentials. Those point potentials are of course different,
they are not defined via a quadratic form and cannot be understood as a special case
ε = 0 of section II, instead boundary conditons on wavefunctions are used, see [1].
Figure 2 presents the eigenvalues of Laplacians perturbed by point potentials which
converge to −∆+m with the same measure m as above. We have already mentioned
in the introduction that here, we obtain a stronger convergence result than the one
in [8]. Moreover, comparing both figures 1 and 2, we see that employing fourth-order
differential operators in the approximation may improve significantly the spectral
convergence.
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Appendix

In section II we have employed Krein’s formula (9). Various forms of this formula
can be found in the literature. Let us prove here the one we have used.

Let f ∈ L2(dx). Since Eε and Eµ
ε are associated to −∆+ε2∆2 and −∆+ε2∆2+µ,

respectively, it follows from Kato’s representation theorem that

Eε,α(Gε,αf, h) = (f, h) = Eµ
ε,α((−∆+ ε2∆2 + µ+ α)−1f, h), (34)

for any h ∈ H2(Rd) and f ∈ L2(Rd). Moreover we have

Eε,α(Gµ
ε,αψ, h) = (Gµ

ε,αψ, (−∆+ ε2∆2 + α)h)

=
∫ ∫

gε,α(x− y)
¯̃
ψ(y)µ(dy)(−∆+ ε2∆2 + α)h(x) dx

=
∫ ∫

gε,α(x− y)(−∆+ ε2∆2 + α)h(x) dx ¯̃ψ(y)µ(dy)

=
∫
h̃
¯̃
ψ µ(dy), ψ ∈ H2(Rd), h ∈ D(−∆+ ε2∆2). (35)

We could change the order of integration in the second step. In fact, as µ± are finite
Radon measures and gε,α is square integrable w.r.t. the Lebesgue measure dx, the
mappings x 7→

∫
|gε,α(x−y)|µ±(dy), Rd −→ R, are square integrable w.r.t. dx. Since

ψ̃ is bounded and (−∆+ ε2∆2 + α)h ∈ L2(dx) it follows that
∫ ∫

|gε,α(x− y)
¯̃
ψ(y)|µ±(dy)|(−∆+ ε2∆2 + α)h(x)|dx <∞

and, by Fubini’s theorem, we could change the order of integration in the second
step. In the last step we have used (6). Employing Sobolev’s inequality and the
fact that D(−∆+ ε2∆2) is dense in (D(Eε), Eε,α), we can extend (35) to all functions
ψ, h ∈ D(Eε).

Put

φ := Gε,αf −Gµ
ε,α(I +Gµ

ε,α)
−1Gε,αf.

Then φ ∈ H2(Rd) = D(Eµ
ε ) and (34) and extended (35) yield

Eµ
ε,α(φ, h) = Eε,α(Gε,αf, h)− Eε,α(Gµ

ε,α(I +Gµ
ε,α)

−1Gε,αf, h)

+

∫
[Gε,αf −Gµ

ε,α(I +Gµ
ε,α)

−1Gε,αf
¯̃
]h̃dµ

= (f, h)−
∫

[(I +Gµ
ε,α)

−1Gε,αf
¯̃
]h̃dµ

+

∫
[(I +Gµ

ε,α)(I +Gµ
ε,α)

−1Gε,αf −Gµ
ε,α(I +Gµ

ε,α)
−1Gε,αf

¯̃
]h̃dµ

= (f, h), h ∈ H2(Rd).

Due to (10), Eµ
ε,α is a scalar product on D(Eµ

ε,α) = H2(Rd). Thus (34) and the
calculation above imply that φ = (−∆+ ε2∆2 + µ+ α)−1f .
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