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Abstract

The goal of this article is to give an overview of numerical problems encountered when
determining the electronic structure of materials and the rich variety of techniques used to
solve these problems. The paper is intended for a diverse scienti£c computing audience. For
this reason, we assume the reader does not have an extensive background in the related physics.
Our overview focuses on the nature of the numerical problems to be solved, their origin, and
on the methods used to solve the resulting linear algebra or nonlinear optimizationproblems.
It is common knowledge that the behavior of matter at the nanoscale is, in principle, entirely
determined by the Schrödinger equation. In practice, this equation in its original form is not
tractable. Successful, but approximate, versions of this equation, whichallow one to study
nontrivial systems, took about £ve or six decades to develop. In particular, the last two decades
saw a ¤urry of activity in developing effective software. One of the main practical variants of
the Schr̈odinger equation is based on what is referred to as Density Functional Theory (DFT).
The combination of DFT with pseudopotentials allows one to obtain in an ef£cient way the
ground state con£guration for many materials. This article will emphasize pseudopotential-
density functional theory, but other techniques will be discussed as well.
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1 Introduction

Some of the most time consuming jobs of any high-performancecomputing facility are likely to
be those involving calculations related to high energy physics or quantum mechanics. These cal-
culations are very demanding both in terms of memory and in terms of computational power. They
entail computational methods that are characterized by a rich variety of techniques which blend
ideas from physics and chemistry, with applied mathematics, numerical linear algebra, numerical
optimization, and parallel computing. In recent years, thescienti£c community has dramatically
increased its interest in these problems as government laboratories, industrial research labs, and
academic institutions are putting an enormous emphasis on materials and everything related to
nanotechnology. This trend can be attributed to two converging factors. The £rst is that the stakes
are very high and the second is that a major practical breakthrough has never been closer because
the synergistic forces at play today are making it possible to do calculations with accuracies never
anticipated.

Nanotechnology may gradually take the forefront of scienti£c computing in the same way
that computational ¤uid dynamics (CFD) was at the forefront ofscienti£c computing for several
decades. The past few decades of scienti£c computing has beendominated by ¤uid ¤ow compu-
tations, in part because of the needs in aeronautics and automobile industries (e.g., aerodynamics
and turbines). Model test problems for numerical analysts developing new algorithms are often
from CFD (such as the model “convection-diffusion equation”or the model “Laplacian”). Simi-
larly, a big part of applied mathematics focuses on error analysis and discretization schemes (£nite
elements) for ¤uid ¤ow problems. Today, the need to develop novel or improved methods for CFD
is diminishing, though this does not mean in any way that CFD methods are no longer in need
of improvements. Yet, a look at recent publications in scienti£c computing, reveals that there is
a certain dichotomy between the current trend in nanotechnology and the interest of the scienti£c
community.

The “mega”- trend in nanotechnology is only timidly re¤ectedby published articles in scien-
ti£c computing. Few papers on “algorithms” utilize data setsor examples from standard electronic
structure problems, or address problems that are speci£c to this class of applications. For exam-
ple, one would expect to see more articles on the problem of computing a very large number of
eigenvectors or that of global optimization of very complexfunctionals.

Part of the dif£culty can be attributed to the fact that the problems encountered in quantum
mechanics are enormously more complex than those addressedin other areas,i.e., classical me-
chanics. The approximations and methods used have taken several generations of innovations by
a community that is much larger and broader than that of mechanical and aerospace engineers.
Chemists, chemical engineers, materials scientists, solidstate physicists, electrical engineers, and
even geophysicists, and more recently, bioengineers, all explore materials at the atomic or molec-
ular level, using quantum mechanical models. Therein lies asecond dif£culty, which is that these
different groups have their own notation, constraints, andtheir own preferred methods. Chemists
have a certain preference for Hartree-Fock based methods which are more accurate for their needs,
but which physicists £nd too costly, if not intractable. Thispreference re¤ects the historical inter-
ests of chemists on molecules and the interests of physicists on solids.

Our paper presents an overview of some of the most successfulmethods used today to study the
electronic structures of materials. A large variety of techniques is available and we will emphasize
those methods related to pseudopotentials and density functional theory.
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One of the greatest scienti£c achievements of humankind is the discovery, in the early part
of the twentieth century, of quantum mechanical laws describing the behavior of matter. These
laws make it possible, at least in principle, to predict the electronic properties of matter from the
nanoscale to the macroscale. The progress that lead to thesediscoveries is vividly narrated in the
book “Thirty years that shook physics” by George Gamov [55].A series of discoveries, starting
with the notion of quantas originated by Max Planck at the endof 1900, and ending roughly in
the mid-1920’s, with the emergence of the Schrödinger wave equation, set the stage for the new
physics. Solutions of the Schrödinger wave equation resulted in essentially a complete under-
standing of the dynamics of matter at the atomic scale. Thus,in 1929, Dirac had this to say: “The
underlying physical laws necessary for the mathematical theory of a large part of physics and the
whole chemistry are thus completely known, and the dif£culty isonly that the exact application
of these laws leads to equations much too complicated to be soluble. It therefore becomes de-
sirable that approximate practical methods of applying quantum mechanics should be developed,
which can lead to the explanation of the main features of complex atomic systems without too much
computations”.

One could understand atomic and molecular phenomena, formally at least, from these equa-
tions. However, even today, solving the equations in their original form is nearly impossible, save
for systems with a very small number of electrons. In the seventy-six years that have passed since
this statement by Dirac, one continues to strive for better explanation of the main features of com-
plex atomic systems “without too much computations”. However, Dirac would certainly have been
amazed at how much progress was achieved in sheer computing power. Interestingly, these gains
have been brought about by a major discovery (the transistor), which can be attributed in big part to
the new physics and a better understanding of condensed matter, especially semiconductors. The
gains made in hardware, on the one hand, and methodology, on the other, multiply each other to
yield huge speed-ups and improvement in computational capabilities.

When it comes to methodology and algorithms, the biggest steps forward were made in the six-
ties with the advent of two key new ideas. One of them isdensity functional theory, which enabled
one to transform the initial problem into one which involvesfunctions of only one space variables
instead ofN space variables, forN -particle systems in the original Schrödinger equation. Instead
of dealing with functions inR3N , we only need to handle functions inR3. The second substantial
improvement came withpseudopotentials. In short pseudopotentials allowed one to reduce the
number of electrons to be considered by constructing special potentials, which would implicitly
reproduce the effect of chemically inert core electrons andexplicitly reproduce the properties of
the chemically active valence electrons . With pseudopotentials, only valence electrons, those on
the outer shells of the atom, need be considered,e.g., a Pb atom is no more complex than a C atom
as both haves2p2 valence con£gurations. This leads to substantial gains bothin memory and a
reduction of computational complexity.

In the following we often use terminology that is employed byphysicists and chemists. For
example we will speak of “diagonalization” when we will in fact mean “computation of eigenval-
ues and eigenvectors”,i.e., partial diagonalization. We will use script letters for operators and bold
letters for vectors.
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Figure 1: Atomic and electronic coordinates: Filled circles represent electrons, open circles repre-
sent nuclei.

2 Quantum descriptions of matter

ConsiderN nucleons of chargeZn at positions{Rn} for n = 1, · · · , N andM electrons at po-
sitions{ri} for i = 1, · · · ,M . An illustration is shown in Figure 1. The non-relativistic, time-
independent Schrödinger equation for the electronic structure of the systemcan be written as:

H Ψ = E Ψ (1)

where the many-body wave functionΨ is of the form

Ψ ≡ Ψ(R1,R2,R3, · · · ; r1, r2, r3, · · · ) (2)

andE is the total electronic energy. The HamiltonianH in its simplest form can be written as

H(R1,R2,R3, · · · ; r1, r2, r3, · · · ) = −
N∑

n=1

~
2∇2

n

2Mn

+
1

2

N∑

n,n′=1,

n6=n′

ZnZn′e2

|Rn − Rn′|

−
M∑

i=1

~
2∇2

i

2m
−

N∑

n=1

M∑

i=1

Zne
2

|Rn − ri|
+

1

2

M∑

i,j=1

i6=j

e2

|ri − rj|
. (3)

Here,Mn is the mass of the nucleus,~ is Planck’s constant,h, divided by2π, m is the mass of the
electron, ande is the charge of the electron.

The above Hamiltonian includes the kinetic energies for thenucleus (£rst sum inH), and each
electron (3rd sum), the inter-nuclei repulsion energies (2nd sum), the nuclei-electronic (Coulomb)
attraction energies (4th sum), and the electron-electron repulsion energies (5th sum). Each Lapla-
cian∇2

n involves differentiation with respect to the coordinates of the nth nucleus. Similarly the
term∇2

i involves differentiation with respect to the coordinates of the ith electron.
In principle, the electronic structure of any system is completely determined by (1), or, to be

exact, by minimizing the energy< Ψ|H|Ψ > under the constraint of normalized wave functions
Ψ. Recall thatΨ has a probabilistic interpretation: for the minimizing wave functionΨ,

|Ψ(R1, · · · ,RN ; r1, · · · , rM)|2d3R1 · · · d3RNd3r1 · · · d3rM
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represents the probability of £nding electron 1 in volume|R1 +d3R1|, electron 2 in volume|R2 +
d3R2|, etc. From a computational point of view however, the problem is not tractable for systems
which include more than just a few atoms and dozen electrons,or so. The main computational
dif£culty stems from the nature of the wave function which depends on all coordinates of all
particles (nuclei and electrons) simultaneously. For example, if we had just 10 particles, and
discretized each coordinate using just 100 points for each of the x, y, z directions, we would have
106 points for each coordinate for a total of(106)

10
= 1060 variables altogether.

Soon after the discovery of the Schrödinger equation, it was recognized that this equation pro-
vided the means of solving for the electronic and nuclear degrees of freedom. Using the variational
principle, which states that an approximate (normalized) wave function will always have a less fa-
vorable energy than the true ground state wave function, onehad an equation and a method to test
the solution. One can estimate the energy from

E =< Ψ|H|Ψ >≡
∫

Ψ∗HΨ d3R1 d3R2 d3R3 · · · . d3r1 d3r2 d3r3 · · ·
∫

Ψ∗Ψ d3R1 d3R2 d3R3 · · · . d3r1 d3r2 d3r3 · · ·
. (4)

Recall that the wave functionΨ is normalized, since its modulus represents a probability distribu-
tion. The state wave functionΨ is anL2-integrable function inC3 × C

3 × · · · × C
3. Thebra (for

< |) andket (for | >) notation is common in chemistry and physics. These resemble the notions
of outer and inner products in linear algebra and are relatedto duality. (Duality is de£ned from a
bilinear forma(x, y): The vectorsx andy are dual to each other with respect to the bilinear form.)

When applying the Hamiltonian to a state functionΨ the result is|H|Ψ > which is another
state functionΦ. The inner product of this function with another functionη is < η|Φ > which is a
scalar, a complex one in the general setting.

A number of highly successful approximations have been madeto compute both the ground
state,i.e., the state corresponding to minimum energyE, and excited state energies, or energies
corresponding to higher eigenvaluesE in (1). The main goal of these approximations is to reduce
the number of degrees of freedom in the system as much as possible.

A fundamental and basic approximation is theBorn-Oppenheimeror adiabatic approximation
which separates the nuclear and electronic degrees of freedom. Since the nuclei are consider-
ably more massive than the electrons, it can be assumed that the electrons will respond “instanta-
neously” to the nuclear coordinates. This allows one to separate the nuclear coordinates from the
electronic coordinates. Moreover, one can treat the nuclear coordinates as classical parameters.
For most condensed matter systems, this assumption called the Born-Oppenheimer approximation
or adiabatic approximation is highly accurate [69,186]. Under this approximation, the £rst term in
(3) vanishes and the second becomes a constant. We can then work with a new Hamiltonian:

H(r1, r2, r3, · · · ) =
M∑

i=1

−~
2∇2

i

2m
−

N∑

n=1

M∑

i=1

Zne2

|Rn − ri|
+

1

2

M∑

i,j=1

i6=j

e2

|ri − rj|
. (5)

This simpli£cation essentially removes degrees of freedom associated with the nuclei, but it will
not be suf£cient to reduce the complexity of the Schrödinger equation to an acceptable level.
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2.1 The Hartree approximation

If we were able to write the HamiltonianH as a sum of individual (non-interacting) Hamiltonians,
one for each electron, then it is easy to see that the problem would becomeseparable. In this case
the wave functionΨ can be written as a product of individualorbitals, φk(rk) each of which is
an eigenfunction of the non-interacting Hamiltonian. Thisis an important concept and it is often
characterized as the “one-electron” picture of a many-electron system.

The eigenfunctions of such a Hamiltonian determine orbitals (eigenfunctions) and energy levels
(eigenvalues). For many systems, there are an in£nite numberof states, enumerated by quantum
numbers. Each eigenvalue represents an “energy” level corresponding to the orbital of interest. For
example, in an atom such as hydrogen, an in£nite number of bound states exist, each labeled by
a set of three discrete integers. In general, the number of integers equal the spatial dimensionality
of the system plus spin. In hydrogen, each state can be labeled by three indices (n, l, andm) and
s for spin. In the case of a solid, there are essentially an in£nite number of atoms and the energy
levels can be labeled by quantum numbers, which are no longerdiscrete, but quasi-continuous. In
this case, the energy levels form an energy band.

The energy states are £lled by minimizing the total energy of the system. TheN lowest orbitals
account for2N electrons, if one ignores spin, and areoccupiedstates. States aboveN areunoccu-
piedor virtual states. The state with lowest energy (smallest eigenvalue)is theground state. The
ground state energy corresponds to the lowest eigenvalue. The ground sate determines a number
of properties,e.g., stable structures, mechanical deformations, phase transitions, and vibrational
modes. The states above the ground state are known as excitedstates. They are often used to
calculate response functions of the solid,e.g., the dielectric and the optical properties of materials.

In mathematical terms,H ≡ ⊕Hi, the circled sum being a direct sum meaning thatHi actsonly
on particle numberi, leaving the others unchanged. This not being true in general, Hartree sug-
gested to use this as an approximation technique whereby thebasis resulting from this calculation
will be substituted in< Ψ|H|Ψ > / < Ψ|Ψ >, to yield an upper bound for the energy.

In order to make the Hamiltonian (5) non-interactive, we must remove the last term in (5),
i.e., we assume that the electrons do not interact with each other. Then theelectronicpart of the
Hamiltonian becomes:

Hel = Hel(r1, r2, r3, · · · ) =
M∑

i=1

−~
2∇2

i

2m
−

N∑

n=1

M∑

i=1

Zne
2

|Rn − ri|
(6)

which can be cast in the form

Hel =
M∑

i=1

[−~
2∇2

i

2m
+ VN(ri)

]

≡
M⊕

i=1

Hi (7)

where

VN(ri) = −
N∑

n=1

Zne2

|Rn − ri|
. (8)

This simpli£ed Hamiltonian is separable and admits eigenfunctions of the form

ψ(r1, r2, r3, · · · ) = φ1(r1)φ2(r2)φ3(r3) · · · , (9)
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where theφi(r) orbitals can be determined from the “one-electron” Hamiltonian:

Hiφi(r) = Eiφi(r) . (10)

The total energy of the system is the sum of the eigenvalues,Ei.
This model is extremely simple, but clearly not realistic. Physically, using the statistical inter-

pretation mentioned above, writingΨ as the product ofφi’s, only means that the electrons have
independent probabilities of being located in a certain position in space. This lack ofcorrelation
between the particles causes the resulting energy to be overstated. In particular, the Pauli Principle
states that no two electrons can be at the same point in space and have the same quantum numbers.
The solutionsΨ computed in (9) is known as theHartreewave function.

The Hartree approximation consists of using the Hartree wave function as an approximation
to solve the Hamiltonianincluding the electron-electron interactions. This process starts with
the use of the original adiabatic Hamiltonian (5) and forcesa wave function to be a product of
single-electron orbitals, as in (9). The next step is to minimize the energy< Ψ|H|Ψ > under
the constraint< Ψ|Ψ >= 1 for Ψ in the form (9). This condition is identical to imposing the
conditions that the integrals of each|ψk|2 be equal to one. If we impose the equations given by the
standard approach of the Lagrange multipliers combined with £rst order necessary conditions for
optimality, we would get

d < ψk|H|ψk >

dψk

− λψk = 0.

Evaluatingd < ψ|H|ψ > /dψ over functionsφ of norm one is straightforward. The £rst and
second terms are trivial to differentiate. For the simple case whenk = 1 andM = 3, consider the
third term, which we denote by< Ψ|Ve|Ψ >:

< Ψ|Ve|Ψ >≡ 1

2

M∑

i,j=1

i6=j

∫
e2|φ2

1φ
2
2φ

2
3|

|ri − rj|
d3r1d

3r2d
3r3 . (11)

Becauseφ1 is normalized, this is easily evaluated to be a constant independent ofφ1 when both
i andj are different fromk = 1. We are left with the differential of the sum overi = 1, j 6= 1.
Consider only the termi = 1, j = 2 (the coef£ciente2 is omitted):

∫ |φ2
1φ

2
2φ

2
3|

|r1 − r2|
d3r1d

3r2d
3r3 =

∫

d3r3|φ3(r3)|2
︸ ︷︷ ︸

=1

×
∫

|φ1|2
[∫ |φ2

2|
|r1 − r2|

d3r2

]

d3r1 .

By introducing a variationδφ1 in the above relation, it is easy to see (at least in the case ofreal
variables) that the differential of the above term with respect toφ1 is the functional associated with
the integral of|φ2(r2)|2/|r2 − r1|. A similar result holds for the termi = 1, j = 3. In the end the
individual orbitals,φi(r), are solutions of the eigenvalue problem






−~
2∇2

2m
+ VN(r) +

M∑

j=1

j 6=i

∫
e2|φj(r

′)|2
|r′ − r| d3r′




 φi(r) = Eiφi(r) . (12)
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The subscriptsi, j of the coordinates have been removed as there is no ambiguity. The Hamiltonian
related to each particle can be written in the formH = −~

2∇2

2m
+ VN +WH , whereVN was de£ned

earlier and

WH ≡
M∑

j=1

j 6=i

∫
e2φj(r)φj(r)

∗d3r′

|r′ − r| . (13)

This “Hartree potential”, or “Couloumb potential”, can be interpreted as the potential seen from
each electron by averaging the distribution of the other electrons|φj(r)|2’s. It can be obtained from
solving the Poisson equation with the charge densitye|φj(r)|2 for each electronj. Note that both
VN andWH depend on the electroni. Another important observation is that solving the eigenvalue
problem (12), requires the knowledge of the other orbitalsφj, i.e., those forj 6= i. Also, the
electron density of the orbital in question should not be included in the construction of the Hartree
potential.

The solution of the problem requires aself-consistent £eld(SCF) iteration. One begins with
some set of orbitals, and computes iteratively new sets by solving (12), using the most current set
of φ′

js for j 6= i. This iteration is continued until the set ofφi’s is self-consistent.
Once the orbitals,φ(r), which satisfy (12) are computed, the Hartree many-body wave function

can be constructed and the total energy determined from (4).The Hartree approximation is useful
as an illustrative tool, but it is not an accurate approximation.

As indicated earlier, a key weakness of the Hartree approximation is that it uses wave functions
that do not obey one of the major postulates of quantum mechanics. Namely, electrons or Fermions
must satisfy the Pauli exclusion principle [103]. Moreover, the Hartree equation is dif£cult to
solve. The Hamiltonian is orbitally dependent because the summation in (12) does not include the
ith orbital. This means that if there areM electrons, thenM Hamiltonians must be considered and
(12) solved for each orbital.

2.2 The Hartree-Fock approximation

So far, we have not includedspin in the state functionsΨ. Spin can be viewed as yet another
quantum coordinate associated with each electron. This coordinate can assume two values: spin
up or spin down. The exclusion principle states that there can be only two electrons in the same
orbit and they must be of opposite spin. Since the coordinates must now include spin, we de£ne

xi =
(

ri

si

)

wheresi is the spin of theith electron. A canonical way to enforce the exclusion

principle is to require that a wave functionΨ be an antisymmetric function of the coordinates
xi of the electrons in that by inter-changing any two of these its coordinates, the function must
change its sign. In the Hartree-Fock approximation, many body wave functions with antisymmetric
properties are constructed, typically cast asSlater determinants, and used to approximately solve
the eigenvalue problem associated with the Hamiltonian (5).

Starting with one-electron orbitals,φi(x) ≡ φ(r)σ(s), the following functions meet the anti-
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symmetry requirements:

Ψ(x1,x2,x3, · · · ) = (M !)−1/2

∣
∣
∣
∣
∣
∣
∣
∣

φ1(x1) φ1(x2) · · · · · · φ1(xM)
φ2(x1) φ2(x2) · · · · · · · · ·
· · · · · · · · · · · · · · ·

φM(x1) · · · · · · · · · φM(xM)

∣
∣
∣
∣
∣
∣
∣
∣

. (14)

The term(M !)−1/2 is a normalizing factor. If two electrons occupy the same orbit, two rows of the
determinant will be identical andΨ will be zero. The determinant will also vanish if two electrons
occupy the same point in generalized space (i.e., xi = xj) as two columns of the determinant will
be identical. Exchanging positions of two particles will lead to a sign change in the determinant.
The Slater determinant is a convenient representation, butone should stress that it is anansatz. It is
probably the simplest many-body wave function that incorporates the required symmetry properties
for fermions, or particles with non-integer spins.

If one uses a Slater determinant to evaluate the total electronic energy and maintains wave
function normalization, the orbitals can be obtained from the followingHartree-Fockequations:

Hiφi(r) =

(

−~
2∇2

2m
+ VN(r) +

M∑

j=1

∫
e2 |φj(r

′)|2
|r − r ′| d3r ′

)

φi(r)

−
M∑

j=1

∫
e2

|r − r ′| φ∗
j(r

′)φi(r
′) d3r ′ δsi,sj

φj(r) = Eiφi(r) . (15)

It is customary to simplify this expression by de£ning an electronic charge density,ρ:

ρ(r) =
M∑

j=1

|φj(r )|2, (16)

and an orbital dependent“exchange-charge density”, ρHF
i for theith orbital:

ρHF
i (r, r ′) =

M∑

j=1

φ∗
j(r

′) φi(r
′) φ∗

i (r ) φj(r )

φ∗
i (r ) φi(r )

δsi,sj
. (17)

This “density” involves a spin dependent factor which couples only states (i, j) with the same spin
coordinates (si, sj).

With these charge densities de£ned, it is possible to de£ne corresponding potentials. The
Coulombor Hartreepotential,VH , is de£ned by

VH(r) =

∫

ρ(r)
e2

|r − r ′| d3r′ . (18)

and anexchangepotential can be de£ned by

V i
x(r) = −

∫

ρHF
i (r, r ′)

e2

|r − r ′| d3r′ . (19)
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This combination results in the following Hartree-Fock equation:
( −~

2∇2

2m
+ VN(r) + VH(r) + V i

x(r)

)

φi(r) = Eiφi(r) . (20)

Once the Hartree-Fock orbitals have been obtained, the total Hartree-Fock electronic energy of the
system,EHF , can be obtained from

EHF =
M∑

i

Ei −
1

2

∫

ρ(r)VH(r) d3r − 1

2

M∑

i

∫

φ∗
i (r ) φi(r )V i

x(r) d3r . (21)

EHF is not a sum of the Hartree-Fock orbital energies,Ei. The factor of one-half in the electron-
electron terms arises because the electron-electron interactions have been double counted in the
Coulomb and exchange potentials. The Hartree-Fock Schrödinger equation is only slightly more
complex than the Hartree equation. Again, the equations aredif£cult to solve because the exchange
potential is orbitally dependent.

There is one notable difference in the Hartree-Fock summations compared to the Hartree sum-
mation. The Hartree-Fock sums include thei = j terms in (15). This difference arises because the
exchange term corresponding toi = j cancels an equivalent term in the Coulomb summation. The
i = j term in both the Coulomb and exchange term is interpreted as a “self-screening” of the elec-
tron. Without a cancellation between Coulomb and exchange terms a “self-energy” contribution to
the total energy would occur. Approximate forms of the exchange potential often do not have this
property. The total energy then contains a self-energy contribution which one needs to remove to
obtain a correct Hartree-Fock energy.

The Hartree-Fock equation is an approximate solution to thetrue ground-state, many-body
wave function. Terms not included in the Hartree-Fock energy are referred to ascorrelationcon-
tributions. One de£nition for the correlation energy,Ecorr, is to write it as the difference between
the exact total energy of the system,Eexact, and the Hartree-Fock energies:Ecorr = Eexact −EHF .
Correlation energies may be included by considering Slater determinants composed of orbitals
which represent excited state contributions. This method of including unoccupied orbitals in the
many-body wave function is referred to ascon£guration interactionsor “CI” [70].

Applying Hartree-Fock wave functions to systems with many atoms is not routine. The result-
ing Hartree-Fock equations are often too complex to be solved for extended systems, except in
special cases. The number of electronic degrees of freedom grows rapidly with the number atoms
often prohibiting an accurate solution, or even one’s ability to store the resulting wave function.
As such, it has been argued that a “wave function” approach tosystems with many atoms does not
offer a satisfactory approach to the electronic structure problem. An alternate approach is based on
density functional theory.

3 Density Functional Theory

In a number of classic papers, Hohenberg, Kohn, and Sham established a theoretical basis for
justifying the replacement of the many-body wave function by one-electron orbitals [73, 85, 102].
Their results put the charge density at center stage. The charge density is a distribution of proba-
bility, i.e., ρ(r1)d

3r1 represents,in a probabilistic sense, the number of electrons (all electrons) in
the in£nitesimal volumed3r1.

11



Speci£cally, the Hohenberg-Kohn results were as follows. The £rst Hohenberg and Kohn the-
orem states thatfor any system of electrons in an external potentialVext, the Hamiltonian (specif-
ically Vext up to a constant) is determined uniquely by the ground-statedensity alone.Solving the
Schr̈odinger equation would result in a certain ground-state wave functionΨ, to which is associated
a certain charge density,

ρ(r1) =
∑

s1=↑,↓

M

∫

|Ψ(x1,x2, · · · ,xM)|dx2 · · · dxM . (22)

From each possible state functionΨ one can obtain a (unique) probability distributionρ. This
mapping from the solution of the full Schrödinger equation toρ is trivial. What is less obvious
is that the reverse is true: Given a charge density,ρ, it is possible in theory to obtain a unique
Hamiltonian and associated ground-state wave function,Ψ. Hohenberg and Kohn’s £rst theorem
states that this mapping is one-to-one,i.e., we could get the Hamiltonian (and the wave function)
solely fromρ. Remarkably, this statement is easy to prove.

The second Hohenberg-Kohn theorem provides the means for obtaining this reverse mapping:
The ground-state density of a system in a particular external potential can be found by minimizing
an associated energy functional.In principle, there is a certain energy functional, which ismin-
imized by the unknown ground state charge density,ρ. This statement still remains at a formal
level in the sense that no practical means was given for computing Ψ or a potential,V. From the
magnitude of the simpli£cation, one can imagine that the energy functional will not be easy to
construct. Indeed, this transformation changes the original problem with a total of3N coordinates
plus spin, to one with only 3 coordinates, albeit withN orbitals to be determined.

Later Kohn and Sham provided a workable computational method based on the following re-
sult: For each interacting electron system, with external potential V0, there is a local potentialVks,
which results in a densityρ equal to that of the interacting system.Thus, the Kohn-Sham energy
functional is formally written in the form

HKS =
~

2

2m
∇2 + Veff , (23)

where the effective potential is de£ned as for a one-electronpotential,i.e., as in (7),

Veff = VN(ρ) + VH(ρ) + Vxc(ρ). (24)

Note that in contrast with (7),Vxc is now without an index, as it is only for one electron. Also note
the dependence of each potential term on the charge densityρ, which is implicitly de£ned from the
set of occupied eigenstatesψi, i = 1, · · · , N of (23) by Eq. (16).

The energy term associated with the nuclei-electron interactions is< VN |ρ >, while that asso-
ciated with the electron-electron interactions is< VH |ρ >, whereVH is the Hartree potential,

VH =

∫
ρ(r′)

|r − r′|dr
′ .

12



3.1 Local density approximation

The Kohn-Sham energy functional is of the following form:

E(ρ) = − ~
2

2m

N∑

i=1

∫

φ∗
i (r)∇2φi(r)dr +

∫

ρ(r)Vion(r)dr

+
1

2

∫ ∫
ρ(r)ρ(r′)

|r − r′| drdr′ + Exc(ρ(r)) (25)

The effective energy, or Kohn-Sham energy, may not represent the true, or “experimental energy,”
because the Hamiltonian has been approximated.

A key contribution of Kohn-Sham’s work is thelocal density approximationor LDA. Within
LDA, the exchange energy is expressed as

Ex[ρ(r)] =

∫

ρ(r)Ex[ρ(r)] d3r, (26)

whereEx[ρ] is the exchange energy per particle of a uniform gas at a density of ρ. Within this
framework, the exchange potential in (20) is replaced by a potential determined from the functional
derivative ofEx[ρ]:

Vx[ρ] =
δEx[ρ]

δρ
. (27)

One serious issue is the determination of the exchange energy per particle,Ex, or the corresponding
exchange potential,Vx. The exact expression for either of these quantities is unknown, save for
special cases. From Hartree-Fock theory one can show that the exchange energy is given by

EFEG
HF = 2

∑

k<kf

~
2k2

2m
− e2kf

π

∑

k<kf

(

1 +
1 − (k/kf )

2

2(k/kf )
ln

∣
∣
∣
k + kf

k − kf

∣
∣
∣

)

(28)

which is the Hartree-Fock expression for the exchange energy of a free electron gas. In this expres-
sion,k is the wave vector for a free electron; it can be related to themomentum byp = ~k. The
highest occupied wave vector is given bykf , where the Fermi energy is given byEf = ~

2k2
f/2m.

One can write:

Ex[ρ] = −3e2

4π
(3π2)1/3

∫

[ρ(r)]4/3 d3r, (29)

and taking the functional derivative, one obtains:

Vx[ρ] = −e2

π
(3π2ρ(r))1/3 . (30)

In contemporary theories, correlation energies are explicitly included in the energy function-
als [102]. These energies have been determined by numericalstudies performed on uniform elec-
tron gases resulting in local density expressions of the form: Vxc[ρ(r)] = Vx[ρ(r)]+Vc[ρ(r)], where
Vc represents contributions to the total energy beyond the Hartree-Fock limit [21]. It is also possi-
ble to describe the role of spin explicitly by considering the charge density for up and down spins:
ρ = ρ↑ + ρ↓. This approximation is called thelocal spin density approximation(LSDA) [102].
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3.2 The Kohn-Sham equation

TheKohn-Sham equation[85] for the electronic structure of matter is given by
( −~

2∇2

2m
+ VN(r) + VH(r) + Vxc[ρ(r)]

)

φi(r) = Eiφi(r) . (31)

This equation is usually solved “self-consistently”. An approximate charge is assumed to estimate
the exchange-correlation potential, and this charge is used to determine the Hartree potential from
(18). These approximate potentials are inserted in the Kohn-Sham equation and the total charge
density determined as in (16). The “output” charge density is used to construct new exchange-
correlation and Hartree potentials. The process is repeated until the input and output charge densi-
ties or potentials are identical to within some prescribed tolerance.

Once a solution of the Kohn-Sham equation is obtained, the total energy can be computed from

EKS =
M∑

i

Ei − 1/2

∫

ρ(r)VH(r) d3r +

∫

ρ(r)
(
Exc[ρ(r)] − Vxc[ρ(r)]

)
d3r, (32)

whereExc is a generalization of (26),i.e., the correlation energy density is included. The electronic
energy, as determined fromEKS, must be added to the ion-ion interactions to obtain the structural
energies. This is a straightforward calculation for con£nedsystems. For extended systems such as
crystals, the calculations can be done using Madelung summation techniques [187].

Owing to its ease of implementation and overall accuracy, the local density approximation is a
popular choice for describing the electronic structure of matter. It is relatively easy to implement
and surprisingly accurate. Recent developments have included so-called gradient corrections to
the local density approximation. In this approach, the exchange-correlation energy depends on
the local density and the gradient of the density. This approach is called the generalized gradient
approximation (GGA) [130].

When £rst proposed, density functional theory was not widely accepted within the chemistry
community. The theory is not “rigorous” in the sense that it is not clear how to improve the esti-
mates for the ground state energies. For wave function basedmethods, one can include more Slater
determinants, as in a con£guration interaction approach. Asthe accuracy of the wave functions
improve, the energy is lowered via the variational theorem.The Kohn-Sham equation is also vari-
ational, but owing to the approximate Hamiltonian, the converged energy need not approach the
true ground-state energy. This is not a problem provided that one is interested inrelativeenergies,
where any inherent density functional errors cancel in taking energy differences. For example, if
the Kohn-Sham energy of an atom is 10% too high and the corresponding energy of the atom in a
crystal is also 10% too high, the cohesive energies which involve the difference of the two energies
can be better than the nominal 10% error of the absolute energies. An outstanding fundamental
issue of using density functional theory is obtaining ana priori estimate of the cancellation errors.

In some sense, density functional theory is ana posterioritheory. Given the transference of the
exchange-correlation energies from an electron gas, it is not surprising that errors would arise in its
implementation to highly non-uniform electron gas systemsas found in realistic systems. However,
the degree of error cancellations is rarely known. Thus, thereliability of density functional theory
has been established by numerous calculations for a wide variety of condensed matter systems.
For example, the cohesive energies, compressibility, structural parameters and vibrational spectra
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of elemental solids have been calculated within the densityfunctional theory [26]. The accuracy
of the method is best for systems in which the cancellation oferrors is expected to be complete.
Since cohesive energies involve the difference in energiesbetween atoms in solids and atoms in
free space, error cancellations are expected to be signi£cant. This is re¤ected in the fact that
historically cohesive energies have presented greater challenges for density functional theory: the
errors between theory and experiment are typically∼ 10-20%, depending on the nature of the
density functional and the material of interest. In contrast, vibrational frequencies which involve
small structural changes within a given crystalline environment are often reproduced to within
1-2%.

3.3 Pseudopotentials

A major dif£culty in solving the eigenvalue problem arising from the Kohn-Sham equation is the
length and energy scales involved. The inner (core) electrons are highly localized and tightly bound
compared to the outer (valence electrons). A simple basis function approach is frequently ineffec-
tual. For example, a plane wave basis (see next section) might require 106 waves to represent
converged wave functions for a core electron, whereas only102 waves are required for a valence
electron [24]. The use of pseudopotentials overcomes this problem by removing the core states
from the problem and replacing the all-electron potential by one that replicates only the chemi-
cally active, valence electron states [24]. It is well-known that the physical properties of solids
depend essentially on the valence electrons rather than on the core electrons,e.g., the Periodic Ta-
ble is based on this premise. By construction, the pseudopotential reproduces exactly the valence
state properties such as the eigenvalue spectrum and the charge density outside the ion core. The
pseudopotential model treats matter as a sea of valence electrons moving in a background of ion
cores (Fig. 2).

The cores are composed of nuclei and inert inner electrons. Within this model many of the
complexities of an all-electron calculation are avoided. Agroup IV solid such as C with 6 electrons
is treated in a similar fashion to Pb with 82 electrons since both elements have 4 valence electrons.

The pseudopotential approximation takes advantage of thisobservation by removing the core
electrons and introducing a weaker potential, which will make the (pseudo)wave functions behave
like the all-electron wave function near the locations of the valence electrons,i.e., beyond a certain
radiusrc away from the core region. The valence wave functions often oscillate rapidly in the
core region because of the orthogonality requirement of thevalence states to the core states. This
oscillatory or nodal structure of the wave functions corresponds to the high kinetic energy in this
region. It is costly to represent these oscillatory functions accurately, no matter what discretization
or expansion is used. (To some extent there is some resemblance between the pseudo-potential ap-
proximation and methods used in computer science related toprincipal component analysis: both
methods reject components that are highly oscillating because their removal does not alter the en-
tire perspective much.) Pseudopotential calculations center on the accuracy of the valence electron
wave function in the spatial region away from the core,i.e., within the “chemically active” bonding
region. The smoothly-varying pseudo wave function should be identical with the appropriate all-
electron wave function in the bonding regions. A similar construction was introduced by Fermi in
1934 [45] to account for the shift in the wave functions of high-lying states of alkali atoms subject
to perturbations from foreign atoms. In this remarkable paper, Fermi introduced the conceptual
basis for both the pseudopotential and the scattering length. In Fermi’s analysis, he noted that it
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was not necessary to know the details of the scattering potential. Any number of potentials which
reproduced the phase shifts of interest would yield similarscattering events.

Figure 2: Standard pseudopotential model of a solid. The ioncores composed of the nuclei and
tightly bound core electrons are treated as chemically inert. The pseudopotential model describes
only the outer, chemically-active, valence electrons.

A variety of methods exist to construct pseudopotentials [105]. Almost all these methods are
based on “inverting” the Kohn-Sham equation. As a simple example, suppose we consider an
atom, where we know the valence wave function,ψv and the valence energy,Ev. Let us replace
the true valence wave function by an approximate pseudo-wave function,φp

v. Then the ion core
pseudopotential is given by

Vp
ion =

~
2φp

v

2m
− VH − Vxc + Ev . (33)

The charge density in this case isρ = |φp
v|2 from whichVH andVxc can be calculated. The key

aspect of this inversion is choosingφp
v to meet several criteria,e.g., φp

v=ψv outside the core radius,
rc. Unlike the all-electron potential, pseudopotentials arenot simple functions of position. For
example, the pseudopotential is state dependent, or angular momentum dependent,i.e., in principle
one has a different potential fors, p, d, · · · states. Details can be found in the literature [24,105].

4 Discretization

The Kohn-Sham equation must be ‘discretized’ before it can be numerically solved. The term ‘dis-
cretization’ is used here in the most inclusive manner, and in agreement with common terminology
of numerical computing, to mean any method which reduces a continuous problem to one with a
£nite number of unknowns.
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Figure 3: A simple cubic lattice.

There have been three predominant ways of discretizing the Schrödinger equation. The £rst
uses plane wave bases, the second uses specialized functions such as exponential or Gaussian
orbitals, and the third does not use an explicit basis but discretizes the equations in real space.

4.1 Plane waves

Owing to the use of pseudopotentials, simple basis sets suchas a plane wave basis can be quite
effective, especially for crystalline matter. For example, in the case of crystalline silicon only
50-100 plane waves need to be used for a well-converged solution. The resulting matrix repre-
sentation of the Schrödinger operator is dense in Fourier (plane-wave) space, but it is not formed
explicitly. Instead, matrix-vector product operations are performed with the help of fast Fourier
transforms. A plane wave approach is akin to spectral techniques used in solving certain types of
partial differential equations [51]. The plane-wave basisused is of the following form:

ψk(r) =
∑

G

α(k,G) exp (i(k + G) · r) (34)

wherek is the wave vector,G is a reciprocal lattice vector, andα(k,G) represent the coef£cients
of the basis. Thus, each plane wave is labelled by a wave vector, which is a quantum number
composed of a triplet of three integers,i.e., k = (k1,k2,k3), and in principle spin. The vector
parameterG translates the periodicity of the wave function with respect to a lattice, which along
with an atomic basis de£nes a crystalline structure.

It is interesting to consider the origin of the use of plane waves. As might be guessed, plane
wave bases are closely tied to periodic systems. The well-known Bloch theoremcharacterizes
the spectrum of the Schrödinger operator∇2 + V when the potentialV is periodic. It states that
eigenfunctions must be of the formψk

j (r)e−ik.r, wherek is a vector in the ‘Brillion’ zone. For a
given lattice, periodicity takes place in three spatial directions, see Figure 3. The Hamiltonian is
invariant under translation in each of these directions.

Bloch’s theorem states that for a periodic potentialV, the spectrum of the Schrödinger operator
∇2 + V consists of a countable set of intervals (called energy bands). The eigenvalues are labelled
as{εj,k}, wherek belongs to an interval, andj = 1, 2, . . . .

17



When expressed (i.e., projected) in a plane-wave basis, the Hamiltonian is actually a dense
matrix. Speci£cally, the Laplacian term of the Hamiltonian is represented by a diagonal matrix,
but the potential termVp

tot gives rise to a dense matrix.
For periodic systems, wherek is a good quantum number, the plane-wave basis coupled to

pseudopotentials is quite effective. However, for non-periodic systems, such as clusters, liquids or
glasses, the plane-wave basis is often combined with asupercell method[24]. The supercell repeats
the localized con£guration to impose periodicity to the system. This preserves the “arti£cial”
validity of k and Bloch’s theorem which (34) obeys.

There is a parallel to be made with spectral methods, which are quite effective for simple
periodic geometries, but lose their superiority when more generality is required. In addition to these
dif£culties, the two fast Fourier transforms performed at each iteration can be costly, requiring
n log n operations, wheren is the number of plane waves, versusO(N) for real space methods
where N is the number of grid points. Usually, the matrix sizeN × N is larger thann × n but
only within a constant factor. This is exacerbated in high performance environments where fast
Fourier transforms require an excessive amount of communication and are particularly dif£cult to
implement ef£ciently.

4.2 Localized orbitals

A popular approach to studying the electronic structure of materials uses a basis set of orbitals
localized on atomic sites. This is the approach for example taken in the SIESTA code [169] where,
with each atoma, is associated a basis set of functions, which combine radial functions arounda
with spherical harmonics:

φa
lmn(r) = φa

ln(ra)Ylm(r̂a)

wherera = r − Ra.
The radial functions can be exponentials, Gaussians, or anylocalized function. Gaussian bases

have a special advantage of yielding analytical matrix elements provided the potentials are also
expanded in Gaussians [16,25,75,76]. However, the implementation of a Gaussian basis is not as
straightforward as with plane waves. For example, numerousindices must be used to label the state,
the atomic site, and the Gaussian orbitals employed. This increases “bookkeeping” operations
tremendously. Also, the convergence is not controlled by a single parameter as it is with plane
waves,e.g., if atoms in a solid are moved, the basis should be re-optimized for each new geometry.
Moreover, it is not always obvious what basis functions are needed and much testing has to be
done to insure that the basis is complete. On the positive side, a Gaussian basis yields much
smaller matrices and requires less memory than plane-wave methods. For this reason, Gaussians
are especially useful for describing transition metal systems, where large number of plane waves
are needed.

4.3 Finite differences in real space

An appealing alternative is to avoid explicit bases altogether and work instead in real space, using
£nite difference discretizations. This approach has becomepopular in recent years, and has seen a
number of implementations [11,15,27–29,43,51,64,83,94,122,182,188].

18



The real-space approach overcomes many of the complications involved with non-periodic
systems, and although the resulting matrices can be larger than with plane waves, they are quite
sparse, and the methods are easy to implement on sequential and parallel computers. Even on
sequential machines, real-space methods can be an order of magnitude faster than methods based
on traditional approaches.

The simplest real-space method utilizes £nite difference discretization on a cubic grid. There
have also been implementations of the method with £nite elements [127, 177], and even meshless
methods [79]. Finite element discretization methods may besuccessful in reducing the total num-
ber of variables involved, but they are far more dif£cult to implement. A key aspect to the success
of the £nite difference method is the availability ofhigher-order £nite difference expansionsfor
the kinetic energy operator,i.e., expansions of the Laplacian [52]. Higher-order £nite difference
methods signi£cantly improve convergence of the eigenvalueproblem when compared with stan-
dard, low-order £nite difference methods. If one imposes a simple, uniform grid on our system
where the points are described in a £nite domain by(xi, yj, zk), we approximate∂

2ψ
∂x2 at (xi, yj, zk)

by

∂2ψ

∂x2
=

M∑

n=−M

Cnψ(xi + nh, yj, zk) + O(h2M+2), (35)

whereh is the grid spacing andM is a positive integer. This approximation is accurate to O(h2M+2)
upon the assumption thatψ can be approximated accurately by a power series inh. Algorithms are
available to compute the coef£cientsCn for arbitrary order inh [52]. These are shown for the £rst
few orders in Table 1

ord 2 1 -2 1
ord 4 −1

12

4

3

−5

2

4

3

−1

12

ord 6 1

90
− 3

20

3

2
−49

18

3

2
− 3

20

1

90

ord 8 − 1

560

8

315
−1

5

8

5
−205

72

8

5
−1

5

8

315
− 1

560

Table 1: Finite Difference coef£cients (Fornberg-Sloan formulas) for∂ 2/∂x2 for orders 2 to 8.

With the kinetic energy operator expanded as in (35), one canset up a one-electron Schrödinger
equation over a grid. One may assume a uniform grid, but this is not a necessary requirement.
ψ(xi, yj, zk) is computed on the grid by solving the eigenvalue problem:

− ~
2

2m

[
M∑

n1=−M

Cn1
ψn(xi + n1h, yj, zk) +

M∑

n2=−M

Cn2
ψn(xi, yj + n2h, zk)

+
M∑

n3=−M

Cn3
ψn(xi, yj, zk + n3h)

]

+ [ Vion(xi, yj, zk) + VH(xi, yj, zk)

+Vxc(xi, yj, zk) ] ψn(xi, yj, zk) = En ψn(xi, yj, zk) (36)

If we haveL grid points, the size of the full matrix resulting from the above problem isL × L.
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Figure 4: A uniform grid illustrating a typical con£gurationfor examining the electronic structure
of a localized system. The dark gray sphere represents the actual computational domain,i.e., the
area where wave functions are allowed to be nonzero. The light spheres within the domain are
atoms.
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A grid based on points uniformly-spaced in a three-dimensional cube as shown in Fig. 4 is
typically used. Many points in the cube are far from any atomsin the system, and the wave
function on these points may be replaced by zero. Special data structures may be used to discard
these points and keep only those having a nonzero value for the wave function. The size of the
Hamiltonian matrix is usually reduced by a factor of two to three with this strategy, which is quite
important considering the large number of eigenvectors which must be saved. Further, since the
Laplacian can be represented by a simple stencil, and since all local potentials sum up to a simple
diagonal matrix, the Hamiltonian need not be stored explicitly as a sparse matrix. Handling the ion
core pseudopotential is complex, as it consists of a local and a nonlocal term In the discrete form,
the nonlocal term becomes a sum over all atoms,a, and quantum numbers, (l,m), of rank-one
updates:

Vion =
∑

a

Vloc,a +
∑

a,l,m

ca,l,mUa,l,mUT
a,l,m (37)

whereUa,l,m are sparse vectors which are only non-zero in a localized region around each atom,
andca,l,m are normalization coef£cients.

5 Diagonalization

There are a number of dif£culties which emerge when solving the (discretized) eigenproblems,
besides the sheer size of the matrices. The £rst, and biggest,challenge is that the number of
required eigenvectors is proportional to the atoms in the system, and can grow up to thousands,
if not more. In addition to storage, maintaining the orthogonality of these vectors can be very
demanding. Usually, the most computationally expensive part of diagonalization codes is orthogo-
nalization. Second, the relative separation of the eigenvalues decreases as the matrix size increases,
and this has an adverse effect on the rate of convergence of the eigenvalue solvers. Preconditioning
techniques attempt to alleviate this problem. Real-space codes bene£t from savings brought about
by not needing to store the Hamiltonian matrix, although this may be balanced by the need to store
large vector bases.

5.1 Historical perspective

Large computations on the electronic structure of materials started in the 1970’s after the seminal
work of Kohn, Hohenberg, and Sham in developing DFT and because of the invention ofab initio
pseudopotentials [24]. It is interesting to note that “large” in the 1970’s implied matrices of sizes
a few hundreds to a few thousands. One must wait the mid- to late-1980’s to see references to
calculations with matrices of size around 7,000. For example, the abstract of a paper by Martins
and Cohen [104] states: “Results of calculations for molecular hydrogen with matrix sizes as large
as 7,200 are presented as an example”. Similarly, the well-known Car and Parrinello paper [19],
which uses an approach based on simulated annealing, features an example with16×437 = 6, 992
unknowns. This gives a rough idea of the typical problem sizes about 20 years ago. The paper by
Car and Parrinello [19] is often viewed as a de£ning moment in the development of computational
codes. It illustrated how to effectively combine several ingredients: plane waves, pseudopotentials,
the use of FFT’s, and especially how to apply pseudopotential methods to molecular dynamics.
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From the inception of realistic computations for the electronic structure of materials, the basis
of choice has been plane waves. In the early days this contributed to the limitation of the capability
because the matrices were treated as dense. The paper [104],see also [105], showed how to avoid
storing a whole dense matrix by a judicious use of FFT in plane-wave codes and by working essen-
tially in Fourier space. A code called Ritzit, initially published in Algol, was available [147], and
this constituted an ideally-suited technique for diagonalization. The method was “preconditioned”
by a Jacobi iteration or by DIIS.

5.2 Lanczos, Davidson, and related approaches

The Lanczos algorithm [90] is one of the best-known techniques [148] for diagonalizing a large
sparse matrixA. In theory, the Lanczos algorithm generates an orthonormalbasisv1,v2, . . . ,vm,
via an inexpensive 3-term recurrence of the form :

βj+1vj+1 = Avj − αjvj − βjvj−1 .

In the above sequence,αj = vH
j Avj, andβj+1 = ‖Avj − αjvj − βjvj−1‖2. So thejth step of the

algorithm starts by computingαj, then proceeds to form the vectorv̂j+1 = Avj − αjvj − βjvj−1,
and thenvj+1 = v̂j+1/βj+1. Note that forj = 1, the formula for̂v2 changes tôv2 = Av2 − α2v2.

Suppose thatm steps of the recurrence are carried out, and consider the tridiagonal matrix,

Tm =








α1 β2

β2 α2 β3

. .. . . . .. .
βm αm








.

Further, denote byVm then × m matrixVm = [v1, . . . ,vm] and byem themth column of if the
m × m identity matrix. Afterm steps of the algorithm, the following relation holds:

AVm = VmTm + βm+1vm+1e
T
m .

In the ideal situation, whereβm+1 = 0 for a certainm,AVm = VmTm, and so the subspace spanned
by thevi’s is invariant underA, and the eigenvalues ofTm become exact eigenvalues ofA. This is
the situation whenm = n, and it may also happen form ¿ n, though this situation, called lucky
(or happy) breakdown ( [123]) is highly unlikely in practice. In the generic situation, some of the
eigenvalues of the tridiagonal matrixHm will start approximating corresponding eigenvalues of
A whenm becomes large enough. An eigenvalueλ̃ of Hm is called a Ritz value, and ify is an
associated eigenvector, then the vectorVmy is, by de£nition, the Ritz vector,i.e., the approximate
eigenvector ofA associated with̃λ. If m is large enough, the process may yield good approxi-
mations to the desired eigenvaluesλ1, . . . , λs of H, corresponding to the occupied states,i.e., all
occupied eigenstates.

There are several practical implementations of this basis scheme. All that was said above is
what happens in theory. In practice, orthogonality of the Lanczos vectors, which is guaranteed
in theory, is lost as soon as one of the eigenvectors starts toconverge [123]. As such, a number
of schemes have been developed to enforce the orthogonalityof the Lanczos vectors; see [91, 92,
166,167,183]. The most-common method consists of buildinga scalar recurrence, which parallels
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the three-term recurrence of the Lanczos vectors and modelsthe loss of orthogonality. As soon as
loss of orthogonality is detected, a reorthogonalization step is taken. This is the approach taken
in the computational codes PROPACK [91] and PLAN [183]. In these codes, semi-orthogonality
is enforced,i.e., the inner product of two basis vectors is only guaranteed not to exceed a certain
threshold, which is of the order of

√
ε whereε is the machine epsilon [62].

Since the eigenvectors are not individually needed, one canthink of not computing them but
rather to just use a Lanczos basisVm = [v1, . . . ,vm] directly. This does not provide a good basis
in general. However, a full Lanczos algorithm without partial reorthogonalization can work quite
well when combined with a good stopping criterion.

A simple scheme used in [12] is to monitor the eigenvalues of the tridiagonal matricesTi, i =
1, . . . ,m. The cost for computing only the eigenvalues ofTi is O(i2). If we were to apply the test
at every single step of the procedure, the total cost for allm Lanczos steps would beO(m3), which
can be quite high. This cost can be reduced drastically, to the point of becoming negligible relative
to the overall cost, by employing a number of simple strategies. For example, one can monitor the
eigenvalues of the tridiagonal matrixTi at £xed intervals,i.e., whenMOD(i, s) = 0, wheres is
a certain £xed stride. Of course, large values ofs will induce infrequent convergence tests, thus
reducing the cost fromO(m3) to O(m3

3s
). On the other hand, a large stride may in¤ict unnecessary

O(s) additional Lanczos steps before convergence is detected.
Though not implemented in [12], a better strategy is to use the bisection algorithm (see [62]

Sec. 8.5) to track the latest eigenvalue that has converged,exploiting the important property that
the Lanczos procedure is a variational technique in the sense that when an eigenvalue converges,
later steps can only improve it. In addition, convergence tends to occur from left to right in the
spectrum, meaning that typically the smallest eigenvalue converges £rst followed by the second
smallest, etc. This suggests many simple procedures based on the bisection algorithm. When
convergence has been detected (say at stepl ≤ m) then the charge densities are approximated as
the squares of the norms of the associated eigenvectors. See[12] for details.

Another popular algorithm for extracting the eigenpairs isthe Davidson [115] method, which
can be viewed as a preconditioned version of the Lanczos algorithm, in which the preconditioner
is the diagonal ofA. We refer to the generalized Davidson algorithm as a Davidson approach in
which the preconditioner is not restricted to being a diagonal matrix. (A detailed description can
be found in [150].)

The Davidson algorithm differs from the Lanczos method in the way in which it de£nes new
vectors to add to the projection subspace. Instead of addingjust Avj, it preconditions a given
residual vectorri = (A − µiI)ui and adds it to the subspace (after orthogonalizing it against
current basis vectors). The algorithm consists of an “eigenvalue loop,” which computes the desired
eigenvalues one by one (or a few at a time), and a “basis” loop which gradually computes the
subspace on which to perform the projection. Consider the eigenvalue loop which computes the
ith eigenvalue and eigenvector ofA. If M is the current preconditioner, andV = [v1, · · · ,vk] is
the current basis, the main steps of the main loop are as follows:

1. Compute theith eigenpair(µk,yk) of Ck = VT
k AVk.

2. Compute the residual vectorrk = (A− µkI)Vkyk.

3. Preconditionrk, i.e., computetk = M−1rk.
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4. Orthonormalizetk againstv1, · · · ,vk and callvk+1 the resulting vector, soVk+1 = [Vk,vk+1].

5. Compute the last column-row ofCk+1 = VT
k+1AVk+1.

At this point, one needs to decide on the choice of a preconditioner. The original Davidson
approach used the diagonal of the matrix as a preconditioner, but this works only for limited cases.
For a plane-wave basis, it is possible to construct fairly effective preconditioners by exploiting the
lower-order bases. By this, we mean that ifHk is the matrix representation obtained by usingk
plane waves, we can construct a good approximation toHk fromHm, with m ¿ k, by completing
it with a diagonal matrix representing the larger (undesirable) modes. Note that these matrices are
not explicitly computed as they are dense. This possibilityof building lower-dimensional approx-
imations to the Hamiltonian, which can be used to precondition the original matrix, constitutes an
advantage of plane wave-based methods.

Preconditioning techniques in this approach are typicallybased on £ltering ideas and the fact
that the Laplacian is an elliptic operator [175]. The eigenvectors corresponding to the few lowest
eigenvalues of∇2 are smooth functions, and so are the corresponding wave functions. When
an approximate eigenvector is known at the points of the grid, a smoother eigenvector can be
obtained by averaging the value at every point with the values of its neighboring points. Assuming
a cartesian(x, y, z) coordinate system, the low frequency £lter acting on the value of the wave
function at the point(i, j, k), which represents one element of the eigenvector, is described by:

[ ψi−1,j,k + ψi,j−1,k + ψi,j,k−1 + ψi+1,j,k + ψi,j+1,k + ψi,j,k+1

12

]

+
ψi,j,k

2
→ (ψi,j,k)Filtered . (38)

Other preconditioners that have been tried resulted in mixed success. The use of shift-and-
invert [124] involves solving linear systems withA − σI, whereA is the original matrix, and
the shiftσ is close to the desired eigenvalue (s). These methods would be prohibitively expensive
in most situations, given the size of the matrix and the number of times thatA − σI must be
factored. Alternatives based on an approximate factorization such as ILUT [149] are ineffective
beyond the £rst few eigenvalues. Methods based on approximate inverse techniques have been
somewhat more successful, performing better than £ltering at additional preprocessing and storage
cost. Preconditioning ‘interior’ eigenvalues,i.e., eigenvalues located well inside the interval con-
taining the spectrum, is still a very hard problem. Current solutions only attempt to dampen the
effect of eigenvalues which are far away from the ones being computed. This is in effect what is
achieved by £ltering and sparse approximate inverse preconditioners. These techniques do not re-
duce the number of steps required for convergence in the sameway that shift-and-invert techniques
do. However, £ltering techniques are inexpensive to apply and result in non-negligible savings in
iterations.

In real space, it is trivial to operate with the potential term which is represented by a diagonal
matrix, and in Fourier space it is trivial to operate with theLaplacian term, which is also repre-
sented by a diagonal matrix. The use of plane-wave bases alsoleads to natural preconditioning
techniques which are obtained by simply employing a matrix obtained from a smaller plane-wave
basis, neglecting the effect of high frequency terms on the potential.

Real-space algorithms avoid the use of fast Fourier transforms by performing all calculations
in real physical space instead of Fourier space. Fast Fourier transforms require global commu-

24



nication; as such, they tend to be harder to implement on message-passing distributed memory
multi-processor systems. The only global operation remaining in real-spaceapproaches is that of
the inner products. These inner products are required when forming the orthogonal basis used in
the generalized Davidson procedure. Inner products will scale well as long as the vector sizes in
each processor remain relatively large.

5.3 Diagonalization methods in current computational codes

Table 2 shows a number of computational codes currently available or in development. This list is
by no means exhaustive. What is rather remarkable is the time-frame in which these codes have
been developed and the speed with which they have been adapted to new computing environments.
Most of them have been coded in Fortran-90/95 and most offer parallel versions with either MPI
or OPEN-MP. (An interesting account of the impact of new software engineering methods in elec-
tronic structure codes can be found in [162].) The middle column of the table shows the type of
discretization (basis) used, where PW stands for plane waves, RS for real space, LCAO for Linear
combination of atomic orbitals, APW for Augmented plane waves, Gauss for Gaussian orbitals,
and OTH for other. As can be noted, most codes use plane-wave bases. The augmented, plane-
wave basis essentially combines a radial function times a spherical function near the atom, and a
plane-wave expansion in the interstitial region.

A few of the codes have not been updated in a few years; we only listed those for which the
website is still maintained. A star next to the code name indicates that the code has restricted
distribution (e.g. DoD PW), or that it is still in a development phase. We separated the codes
which use the GPL license and the codes which can be downloaded directly. These are the £rst 5
listed in the table, and they are separated by a horizontal line from the others. All others require
either a fee (e.g., VASP, Wien2K, phi98PP, and CASTEP) or a licensing agreement(without a fee).

Not all these codes resort to some form of diagonalization. For example, the CPMD code [1],
uses the Car-Parrinello approach which relies entirely on a statistical approach and molecular dy-
namics to minimize the energy. (See Section 6.4.) Similarlythe CONQUEST code is a linear-
scaling method which uses a density matrix approach (see next section). In addition, the codes
using an LCAO basis obtain dense matrices and resort to standard dense matrix diagonalization.

The earliest electronic structures codes used variants of the subspace iteration algorithm [105].
There should therefore be no surprise that many existing codes propose improved versions of this
scheme. For example, ABINIT [63] uses a form of subspace iteration, in which an initial subspace
is selected, and then an iterative scheme is invoked to ‘improve’ the basis vectors individually
by some form of preconditioned conjugate gradient algorithm. In this approach, orthogonality is
enforced as a Rayleigh Ritz procedure and is used once each eigenvector is modi£ed. ABINIT
offers a block version of the same algorithm (with parallelism across the different vectors in the
block) and an alternative which minimizes residual norms.

The Vienna Ab-initio Simulation Package (VASP), [88, 89] uses three main diagonalization
schemes. The £rst, similar to ABINIT, is a form of subspace iteration in which the wave functions
are individually re£ned by either the Conjugate Gradient (CG) Algorithm or by a method called
the Direct Inversion in the Iterative Subspace (DIIS) iteration. The CG method is adapted from a
method suggested by Teteret al. [171]. It consists of a preconditioned CG algorithm for minimiz-
ing the Rayleigh quotient. The preconditioner is an astutelyadjusted diagonal matrix in plane-wave
space where the kinetic part of the Hamiltonian is diagonal.A few steps of this scheme are applied
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Code Discr. URL
PWscf PW http://www.pwscf.org/
PEtot PW http://crd.lbl.gov/˜linwang/PEtot/PEtot.html
ABINIT PW http://www.abinit.org/
Soccoro PW+RS http://dft.sandia.gov/Socorro/mainpage.html
PARSEC RS http://www.ices.utexas.edu/˜mtiago/parsec/software/index.html
fhi98PP PW http://www.fhi-berlin.mpg.de/th/fhi98md/fhi98PP/
VASP PW http://cms.mpi.univie.ac.at/vasp/vasp/vasp.html
PARATEC PW http://www.nersc.gov/projects/paratec/
SeqQuest* LCAO http://dft.sandia.gov/Quest/
Wien2K APW http://www.wien2k.at/
ACRES RS http://cst-www.nrl.navy.mil/˜singh/acres/info.html
SIESTA LCAO http://www.uam.es/departamentos/ciencias/£smateriac/siesta/
AIMPRO Gauss. http://aimpro.ncl.ac.uk/
FLEUR APW http://www.¤apw.de/
CPMD PW http://www.cpmd.org/
CONQUEST* RS/OTH http://www.cmmp.ucl.ac.uk/˜conquest/
CASTEP PW http://www.tcm.phy.cam.ac.uk/castep/
DoD PW * PW http://cst-www.nrl.navy.mil/people/singh/plane wave/v3.0/
CRYSTAL Gauss http://www.cse.clrc.ac.uk/cmg/CRYSTAL/
Octopus RS http://www.tddft.org/programs/octopus/
MIKA RS http://www.csc.£/physics/mika/index.html

Table 2: A few available DFT computational codes for electronic structures.

to each vector of the basis and once this is done the new basis is orthogonalized in preparation for
a Rayleigh-Ritz projection. The process is repeated until self-consistence. Note that ABINIT uses
a variant of this scheme as well. A major drawback of this scheme is the requirement to always
orthogonalize the current (preconditioner) residual vectors in CG against all other eigenvectors.
This is necessary because the method essentially consists of minimizing the Rayleigh quotient in
the space orthogonal to all other eigenvectors. Without it,the method would only compute one
eigenvalue, namely the smallest one.

The second method in VASP avoids this problem by minimizing‖(A− µ(u)I)u‖2 instead of
the Rayleigh quotient. This represents the norm of the residual vector, hence the name Residual
Minimization Method (RMM). The minimization itself is done with the Direct Inversion in the
Iterative Subspace (DIIS) method, which is a form of Krylov subspace method due to Pulay [140]
in the early 1980’s.1 In the second scheme employed by VASP, an initial subspace isselected and
then an iterative scheme is invoked to ‘improve’ the basis vectors individually by minimizing the
residual norms. In this approach, there is no need to orthogonalize each vector against all others
after each update to the basis vectors. Finally, the third alternative method proposed in VASP is the
Davidson approach with a form of block preconditioning. This is recommended as a more robust
alternative in the documentation, though it is also mentioned as being more costly in some cases.

1It is remarkable to note here, that this work parallels the work of many others in scienti£c computing working on
solving (nonsymmetric) linear systems of equations, who were not aware of this development.
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This approach will be revisited in the next section.
The PWscf code (part of Espresso) [6], uses similar general methods to VASP. The default

diagonalization algorithm is the Davidson method. There are also subspace-type methods offered
with CG-like band-by-band diagonalization, or DIIS-like diagonalization.

The Octopus code focuses on time-dependent density functional theory and can handle excited
states. Recall that DFT is only applicable to the ground state. Octopus can also obtain static
properties generally computable from DFT codes, such as static polarizabilities and ground-state
geometries, but the authors warn that the code is not optimized for this purpose.

MIKA stands for Multigrid Instead of the K-spAce and is a relatively recent addition to the list
of computational codes available [71, 176]. MIKA works in real space and uses a Multigrid ap-
proach for diagonalization. The methods in MIKA are once more inspired from subspace iteration;
the main difference being that CG or DIIS, is replaced by a multigrid approach. As the levels are
crossed, there is no orthogonalization at each level.

Quite a few papers in the early to mid-1990’s were devoted to using the standard conjugate
gradient algorithm by a more elaborate scheme which does notimpose the constraint of orthogo-
nality, see,e.g., [2, 40, 53, 107, 108, 131, 169–171] for a few references. Since these methods are
more akin to optimization we discuss them in the next section. A number of codes,e.g., SIESTA,
adopted variants of these schemes.

It was observed by many that the Davidson approach is in fact more robust than methods based
on local optimization. For example, the authors of [82], comment that “For relatively small subma-
trix sizes the Davidson method still gives correct results whereas the latter two frequently fail to do
it.” The other two methods to which the paper refers are a formof subspace iteration (modi£cation
of RITZIT code) with DIIS preconditioning and a form of conjugate gradient minimization. The
observation that Davidson is a more robust approach is not a unanimous viewpoint. For example
developers of PWscf and VASP seem to recommend direct minimization, in spite of a less favor-
able speed. Clearly, implementation is a key factor. We believe that with proper implementation, a
Davidson or Krylov-based approach should be vastly superior to direct minimization.

6 The optimization path: Avoiding the eigenvalue problem

From one viewpoint, there is no need to refer to eigenvalues in order to minimize the total energy,
and this provided a number of alternative methods used in electronic structures. Indeed, the sta-
tionary states of (5) are eigenfunctions of the Hamiltonian, but one can also just consider (4) as an
optimization problem by itself.

6.1 Optimization approaches without orthogonality

In reading about computational schemes that have been proposed in the literature on DFT, one
cannot miss to observe that the most commonly-mentioned challenge or burden is that associated
with the need to orthogonalize a given basis which approximates the desired eigenbasis. It is
therefore only natural that major efforts have been devotedto designing algorithms which do not
require orthogonalization, or that attempt to reduce its cost. A number of these algorithms have
been exploited in the context of Order-N, (O(N)) methods as well is in standard methods. The end
of the previous section alluded to this approach, which seeks to compute a subspace as represented
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by a basis. If the basis, call itV = [v1, · · · ,vm], is orthogonal, then the problem of minimizing
the energy is equivalent to that of minimizing the trace ofV∗AV. Thus, it is possible to formulate
the problem to that of computing a set of vectors such thattr(V∗AV) is minimized subject to the
constraintV∗V = I. Note that an algorithm for explicitly minimizing the tracehas been developed
by Sameh [151] as far back as in 1982, motivated in part by parallelism, but this does not seem to
have been noticed by researchers on the applied side.

Many authors have considered a related approach in which theorthogonality constraint is not
enforced. In this situation, the problem is equivalent to minimizingS−1A or S−1/2AS−1/2 where
S is the “overlap” matrix,i.e., the matrixS = V∗V; the “overlap” matrix, is only approximately
inverted. For example, the simple Neumann-series expansion

S−1 ≈
k∑

i=0

S i

can be used [2,53,107,108,170].
The paper [40] examines in detail algorithms that minimize energy on Grassman and Stiefel

manifolds,i.e., manifolds of matrices that satisfy orthogonality constraints. In these algorithms,
the iterates evolve by following geodesic paths on the manifolds (ideal case). The cost of the
ideal case algorithm requires the Singular Value Decomposition (SVD, see [62]) of matrices of
sizen × p (the same size as that of the basis of the desired subspace), and so the authors of [40]
show that quadratic convergence can be achieved if the directions used by the algorithms are only
approximate. Other approaches taken consist of making use of the McWeeny [110] projection
which will be discussed shortly.

6.2 Density matrix approaches in DFT

As was previously discussed, one can bypass the eigenvalue problem and focus instead on the
whole subspace spanned by the occupied eigenvalues as an alternative to computing individual
eigenfunctions. We also mentioned this viewpoint in the standard context of eigenvector-based
methods when we discussed adapting the Lanczos algorithm for DFT. However, the methods that
rely on the density matrix approach go much further by not even referring to eigenspaces. Instead
they attempt to compute directly the eigenprojector associated with these eigenvalues.

Note that after discretization, the functionψ becomes a vector of lengthN whoseith compo-
nent is the approximation ofψ at the mesh-pointri. If we callV the matrix whose column vectors
are the (normalized) eigenvectorsψi, i = 1, . . . , s, for thes occupied states, then

P = VV∗ (39)

is a projector, and the charge density at a given pointri in space is theith diagonal element ofP.
A number of techniques have been developed based on using this observation [7, 96, 163]. Here,
we will only sketch the main ideas.

Density matrix methods are prevalent mainly in theO(N) methods. These methods are based
on constructing an approximation to the projectorP in (39) without knowledge of eigenvectors.
Denote bypij the coef£cients of the matrixP. A number of properties are exploited for this

28



purpose. First, are the following two relations:

tr[P ] =
∑

i

pii = particle number

tr[PH] =
∑

i,j

pijHji = system energy.

The £rst relation is a consequence of the fact that eachpii represents the charge density at pointri as
was mentioned above. The second is a consequence of the fact thatPH = PHP is the restriction
of H to the invariant subspace associated with eigenvalues corresponding to the occupied states.
The trace ofPH is the sum of these eigenvalues, which is the total energy of the system assuming
a “Hartree” approximation,i.e., assuming the total energy is the sum of the occupied eigenvalues.

Another important property that is exploited is the physical fact that entries ofP decay away
from the main diagonal. Hence the idea is to try to £nd aP whose trace is £xed and which
minimizes the trace ofPH. The trace constraint can be avoided by shiftingH

tr[P(H− µI)] = tr[PH] − µNe

The optimization problem is not yet well-posed, since without constraints onP, the minimum
can be arbitrarily negative or small. The missing constraint is to forceP to be a projector. This
can be achieved by forcing its eigenvalues to be between zeroand one [96]. The minimization
will yield a matrixP, which has eigenvalues equal to either one or zero, and satisfying the desired
idempotent constraint automatically.

One strategy that has been used in [96] for this purpose is to seekP in the form

P = 3S2 − 2S3

If the eigenvalues ofS are in the range[−0.5, 1.5] this transformation will map them into [0,1].
The procedure then is to seek a bandedS that minimizes

tr[(3S2 − 2S3)(H− µI)]

using descent-type algorithms. The gradient of the above function is computable. This is referred
to as McWeeny puri£cation [110].

The drawback of this approach is its lack of accuracy. It is also not clear if a minimum exists,
because of the various constraints added, and if there is a (unique) minimum. In addition, the band
required forS may not be so small for certain systems. Nevertheless, it is interesting to note that
explicit eigenvalue calculations are avoided. Some globalapproximation of the invariant subspace
associated with these eigenvalues is extracted, meaning that a global approximation to the set of
eigenfunctions is computed via the approximation to the projectorP.

6.3 Density matrix approaches in Hartree-Fock

Charge-density methods have played a major role since the early days of the quantum theory.
Such methods were used in particular by Thomas [174] and Fermi [44] as far back as in 1927.
These were among the £rst realistic attempts at yielding the atomic structure of atoms. They
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gave qualitatively correct information on the electronic structure of atoms, but were fundamentally
¤awed as they did not describe the observed shell structure ofthe atom.

Modern density methods are based on the “density matrix.” The density matrix can be viewed
as a function of a pair of coordinates:ρ(r, r′). It is de£ned by

ρ(r, r′) =
N∑

i=1

ψi(r)
∗ψi(r

′) . (40)

It has been known for quite some time that the computation of eigenfunctions can be avoided
and replaced by computations involving the density matrix.For example, one of the implementa-
tions of the Hatree-Fock method, known as the Roothan method,involves a self-consistent (£xed
point) iteration in which the unknown is the density matrixP. Speci£cally, each wave function is
expressed in a basis{χk}, k = 1, · · · , K,

φk =
K∑

j=1

cjkχj . (41)

Formally, we would like to minimize the Hartree-Fock energy(15) with the constraint that the
orbital be of the above form. Theχj ’s are convenient and well-selected spatial basis orbitals
associated with the atoms (Atomic Orbitals). For the purpose of simplifying notation we de£ne
H to be the Fock operator in expression (15) for a particulari, sayi = 1. Then a Galerkin-type
approach would be to writeHφk = εkφk in the space spanned by theφj ’s:

〈

χi | H |
K∑

j=1

ckjχj

〉

= εk

〈

χi|
K∑

j=1

cjkχj

〉

for i = 1, · · · , K →

K∑

j=1

〈χi|H|χj〉cjk = εk

K∑

j=1

〈χi|χj〉 cjk for k = 1, · · · , K (42)

If we denote byF the Fock matrix whose entries areFij =< χi|H|χj > and byS the matrix with
entriesSij =< χi|χj > then, it is clear that (42) is a generalized eigenvalue problem of sizeK. An
eigenvector is a column of theK × K matrixC with entriescjk on thekth column andjth row. In
matrix form the problem can be written as

FC = CSW

whereW = diag(εk) is the diagonal matrix with entriesεk. This problem can be solved with
standard techniques for dense problems. The matrixC is such thatCTSC = I. It is also of interest
to look at the charge density in this context. The procedure can be written in terms of the density
matrix which is de£ned asP = CCT .

Eq. (41) can be rewritten in the form







φ1(r)
φ2(r)

...
φN(r)








= CT








χ1(r)
χ2(r)

...
χN(r)







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Since the charge density at a locationr is the 2-norm of the above vector, then clearly

ρ(r) = [χ1(r)
∗, χ2(r)

∗, · · ·χN(r)∗]CCT








χ1(r)
χ2(r)

...
χN(r)








.

Note that the matrixS depends only on the basis{ξk} selected, whileF depends on the solution
itself. So the problem is again a nonlinear one which needs tobe solved by a self-consistent
iteration of the form

1. Given{χk}k=1,..,K constructS. Get an initial set{φj}j=1,...K .
2. Compute the new matrixF .
3. Solve the eigenvalue problemFSC = SCW. ComputeP = CCT .
4. If P has not converged then return to 2.

Details on the computation ofF are complex, but it is useful to mention that this matrix consists
of two parts, which arise by splitting,i.e., we can splitH in two parts:

H = Hcore + F ,

whereHcore corresponds to the £rst 2 terms in (20) and does not involve theφj ’s, andF contains
the part which depends on theφi’s. If we write the general matrix termgij = 〈φi|H|φj〉, then we
obtain

gij = 〈φi|Hcore|φj〉 + 〈φi|F|φj〉 .

So, the matrixG is the sum of two matrices, the £rst of which is constant with respect to theφi’s,
and the second, call itFφ, is itself a function of theφis. As can be seen from expression ofFφ, this
will involve double-electron integrals of the form

∫ ∫

drdr′
χ∗

i (r)χj(r)χ
∗
k(r

′)χl(r
′)

|r − r′| .

The cost of the procedure is dominated by the fact that there are many such integrals to evaluate.

6.4 The “Car-Parrinello” viewpoint

Car and Parrinello [19] took an approach which combined molecular dynamics with pseudopoten-
tials and DFT by proposing a scheme that exploits heuristic optimization procedures to achieve the
minimum energy. Speci£cally, they used simulated annealing[84] to minimize an energy func-
tional, which they write in the form:

E [{ψi}, {RI}, {αv}] =
∑

i

∫

Ω

d3ri ψ∗
i [−(~2/2m)∇2]ψi(ri) + V [ρ(ri), {RI}, {αv}],

where{αv} are the external constraints.V contains the internuclear Coulomb repulsion and the
effective electronic potential energy, which includes theexternal nuclear, Hartree, and exchange
and correlation terms.
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They then use a Lagrangian formula to generate trajectoriesfor ionic and electronic degrees
of freedom via a coupled set of equations of motion. The idea is to propagate the electronic wave
functions,i.e., the Kohn-Sham orbitals along the motions of the atoms. To this end, they consider
the parameters{ψi}, {RI}, {αv} in the energy functional to be time-dependent and introducethe
Lagrangian,L, which is the difference in the kinetic and potential energies of the system:

L =
∑

i

1

2
µ

∫

Ω

d3ri |ψ̇i|2 +
∑

I

1

2
MIṘ

2
I +

∑

v

1

2
µvα̇

2
v − E [{ψi}, {RI}, {αv}],

whereMI are the physical ionic masses,µ andµv are arbitrary parameters having the appropriate
units, and theψi are subject to an orthonormality constraint.

The Lagrangian generates dynamics for the parameters through the following equations of
motion:

µψ̈i(ri, t) = −δE/δψ∗
i (ri, t) +

∑

k

Λikψk(ri, t) (43)

MIR̈I = −∇RI
E (44)

µvα̈v = −(∂E/∂αv), (45)

where the Lagrange multipliers,Λik, have been introduced to satisfy the orthonormality constraint.
Only the ion dynamics have real physical meaning; the rest are £ctitious and are employed by the
simulated annealing algorithm.

The Lagrangian formula de£nes both potential and kinetic energies for the system. The equi-
librium value of the kinetic energy can be calculated as the temporal average over the trajectories
generated by the equations of motion. By varying the velocities, the temperature of the system
can be reduced; asT → 0, the equilibrium state of the DFT energy functional is reached. At
equilibrium,ψ̈i = 0, and (43) corresponds to the Kohn-Sham equation through a unitary transfor-
mation. At this temperature, the eigenvalues ofΛ agree with the occupied Kohn-Sham eigenvalues,
and the Lagrangian describes a real physical system whose representative point lies on the Born-
Oppenheimer surface.

The main advantage of this approach is that diagonalization, self-consistency, ionic relaxation,
and volume and strain relaxation are achievedsimultaneouslyrather than separately.

Pastoreet al. investigated the theoretical basis of the Car-Parrinello method in [128]. There
they showed how the classical dynamics generated by the Car-Parrinello Lagrangian approximated
ef£ciently the quantum adiabatic evolution of a system, and they discuss the role played by the
spectrum of the eigenvalues of the Kohn-Sham Hamiltonian matrix.

The Car-Parrinello method is one of several ab initio molecular dynamics (AIMD) methods.
A discussion of AIMD methods is beyond the scope of this paper. However, the interested reader
is referred to [54, 125, 129, 178] for descriptions of AIMD methods and their diverse applications
which include the melting of silicon and the study of molecular crystals and liquids.

The Car-Parrinello method has been used extensively in materials science, physics, chemistry,
and biology since its invention. The Car-Parrinello Molecular Dynamics Consortium website [172]
lists numerous papers that have been published on this method since 1994; however, this list is not
exhaustive. To give an idea of the wide range of applicationsstudied by this method, we list several
papers in materials science [32, 78, 106, 109, 185], physics[14, 20, 46, 143, 154], chemistry [23,

32



57, 87, 137, 184], and biology [56, 80, 113, 132, 146] that employ this method. For information
on recent advances in chemistry and materials science with Car-Parinello molecular dynamics
methods, see [1]. For a nice review of the £rst 15 years of the use of the Car-Parrinello methods in
physics, chemistry, and biology, the reader is referred to [145].

6.5 Use of orthogonal polynomials

Approximation theory, and especially the theory of orthogonal polynomials, has been extensively
used in density functional theory. A typical approach is to write the projector (39) as

P = h(H)

whereh(λ) is the shifted Heaviside step function which has value one for λ ≤ EF and zero else-
where. The Heaviside function can now be approximately expanded into orthogonal polynomials

h(λ) ≈
n∑

i=1

αipi(λ) .

The most common orthogonal polynomials that are used in thiscontext are the Chebyshev poly-
nomials of the £rst class. If a good basis is used, such as Gaussian orbitals or plane waves, then
it is known that the density matrix has a £nite decay range,i.e., it will be represented by a sparse
matrix. It is therefore possible to construct a good approximation toP ef£ciently in this case; see,
e.g., [77,98].

Another approach which has been used focuses not onP directly, but rather on the basisV; see,
e.g., [74]. Here a number of trial vectorsξ1, . . . , ξm are selected and then a basis for the desired
spacespan(V) is built by computing approximations to the vectors

wi = h(H)ξi

with the help of the polynomial expansion. Note that each of these vectors is a member of the
desired subspace and collectively the set ofwi’s will constitute a basis of the space under generic
conditions. This set is then orthonormalized to getV.

The above approaches attempt to extract the charge densityρ(r, r), which is represented by the
diagonal of the operatorP. One can easily imagine that while the techniques should scale well
for large systems, the prefactor in the cost function can be very high. This was observed in [77].
There are, however, situations where the use of orthogonal polynomials can be very cost-effective.
In [144] thedensity of states(DOS) is computed using this strategy. One starts with a density of
eigenvalues inRn which in the form of a sum of Dirac functions:

η(λ) =
N∑

i=1

δ(λ − λi) .

This is a distribution (in a mathematical sense) that is sought. The classical moment problem is to
£nd this distribution from a knowledge of its classical momentsµk =

∫
λkη(λ)dλ.

A numerically viable alternative is to use the modi£ed or generalized moments:

µk =

∫

tk(λ)η(λ)dλ (46)
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where{tk} is a sequence of orthogonal polynomials on the interval containing the eigenvalues
of H. Typically, the problem is shifted and scaled so that the action takes place in the interval
[−1, 1]. In addition, the polynomialstk are just the Chebyshev polynomials, though other poly-
nomials can be used as well. Assuming that the moments have been computed for the Chebyshev
polynomials, then expression of the distribution in the interval(−1, 1) is given by

η(λ) =
2

π
√

1 − λ2

∞∑

k=0

µk

1 + δk0

tk(λ) . (47)

Hereδk0 is the Kronecker symbol. Of course, the sum is truncated atM terms resulting in a certain
functionηM(λ). Another notable approximation lies in the computation of the momentsµk. The
sequenceµk is not readily available and can be only approximated [144,181]. The various methods
proposed in the literature consist of using probabilistic arguments for this purpose. Speci£cally,µk

can be written as

µk =

∫ 1

−1

tk(λ)η(λ)dλ =
N∑

i=1

tk(λi) = tr[tk(H)] (48)

so one needs only compute the traces of the sequence of operatorstk(H). These traces are typically
computed with a Monte-Carlo type technique. A sequence ofnr random vectorsrj is generated
andµk is approximated by

µk ≈ 1

nr

nr∑

j=1

< rj|tk(H)|rj > .

The 3-term recurrence of the Chebyshev polynomials is exploited to reduce the memory and com-
putational cost of the calculations.

This type of calculation for the DOS can only be of interest incases where the geometry is
£xed and the Hamiltonian can be well-approximated without a self-consistent iteration. A related,
but more complex, technique allows to obtainoptical-absorption spectra (OAS)[24, 181]. The
calculation can be viewed as an extension of the problem discussed above to two variables. What
is sought is the 2-variable distribution:

η(λ1, λ2) =
∑

i,j

|σi,j|2δ(λ1 − λi)δ(λ2 − λi) with σi,j =< φi|i~∇|φj > (49)

from which the OAS can be obtained by computing a double integral [181]. Physically,|σi,j|2
represents the transition probability between statesi andj. To compute the function (49) requires
to generalize the 1-variable moments de£ned by (48) to two 2-variable moments:

µk,l =
∑

i,j

tk(λj)tk(λi)tl(λj)|σi,j|2 =

∫ 1

−1

dλ1

∫ 1

−1

dλ2 tk(λ1)tl(λ2)η(λ1, λ2) .

A probabilistic technique that is similar to the one for the density of states is used to recover an
approximation to the function (49). In this case, approximating µk,l consists of averaging terms of
the form< r|i~∇tk(H).i~∇tk(H)|r > wherer is a random vector as before [181].
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7 Geometry optimization

The composition and structure of a material (including its geometry) determine many of its physical
and chemical properties. For example, the reactivity, polarity, phase, color, and magnetism of a
material are determined, in large part, by the material’s geometry [111]. Thus, it is important to
determine the geometry of the material in a stable state.

7.1 The geometry optimization problem

Thegeometry optimization problem(referred to as thestructural relaxation problemby materials
scientists and computational physicists) is to £nd a low-energy con£guration of the material. This
is done by repositioning the atoms of the material and subsequently evaluating its energy at various
places on the potential energy surface. The potential energy surface is a hypersurface and is a plot
of the potential energy,E , vs. the atomic coordinates,r. Herer is a vector of length3K containing
the atomic coordinates for theK atoms,i.e., r = (x1,y1, z1, . . . ,xK ,yK , zK)T . There have been
many reviews, see,e.g., [141,155–158] written on this topic in recent years.

There are some applications which require the lowest-energy conformation of the system of
interest,i.e., a global minimum of the potential energy surface [158]. Finding a global minimum
is a very dif£cult optimization problem; often it is impossible or impractical to £nd the global
minimum. However, there are many applications where it is enough to £nd a local minimum. For
example, local minima can be used as starting points for global minimization algorithms [8, 9, 22,
86,95,97,133,134,152,153,179].

Even though £nding a local minimum is an easier problem than £nding a global minimum, it
can be quite dif£cult. One problem that may occur is that the optimization algorithm may become
trapped at a saddle point, for example. Because the gradient is zero at all critical points, the Hessian
must be used to determine whether or not the critical point isa local minimum. At a local minimum,
the Hessian matrix is positive de£nite. A second problem is that the optimization algorithm may
not converge from all starting points, especially not from those points corresponding to very high
potential energies. The methods we review in this paper focus on £nding a local minimum (as
opposed to the global minimum).

The geometry optimization problem is a nonlinear, unconstrained optimization problem. In op-
timization terms, the objective function and gradient are given by the potential energy and forces,
respectively. There are four important qualities which serve to characterize the optimization prob-
lem. First, the objective function is highly nonlinear. Forexample, a simple model that is often
given for the problem is the Lennard-Jones potential which describes the potential energy of two
inert gas atoms in locationsr1 andr2:

E(r1, r2) = 4ε

[(
σ

|r1 − r2|

)12

−
(

σ

|r1 − r2|

)6
]

.

Hereε is the well-depth, andσ is a hard sphere radius.
Second, it is very expensive to evaluate the energy and forces of the material for a particular

geometry. For the PARSEC package [126], on which the authors work, the self-consistent £eld
iteration, corresponding to the solution of the Kohn-Sham equations, must be executed each time
the energy and forces are evaluated. This corresponds to solving the nonlinear eigenvalue problem
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Code Minimization algorithm
PWscf damped dynamics
PEtot BFGS
ABINIT molecular dynamics (Numerov, Verlet)
Soccoro steepest descent, conjugate gradient, quenched minimization
fhi98PP ionic relaxation with damped Verlet
VASP conjugate gradient, RMM-DIIS
PARATEC direct minimization of total energy
SeqQuest modi£ed Broyden, damped dynamics, steepest descent, accelerated steepest descent
Wien2K geometry optimization details not given
ACRES constrained dynamics
SIESTA conjugate gradient, molecular dynamics algorithms (including standard Verlet)
AIMPRO conjugate gradient
FLEUR geometry optimization details not given
CPMD GDIIS, L-BFGS, P-RFO, RFO, BFGS, steepest descent
CONQUEST geometry optimization details not given
CASTEP BFGS, damped molecular dynamics, delocalized internal coordinates
DoD PW damped dynamics
CRYSTAL Berny (modi£ed conjugate gradient) algorithm
Octopus steepest descent
MIKA BFGS

Table 3: Minimization algorithms for a few electronic structures codes.

in (31). For this reason, it is impractical to compute the Hessian via £nite-differencing, and it is not
possible to compute the Hessian via automatic differentiation due to the structure of the nonlinear
eigenvalue problem. Third, the energy and force £elds often contain inaccuracies, as it is dif£cult
to know the potential energy surface exactly. Finally, there can be many local minima; any of them
will be considered acceptable solutions to the geometry optimization problem.

7.2 Minimization algorithms

Many different minimization algorithms are employed by electronic structures packages to solve
the geometry optimization problem. Table 3 gives the type ofminimization algorithm used by each
DFT electronic structure package listed in Table 2. These minimization algorithms fall into six
main categories: the steepest descent method, quasi-Newton methods, truncated Newton methods,
conjugate gradient methods, iterative subspace methods, and molecular dynamics methods. In this
section, we describe the £rst £ve classes of methods and review algorithms from each category.
The sixth category, molecular dynamics methods, are beyondthe scope of this paper, as they are
really simulation methods rather than unconstrained optimization algorithms.
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7.2.1 The steepest descent method

Steepest descent methods exploit the direction,d, that yields the fastest decrease inE from r.
Mathematically, this direction results from the solution of the optimization problem

min
d∈R3K

∇E(r)T
d subject to ‖d‖ = 1 . (50)

The solution to the above minimization problem is given byd = −∇E(r)/‖∇E(r)‖2 in the l2-
norm. This is thesteepest-descent direction.

Iterationk of Cauchy’s classical steepest descent algorithm [38] is as follows:

1. Find the lowest point ofE in the direction−∇E(rk) from rk, i.e., £nd λk that solves
minλk>0 E(rk − λk∇E(rk)).

2. Updaterk+1 = rk − λk∇E(rk).

Clearly, this is only a theoretical algorithm in that the £rst step requires the solution of a one-
dimensional minimization problem. In order to implement the algorithm, an inexact minimization
must be performed. Goldstein [61] showed that under mild conditions, the steepest descent al-
gorithm converges to a local minimum or a saddle point ofE . However, the convergence is only
linear.

Several electronic structure codes (e.g., Socorro, SeqQuest, CPMD, and Octopus) employ the
steepest descent algorithm for the geometry optimization problem because it is easy to implement.
The ease of implementation comes at the cost of slow convergence. More sophisticated minimiza-
tion algorithms usually yield a better convergence rate andare more cost-effective.

7.2.2 Newton’s method

An example of an optimization algorithm with a higher rate ofconvergence is Newton’s method.
It enjoys quadratic convergence in the best case. The goal ofNewton’s method is to £nd a point
rk+1 such that∇E(rk+1) = 0. For such a point,rk+1 satis£es a necessary condition for being a
minimizer ofE . In order to do this, a quadratic model,mk, of the function is created. This model
is given bymk(rk + d) = E(rk) +∇E(rk)

Td + 1

2
dT ∇2E(rk) d. Then the pointrk+1 = rk + dN

k

is determined so that∇mk(rk+1) = 0, makingrk+1 a critical point ofmk. The vectordN
k is called

the Newton step.
Formally, iterationk of Newton’s method is written as the following two step procedure:

1. Solve∇2E(rk) dN
k = −∇E(rk).

2. Updaterk+1 = rk + dN
k .

There are many dif£culties associated with this simple version of Newton’s method. First, the
Newton direction might be a direction of negative curvature, i.e., it might not be a descent direc-
tion. Second, if the Hessian matrix is ill-conditioned, therate of convergence might be decreased.
Third, Newton’s method is not globally convergent. Anothermajor dif£culty associated with using
Newton’s method for electronic structure calculations is that, in most cases, an analytic Hessian is
not available. Newton’s method (as written) is not a viable option for electronic structure codes.
As such, we turn to quasi-Newton methods, which employ approximate Hessians.
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7.2.3 Quasi-Newton methods

Quasi-Newton methods are among the most successful approaches for the geometry optimization
problem [155,156,158,180]. The PEtot, SeqQuest, CPMD, CASTEP, and MIKA electronic struc-
ture packages all employ quasi-Newton methods, which are modi£ed Newton methods in which
the actual Hessian is replaced by an approximation to it. Typically, the approximation is obtained
by updating an initial Hessian which may be a positive multiple of the identity, or it may come
from experimental results, or from optimizing the geometryat a higher level of theory. For ex-
ample, if one is interested in performing a geometry optimization for the DFT level of theory, it
may be possible to initialize the Hessian using the Hessian from a geometry optimization with a
semi-empirical force £eld. Another way of initializing the Hessian may be to use the Hessian from
the geometry optimization of a related model problem.

The generic quasi-Newton method is the same as Newton’s method except that∇2E(rk) is re-
placed byBk ≈ ∇2E(rk) in the computation of the Newton step. One way in which the many quasi-
Newton methods differ is in their techniques for updating the Hessian. One major class of Hessian
update formulas are the secant updates which enforce the quasi-Newton conditionBk+1sk = yk,
wheresk = rk+1 − rk andyk = gk+1 − gk, wheregk = ∇E(rk). This condition is used to create
low-rank approximations to the Hessian.

One of the most successful updates from this class has been the BFGS [18,47,60,164] update
which was discovered independently by Broyden, Fletcher, Goldfarb, and Shanno in 1970. It is
given by

Bk+1 = Bk +
yk yT

k

yT
k sk

− Bk sk sT
k Bk

sT
k Bk sk

.

This is a rank-two, symmetric secant update. In addition,Bk+1 is positive de£nite ifyT
k sk > 0

andBk is positive de£nite. (The former condition is the only one to be concerned with, as∇2E0

is usually a positive multiple of the identity. The update isnormally skipped wheneveryT
k sk ≤

0.) This is a desirable feature of a Hessian update since the Hessian matrix is positive de£nite
at a minimum. Thus, we seek positive de£nite Hessian update methods for minimizations of a
quadratic model. One dif£culty with the BFGS update is that, within the linesearch framework (to
be discussed below), it only converges to the true Hessian ifaccurate linesearches are used [38].
Owing to inaccuracies in the potential energies and forces,this is often not the case in geometry
optimization problems.

A competitive update which converges to the true Hessian on aquadratic surface without an
exact linesearch is the symmetric rank-one update by Murtagh and Sargent [116]. This update is
given by

Bk+1 = Bk +
(yk − Bksk)(yk − Bksk)

T

(yk − Bksk)T sk

.

Unfortunately, this is not a positive-de£nite update, and sometimes the denominator becomes van-
ishingly small. However, the diagonal of the approximate Hessian may be perturbed to make the
approximate Hessian positive de£nite at a given step.

A third update which has been useful for geometry optimization problems is to take a speci£c
convex combination of the SR1 update shown above and the BFGS update. Speci£cally, this update
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is given by

Bk+1 = Bk + φ
(yk − Bk sk)(yk − Bk sk)

T

(yk − Bk sk)T sk

+ (1 − φ)

(

−Bk sk sT
k Bk

sT
k Bk sk

+
yk yT

k

yT
k sk

)

,

whereφ is given by
√

t1/t2t3, wheret1 = ((yk − Bk sk)
T sk)

2, t2 = (yk − Bk sk)
T (yk − Bk sk),

and t3 = sT
k sk. This update is due to Farkas and Schlegel [41] and is based onan idea of

Bo£ll’s [13] for locating transition-state structures. Thisupdate strives to take advantage of the
positive-de£niteness of the BFGS update and the greater accuracy of the SR1 update. Other Hes-
sian updates are also possible; see [38] for a description ofseveral others.

The second way in which quasi-Newton methods differ is theirtechniques for controlling the
Newton step. Linesearch methods [38, 48, 58, 81, 121] attempt to choose a steplength,λk, such
that the quasi-Newton step given byrk+1 = rk + λkdk satis£es suf£cient decrease and curvature
conditions. One of the most successful linesearch codes is the limited-memory BFGS code, L-
BFGS, which was implemented by Liu and Nocedal [100, 120]. It is intended for large-scale
optimization problems. In the L-BFGS code, quasi-Newton update vectors, rather than the full
Hessian matrix, are stored. When the available storage has been depleted, the oldest correction
vector is removed to make room for a new one. The step length inthis code is determined by the
sophisticated Moŕe-Thuente linesearch [114].

In contrast with linesearch methods, trust-region methodschoose the direction and step length
by minimizing the quadratic model subject to an elliptical constraint. The constrained minimiza-
tion problem they solve is given by:min mk(rk + dk) = E(rk) + ∇E(rk)

Tdk + 1

2
dT

k Bk dk,
subject to‖dk‖2 ≤ δk, whereδk is the trust-region radius. The resulting step is of the form
dk = −(Bk + λkI)−1∇E(rk). The trust-region radius is adjusted based on how well the quadratic
model approximates the function. See [30, 38, 48, 58, 81, 121] for more details on trust-region
methods.

The rational function optimization (RFO) method [5,168] is related to trust-region methods in
that it seeks to compute a step in a direction that will improve the convergence of the method. In
this method, the quadratic model found in Newton’s method isreplaced with a rational function
approximation. In particular,

∆E = E(rk + dk) − E(rk) ≈
1

2

(
1 dT

k

)
(

0 gT
k

gk Bk

)(
1
dk

)

(1 dT
k )

(
1 0T

0 Sk

)(
1
dk

) ,

whereSk is a symmetric matrix that is normally taken to be the identity. Observe that the numerator
in the above formula is the quadratic model used in the quasi-Newton method. The displacement
vector,dk, is computed so as to minimize∆E . For further details on solving this optimization
problem, see [138].

Recent years have seen the development of hybrid methods for optimization based upon quasi-
Newton methods. One such example is the hybrid method by Morales and Nocedal [112] that
interlaces iterations of L-BFGS with a Hessian-free Newton method. The performance of this
method is compared with the L-BFGS method and a truncated Newton method at the end of the
next section.
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7.2.4 Truncated Newton methods

If the exact Hessian is available, then it is possible to use atruncated Newton method. Truncated
Newton methods are a subclass of Newton methods which are used in the context of large-scale
optimization. Here an iterative method is used to compute the search direction,dk, using a line-
search or trust-region method. They are based on the idea that when far away from the solu-
tion, it does not make sense to compute an exact solution to the Newton equation, as this may be
very computationally intensive and a descent direction maysuf£ce. However, near a minimum, a
more exact solution is desired. At each outer iteration, it is required that the residual,rk, satisfy
rk = ‖∇2Ek dk + gk‖ ≤ ηk ‖gk‖, whereηk is the forcing sequence. The methods are called trun-
cated Newton methods, as they are stopped (or truncated) when the above convergence criterion is
met. For appropriately chosenηk, asymptotic quadratic convergence of the method is achieved as
‖∇Ek‖ → 0 [37]. One appropriate choice ofηk given in [158] is

ηk = min {cr/k, ‖∇Ek‖}, 0 < cr ≤ 1.

See [118] for an excellent survey of truncated Newton methods.
Schlick and Overton developed the idea for a truncated Newton method which was used for

potential energy minimization in [161]. The resulting Fortran package, TNPACK [159,160], writ-
ten by Schlick and Fogelson, was later incorporated into theCHARMM [17] molecular mechanics
package [39]. The user of TNPACK is required to implement a sparse preconditioner which al-
ters the clustering of the eigenvalues and enhances convergence. Automatic preconditioning is
included in an implementation by Nash [117] which makes it readily portable.

Daset al. [35] tested the performance of the Morales-Nocedal hybrid method (which was dis-
cussed in the quasi-Newton section), the Liu-Nocedal L-BFGSmethod, and the truncated Newton
method with preconditioner of Nash on the protein bovine pancreatic trypsin inhibitor (BPTT) and
a loop of protein ribonuclease A. Their results showed that the hybrid approach is usually two
times more ef£cient in terms of CPU time and function/gradientevaluations than the other two
methods [35].

7.2.5 Conjugate gradient methods

Nonlinear conjugate gradient (NLCG) algorithms [66,165] form another important class of meth-
ods used in electronic structure packages (e.g., Socorro, VASP, SIESTA, AIMPRO, and CRYS-
TAL) for solving the geometry optimization problem. For an excellent survey paper on nonlinear
conjugate gradient methods, see [66].

In the 1960’s, Fletcher and Reeves generalized the conjugategradient algorithm to nonlinear
problems [50] by building upon earlier work by Davidon [36] and Fletcher and Powell [49]. The
nonlinear conjugate gradient algorithms were developed bycombining the linear conjugate gradi-
ent algorithm with a linesearch. The nonlinear and linear conjugate gradient algorithms are related
in the following way: if the objective function is convex andquadratic and an exact linesearch is
used, then the nonlinear algorithm reduces to the linear one. This reduction is important since the
linear conjugate gradient algorithm requires at most3K steps in exact arithmetic. This is because
the search vectors span the entire3K-dimensional space after3K steps.

NLCG algorithms are of the form:

rk+1 = rk + αkdk,
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dk = −gk + βkdk−1,d0 = −g0,

whereαk is obtained via a linesearch, andβk is a scalar that determines how much the previous
direction is used in the computation of the current one. NLCG methods differ in their choice ofβk;
many different formulas have been proposed. Seven of the methods are: the Hestenes and Stiefel
method (HS) [72], the Fletcher-Reeves method (FR) [50], Daniel’s method (D) [34], the method by
Polak, Ribiere, and Polyak (PRP) [135,136], the Conjugate Descent method by Fletcher (CD) [48],
the Liu and Storey method (LS) [101], and the method by Dai andYuan (DY) [33]; their formulas
for computingβk are as follows:

βHS
k =

gT
k yk−1

dT
k−1

yk−1

,

βFR
k =

‖gk‖2

‖gk−1‖2
,

βD
k =

gT
k+1 ∇2E(rk) dk

dT
k ∇2E(rk) dk

,

βPRP
k =

gT
k yk−1

‖gk−1‖2
,

βCD
k =

‖gk‖2

−gT
k−1

dk−1

,

βLS
k =

gT
k yk−1

−gT
k−1

dk−1

,

and

βDY
k =

‖gk‖2

dT
k−1

yk−1

,

whereyk−1 = gk − gk−1 and‖.‖ is thel2-norm.
The most popular formulas from the above list are FR, PRP, and HS. The FR method converges

if the starting point is suf£ciently near the desired minimum. On the other hand, PRP cycles in-
£nitely in rare cases; this undesirable behavior can be remedied by restarting the method whenever
βPRP

k < 0. It is often the case that PRP converges more quickly than the FR method and is the one
most often implemented in codes.

Recently Hager and Zhang [65, 67] developed a new nonlinear conjugate gradient method,
CG DESCENT, with guaranteed descent and an inexact linesearch.Their formula for computing
βk is given by

βHZ
k =

(

yk − 2dk
‖yk‖2

dT
k yk

)
gk−1

dT
k yk

.

Numerical comparisons in [67] showed that CGDESCENT outperformed L-BFGS and several
other nonlinear conjugate gradient methods on a set of 113 problems from the CUTEr (The Con-
strained and Unconstrained Testing Environment, revisited) test set [173] with dimensions ranging
from 50 to 10,000. Thus, CGDESCENT should be seriously considered for the geometry opti-
mization problem.

Some of the best-performing nonlinear conjugate gradient methods today are hybrid meth-
ods [66]. These methods dynamically adjust the formula forβk as the iterations evolve. In [65],
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several numerical experiments were performed which compared hybrid NLCG methods with
CG DESCENT and L-BFGS. The top performers relative to CPU time wereCG DESCENT, a
code based upon a hybrid DY/HS scheme, and Liu’s and Nocedal’s L-BFGS code. Thus, the
hybrid DY/HS scheme also has excellent potential for use on the geometry optimization problem.

Baysal et al. [10] studied the performance of several particular minimization algorithms as
applied to models of peptides and proteins. In particular, they compared the performance of Liu’s
and Nocedal’s L-BFGS code with the performances of the truncated Newton (TN) method with
automatic preconditioner of Nash and the nonlinear conjugate gradient algorithm (CG) of Shanno
and Phua. Their results [10] show that for one potential energy formulation, the truncated Newton
method outperformed L-BFGS and CG by a factor of 1.2 to 2. With another potential energy
formulation, L-BFGS outperformed TN by a factor of 1.5 to 2.5 and CG by a larger factor.

7.2.6 Iterative subspace methods

The £nal class of optimization methods we review are those that employ iterative subspace opti-
mization. Electronic structure packages which employ iterative subspace methods include VASP
and CPMD. One algorithm in this class is the Direct Inversion in the Iterative Subspace (DIIS)
method [139, 140] which is also referred to as Residual Minimization Method-Direct Inversion in
the Iterative Subspace (RMM-DIIS). DIIS is the same as a Krylov subspace method in the case
of solving a linear system without preconditioning. The relationship between the methods in the
nonlinear case is more complicated and is described in [68].

DIIS was £rst used to accelerate self-consistent £eld calculations before it was extended to
the geometry optimization problem and to charge-mixing. The name of the method that has been
speci£cally tailored for the geometry optimization problemis: Geometry Optimization in the Iter-
ative Subspace (GDIIS) [31].

GDIIS is different from quasi-Newton methods in that it assumes a linear connection between
the coordinate and gradient changes; this is similar to using a quadratic approximation to the
potential energy surface. However, in the quasi-Newton case, the linear connection was between
the Hessian matrix and the gradient.

We now give the derivation for the GDIIS method from [42]. Thedevelopment of the GDIIS
method is based on a linear interpolation (and extrapolation) of previous molecular geometries,
ri, that minimizes the length of an error vector. The formula for the interpolation/extrapolation is
given by:

r∗ =
∑

ci ri, where
∑

ci = 1.

An error vector,ei, is created for each molecular geometry using a quadratic model of the potential
energy surface. First, a simple relaxation step,r∗i , is computed using a Newton step,i.e.,

r∗i = ri −∇2E−1
gi.

Then, the corresponding error vector,ei, is taken to be the displacement from the atomic structure:

ei = r∗i − ri = −∇2E−1
gi.

The error (or residual) vector forr∗ is the linear combination of the individual error vectors and is
given by:

z =
∑

ci ei = e∗.
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Next, the coef£cients are obtaining by solving the least-squares problem which corresponds to
minimizing ‖z‖2 subject to the constraint that

∑
ck = 1. Finally, the next atomic geometry in the

optimization procedure is given by

rk+1 = r∗ + z =
∑

ci r∗i .

According to [42], this version of the GDIIS method is quite ef£cient in the quadratic vicinity
of a minimum. However, farther away from the minimum, the method is not as reliable and
can fail in three major ways: convergence to a nearby critical point of higher order, oscillation
around an in¤ection point on the potential energy surface, and numerical instability problems in
determining the GDIIS coef£cients. In [42], Farkas and Schlegel give an improved GDIIS method
which overcomes these issues and performs as well as a quasi-Newton RFO method on a test set
of small molecules. On a system with a large number of atoms, their improved GDIIS algorithm
outperformed the quasi-Newton RFO method.

7.3 Practical recommendations

We conclude this section on geometry optimization with somepractical recommendations. First,
it is important toconsider different starting points. A given optimization algorithm might not
be globally convergent. It also might converge to another type of critical point such as a local
maximum or a saddle point. The user can distinguish the type of critical point by calculating the
eigenvalues at the solution. One example of a system in the literature where global convergence
was not achieved with an optimization algorithm is the biphenyl molecule. When started from
anything other than a ¤at geometry, the geometry optimization produced an acceptable result.
However, when starting with the ¤at geometry, it produced a ¤atring geometry which corresponds
to a maximum [99].

Second, the user cantry different algorithmic parameters, approximate initial Hessian matri-
ces(in the case of quasi-Newton methods), andtermination criterion, for example, as these can
dramatically affect the algorithms’ convergence, as well.It can also be helpful totry using various
optimization algorithmson one’s geometry optimization problem. Different optimization algo-
rithms perform better on some problems and not as well on other problems as was demonstrated in
this paper. Which algorithm will produce the best results fora given problem depends on several
characteristics of the problem such as: deviation of the objective function from quadratic, condi-
tion number of the Hessian (or approximate Hessian) matrices, convexity, and eigenvalue structure.
See [119] for a numerical study which compares the performances of the L-BFGS method, a trun-
cated Newton method, and the Polak-Ribiere conjugate gradient method on a set of test problems
and analyzes the results in terms of these quantities.

Finally, it may be worth to consider usinga different coordinate system. In [3], Baker studied
the use of Cartesian and natural internal coordinates (basedupon the bonds and angles in the ma-
terial) for geometry optimization; he concluded that for good starting geometries and initial Hes-
sian approximations, geometry optimizations performed inCartesian coordinates are as ef£cient
as those using natural internal coordinates. Thus, the standard Cartesian coordinates are recom-
mended for £nding local minima. However, for the case of no initial Hessian information, natural
internal coordinates were more effective. Thus, natural internal coordinates are recommended for
£nding a global minimum. See [4,142] for alternative coordinate systems.
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8 Concluding remarks

Though signi£cant progress has been made in recent years in developing effective practical meth-
ods for studying electronic structure of materials, there are from an algorithmic point of view many
challenges remaining. Developing effective techniques for solving large eigenvalue problems in
the case of a very large number of eigenvectors still remainsan important issue. Interestingly,
the large anddenseeigenvalue problem will gain importance as systems become larger. This is
because most methods solve a dense eigenvalue problem whicharises from projecting the Hamil-
tonian into some subspace. As the number of states increases, this dense problem can reach sizes
in the tens of thousands. Because of the cubic scaling of standard eigenvalue methods for dense
matrices, these calculations may become a bottleneck.

In the same vein, as systems become larger, eigenfunction-free methods may start playing a
major role. Although there has been much work done in this area (see,e.g., the survey [59], and
[96]), linear scaling methods in existence today have limited applicability and it becomes important
to explore their generalizations. There are also many questions to explore from a more theoretical
viewpoint; see,e.g., [93] for an overview. Work needs to be done, for example, in gaining a better
understanding of the relation between the choice of the exchange correlation functional and the
nature of the resulting nonlinear eigenvalue problem. Thus, the self-consistent iteration is slow to
converge in many cases (e.g., metallic compounds). It is known that such problems are intrinsically
harder due to several factors, including the small gap between the eigenvalues of the occupied states
and the others. In situations like these, it is intuitive that the solution will be more sensitive to small
changes in the equations than in other cases. In particular,the solutions may depend more critically
on the functional used for the exchange correlation energy.
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