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Abstract

The goal of this article is to give an overview of numerical problems enesed when
determining the electronic structure of materials and the rich variety of teasigsed to
solve these problems. The paper is intended for a diverse scientifEc cognautience. For
this reason, we assume the reader does not have an extensiveobackigrthe related physics.
Our overview focuses on the nature of the numerical problems to be stoheaddorigin, and
on the methods used to solve the resulting linear algebra or nonlinear optimigedigiems.
It is common knowledge that the behavior of matter at the nanoscale is, ingbeinentirely
determined by the Scidinger equation. In practice, this equation in its original form is not
tractable. Successful, but approximate, versions of this equation, \ali@hk one to study
nontrivial systems, took about £ve or six decades to develop. In partite last two decades
saw a aurry of activity in developing effective software. One of the madctwal variants of
the Schodinger equation is based on what is referred to as Density Functioeah [DFT).
The combination of DFT with pseudopotentials allows one to obtain in an efEcinthe
ground state conf£guration for many materials. This article will emphasize @setghtial-
density functional theory, but other techniques will be discussed as well.
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1 Introduction

Some of the most time consuming jobs of any high-performaooeputing facility are likely to
be those involving calculations related to high energy msysr quantum mechanics. These cal-
culations are very demanding both in terms of memory andmgsef computational power. They
entail computational methods that are characterized bghavariety of techniques which blend
ideas from physics and chemistry, with applied mathematioserical linear algebra, numerical
optimization, and parallel computing. In recent years,gtientiftc community has dramatically
increased its interest in these problems as governmentaeties, industrial research labs, and
academic institutions are putting an enormous emphasisaiarials and everything related to
nanotechnology. This trend can be attributed to two comrgrfactors. The £rst is that the stakes
are very high and the second is that a major practical breakgjn has never been closer because
the synergistic forces at play today are making it possiblgot calculations with accuracies never
anticipated.

Nanotechnology may gradually take the forefront of scEBmtomputing in the same way
that computational cuid dynamics (CFD) was at the forefrorgadéntiEc computing for several
decades. The past few decades of scientifc computing hasibeenated by cuid sow compu-
tations, in part because of the needs in aeronautics anthabtle industries€.g, aerodynamics
and turbines). Model test problems for numerical analysiglbping new algorithms are often
from CFD (such as the model “convection-diffusion equationthe model “Laplacian”). Simi-
larly, a big part of applied mathematics focuses on errolyaisaand discretization schemes (£nite
elements) for auid @ow problems. Today, the need to developlmovmproved methods for CFD
is diminishing, though this does not mean in any way that CFEhods are no longer in need
of improvements. Yet, a look at recent publications in sitfencomputing, reveals that there is
a certain dichotomy between the current trend in nanotdofggand the interest of the scientifc
community.

The “mega’- trend in nanotechnology is only timidly rececbgdpublished articles in scien-
tiEc computing. Few papers on “algorithms” utilize data setexamples from standard electronic
structure problems, or address problems that are specifistolass of applications. For exam-
ple, one would expect to see more articles on the problem mpating a very large number of
eigenvectors or that of global optimization of very compliiemctionals.

Part of the difEculty can be attributed to the fact that thebfmms encountered in quantum
mechanics are enormously more complex than those addressétker areasi.e., classical me-
chanics. The approximations and methods used have takerakgenerations of innovations by
a community that is much larger and broader than that of mrecaband aerospace engineers.
Chemists, chemical engineers, materials scientists, staté physicists, electrical engineers, and
even geophysicists, and more recently, bioengineersxplbee materials at the atomic or molec-
ular level, using quantum mechanical models. Therein liescand difEculty, which is that these
different groups have their own notation, constraints, #edr own preferred methods. Chemists
have a certain preference for Hartree-Fock based methodb wie more accurate for their needs,
but which physicists £nd too costly, if not intractable. Tpisference rezects the historical inter-
ests of chemists on molecules and the interests of physmissolids.

Our paper presents an overview of some of the most succassthbds used today to study the
electronic structures of materials. A large variety of tagnes is available and we will emphasize
those methods related to pseudopotentials and densitfidnattheory.
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One of the greatest scientiEc achievements of humankindeisligtovery, in the early part
of the twentieth century, of quantum mechanical laws dbswjithe behavior of matter. These
laws make it possible, at least in principle, to predict tleeteonic properties of matter from the
nanoscale to the macroscale. The progress that lead todises®eries is vividly narrated in the
book “Thirty years that shook physics” by George Gamov [55]series of discoveries, starting
with the notion of quantas originated by Max Planck at the en#i900, and ending roughly in
the mid-1920’s, with the emergence of the Sihinger wave equation, set the stage for the new
physics. Solutions of the Sabdinger wave equation resulted in essentially a completiemn
standing of the dynamics of matter at the atomic scale. Tihuk29, Dirac had this to sayThe
underlying physical laws necessary for the mathematicairhef a large part of physics and the
whole chemistry are thus completely known, and the difEculonig that the exact application
of these laws leads to equations much too complicated to hublsol It therefore becomes de-
sirable that approximate practical methods of applying gjiuen mechanics should be developed,
which can lead to the explanation of the main features of cergiomic systems without too much
computations”.

One could understand atomic and molecular phenomena, ligratdeast, from these equa-
tions. However, even today, solving the equations in thegimal form is nearly impossible, save
for systems with a very small number of electrons. In the sgveix years that have passed since
this statement by Dirac, one continues to strive for bettptamation of the main features of com-
plex atomic systems “without too much computations”. Hogredirac would certainly have been
amazed at how much progress was achieved in sheer compuwivey.pinterestingly, these gains
have been brought about by a major discovery (the trangistbrch can be attributed in big part to
the new physics and a better understanding of condensedrregpecially semiconductors. The
gains made in hardware, on the one hand, and methodologieonttier, multiply each other to
yield huge speed-ups and improvement in computationaloskpes.

When it comes to methodology and algorithms, the biggess$tepvard were made in the six-
ties with the advent of two key new ideas. One of themassity functional theorywhich enabled
one to transform the initial problem into one which invol¥esctions of only one space variables
instead of N space variables, faV-particle systems in the original S@dinger equation. Instead
of dealing with functions ilR3", we only need to handle functionsR?. The second substantial
improvement came witlpseudopotentialsIn short pseudopotentials allowed one to reduce the
number of electrons to be considered by constructing sppetantials, which would implicitly
reproduce the effect of chemically inert core electrons exqlicitly reproduce the properties of
the chemically active valence electrons . With pseudopiatisnonly valence electrons, those on
the outer shells of the atom, need be considezag],a Pb atom is no more complex than a C atom
as both have?p? valence con£gurations. This leads to substantial gainsibatiemory and a
reduction of computational complexity.

In the following we often use terminology that is employedghysicists and chemists. For
example we will speak of “diagonalization” when we will inctamean “computation of eigenval-
ues and eigenvectorg’e., partial diagonalization. We will use script letters foreogtors and bold
letters for vectors.



Figure 1. Atomic and electronic coordinates: Filled cisctepresent electrons, open circles repre-
sent nuclei.

2 Quantum descriptions of matter

ConsiderN nucleons of charge,, at positions{R,,} forn = 1,--- | N and M electrons at po-
sitions{r;} fori = 1,--- , M. An illustration is shown in Figure 1. The non-relativistiane-
independent Scbdinger equation for the electronic structure of the systambe written as:

HY=FEV Q)
where the many-body wave functidnis of the form
\PEW(RDR%RE}?“' ;I’l,]ﬁ'z,rg,"') (2)

andF is the total electronic energy. The Hamiltoniahin its simplest form can be written as

N N
hQV Z Z /6
H<R17R27R37”';r17r27r37."): - : : : :
n=1 2Mn n,n/=1, |R R |

n#n’

h2v? . 1L e
PR szn—u e

=1 n=1 i=1

Here, M, is the mass of the nucleusjs Planck’s constant;, divided by2r, m is the mass of the
electron, and is the charge of the electron.

The above Hamiltonian includes the kinetic energies fontingeus (£rst sum ifi{), and each
electron (3rd sum), the inter-nuclei repulsion energiesl(@m), the nuclei-electronic (Coulomb)
attraction energies (4th sum), and the electron-elecepualsion energies (5th sum). Each Lapla-
cian V2 involves differentiation with respect to the coordinatéshe »n'* nucleus. Similarly the
term V? involves differentiation with respect to the coordinatéthe i** electron.

In principle, the electronic structure of any system is ctatgly determined by (1), or, to be
exact, by minimizing the energy V|H|V > under the constraint of normalized wave functions
U. Recall thatV has a probabilistic interpretation: for the minimizing w&unctionV,

|‘1’(R17 -, Rpysry, - ,I‘M)|2d3R1 . 'd3RNd31"1 s d3I‘M
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represents the probability of £nding electron 1 in voldiRe + d*R.|, electron 2 in voluméR,, +
d®*R,|, etc. From a computational point of view however, the probis not tractable for systems
which include more than just a few atoms and dozen electmnsp. The main computational
difEculty stems from the nature of the wave function which etegs on all coordinates of all
particles (nuclei and electrons) simultaneously. For edamif we had just 10 particles, and
discretized each coordinate using just 100 points for e&tiear, i, z directions, we would have
10° points for each coordinate for a total @0%)'" = 10 variables altogether.

Soon after the discovery of the Séldinger equation, it was recognized that this equation pro-
vided the means of solving for the electronic and nuclearaksyof freedom. Using the variational
principle, which states that an approximate (normalizeajevfunction will always have a less fa-
vorable energy than the true ground state wave functionhadean equation and a method to test
the solution. One can estimate the energy from

. f U*HWU d3R1 dSRQ d3R3 LRI d31'1 d3r2 d31‘3 cee

E=<VH|V >=
|H| f s d3R1 d3R2 d3R3 RN d3I'1 d3I'2 d3I'3 cee

(4)

Recall that the wave functiofr is normalized, since its modulus represents a probabilstyildu-
tion. The state wave functiofi is anL,-integrable function irC? x C3 x --- x C3. Thebra (for

< |) andket (for | >) notation is common in chemistry and physics. These reszthiel notions

of outer and inner products in linear algebra and are relatedality. (Duality is de£ned from a
bilinear forma(x, y): The vectors: andy are dual to each other with respect to the bilinear form.)

When applying the Hamiltonian to a state functidrthe result isH|¥ > which is another
state functionb. The inner product of this function with another functipis < n|® > which is a
scalar, a complex one in the general setting.

A number of highly successful approximations have been niad®mpute both the ground
state,i.e., the state corresponding to minimum enelgyand excited state energies, or energies
corresponding to higher eigenvalugsn (1). The main goal of these approximations is to reduce
the number of degrees of freedom in the system as much ablgossi

A fundamental and basic approximation is Bern-Oppenheimeor adiabatic approximation
which separates the nuclear and electronic degrees ofdmeedsince the nuclei are consider-
ably more massive than the electrons, it can be assumedthatectrons will respond “instanta-
neously” to the nuclear coordinates. This allows one tosgpdhe nuclear coordinates from the
electronic coordinates. Moreover, one can treat the nucleardinates as classical parameters.
For most condensed matter systems, this assumption chédsirn-Oppenheimer approximation
or adiabatic approximation is highly accurate [69, 186]dEinthis approximation, the £rst term in
(3) vanishes and the second becomes a constant. We can thewitvoa new Hamiltonian:

N M M 9

—R2V? Z,e? 1 e
H(ryra,r5,--) = C< om ZZ‘Rn—ri‘ N 52 vy — 1| ©

i,j=1
i#]

This simpli£cation essentially removes degrees of freedssn@ated with the nuclei, but it will
not be sufEcient to reduce the complexity of the Sclinger equation to an acceptable level.



2.1 The Hartree approximation

If we were able to write the HamiltoniaH as a sum of individual (non-interacting) Hamiltonians,
one for each electron, then it is easy to see that the problemdiecomeseparable In this case
the wave function can be written as a product of individuaibitals, ¢, (r;) each of which is
an eigenfunction of the non-interacting Hamiltonian. Tigign important concept and it is often
characterized as the “one-electron” picture of a manytelasystem.

The eigenfunctions of such a Hamiltonian determine orb{@ilgenfunctions) and energy levels
(eigenvalues). For many systems, there are an in£nite nuoflstates, enumerated by quantum
numbers. Each eigenvalue represents an “energy” levadgmonding to the orbital of interest. For
example, in an atom such as hydrogen, an inEnite number ofdbstates exist, each labeled by
a set of three discrete integers. In general, the numbetedens equal the spatial dimensionality
of the system plus spin. In hydrogen, each state can be thbgléhree indicesr(, /, andm) and
s for spin. In the case of a solid, there are essentially an iefinimber of atoms and the energy
levels can be labeled by quantum numbers, which are no lahigerete, but quasi-continuous. In
this case, the energy levels form an energy band.

The energy states are £1led by minimizing the total energhi@bistem. Thé/ lowest orbitals
account foR N electrons, if one ignores spin, and aacupiedstates. States abovweé areunoccu-
piedor virtual states. The state with lowest energy (smallest eigenvadubgground state The
ground state energy corresponds to the lowest eigenvalue gifound sate determines a number
of propertiese.g, stable structures, mechanical deformations, phaseiticarss and vibrational
modes. The states above the ground state are known as estated. They are often used to
calculate response functions of the soédj, the dielectric and the optical properties of materials.

In mathematical term${ = ®H, the circled sum being a direct sum meaning tHaactsonly
on particle numbet, leaving the others unchanged. This not being true in géndeaatree sug-
gested to use this as an approximation technique wherelbasis resulting from this calculation
will be substituted in<k U|H|¥ >/ < ¥|¥ >, to yield an upper bound for the energy.

In order to make the Hamiltonian (5) non-interactive, we tmesnove the last term in (5),
i.e., we assume that the electrons do not interact with each.ofliem theelectronicpart of the
Hamiltonian becomes:

M prv? N Mg e
HezzHez(I‘l,I‘Q,I‘:s,"'):Z Zml - ZZ‘Rni_r‘ (6)
i=1 n=1i=1 """ 7!
which can be cast in the form
M 2y Mo
He = ; { o L+ VN(H)] = ZG:?HZ (7)
where
N
Z,.€>
Vn(ri) = — ; R, 1| (8)

This simplifed Hamiltonian is separable and admits eigestians of the form

Y(ry, 19,13, - ) = P1(r1)P2(r2)P3(r3) - - - %)



where thep;(r) orbitals can be determined from the “one-electron” Hamiko:

H'gi(r) = Eii(r) . (10)

The total energy of the system is the sum of the eigenvalties,

This model is extremely simple, but clearly not realistiby8ically, using the statistical inter-
pretation mentioned above, writing as the product of;’s, only means that the electrons have
independent probabilities of being located in a certaintposin space. This lack oforrelation
between the particles causes the resulting energy to betated. In particular, the Pauli Principle
states that no two electrons can be at the same point in spedesge the same quantum numbers.
The solutionsl computed in (9) is known as thdartree wave function.

The Hartree approximation consists of using the Hartreeeviamction as an approximation
to solve the Hamiltonianncluding the electron-electron interactions. This process staitis w
the use of the original adiabatic Hamiltonian (5) and foraesave function to be a product of
single-electron orbitals, as in (9). The next step is to miré the energx V|H|¥ > under
the constrainkk ¥|¥ >= 1 for ¥ in the form (9). This condition is identical to imposing the
conditions that the integrals of eaph|> be equal to one. If we impose the equations given by the
standard approach of the Lagrange multipliers combineld firist order necessary conditions for
optimality, we would get

d < W\H!% >
dibr
Evaluatingd < ¢|H|y > /di over functionsy of norm one is straightforward. The £rst and

second terms are trivial to differentiate. For the simpleecahernt = 1 andM = 3, consider the
third term, which we denote by |V, |U >:

S V—

2 2
< UV >= = Z/ |¢_¢‘i¢|3 Prydirydiry (11)
1,7=1 J

i#£]

Becausey, is normalized, this is easily evaluated to be a constantpedéent ofp; when both
1 andj are different fromk = 1. We are left with the differential of the sum over= 1,5 # 1.
Consider only the term= 1, j = 2 (the coefEcient? is omitted):

9 2
|¢ ¢2¢3|d3 d3r2d3r3 _ /d3r3|¢3(r3)|2 % / |¢1‘2 {/ |r|¢72|r‘d3r2] d3r
1— Iy

It — 1y

By introducing a variatiod¢, in the above relation, it is easy to see (at least in the camsabf
variables) that the differential of the above term with edo¢, is the functional associated with
the integral ofi¢s(r2)|?/|rs — r1]. A similar result holds for the term= 1, j = 3. In the end the
individual orbitalsp;(r), are solutions of the eigenvalue problem

_HR2\72 e2
hv + Vn( +Z / |¢]—r| Pr' | ¢i(r) = Eidi(r) . (12)
J#l



The subscripts, j of the coordinates have been removed as there is no ambigih#gyHamiltonian
related to each particle can be written in the fdtmn= *;HVQ + Vv + Wy, WwhereVy was defned
earlier and

_ N\ [P0 (r)dir
J#i

This “Hartree potential”, or “Couloumb potential”, can bedrpreted as the potential seen from
each electron by averaging the distribution of the othestedas| ¢, (r)|*'s. It can be obtained from
solving the Poisson equation with the charge density(r)|* for each electrorj. Note that both
Vv andWy depend on the electran Another important observation is that solving the eigéunwa
problem (12), requires the knowledge of the other orbitglsi.e., those for; # i. Also, the
electron density of the orbital in question should not béuded in the construction of the Hartree
potential.

The solution of the problem requiressalf-consistent £el@SCF) iteration. One begins with
some set of orbitals, and computes iteratively new sets lwngp(12), using the most current set
of ¢s for j # i. This iteration is continued until the set ofs is self-consistent.

Once the orbitalsy(r), which satisfy (12) are computed, the Hartree many-bodyeviarction
can be constructed and the total energy determined fronT (#®.Hartree approximation is useful
as an illustrative tool, but it is not an accurate approxiomat

As indicated earlier, a key weakness of the Hartree appratkam is that it uses wave functions
that do not obey one of the major postulates of quantum méchadamely, electrons or Fermions
must satisfy the Pauli exclusion principle [103]. Moreqville Hartree equation is difEcult to
solve. The Hamiltonian is orbitally dependent because dinensation in (12) does not include the
i" orbital. This means that if there aié electrons, thed/ Hamiltonians must be considered and
(12) solved for each orbital.

2.2 The Hartree-Fock approximation

So far, we have not includespinin the state function@. Spin can be viewed as yet another
guantum coordinate associated with each electron. Thiglowie can assume two values: spin
up or spin down. The exclusion principle states that therebeaonly two electrons in the same
orbit and they must be of opposite spin. Since the coordsnauiest now include spin, we defne

X; = <§%> wheres, is the spin of the’” electron. A canonical way to enforce the exclusion

3

principle is to require that a wave functioh be an antisymmetric function of the coordinates
x; Of the electrons in that by inter-changing any two of thesecdordinates, the function must
change its sign. In the Hartree-Fock approximation, mamlyleave functions with antisymmetric
properties are constructed, typically casSdater determinanisand used to approximately solve
the eigenvalue problem associated with the Hamiltonian (5)

Starting with one-electron orbitalg,(x) = ¢(r)o(s), the following functions meet the anti-



symmetry requirements:

$1(x1) i(x2) - o0 Or(xnr)
Wloct, Xa, o, ) = (ut) /2 [©200)@20xa) e gy
¢M(X1) ¢M(XM)

The term(M!)~1/2 is a normalizing factor. If two electrons occupy the samétptiyo rows of the
determinant will be identical andt will be zero. The determinant will also vanish if two electso
occupy the same point in generalized spaes, ; = x;) as two columns of the determinant will
be identical. Exchanging positions of two particles wikdeto a sign change in the determinant.
The Slater determinant is a convenient representatiommrmishould stress that it is ansatz It is
probably the simplest many-body wave function that incoafes the required symmetry properties
for fermions, or particles with non-integer spins.

If one uses a Slater determinant to evaluate the total el@ctienergy and maintains wave
function normalization, the orbitals can be obtained frbmn following Hartree-Fockequations:

i, (r) = ( o () + 3 [k d) 6(r)
M ” 62
30 [ G 6 o) = Bods) . (15)

It is customary to simplify this expression by de£ning aneteuc charge density;:
M
plr) = > |5 )P, (16)
j=1

and an orbital dependetexchange-charge density’p¥ for thei?" orbital:

M * / . / * .
pHP (p,1) = Z ¢;(r’) zz(r ) ¢;(xr ) ¢;(r) Sav, - (17)

) J(r) ¢ilr)
This “density” involves a spin dependent factor which cegpbnly states/(;j) with the same spin
coordinatesy;, s;).

With these charge densities defned, it is possible to deEmespanding potentials. The
Coulombor Hartree potential,Vy, is def£ned by

e2

Vu(r) = /,o(r) F— d*r’ . (18)
and anexchangepotential can be de£ned by
. 62
Vi(r)= — /piHF(r,r') P— d*r’ . (19)
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This combination results in the following Hartree-Fock atjon:

—h?V? ,
( T + Vn(r) + Vu(r) + V,(r) ) ¢i(r) = E;igy(r) . (20)
Once the Hartree-Fock orbitals have been obtained, thieHat&ree-Fock electronic energy of the
systemE'y -, can be obtained from

e =3 i~ 5 [ vt - ;z [owaamimer. @

Eyr is not a sum of the Hartree-Fock orbital energies, The factor of one-half in the electron-
electron terms arises because the electron-electroraatiens have been double counted in the
Coulomb and exchange potentials. The Hartree-Fockdmger equation is only slightly more
complex than the Hartree equation. Again, the equationditfieult to solve because the exchange
potential is orbitally dependent.

There is one notable difference in the Hartree-Fock sunanaitompared to the Hartree sum-
mation. The Hartree-Fock sums include the j terms in (15). This difference arises because the
exchange term correspondingite- j cancels an equivalent term in the Coulomb summation. The
i = j term in both the Coulomb and exchange term is interpreted ssl&screening” of the elec-
tron. Without a cancellation between Coulomb and exchangesta “self-energy” contribution to
the total energy would occur. Approximate forms of the exgepotential often do not have this
property. The total energy then contains a self-energyritaniton which one needs to remove to
obtain a correct Hartree-Fock energy.

The Hartree-Fock equation is an approximate solution totrile ground-state, many-body
wave function. Terms not included in the Hartree-Fock eparg referred to asorrelationcon-
tributions. One de£nition for the correlation energy,,,, is to write it as the difference between
the exact total energy of the systeR),...;, and the Hartree-Fock energids.,., = Feraet — Err.
Correlation energies may be included by considering Slagérchinants composed of orbitals
which represent excited state contributions. This metHddatuding unoccupied orbitals in the
many-body wave function is referred to @n£guration interactionsr “CI” [70].

Applying Hartree-Fock wave functions to systems with matoyes is not routine. The result-
ing Hartree-Fock equations are often too complex to be doloe extended systems, except in
special cases. The number of electronic degrees of freedonsgapidly with the number atoms
often prohibiting an accurate solution, or even one’s gbib store the resulting wave function.
As such, it has been argued that a “wave function” approaskstems with many atoms does not
offer a satisfactory approach to the electronic structuoblem. An alternate approach is based on
density functional theory.

3 Density Functional Theory

In a number of classic papers, Hohenberg, Kohn, and Sharhlisked a theoretical basis for
justifying the replacement of the many-body wave functigrobe-electron orbitals [73, 85, 102].
Their results put the charge density at center stage. Thgelkensity is a distribution of proba-
bility, i.e.,, p(r;)d?r; represents,in a probabilistic sense, the number of elezi@ll electrons) in
the infnitesimal volumé?r;.

11



Specifcally, the Hohenberg-Kohn results were as follow 8iist Hohenberg and Kohn the-
orem states thator any system of electrons in an external potential, the Hamiltonian (specif-
ically V.., up to a constant) is determined uniquely by the ground-statesity aloneSolving the
Schibdinger equation would result in a certain ground-stateafiamctionV, to which is associated
a certain charge density,

p(ry) = Z M /|\I/(X1,X2,--- ,Xpr)|dxg - - dxyg (22)
s1=T,|

From each possible state functidnone can obtain a (unique) probability distribution This
mapping from the solution of the full Sabdinger equation te is trivial. What is less obvious
is that the reverse is true: Given a charge dengityt is possible in theory to obtain a unique
Hamiltonian and associated ground-state wave functiortiohenberg and Kohn's £rst theorem
states that this mapping is one-to-one,, we could get the Hamiltonian (and the wave function)
solely fromp. Remarkably, this statement is easy to prove.

The second Hohenberg-Kohn theorem provides the means t@noty this reverse mapping:
The ground-state density of a system in a particular extgrogential can be found by minimizing
an associated energy functiondh principle, there is a certain energy functional, whichmm-
imized by the unknown ground state charge dengityThis statement still remains at a formal
level in the sense that no practical means was given for congpwr or a potential). From the
magnitude of the simpli£cation, one can imagine that theggnfemctional will not be easy to
construct. Indeed, this transformation changes the @igiroblem with a total 08 N coordinates
plus spin, to one with only 3 coordinates, albeit withorbitals to be determined.

Later Kohn and Sham provided a workable computational nietased on the following re-
sult: For each interacting electron system, with external potdni, there is a local potentiayy,,
which results in a density equal to that of the interacting systerhus, the Kohn-Sham energy
functional is formally written in the form

h2
His = %VQ + Veff7 (23)

where the effective potential is de£ned as for a one-elegooential,i.e., as in (7),

Vers = Vn(p) + Vu(p) + Vae(p). (24)

Note that in contrast with (7)/,. is now without an index, as it is only for one electron. Alsdeno
the dependence of each potential term on the charge densityich is implicitly de£ned from the
set of occupied eigenstates i = 1,--- , N of (23) by Eq. (16).

The energy term associated with the nuclei-electron intEnas is< Vy|p >, while that asso-
ciated with the electron-electron interactionsis/y |p >, whereVy is the Hartree potential,

VH :/ ,0(1‘) dI'/.
v —r'|
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3.1 Local density approximation

The Kohn-Sham energy functional is of the following form:

1 p()p(t’) .
+_//Wdrdr + Eye(p(r)) (25)

The effective energy, or Kohn-Sham energy, may not reptdékerirue, or “experimental energy,”
because the Hamiltonian has been approximated.

A key contribution of Kohn-Sham’s work is tHecal density approximatioor LDA. Within
LDA, the exchange energy is expressed as

E,[p(r)] = / p(0)E.[o(r)] r, (26)

where&,[p] is the exchange energy per particle of a uniform gas at a tyeofsp. Within this
framework, the exchange potential in (20) is replaced bytarg@l determined from the functional
derivative of £, [p]:

Velp] = ——— . 27
o] = —5 p (27)
One serious issue is the determination of the exchangeyepergarticle£,, or the corresponding
exchange potential),. The exact expression for either of these quantities is onvkin save for
special cases. From Hartree-Fock theory one can show #naktthange energy is given by

h2k:2 ek kk: k+k
B =2 Y - (1 s N ) 28)

k‘<kf

which is the Hartree-Fock expression for the exchange grodrgfree electron gasin this expres-
sion, k is the wave vector for a free electron; it can be related totbenentum byp = fk. The
highest occupied wave vector is givenky, where the Fermi energy is given Iy = thJ%/Qm.
One can write:

3e?

Bulpl = =) [l (29)

and taking the functional derivative, one obtains:

Velp] = == (37°p(x)) /% (30)

In contemporary theories, correlation energies are efplincluded in the energy function-
als [102]. These energies have been determined by numstichés performed on uniform elec-
tron gases resulting in local density expressions of th@fot,.[p(r)] = V.[p(r)]+V.[p(r)], where
V. represents contributions to the total energy beyond th&é&aiock limit [21]. It is also possi-
ble to describe the role of spin explicitly by considering ttharge density for up and down spins:
p = pr + p;. This approximation is called tHecal spin density approximatioft SDA) [102].
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3.2 The Kohn-Sham equation

TheKohn-Sham equatiof85] for the electronic structure of matter is given by

2\72
(T V(o) 4 Vi) + Vulole)] ) nlr) = (). (3
This equation is usually solved “self-consistently”. Arpapximate charge is assumed to estimate
the exchange-correlation potential, and this charge id tssdetermine the Hartree potential from
(18). These approximate potentials are inserted in the ksl equation and the total charge
density determined as in (16). The “output” charge densitysed to construct new exchange-
correlation and Hartree potentials. The process is regemtt the input and output charge densi-
ties or potentials are identical to within some prescrilmerance.

Once a solution of the Kohn-Sham equation is obtained, tlaé@oergy can be computed from

Fks = Z E; — 1/2/P(r)VH(r) dr + /p(r)(Exc[p(r)] — ch[,o(r)]) dr, (32)

whereF,. is a generalization of (26).e., the correlation energy density is included. The electroni
energy, as determined frofi, g, must be added to the ion-ion interactions to obtain thectiral
energies. This is a straightforward calculation for confsystems. For extended systems such as
crystals, the calculations can be done using Madelung stiomtachniques [187].

Owing to its ease of implementation and overall accura®y|dhal density approximation is a
popular choice for describing the electronic structure after. It is relatively easy to implement
and surprisingly accurate. Recent developments have iedlsd-called gradient corrections to
the local density approximation. In this approach, the exge-correlation energy depends on
the local density and the gradient of the density. This agghas called the generalized gradient
approximation (GGA) [130].

When £rst proposed, density functional theory was not widetepted within the chemistry
community. The theory is not “rigorous” in the sense thas ihot clear how to improve the esti-
mates for the ground state energies. For wave function brasftbds, one can include more Slater
determinants, as in a con£guration interaction approachthédsccuracy of the wave functions
improve, the energy is lowered via the variational theor&he Kohn-Sham equation is also vari-
ational, but owing to the approximate Hamiltonian, the @ged energy need not approach the
true ground-state energy. This is not a problem providetidha is interested irelative energies,
where any inherent density functional errors cancel innglanergy differences. For example, if
the Kohn-Sham energy of an atom is 10% too high and the camelspg energy of the atom in a
crystal is also 10% too high, the cohesive energies whiablvemhe difference of the two energies
can be better than the nominal 10% error of the absolute Eserdn outstanding fundamental
issue of using density functional theory is obtainingagoriori estimate of the cancellation errors.

In some sense, density functional theory isagoosterioritheory. Given the transference of the
exchange-correlation energies from an electron gas, @tisurprising that errors would arise in its
implementation to highly non-uniform electron gas systasi®und in realistic systems. However,
the degree of error cancellations is rarely known. Thusrehability of density functional theory
has been established by numerous calculations for a widetyarf condensed matter systems.
For example, the cohesive energies, compressibilitycttral parameters and vibrational spectra
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of elemental solids have been calculated within the derfigitgtional theory [26]. The accuracy

of the method is best for systems in which the cancellatioaradrs is expected to be complete.
Since cohesive energies involve the difference in enetggdseen atoms in solids and atoms in
free space, error cancellations are expected to be signi£ddms is recected in the fact that

historically cohesive energies have presented greatdengas for density functional theory: the

errors between theory and experiment are typicalljt0-20%, depending on the nature of the
density functional and the material of interest. In corttra#rational frequencies which involve

small structural changes within a given crystalline envinent are often reproduced to within
1-2%.

3.3 Pseudopotentials

A major difEculty in solving the eigenvalue problem arisimgrh the Kohn-Sham equation is the
length and energy scales involved. The inner (core) elestape highly localized and tightly bound
compared to the outer (valence electrons). A simple basigifon approach is frequently ineffec-
tual. For example, a plane wave basis (see next section)tmeghire 16 waves to represent
converged wave functions for a core electron, whereas tiflyvaves are required for a valence
electron [24]. The use of pseudopotentials overcomes tioislgm by removing the core states
from the problem and replacing the all-electron potentiabhbe that replicates only the chemi-
cally active, valence electron states [24]. It is well-kmothat the physical properties of solids
depend essentially on the valence electrons rather thamearote electrong.g, the Periodic Ta-
ble is based on this premise. By construction, the pseudopateeproduces exactly the valence
state properties such as the eigenvalue spectrum and thgedatensity outside the ion core. The
pseudopotential model treats matter as a sea of valendeogleenoving in a background of ion
cores (Fig. 2).

The cores are composed of nuclei and inert inner electronghinthis model many of the
complexities of an all-electron calculation are avoidedyréup 1V solid such as C with 6 electrons
is treated in a similar fashion to Pb with 82 electrons sinuth lelements have 4 valence electrons.

The pseudopotential approximation takes advantage obtissrvation by removing the core
electrons and introducing a weaker potential, which wilkentghe (pseudo)wave functions behave
like the all-electron wave function near the locations @fvialence electronse., beyond a certain
radiusr. away from the core region. The valence wave functions oftaillate rapidly in the
core region because of the orthogonality requirement ov#ience states to the core states. This
oscillatory or nodal structure of the wave functions cqoegls to the high kinetic energy in this
region. Itis costly to represent these oscillatory funtsiaccurately, no matter what discretization
or expansion is used. (To some extent there is some resereldatween the pseudo-potential ap-
proximation and methods used in computer science relatpdrtoipal component analysis: both
methods reject components that are highly oscillating bsesheir removal does not alter the en-
tire perspective much.) Pseudopotential calculationtec@m the accuracy of the valence electron
wave function in the spatial region away from the caue, within the “chemically active” bonding
region. The smoothly-varying pseudo wave function shogddentical with the appropriate all-
electron wave function in the bonding regions. A similar tonction was introduced by Fermi in
1934 [45] to account for the shift in the wave functions ofthiging states of alkali atoms subject
to perturbations from foreign atoms. In this remarkablegoapermi introduced the conceptual
basis for both the pseudopotential and the scatteringherigtFermi’s analysis, he noted that it

15



was not necessary to know the details of the scattering pateAny number of potentials which
reproduced the phase shifts of interest would yield sinsitattering events.

PP
HO®
©O®
DS ®

%
.

Nucleus
Core electrons
Valence electrons

Figure 2: Standard pseudopotential model of a solid. Thee@mes composed of the nuclei and
tightly bound core electrons are treated as chemicallyt.ifidre pseudopotential model describes
only the outer, chemically-active, valence electrons.

A variety of methods exist to construct pseudopotentialb]1 Almost all these methods are
based on “inverting” the Kohn-Sham equation. As a simpleng{a, suppose we consider an
atom, where we know the valence wave functigp,and the valence energ¥;,. Let us replace
the true valence wave function by an approximate pseud@w#wction,¢?. Then the ion core
pseudopotential is given by

yr = o

ion = 3 Ve —Vee + E,y . (33)
The charge density in this caseds= |¢?|*> from whichVy andV,. can be calculated. The key
aspect of this inversion is choosigg to meet several criteri@.g, ¢=1, outside the core radius,
r.. Unlike the all-electron potential, pseudopotentials @oe simple functions of position. For
example, the pseudopotential is state dependent, or amgafaentum dependente., in principle
one has a different potential ferp, d, - - - states. Details can be found in the literature [24, 105].

4 Discretization

The Kohn-Sham equation must be ‘discretized’ before it andmerically solved. The term ‘dis-
cretization’ is used here in the most inclusive manner, arajreement with common terminology
of numerical computing, to mean any method which reduceséiramus problem to one with a
£nite number of unknowns.
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Figure 3: A simple cubic lattice.

There have been three predominant ways of discretizing ¢the&8&inger equation. The £rst
uses plane wave bases, the second uses specialized fgnstion as exponential or Gaussian
orbitals, and the third does not use an explicit basis butrelizes the equations in real space.

4.1 Plane waves

Owing to the use of pseudopotentials, simple basis setsasuehplane wave basis can be quite
effective, especially for crystalline matter. For examplethe case of crystalline silicon only
50-100 plane waves need to be used for a well-converged@aluThe resulting matrix repre-
sentation of the Scbdinger operator is dense in Fourier (plane-wave) spadet isunot formed
explicitly. Instead, matrix-vector product operations @erformed with the help of fast Fourier
transforms. A plane wave approach is akin to spectral teckas used in solving certain types of
partial differential equations [51]. The plane-wave basied is of the following form:

Yu(r) =Y a(k,G)exp(i(k + G) 1) (34)

G

wherek is the wave vector(x is a reciprocal lattice vector, andk, G) represent the coefEcients
of the basis. Thus, each plane wave is labelled by a wave vaghich is a quantum number
composed of a triplet of three integei®., k = (ki, ks, k3), and in principle spin. The vector
parametelG translates the periodicity of the wave function with reggea lattice, which along
with an atomic basis de£nes a crystalline structure.

It is interesting to consider the origin of the use of planere@ga As might be guessed, plane
wave bases are closely tied to periodic systems. The wellvkrBloch theorencharacterizes
the spectrum of the Sobdinger operatok’? + V when the potential’ is periodic. It states that
eigenfunctions must be of the formi(r)e~"**, wherek is a vector in the ‘Brillion’ zone. For a
given lattice, periodicity takes place in three spatiakdiions, see Figure 3. The Hamiltonian is
invariant under translation in each of these directions.

Bloch’s theorem states that for a periodic potentiathe spectrum of the Sobdinger operator
V2 +V consists of a countable set of intervals (called energy $arfithe eigenvalues are labelled
as{¢;}, wherek belongs to an interval, ang= 1,2, . ...
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When expressed.€., projected) in a plane-wave basis, the Hamiltonian is digt@adense
matrix. Speci£cally, the Laplacian term of the Hamiltonianmeépresented by a diagonal matrix,
but the potential tern¥}, gives rise to a dense matrix.

For periodic systems, wheileis a good quantum number, the plane-wave basis coupled to
pseudopotentials is quite effective. However, for nongebc systems, such as clusters, liquids or
glasses, the plane-wave basis is often combined vétiparcell methof24]. The supercell repeats
the localized conf£guration to impose periodicity to the exyst This preserves the “artitcial”
validity of k and Bloch’s theorem which (34) obeys.

There is a parallel to be made with spectral methods, whiehqarte effective for simple
periodic geometries, but lose their superiority when meeagality is required. In addition to these
difEculties, the two fast Fourier transforms performed athegeration can be costly, requiring
nlogn operations, where is the number of plane waves, versusN) for real space methods
where N is the number of grid points. Usually, the matrix sikeex N is larger thann x n but
only within a constant factor. This is exacerbated in highifggenance environments where fast
Fourier transforms require an excessive amount of commatiaitand are particularly difEcult to
implement efEciently.

4.2 Localized orbitals

A popular approach to studying the electronic structure afemals uses a basis set of orbitals
localized on atomic sites. This is the approach for exangkert in the SIESTA code [169] where,
with each atomu, is associated a basis set of functions, which combinelradiations around
with spherical harmonics:

¢?mn (I‘) = ¢?n<ra>yzm(f'a)

wherer, =r — R,,.

The radial functions can be exponentials, Gaussians, oloaalized function. Gaussian bases
have a special advantage of yielding analytical matrix elets provided the potentials are also
expanded in Gaussians [16, 25, 75, 76]. However, the implétien of a Gaussian basis is not as
straightforward as with plane waves. For example, numanalises must be used to label the state,
the atomic site, and the Gaussian orbitals employed. Tliieases “bookkeeping” operations
tremendously. Also, the convergence is not controlled bingle parameter as it is with plane
wavese.g, if atoms in a solid are moved, the basis should be re-opéidiiar each new geometry.
Moreover, it is not always obvious what basis functions ageded and much testing has to be
done to insure that the basis is complete. On the positive, sidGaussian basis yields much
smaller matrices and requires less memory than plane-wateoas. For this reason, Gaussians
are especially useful for describing transition metal esyst, where large number of plane waves
are needed.

4.3 Finite differences in real space

An appealing alternative is to avoid explicit bases altbgetind work instead in real space, using
£nite difference discretizations. This approach has beqmypelar in recent years, and has seen a
number of implementations [11,15,27-29,43,51,64,83,22,182,188].
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The real-space approach overcomes many of the complisaitnmolved with non-periodic
systems, and although the resulting matrices can be langerwith plane waves, they are quite
sparse, and the methods are easy to implement on sequendiplasallel computers. Even on
sequential machines, real-space methods can be an ordegoitode faster than methods based
on traditional approaches.

The simplest real-space method utilizes £nite differenserdtization on a cubic grid. There
have also been implementations of the method with £nite elesj@27,177], and even meshless
methods [79]. Finite element discretization methods maguseessful in reducing the total num-
ber of variables involved, but they are far more difEcult tplement. A key aspect to the success
of the £nite difference method is the availability lnfjher-order £nite difference expansiofts
the kinetic energy operatarge., expansions of the Laplacian [52]. Higher-order £nite ddfee
methods signi£cantly improve convergence of the eigenyalallem when compared with stan-
dard, low-order £nite difference methods. If one imposesykd, uniform grid on our system
where the points are described in a £nite domaifuyy;, zx), we approximat%% at(x;, yj, 2x)

by

6)2_@[; = i/[: Cop(z; + nh,yj, z1,) + O(h*M+2) (35)
12 - . n i y Uiy %k )

whereh is the grid spacing andl/ is a positive integer. This approximation is accurate t?@(1?)
upon the assumption thatcan be approximated accurately by a power seriés Wgorithms are
available to compute the coefEcieldts for arbitrary order imh [52]. These are shown for the £rst
few orders in Table 1

ord 2 1 -2 1

—T1 4 —5 4 —T1
Ord4 1 123 % 249 % 123 1
RN - —
ord8| —55 35 —5 5 73 5 5 315 560

Table 1: Finite Difference coefEcients (Fornberg-Sloamfalas) foro?/0z? for orders 2 to 8.

With the kinetic energy operator expanded as in (35), oneetnp a one-electron S¢itinger
equation over a grid. One may assume a uniform grid, but ghigt a necessary requirement.
(x4, y,, 2x) IS computed on the grid by solving the eigenvalue problem:

52 M M

Z Cn1¢n(xz+n1hayjazk)+ Z anqu)n(xiayj—i_thazk)

ni=—M no=—M

2m

M
+ Z Cn3¢n(xi7 yja 2k + th) + [ Vion(mia yja Zk) + VH(xza yja Zkz)
ny=—M

+ch<xi7 yj7 zk) ] wn<x27 yj> zk) == En wn(xza yj; Zk) (36)

If we havelL grid points, the size of the full matrix resulting from theocak problem is. x L.
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Figure 4: A uniform grid illustrating a typical con£guratifor examining the electronic structure
of a localized system. The dark gray sphere represents thal @omputational domain.e., the
area where wave functions are allowed to be nonzero. The digireres within the domain are

atoms.
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A grid based on points uniformly-spaced in a three-dimerai@ube as shown in Fig. 4 is
typically used. Many points in the cube are far from any atamghe system, and the wave
function on these points may be replaced by zero. Specialsiaictures may be used to discard
these points and keep only those having a nonzero value éowélve function. The size of the
Hamiltonian matrix is usually reduced by a factor of two toethwith this strategy, which is quite
important considering the large number of eigenvectorciwhust be saved. Further, since the
Laplacian can be represented by a simple stencil, and sincea potentials sum up to a simple
diagonal matrix, the Hamiltonian need not be stored exptias a sparse matrix. Handling the ion
core pseudopotential is complex, as it consists of a loahkamonlocal term In the discrete form,
the nonlocal term becomes a sum over all atomsand quantum numberg, (n), of rank-one
updates:

Vion = Z Vloc,a + Z Ca,l,mUa,l,mUZ:[,m (37)

a,l,m

whereU,, ,,, are sparse vectors which are only non-zero in a localizeidmegyound each atom,
andc, ,, are normalization coefEcients.

5 Diagonalization

There are a number of difEculties which emerge when solvieg(thscretized) eigenproblems,
besides the sheer size of the matrices. The £rst, and bigdestenge is that the number of
required eigenvectors is proportional to the atoms in trstesy, and can grow up to thousands,
if not more. In addition to storage, maintaining the orthogidy of these vectors can be very
demanding. Usually, the most computationally expensivegialiagonalization codes is orthogo-
nalization. Second, the relative separation of the eigapgadecreases as the matrix size increases,
and this has an adverse effect on the rate of convergence efganvalue solvers. Preconditioning
techniques attempt to alleviate this problem. Real-spadesbene£t from savings brought about
by not needing to store the Hamiltonian matrix, although thay be balanced by the need to store
large vector bases.

5.1 Historical perspective

Large computations on the electronic structure of mategtdrted in the 1970’s after the seminal
work of Kohn, Hohenberg, and Sham in developing DFT and beeafithe invention oéb initio
pseudopotentials [24]. It is interesting to note that “&rgn the 1970’s implied matrices of sizes
a few hundreds to a few thousands. One must wait the mid- ¢e1i880’'s to see references to
calculations with matrices of size around 7,000. For examiple abstract of a paper by Martins
and Cohen [104] states: “Results of calculations for moledufdrogen with matrix sizes as large
as 7,200 are presented as an example”. Similarly, the welvk Car and Parrinello paper [19],
which uses an approach based on simulated annealing,dsatiuiexample with6 x 437 = 6,992
unknowns. This gives a rough idea of the typical problemssa®out 20 years ago. The paper by
Car and Parrinello [19] is often viewed as a de£ning momentdrd#velopment of computational
codes. ltillustrated how to effectively combine severgradients: plane waves, pseudopotentials,
the use of FFT’s, and especially how to apply pseudopotentthods to molecular dynamics.
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From the inception of realistic computations for the elecit structure of materials, the basis
of choice has been plane waves. In the early days this catgdho the limitation of the capability
because the matrices were treated as dense. The paperdd@4)so [105], showed how to avoid
storing a whole dense matrix by a judicious use of FFT in plaaee codes and by working essen-
tially in Fourier space. A code called Ritzit, initially pusthed in Algol, was available [147], and
this constituted an ideally-suited technique for diagmadion. The method was “preconditioned”
by a Jacobi iteration or by DIIS.

5.2 Lanczos, Davidson, and related approaches

The Lanczos algorithm [90] is one of the best-known techesqil48] for diagonalizing a large
sparse matrix4. In theory, the Lanczos algorithm generates an orthonobasibv,, vs, . .. , vy,
via an inexpensive 3-term recurrence of the form :

6j+1Vj+1 = AVj — Q;V; — 6jVj—1 .

In the above sequence; = vI' Av;, andf; 1 = || Av; — a;v; — B;v;_1]l.. So thej™ step of the

algorithm starts by computing;, then proceeds to form the vectoy,; = Av; — a;v; — 3;v,_1,

and therv;, = v;11/5,41. Note that forj = 1, the formula forv, changes tor, = Avy — agvs.
Suppose that: steps of the recurrence are carried out, and consider thaganal matrix,

ar [
T, — B2 ?42 .53
| B am
Further, denote by,, then x m matrixV,, = [vy,... ,v,,] and bye,, them! column of if the

m x m identity matrix. Afterm steps of the algorithm, the following relation holds:
Avm = Vme + ﬁm—i—lvm—kleﬁ .

In the ideal situation, wheré,,,;, = 0 for a certainn, AV,, = V,,7,,, and so the subspace spanned
by thev;’s is invariant under4, and the eigenvalues @f,, become exact eigenvalues.df This is
the situation whemn = n, and it may also happen far < n, though this situation, called lucky
(or happy) breakdown ( [123]) is highly unlikely in practide the generic situation, some of the
eigenvalues of the tridiagonal matri,, will start approximating corresponding eigenvalues of
A whenm becomes large enough. An eigenvaluef H,, is called a Ritz value, and i is an
associated eigenvector, then the vedfgy is, by de£nition, the Ritz vectore., the approximate
eigenvector of4 associated with\.. If m is large enough, the process may yield good approxi-
mations to the desired eigenvalues. .. , A, of H, corresponding to the occupied states, all
occupied eigenstates.

There are several practical implementations of this bagierse. All that was said above is
what happens in theory. In practice, orthogonality of thedzns vectors, which is guaranteed
in theory, is lost as soon as one of the eigenvectors stadsreerge [123]. As such, a number
of schemes have been developed to enforce the orthogoaostitg Lanczos vectors; see [91, 92,
166,167,183]. The most-common method consists of buildisgalar recurrence, which parallels
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the three-term recurrence of the Lanczos vectors and mduelsss of orthogonality. As soon as
loss of orthogonality is detected, a reorthogonalizatimp $s taken. This is the approach taken
in the computational codes PROPACK [91] and PLAN [183]. Instheodes, semi-orthogonality
is enforcedj.e., the inner product of two basis vectors is only guaranteégdamexceed a certain
threshold, which is of the order qfc wheres is the machine epsilon [62].

Since the eigenvectors are not individually needed, ondldak of not computing them but
rather to just use a Lanczos basis = [vy, ..., v,,] directly. This does not provide a good basis
in general. However, a full Lanczos algorithm without parteorthogonalization can work quite
well when combined with a good stopping criterion.

A simple scheme used in [12] is to monitor the eigenvalueb®titidiagonal matriceg;, i =
1,...,m. The cost for computing only the eigenvalueslpfs O(:?). If we were to apply the test
at every single step of the procedure, the total cost fondlanczos steps would k@(m?), which
can be quite high. This cost can be reduced drasticallyg@dint of becoming negligible relative
to the overall cost, by employing a number of simple straggior example, one can monitor the
eigenvalues of the tridiagonal matri at £xed intervalsi.e., whenMOD(i, s) = 0, wheres is
a certain £xed stride. Of course, large values wfill induce infrequent convergence tests, thus
reducing the cost from(m?) to O(gl—;). On the other hand, a large stride may inzict unnecessary
O(s) additional Lanczos steps before convergence is detected.

Though not implemented in [12], a better strategy is to usebibection algorithm (see [62]
Sec. 8.5) to track the latest eigenvalue that has conveeygdhiting the important property that
the Lanczos procedure is a variational technique in theestttag when an eigenvalue converges,
later steps can only improve it. In addition, convergencel$eto occur from left to right in the
spectrum, meaning that typically the smallest eigenvatrererges £rst followed by the second
smallest, etc. This suggests many simple procedures basé#tedisection algorithm. When
convergence has been detected (say atistepn) then the charge densities are approximated as
the squares of the norms of the associated eigenvector§l Jder details.

Another popular algorithm for extracting the eigenpairthes Davidson [115] method, which
can be viewed as a preconditioned version of the Lanczositdgyg in which the preconditioner
is the diagonal ofd. We refer to the generalized Davidson algorithm as a Davidgiproach in
which the preconditioner is not restricted to being a diayomatrix. (A detailed description can
be found in [150].)

The Davidson algorithm differs from the Lanczos method mway in which it deEnes new
vectors to add to the projection subspace. Instead of addsigdv;, it preconditions a given
residual vector; = (A — 1;7)u; and adds it to the subspace (after orthogonalizing it agains
current basis vectors). The algorithm consists of an “eigkere loop,” which computes the desired
eigenvalues one by one (or a few at a time), and a “basis” lobgwgradually computes the
subspace on which to perform the projection. Consider thenggjue loop which computes the
i" eigenvalue and eigenvector df If M is the current preconditioner, and= [vy,--- ,v;] is
the current basis, the main steps of the main loop are asvgillo

1. Compute thé' eigenpair( iy, yi) of Cp = VI AV
2. Compute the residual vectoy = (A — i 2)Viye.-

3. Preconditionr;, i.e,, computet, = M~ !r;.
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4. Orthonormalize, againstvy, - - - , v and callv; the resulting vector, sBy..1 = [V, Vi11]-
5. Compute the last column-row 6f,; = VkTHAVkH.

At this point, one needs to decide on the choice of a preconegit. The original Davidson
approach used the diagonal of the matrix as a preconditibaethis works only for limited cases.
For a plane-wave basis, it is possible to construct faifigative preconditioners by exploiting the
lower-order bases. By this, we mean thatfif is the matrix representation obtained by using
plane waves, we can construct a good approximatidttrom H,,, with m < k, by completing
it with a diagonal matrix representing the larger (unddd@pmodes. Note that these matrices are
not explicitly computed as they are dense. This possildlituilding lower-dimensional approx-
imations to the Hamiltonian, which can be used to preconwliihe original matrix, constitutes an
advantage of plane wave-based methods.

Preconditioning techniques in this approach are typidadiged on £ltering ideas and the fact
that the Laplacian is an elliptic operator [175]. The eigsters corresponding to the few lowest
eigenvalues ofV? are smooth functions, and so are the corresponding wavdidasc When
an approximate eigenvector is known at the points of the, gridmoother eigenvector can be
obtained by averaging the value at every point with the \sabfats neighboring points. Assuming
a cartesian(z, y, z) coordinate system, the low frequency £lter acting on theevaluthe wave
function at the pointi, j, k), which represents one element of the eigenvector, is desthy:

Vi1 ik Vg1 e T Vijk—1 T Vig1jk T ik + Vijkt
12

+ % - (wi7j7k)Filtered . (38)

Other preconditioners that have been tried resulted in dnsteecess. The use of shift-and-
invert [124] involves solving linear systems with — ¢Z, where A is the original matrix, and
the shifto is close to the desired eigenvalue (s). These methods weybddhibitively expensive
in most situations, given the size of the matrix and the nunabdimes thatA — ¢Z must be
factored. Alternatives based on an approximate facteomatuch as ILUT [149] are ineffective
beyond the £rst few eigenvalues. Methods based on appraximatrse techniques have been
somewhat more successful, performing better than £Iltetindditional preprocessing and storage
cost. Preconditioning ‘interior’ eigenvaluds., eigenvalues located well inside the interval con-
taining the spectrum, is still a very hard problem. Curremaitsans only attempt to dampen the
effect of eigenvalues which are far away from the ones beamgpuited. This is in effect what is
achieved by £ltering and sparse approximate inverse préaanets. These techniques do not re-
duce the number of steps required for convergence in the samthat shift-and-invert techniques
do. However, £ltering techniques are inexpensive to appdyrasult in non-negligible savings in
iterations.

In real space, it is trivial to operate with the potentiahtewxhich is represented by a diagonal
matrix, and in Fourier space it is trivial to operate with thegplacian term, which is also repre-
sented by a diagonal matrix. The use of plane-wave basedeads to natural preconditioning
techniques which are obtained by simply employing a matotaimed from a smaller plane-wave
basis, neglecting the effect of high frequency terms on tiergial.

Real-space algorithms avoid the use of fast Fourier tramsfdoy performing all calculations
in real physical space instead of Fourier space. Fast Fauaesforms require global commu-
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nication; as such, they tend to be harder to implement on agesgassing distributed memory
multi-processor systems. The only global operation remgim real-spaceapproaches is that of

the inner products. These inner products are required wiremrig the orthogonal basis used in
the generalized Davidson procedure. Inner products walleswell as long as the vector sizes in
each processor remain relatively large.

5.3 Diagonalization methods in current computational codes

Table 2 shows a number of computational codes currentlyadlaior in development. This list is
by no means exhaustive. What is rather remarkable is theftmnge in which these codes have
been developed and the speed with which they have been ddaptew computing environments.
Most of them have been coded in Fortran-90/95 and most offetllel versions with either MPI
or OPEN-MP. (An interesting account of the impact of newwaft engineering methods in elec-
tronic structure codes can be found in [162].) The middleicwol of the table shows the type of
discretization (basis) used, where PW stands for planesy&® for real space, LCAO for Linear
combination of atomic orbitals, APW for Augmented plane asvGauss for Gaussian orbitals,
and OTH for other. As can be noted, most codes use plane-veasesb The augmented, plane-
wave basis essentially combines a radial function timesharsgal function near the atom, and a
plane-wave expansion in the interstitial region.

A few of the codes have not been updated in a few years; we mtgdlthose for which the
website is still maintained. A star next to the code nameciags that the code has restricted
distribution €.g. DoD PW), or that it is still in a development phase. We sepdr#te codes
which use the GPL license and the codes which can be dowrdaditectly. These are the £rst 5
listed in the table, and they are separated by a horizomglfiom the others. All others require
either a fee€.g, VASP, Wien2K, phi98PP, and CASTEP) or a licensing agreeffwattiout a fee).

Not all these codes resort to some form of diagonalizatiam.eikample, the CPMD code [1],
uses the Car-Parrinello approach which relies entirely datsscal approach and molecular dy-
namics to minimize the energy. (See Section 6.4.) Simildny CONQUEST code is a linear-
scaling method which uses a density matrix approach (seeseekon). In addition, the codes
using an LCAO basis obtain dense matrices and resort to sthddase matrix diagonalization.

The earliest electronic structures codes used variantedubspace iteration algorithm [105].
There should therefore be no surprise that many existingcppose improved versions of this
scheme. For example, ABINIT [63] uses a form of subspacetiteran which an initial subspace
is selected, and then an iterative scheme is invoked to brgrthe basis vectors individually
by some form of preconditioned conjugate gradient algorittn this approach, orthogonality is
enforced as a Rayleigh Ritz procedure and is used once eactveayer is modi£ed. ABINIT
offers a block version of the same algorithm (with paradieliacross the different vectors in the
block) and an alternative which minimizes residual norms.

The Vienna Ab-initio Simulation Package (VASP), [88, 89kadhree main diagonalization
schemes. The £rst, similar to ABINIT, is a form of subspacetiten in which the wave functions
are individually reEned by either the Conjugate Gradient (C@gpAthm or by a method called
the Direct Inversion in the Iterative Subspace (DIIS) itera The CG method is adapted from a
method suggested by Tetetral.[171]. It consists of a preconditioned CG algorithm for miram
ing the Rayleigh quotient. The preconditioner is an astwdjysted diagonal matrix in plane-wave
space where the kinetic part of the Hamiltonian is diagoAdéw steps of this scheme are applied
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Code Discr. URL

PWscf PW http://www.pwscf.org/

PEtot PW http://crd.lbl.gov/ linwang/PEtot/PEtot.html

ABINIT PW http://www.abinit.org/

Soccoro PW+RS | http://dft.sandia.gov/Socorro/mainpage.htmi
PARSEC RS http://www.ices.utexas.edu/"mtiago/parsec/softwadek.html
fhi98PP PW http://www.fhi-berlin.mpg.de/th/fhi98md/thi98PP/
VASP PW http://cms.mpi.univie.ac.at/vasp/vasp/vasp.html
PARATEC PW http://www.nersc.gov/projects/paratec/

SeqQuest* LCAO http://dft.sandia.gov/Quest/

Wien2K APW http://lwww.wien2k.at/

ACRES RS http://cst-www.nrl.navy.mil/"singh/acres/info.html
SIESTA LCAO http://www.uam.es/departamentos/ciencias/Esmatsrésta/
AIMPRO Gauss. | http://aimpro.ncl.ac.uk/

FLEUR APW http://www.capw.de/

CPMD PW http://www.cpmd.org/

CONQUEST*| RS/OTH | http://www.cmmp.ucl.ac.uk/"conquest/

CASTEP PW http://lwww.tcm.phy.cam.ac.uk/castep/

DoD PW * PW http://cst-www.nrl.navy.mil/people/singh/plane wax&0/
CRYSTAL Gauss | http://www.cse.clrc.ac.uk/cmg/CRYSTAL/

Octopus RS http://www.tddft.org/programs/octopus/

MIKA RS http://www.csc.£/physics/mika/index.html

Table 2: A few available DFT computational codes for eletiz®tructures.

to each vector of the basis and once this is done the new Bamithbgonalized in preparation for
a Rayleigh-Ritz projection. The process is repeated unficzeisistence. Note that ABINIT uses
a variant of this scheme as well. A major drawback of this sehés the requirement to always
orthogonalize the current (preconditioner) residual @ecin CG against all other eigenvectors.
This is necessary because the method essentially conkisigimizing the Rayleigh quotient in
the space orthogonal to all other eigenvectors. Withouhé, method would only compute one
eigenvalue, namely the smallest one.

The second method in VASP avoids this problem by minimizi6g — 1(u)Z)ul|, instead of
the Rayleigh quotient. This represents the norm of the rasidector, hence the name Residual
Minimization Method (RMM). The minimization itself is doneitlv the Direct Inversion in the
Iterative Subspace (DIIS) method, which is a form of KryloNospace method due to Pulay [140]
in the early 1980's? In the second scheme employed by VASP, an initial subspaesdsted and
then an iterative scheme is invoked to ‘improve’ the basams individually by minimizing the
residual norms. In this approach, there is no need to ortmmige each vector against all others
after each update to the basis vectors. Finally, the thiedrestive method proposed in VASP is the
Davidson approach with a form of block preconditioning. Sisi recommended as a more robust
alternative in the documentation, though it is also memttbas being more costly in some cases.

LIt is remarkable to note here, that this work parallels thekvad many others in scientiEc computing working on
solving (honsymmetric) linear systems of equations, whoewet aware of this development.
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This approach will be revisited in the next section.

The PWscf code (part of Espresso) [6], uses similar genergiaode to VASP. The default
diagonalization algorithm is the Davidson method. Theeeadso subspace-type methods offered
with CG-like band-by-band diagonalization, or DIIS-likeadbnalization.

The Octopus code focuses on time-dependent density fumattioeory and can handle excited
states. Recall that DFT is only applicable to the ground st&@etopus can also obtain static
properties generally computable from DFT codes, such &is st@larizabilities and ground-state
geometries, but the authors warn that the code is not othfar this purpose.

MIKA stands for Multigrid Instead of the K-spAce and is a telaly recent addition to the list
of computational codes available [71, 176]. MIKA works irakspace and uses a Multigrid ap-
proach for diagonalization. The methods in MIKA are oncearospired from subspace iteration;
the main difference being that CG or DIIS, is replaced by a ignidt approach. As the levels are
crossed, there is no orthogonalization at each level.

Quite a few papers in the early to mid-1990's were devotedstoguthe standard conjugate
gradient algorithm by a more elaborate scheme which doesnpatse the constraint of orthogo-
nality, seee.g, [2,40,53,107, 108,131, 169-171] for a few referencescesthese methods are
more akin to optimization we discuss them in the next sectfonumber of codesg.g, SIESTA,
adopted variants of these schemes.

It was observed by many that the Davidson approach is in fact mobust than methods based
on local optimization. For example, the authors of [82], coent that “For relatively small subma-
trix sizes the Davidson method still gives correct resuhgreas the latter two frequently fail to do
it.” The other two methods to which the paper refers are a forsubspace iteration (modi£cation
of RITZIT code) with DIIS preconditioning and a form of conpatg gradient minimization. The
observation that Davidson is a more robust approach is noaaionous viewpoint. For example
developers of PWscf and VASP seem to recommend direct miatmaiz, in spite of a less favor-
able speed. Clearly, implementation is a key factor. We elilat with proper implementation, a
Davidson or Krylov-based approach should be vastly sup#ridirect minimization.

6 The optimization path: Avoiding the eigenvalue problem

From one viewpoint, there is no need to refer to eigenvalu@sder to minimize the total energy,
and this provided a number of alternative methods used otrela@c structures. Indeed, the sta-
tionary states of (5) are eigenfunctions of the Hamiltonkart one can also just consider (4) as an
optimization problem by itself.

6.1 Optimization approaches without orthogonality

In reading about computational schemes that have been sgdpo the literature on DFT, one
cannot miss to observe that the most commonly-mentioneltealge or burden is that associated
with the need to orthogonalize a given basis which approtém¢éhe desired eigenbasis. It is
therefore only natural that major efforts have been devtietkesigning algorithms which do not
require orthogonalization, or that attempt to reduce itst.cé number of these algorithms have
been exploited in the context of Order-N7(/V)) methods as well is in standard methods. The end
of the previous section alluded to this approach, which séekompute a subspace as represented
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by a basis. If the basis, call®¥ = [vy,--- ,v,,], is orthogonal, then the problem of minimizing
the energy is equivalent to that of minimizing the trac&6f). Thus, it is possible to formulate
the problem to that of computing a set of vectors such#h@t*.4)) is minimized subject to the

constrain®*) = Z. Note that an algorithm for explicitly minimizing the trabas been developed
by Sameh [151] as far back as in 1982, motivated in part byllplisan, but this does not seem to
have been noticed by researchers on the applied side.

Many authors have considered a related approach in whicbrthegonality constraint is not
enforced. In this situation, the problem is equivalent taimizing S—*A or S~'/2.AS~'/2 where
S is the “overlap” matrix,.e., the matrixS = V*V; the “overlap” matrix, is only approximately
inverted. For example, the simple Neumann-series expansio

St sti

can be used [2,53,107,108,170].

The paper [40] examines in detail algorithms that minimimergy on Grassman and Stiefel
manifolds,i.e., manifolds of matrices that satisfy orthogonality constia In these algorithms,
the iterates evolve by following geodesic paths on the noddsf (ideal case). The cost of the
ideal case algorithm requires the Singular Value Decontipos(SVD, see [62]) of matrices of
sizen x p (the same size as that of the basis of the desired subspadedpdhe authors of [40]
show that quadratic convergence can be achieved if thetidinsaused by the algorithms are only
approximate. Other approaches taken consist of making udeedVcWeeny [110] projection
which will be discussed shortly.

6.2 Density matrix approaches in DFT

As was previously discussed, one can bypass the eigenvaedbéem and focus instead on the
whole subspace spanned by the occupied eigenvalues assamalte to computing individual
eigenfunctions. We also mentioned this viewpoint in thexdéad context of eigenvector-based
methods when we discussed adapting the Lanczos algorith®H®. However, the methods that
rely on the density matrix approach go much further by noheegerring to eigenspaces. Instead
they attempt to compute directly the eigenprojector assediwith these eigenvalues.

Note that after discretization, the functignbecomes a vector of lengthi whosei‘* compo-
nent is the approximation af at the mesh-point;. If we call V the matrix whose column vectors
are the (normalized) eigenvectars i = 1, ... , s, for thes occupied states, then

P = Vy* (39)

is a projector, and the charge density at a given pgiitt space is thé' diagonal element oP.
A number of techniques have been developed based on ussglibervation [7, 96, 163]. Here,
we will only sketch the main ideas.

Density matrix methods are prevalent mainly in héV) methods. These methods are based
on constructing an approximation to the projeciin (39) without knowledge of eigenvectors.
Denote byp;; the coefEcients of the matri®. A number of properties are exploited for this
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purpose. First, are the following two relations:

tr[P] = Z pii = particle number
tr[PH] = > piyH; = systemenergy
ij

The £rst relation is a consequence of the fact that pachpresents the charge density at pojras
was mentioned above. The second is a consequence of theddPtH = PH'P is the restriction
of H to the invariant subspace associated with eigenvaluessymnding to the occupied states.
The trace ofPH is the sum of these eigenvalues, which is the total energyso$ystem assuming
a “Hartree” approximation,e., assuming the total energy is the sum of the occupied eifjgwa

Another important property that is exploited is the phykfaat that entries of° decay away
from the main diagonal Hence the idea is to try to £nd7a whose trace is £xed and which
minimizes the trace oPH. The trace constraint can be avoided by shifthig

tr[P(H — pZ)] = tr[PH] — puNN.

The optimization problem is not yet well-posed, since withoonstraints orP, the minimum
can be arbitrarily negative or small. The missing constriirio force’P to be a projector. This
can be achieved by forcing its eigenvalues to be betweena®tmne [96]. The minimization
will yield a matrix P, which has eigenvalues equal to either one or zero, andysaggshe desired
idempotent constraint automatically.

One strategy that has been used in [96] for this purpose B3 in the form

P =38?-283

If the eigenvalues of are in the rangé—0.5, 1.5] this transformation will map them into [0,1].
The procedure then is to seek a bandetthat minimizes

tr[(38% — 28*)(H — uZ)]

using descent-type algorithms. The gradient of the abowetiion is computable. This is referred
to as McWeeny puri£cation [110].

The drawback of this approach is its lack of accuracy. Its®aot clear if a minimum exists,
because of the various constraints added, and if there isigu@) minimum. In addition, the band
required forS may not be so small for certain systems. Nevertheless,ntésasting to note that
explicit eigenvalue calculations are avoided. Some glapaloximation of the invariant subspace
associated with these eigenvalues is extracted, meara@ thlobal approximation to the set of
eigenfunctions is computed via the approximation to thggatorP.

6.3 Density matrix approaches in Hartree-Fock

Charge-density methods have played a major role since tie @ays of the quantum theory.
Such methods were used in particular by Thomas [174] and iHddhas far back as in 1927.
These were among the £rst realistic attempts at yielding tiwmia structure of atoms. They
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gave qualitatively correct information on the electrortraisture of atoms, but were fundamentally
aawed as they did not describe the observed shell structdhe atom.

Modern density methods are based on the “density matrix¢’ ddnsity matrix can be viewed
as a function of a pair of coordinates(r, r’). It is deEned by

p(r,x') = _Z bi(x) (') . (40)

It has been known for quite some time that the computationgardunctions can be avoided
and replaced by computations involving the density matfor. example, one of the implementa-
tions of the Hatree-Fock method, known as the Roothan methealyes a self-consistent (Exed
point) iteration in which the unknown is the density matfix Specifcally, each wave function is
expressed in a bas{g}, k=1, - | K,

K

Ok = chka . (41)

J=1

Formally, we would like to minimize the Hartree-Fock ened@¥) with the constraint that the
orbital be of the above form. Thg;’s are convenient and well-selected spatial basis orbitals
associated with the atoms (Atomic Orbitals). For the puepafssimplifying notation we de£ne

'H to be the Fock operator in expression (15) for a particylaay: = 1. Then a Galerkin-type
approach would be to writt¢;, = <59 in the space spanned by th¢s:

K K
<Xz’ H ’ZijXj> = & <XZ"ZC]']€X]'> for 221, ,K—>
j=1 j=1
K K
Y Mok = ey (alxg)en for k=1, K (42)

j=1 j=1

If we denote byF' the Fock matrix whose entries afg; =< x;|H|x; > and byS the matrix with
entriesS;; =< x;|x; > then, itis clear that (42) is a generalized eigenvalue grolf sizefC. An
eigenvector is a column of the x K matrix C with entriesc;;, on thek column andj™ row. In
matrix form the problem can be written as

FC=CSW

whereW = diag(ey) is the diagonal matrix with entries,. This problem can be solved with
standard techniques for dense problems. The métisssuch that”SC = 7. Itis also of interest
to look at the charge density in this context. The procedarel® written in terms of the density
matrix which is defned a& = CC”.

EQ. (41) can be rewritten in the form

¢1(r) x1(r)
<Z52:(1') _ T X2:(r)
on(r) xn(r)
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Since the charge density at a locatiois the 2-norm of the above vector, then clearly

X1(r)
p(r) = [x1(r)*, x2(r)*, - xn(r)*jCCT X2E(r)
xn(r)

Note that the matrix§ depends only on the badi§, } selected, whileF depends on the solution
itself. So the problem is again a nonlinear one which needsetsolved by a self-consistent
iteration of the form

1. Given{xy }x=1,. x constructS. Get an initial se{¢;},— -

2. Compute the new matri%.

3. Solve the eigenvalue problemSC = SCW. ComputeP = CCT.

4. If P has not converged then return to 2.

Details on the computation gf are complex, but it is useful to mention that this matrix gstss
of two parts, which arise by splittingg., we can split{ in two parts:

H = H* + F,

whereH" corresponds to the £rst 2 terms in (20) and does not involve fseandF contains
the part which depends on the's. If we write the general matrix term; = (¢;|H|¢;), then we
obtain

gij = (Dl H|ds) + (il Fl5) -

So, the matrixG is the sum of two matrices, the £rst of which is constant widpeet to thep,’s,
and the second, call it is itself a function of they;s. As can be seen from expression/Qf this
will involve double-electron integrals of the form

/ / drde X (r)xj‘(r)xﬁr’)m(r’)‘

r—r|

The cost of the procedure is dominated by the fact that therenany such integrals to evaluate.

6.4 The “Car-Parrinello” viewpoint

Car and Parrinello [19] took an approach which combined nudéedynamics with pseudopoten-
tials and DFT by proposing a scheme that exploits heurigtitrozation procedures to achieve the
minimum energy. Specifcally, they used simulated annegiapto minimize an energy func-
tional, which they write in the form:

E{Yit AR}, {aw}] = Z/ngrz' Vi [= (12 /2m)V2Ji(r:) + Vip(ri), {R}, {ow}],

where{«,} are the external constraint¥. contains the internuclear Coulomb repulsion and the
effective electronic potential energy, which includes é&xéernal nuclear, Hartree, and exchange
and correlation terms.
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They then use a Lagrangian formula to generate trajectieisnic and electronic degrees
of freedom via a coupled set of equations of motion. The idda propagate the electronic wave
functions,i.e., the Kohn-Sham orbitals along the motions of the atoms. iBehd, they consider
the parameter$§y; }, {R;}, {a,} in the energy functional to be time-dependent and introdinee
Lagrangian/, which is the difference in the kinetic and potential enesgf the system:

L= g [ 30 SR + Y S i) (Ra). o)
% 1 v

whereM; are the physical ionic massgesandy,, are arbitrary parameters having the appropriate
units, and the); are subject to an orthonormality constraint.

The Lagrangian generates dynamics for the parametersginringe following equations of
motion:

pi(rit) = —0E/00; (i t) + > Aubn(rst) (43)
k

MR; = —Vg€& (44)

ppCt, = —(0E/0ay), (45)

where the Lagrange multipliers,;, have been introduced to satisfy the orthonormality canstr
Only the ion dynamics have real physical meaning; the res£atitious and are employed by the
simulated annealing algorithm.

The Lagrangian formula de£nes both potential and kineticgee® for the system. The equi-
librium value of the kinetic energy can be calculated as ¢neporal average over the trajectories
generated by the equations of motion. By varying the velesjtthe temperature of the system
can be reduced; a8 — 0, the equilibrium state of the DFT energy functional is resith At
equilibrium, +; = 0, and (43) corresponds to the Kohn-Sham equation througlitaryitransfor-
mation. At this temperature, the eigenvalued @gree with the occupied Kohn-Sham eigenvalues,
and the Lagrangian describes a real physical system whpsesentative point lies on the Born-
Oppenheimer surface.

The main advantage of this approach is that diagonalizasielf consistency, ionic relaxation,
and volume and strain relaxation are achiesmdultaneouslyather than separately.

Pastoreet al. investigated the theoretical basis of the Car-Parrinellthogin [128]. There
they showed how the classical dynamics generated by the&&né€llo Lagrangian approximated
efE£ciently the quantum adiabatic evolution of a system, &eg tiscuss the role played by the
spectrum of the eigenvalues of the Kohn-Sham Hamiltoniamixna

The Car-Parrinello method is one of several ab initio mol@cdlynamics (AIMD) methods.
A discussion of AIMD methods is beyond the scope of this padeivever, the interested reader
is referred to [54, 125,129, 178] for descriptions of AIMD tlmeds and their diverse applications
which include the melting of silicon and the study of molesudrystals and liquids.

The Car-Parrinello method has been used extensively in mBtscience, physics, chemistry,
and biology since its invention. The Car-Parrinello Moleciynamics Consortium website [172]
lists numerous papers that have been published on this thethce 1994; however, this list is not
exhaustive. To give an idea of the wide range of applicatstndied by this method, we list several
papers in materials science [32, 78, 106, 109, 185], phy$#&20, 46, 143, 154], chemistry [23,
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57,87, 137, 184], and biology [56, 80, 113, 132, 146] that lesnphis method. For information
on recent advances in chemistry and materials science witiP&nello molecular dynamics
methods, see [1]. For a nice review of the £rst 15 years of ta@ilihe Car-Parrinello methods in
physics, chemistry, and biology, the reader is referred 4&].

6.5 Use of orthogonal polynomials

Approximation theory, and especially the theory of orthaoggolynomials, has been extensively
used in density functional theory. A typical approach is tdevthe projector (39) as

P = h(H)

whereh()) is the shifted Heaviside step function which has value one\fe. Er and zero else-
where. The Heaviside function can now be approximately mapd into orthogonal polynomials

h()) ~ Z a;pi(A) -

The most common orthogonal polynomials that are used incthigext are the Chebyshev poly-
nomials of the £rst class. If a good basis is used, such as @awusbitals or plane waves, then
it is known that the density matrix has a £nite decay range,it will be represented by a sparse
matrix. It is therefore possible to construct a good appmation toP efEciently in this case; see,
e.g, [77,98].

Another approach which has been used focuses nBtdinectly, but rather on the basij see,

e.g, [74]. Here a number of trial vectors, ... , &, are selected and then a basis for the desired
spacespan(V) is built by computing approximations to the vectors
Wi = h(H)fz

with the help of the polynomial expansion. Note that eachheké vectors is a member of the
desired subspace and collectively the setg$ will constitute a basis of the space under generic
conditions. This set is then orthonormalized to get

The above approaches attempt to extract the charge defsiiy), which is represented by the
diagonal of the operatgP. One can easily imagine that while the techniques shoulld seall
for large systems, the prefactor in the cost function candrg kigh. This was observed in [77].
There are, however, situations where the use of orthogatahpmials can be very cost-effective.
In [144] thedensity of state@DOS) is computed using this strategy. One starts with aijeos
eigenvalues iR™ which in the form of a sum of Dirac functions:

n(A) = Zé(A )

This is a distribution (in a mathematical sense) that is baubhe classical moment problem is to
£nd this distribution from a knowledge of its classical motsen. = [ A\ n(\)dA.
A numerically viable alternative is to use the modi£ed or gelwed moments:

= / H)n(A)dA (46)
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where{t,} is a sequence of orthogonal polynomials on the intervalaioimg the eigenvalues
of H. Typically, the problem is shifted and scaled so that th@adiakes place in the interval
[—1, 1]. In addition, the polynomials, are just the Chebyshev polynomials, though other poly-
nomials can be used as well. Assuming that the moments havedeenputed for the Chebyshev
polynomials, then expression of the distribution in themé&l (—1, 1) is given by

o0

2 M
A) = t(N) . 47
77( ) 7_(_\/1_7)\2 £ 1+ 5k0 k( ) ( )

Hered,, is the Kronecker symbol. Of course, the sum is truncatéd &trms resulting in a certain
functionn,,;(\). Another notable approximation lies in the computationhaf momentg:,. The
sequence, is not readily available and can be only approximated [184].1The various methods
proposed in the literature consist of using probabilistguanents for this purpose. Specifcally,
can be written as

[ = / A)d = Ztk = tr(ti(H)] (48)

1

so one needs only compute the traces of the sequence ofageétt). These traces are typically
computed with a Monte-Carlo type technique. A sequence.agandom vectors; is generated
andyy, is approximated by

Z < rjte(H)|r; >
n,

The 3-term recurrence of the Chebyshev polynomials is ebquido reduce the memory and com-
putational cost of the calculations.

This type of calculation for the DOS can only be of interestases where the geometry is
£xed and the Hamiltonian can be well-approximated withowlaconsistent iteration. A related,
but more complex, technique allows to obtaiptical-absorption spectra (OA$24, 181]. The
calculation can be viewed as an extension of the problenusistl above to two variables. What
is sought is the 2-variable distribution:

)\1, )\2 Z |O'ZJ’ ) )\1 ) ( — >\z) with ;5 =< (ﬁl’th’QﬁJ > (49)

from which the OAS can be obtained by computing a double fate§181]. Physically,o; ;|?
represents the transition probability between statasd ;. To compute the function (49) requires
to generalize the 1-variable moments defned by (48) to twarizhle moments:

s = 3 OOl = [ [ s OO0, )

2

A probabilistic technique that is similar to the one for thendity of states is used to recover an
approximation to the function (49). In this case, approxingy,,; consists of averaging terms of
the form< r|iAVty(H).ihVt (H)|r > wherer is a random vector as before [181].
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7 Geometry optimization

The composition and structure of a material (including @smetry) determine many of its physical
and chemical properties. For example, the reactivity, nitglgphase, color, and magnetism of a
material are determined, in large part, by the materialengetry [111]. Thus, it is important to
determine the geometry of the material in a stable state.

7.1 The geometry optimization problem

The geometry optimization problefneferred to as thstructural relaxation problenby materials
scientists and computational physicists) is to £nd a lowggneon£guration of the material. This
is done by repositioning the atoms of the material and sulesdty evaluating its energy at various
places on the potential energy surface. The potential greendace is a hypersurface and is a plot
of the potential energy;, vs. the atomic coordinates, Herer is a vector of lengtl3 K containing
the atomic coordinates for th€ atoms,.e, r = (x1,y1,21, ... , XK, YK, zK)T. There have been
many reviews, se&.g, [141,155-158] written on this topic in recent years.

There are some applications which require the lowest-gnesgformation of the system of
interest,i.e., a global minimum of the potential energy surface [158].d#ig a global minimum
is a very difEcult optimization problem; often it is impos&hor impractical to £nd the global
minimum. However, there are many applications where it ugh to £nd a local minimum. For
example, local minima can be used as starting points foragjimiinimization algorithms [8, 9, 22,
86,95,97,133,134,152,153,179].

Even though £nding a local minimum is an easier problem thamfralglobal minimum, it
can be quite difEcult. One problem that may occur is that thapation algorithm may become
trapped at a saddle point, for example. Because the gradieeito at all critical points, the Hessian
must be used to determine whether or not the critical postasal minimum. At a local minimum,
the Hessian matrix is positive de£nite. A second problemasttie optimization algorithm may
not converge from all starting points, especially not frdrage points corresponding to very high
potential energies. The methods we review in this papersfaru£nding a local minimum (as
opposed to the global minimum).

The geometry optimization problem is a nonlinear, uncamséd optimization problem. In op-
timization terms, the objective function and gradient ave by the potential energy and forces,
respectively. There are four important qualities whiclvedo characterize the optimization prob-
lem. First, the objective function is highly nonlinear. Feotample, a simple model that is often
given for the problem is the Lennard-Jones potential whiebcdbes the potential energy of two
inert gas atoms in locationg andrs:

s | (5 557) - (%) |

Heree is the well-depth, and is a hard sphere radius.

Second, it is very expensive to evaluate the energy anddatthe material for a particular
geometry. For the PARSEC package [126], on which the authork,whe self-consistent £eld
iteration, corresponding to the solution of the Kohn-Shajuagions, must be executed each time
the energy and forces are evaluated. This correspondsviogdhe nonlinear eigenvalue problem
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Code

Minimization algorithm

PWscf
PEtot
ABINIT
Soccoro
fhi98PP
VASP
PARATEC
SegQuest
Wien2K
ACRES
SIESTA
AIMPRO
FLEUR
CPMD

CONQUEST

CASTEP
DoD PW
CRYSTAL
Octopus
MIKA

damped dynamics

BFGS

molecular dynamics (Numerov, Verlet)

steepest descent, conjugate gradient, qguenched miniamzat

ionic relaxation with damped Verlet

conjugate gradient, RMM-DIIS

direct minimization of total energy

modi£ed Broyden, damped dynamics, steepest descent, atedlsteepest descent
geometry optimization details not given

constrained dynamics

conjugate gradient, molecular dynamics algorithms (idiclg standard Verlet)
conjugate gradient

geometry optimization details not given

GDIIS, L-BFGS, P-RFO, RFO, BFGS, steepest descent

geometry optimization details not given

BFGS, damped molecular dynamics, delocalized internaldinates

damped dynamics

Berny (modifed conjugate gradient) algorithm

steepest descent

BFGS

Table 3: Minimization algorithms for a few electronic sttuies codes.

in (31). For this reason, itis impractical to compute thestas via £nite-differencing, and it is not

possible to compute the Hessian via automatic differaatiatue to the structure of the nonlinear
eigenvalue problem. Third, the energy and force £elds ofbemain inaccuracies, as it is difEcult

to know the potential energy surface exactly. Finally, ¢h@an be many local minima; any of them
will be considered acceptable solutions to the geometrynipdition problem.

7.2 Minimization algorithms

Many different minimization algorithms are employed byottenic structures packages to solve
the geometry optimization problem. Table 3 gives the typmioimization algorithm used by each
DFT electronic structure package listed in Table 2. Thesamikation algorithms fall into six
main categories: the steepest descent method, quasi-Newvethods, truncated Newton methods,
conjugate gradient methods, iterative subspace methndsnalecular dynamics methods. In this
section, we describe the £rst £ve classes of methods andavralgerithms from each category.
The sixth category, molecular dynamics methods, are betlendcope of this paper, as they are
really simulation methods rather than unconstrained apétion algorithms.
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7.2.1 The steepest descent method

Steepest descent methods exploit the directdnthat yields the fastest decreaseérfrom r.
Mathematically, this direction results from the solutidritte optimization problem

min Vc‘,’(r)Td subject to ||d|| =1 . (50)
deR3K
The solution to the above minimization problem is givendy= —VE(r)/||VE(r)||2 in the -
norm. This is thesteepest-descent direction
Iterationk of Cauchy'’s classical steepest descent algorithm [38] islésAfs:

1. Find the lowest point of in the direction—VE&(ry) from ry, i.e, £nd A\, that solves
min,\k>0 E(rk — )\kv5<rk))

2. Updat&‘k_H =T, — )\kVS(rk)

Clearly, this is only a theoretical algorithm in that the £tsfpsrequires the solution of a one-
dimensional minimization problem. In order to implemerd glgorithm, an inexact minimization
must be performed. Goldstein [61] showed that under milddtams, the steepest descent al-
gorithm converges to a local minimum or a saddle poinf oHowever, the convergence is only
linear.

Several electronic structure codesq, Socorro, SeqQuest, CPMD, and Octopus) employ the
steepest descent algorithm for the geometry optimizatioblpm because it is easy to implement.
The ease of implementation comes at the cost of slow cormeegdore sophisticated minimiza-
tion algorithms usually yield a better convergence ratearednore cost-effective.

7.2.2 Newton’'s method

An example of an optimization algorithm with a higher ratecohvergence is Newton’s method.
It enjoys quadratic convergence in the best case. The gadéwton’s method is to £nd a point
ri+1 such thatVE(ry,1) = 0. For such a pointy,,, satisEes a necessary condition for being a
minimizer of £. In order to do this, a quadratic model,, of the function is created. This model
is given bymy,(ry + d) = E(ry) + VE(ry)'d + 5 A7 V2E(ry) d. Then the pointy = rj, +dfy
is determined so th&f my,(r;11) = 0, makingr; ., a critical point ofm,.. The vectod} is called
the Newton step.

Formally, iterationk of Newton’s method is written as the following two step prigees:

1. SolveV?E(ry) diY = —VE(ry).
2. Updatery,; = ry +dJ.

There are many difEculties associated with this simple varsf Newton’s method. First, the
Newton direction might be a direction of negative curvatuee, it might not be a descent direc-
tion. Second, if the Hessian matrix is ill-conditioned, thé of convergence might be decreased.
Third, Newton’s method is not globally convergent. Anothejor difEculty associated with using
Newton’s method for electronic structure calculation$ettin most cases, an analytic Hessian is
not available. Newton’s method (as written) is not a vialan for electronic structure codes.
As such, we turn to quasi-Newton methods, which employ apprate Hessians.
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7.2.3 Quasi-Newton methods

Quasi-Newton methods are among the most successful ap@®éar the geometry optimization
problem [155, 156,158, 180]. The PEtot, SeqQuest, CPMD, CAS&kRd MIKA electronic struc-
ture packages all employ quasi-Newton methods, which amified Newton methods in which
the actual Hessian is replaced by an approximation to iticByly, the approximation is obtained
by updating an initial Hessian which may be a positive midtipf the identity, or it may come
from experimental results, or from optimizing the geomettya higher level of theory. For ex-
ample, if one is interested in performing a geometry optatian for the DFT level of theory, it
may be possible to initialize the Hessian using the Hess@am & geometry optimization with a
semi-empirical force £eld. Another way of initializing theskian may be to use the Hessian from
the geometry optimization of a related model problem.

The generic quasi-Newton method is the same as Newton'soshetkcept that/2& (ry,) is re-
placed by, ~ V2£(r},) in the computation of the Newton step. One way in which theynarasi-
Newton methods differ is in their techniques for updating lfessian. One major class of Hessian
update formulas are the secant updates which enforce tise-jaaton conditionB;. s, = yx,
wheres;, = ry1 — ry andy, = gr11 — gk, Whereg, = VE(ry). This condition is used to create
low-rank approximations to the Hessian.

One of the most successful updates from this class has be&HB&S [18,47,60,164] update
which was discovered independently by Broyden, Fletcheldf@d, and Shanno in 1970. Itis
given by

Y& yZ By, sk Sflgk

Byi1 = Br + -
* yisk sT' By, sy,

This is a rank-two, symmetric secant update. In additi§n,; is positive de£nite ify}s, > 0
andB;, is positive de£nite. (The former condition is the only one ¢éoconcerned with, a¥2&,

is usually a positive multiple of the identity. The updaten@mally skipped whenevey!s; <

0.) This is a desirable feature of a Hessian update since tlssi&le matrix is positive de£nite
at a minimum. Thus, we seek positive de£nite Hessian updatieoahe for minimizations of a
guadratic model. One difEculty with the BFGS update is thathiwithe linesearch framework (to
be discussed below), it only converges to the true Hessiaociirate linesearches are used [38].
Owing to inaccuracies in the potential energies and forites,is often not the case in geometry
optimization problems.

A competitive update which converges to the true Hessian guaaratic surface without an
exact linesearch is the symmetric rank-one update by Maréagl Sargent [116]. This update is
given by
(v& — Bisi) (yr — Bisi)”

(yr — Bisi) s

Unfortunately, this is not a positive-de£nite update, andetgmes the denominator becomes van-
ishingly small. However, the diagonal of the approximatessi@n may be perturbed to make the
approximate Hessian positive de£nite at a given step.

A third update which has been useful for geometry optimiraproblems is to take a specifc
convex combination of the SR1 update shown above and the BF@&SeaiSpecifcally, this update

Bii1 = By +
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is given by
(yr — Bi se)(ye — Biosi)”
(¥ — Br si) sy

BisistBr  yryr
Byt1 = Bi + ¢ - o :

* (1 ¢> ( SgBk Sk ygsk

where¢ is given byy/t /tots, wheret, = ((yr — By se)sk)?, t2 = (yi — Br si)” (Y& — Bi sk),
andt; = sls;,. This update is due to Farkas and Schlegel [41] and is basezhddea of
Bo£ll's [13] for locating transition-state structures. Thigdate strives to take advantage of the
positive-de£niteness of the BFGS update and the greateraagcof the SR1 update. Other Hes-
sian updates are also possible; see [38] for a descriptiesavaral others.

The second way in which quasi-Newton methods differ is ttemhniques for controlling the
Newton step. Linesearch methods [38, 48, 58, 81, 121] attéonphoose a steplength,, such
that the quasi-Newton step given by.; = r, + \.d; satisEes suffcient decrease and curvature
conditions. One of the most successful linesearch coddseifimhited-memory BFGS code, L-
BFGS, which was implemented by Liu and Nocedal [100, 120].s lintended for large-scale
optimization problems. In the L-BFGS code, quasi-Newtonatpdiectors, rather than the full
Hessian matrix, are stored. When the available storage teas depleted, the oldest correction
vector is removed to make room for a new one. The step lengthisrcode is determined by the
sophisticated Ma-Thuente linesearch [114].

In contrast with linesearch methods, trust-region metlobd®se the direction and step length
by minimizing the quadratic model subject to an ellipticahstraint. The constrained minimiza-
tion problem they solve is given byminmy(ry + di) = E(rg) + VE(rp)Tdy + % d} B di,
subject to||d,||2 < &, whered, is the trust-region radius. The resulting step is of the form
dy = — (B + MZ)"'VE(ry). The trust-region radius is adjusted based on how well tiaelcuic
model approximates the function. See [30, 38, 48, 58, 81, fitlmore details on trust-region
methods.

The rational function optimization (RFO) method [5, 168]e¢ated to trust-region methods in
that it seeks to compute a step in a direction that will imprthe convergence of the method. In
this method, the quadratic model found in Newton's methoeaced with a rational function
approximation. In particular,

1 T 0 gf 1
> (1d5) ( gr DB dy
AE = E(I'k —i—dk) — E(rk) ~

(o5 ) (o)

whereS;, is a symmetric matrix that is normally taken to be the idgnt@bserve that the numerator
in the above formula is the quadratic model used in the gNasiton method. The displacement
vector,d;, is computed so as to minimiz&E. For further details on solving this optimization
problem, see [138].

Recent years have seen the development of hybrid methodptioripation based upon quasi-
Newton methods. One such example is the hybrid method by IB®end Nocedal [112] that
interlaces iterations of L-BFGS with a Hessian-free Newtogthnd. The performance of this
method is compared with the L-BFGS method and a truncated dfemtethod at the end of the
next section.
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7.2.4 Truncated Newton methods

If the exact Hessian is available, then it is possible to usarecated Newton method. Truncated
Newton methods are a subclass of Newton methods which aceimiglee context of large-scale
optimization. Here an iterative method is used to computestbarch directiond,, using a line-
search or trust-region method. They are based on the id¢éavtten far away from the solu-
tion, it does not make sense to compute an exact solutioretdbléwton equation, as this may be
very computationally intensive and a descent direction m#fce. However, near a minimum, a
more exact solution is desired. At each outer iteratiors required that the residual,, satisfy
rr = ||[V2E di. + gl < ik |lgk|l, wheren is the forcing sequence. The methods are called trun-
cated Newton methods, as they are stopped (or truncatea) thhbebove convergence criterion is
met. For appropriately chosep, asymptotic quadratic convergence of the method is actiiase
IVEx|| — 0 [37]. One appropriate choice gf given in [158] is

n, = min {c,/k, [|[VEL||}, 0<e <1

See [118] for an excellent survey of truncated Newton method

Schlick and Overton developed the idea for a truncated Newtethod which was used for
potential energy minimization in [161]. The resulting Fart package, TNPACK [159, 160], writ-
ten by Schlick and Fogelson, was later incorporated int@HARMM [17] molecular mechanics
package [39]. The user of TNPACK is required to implement aspareconditioner which al-
ters the clustering of the eigenvalues and enhances canarg Automatic preconditioning is
included in an implementation by Nash [117] which makesatily portable.

Daset al.[35] tested the performance of the Morales-Nocedal hybrthod (which was dis-
cussed in the quasi-Newton section), the Liu-Nocedal L-BR@&#od, and the truncated Newton
method with preconditioner of Nash on the protein bovinecpaatic trypsin inhibitor (BPTT) and
a loop of protein ribonuclease A. Their results showed thathybrid approach is usually two
times more efEcient in terms of CPU time and function/grademtiuations than the other two
methods [35].

7.2.5 Conjugate gradient methods

Nonlinear conjugate gradient (NLCG) algorithms [66, 165daanother important class of meth-
ods used in electronic structure packagesg,(Socorro, VASP, SIESTA, AIMPRO, and CRYS-
TAL) for solving the geometry optimization problem. For arcellent survey paper on nonlinear
conjugate gradient methods, see [66].

In the 1960’s, Fletcher and Reeves generalized the conjggatient algorithm to nonlinear
problems [50] by building upon earlier work by Davidon [36]caFletcher and Powell [49]. The
nonlinear conjugate gradient algorithms were developecdoybining the linear conjugate gradi-
ent algorithm with a linesearch. The nonlinear and lineajugate gradient algorithms are related
in the following way: if the objective function is convex agdadratic and an exact linesearch is
used, then the nonlinear algorithm reduces to the linear ®his reduction is important since the
linear conjugate gradient algorithm requires at ndgststeps in exact arithmetic. This is because
the search vectors span the enfifé-dimensional space aft8r< steps.

NLCG algorithms are of the form:

Ipy1 = Ty + apdy,
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di = —gi + Brdr—1,do = —8o,

whereqy, is obtained via a linesearch, afg is a scalar that determines how much the previous
direction is used in the computation of the current one. NLG&hwods differ in their choice aofy;
many different formulas have been proposed. Seven of theadstare: the Hestenes and Stiefel
method (HS) [72], the Fletcher-Reeves method (FR) [50], Dameethod (D) [34], the method by
Polak, Ribiere, and Polyak (PRP) [135,136], the Conjugate &#snethod by Fletcher (CD) [48],
the Liu and Storey method (LS) [101], and the method by Daiuah (DY) [33]; their formulas
for computingg, are as follows:

HS _ gZYk—l

g d£_1yk71 ’

rr_ gkl

o ekl
D gfﬂ VQE(I'k) dk

ﬁk N dg V25<I'k) dk ’
PRP _ ggyml
g lgr—1]*’
oo _ el
g _gzlldk—l7
LS _ gf)’kfl
g _gg_ldkfly
and )
DY __ gkl
k - 9
dgfﬂ%—l

wherey,_1 = gr — gx_1 and||.|| is thely-norm.

The most popular formulas from the above list are FR, PRP, and kKSFR method converges
if the starting point is sufEciently near the desired minimu@n the other hand, PRP cycles in-
£nitely in rare cases; this undesirable behavior can be rexhég restarting the method whenever
BERE < 0. Itis often the case that PRP converges more quickly thanfheé&thod and is the one
most often implemented in codes.

Recently Hager and Zhang [65, 67] developed a new nonlinegiugate gradient method,
CG_DESCENT, with guaranteed descent and an inexact linese@hshir formula for computing

O is given by ,

HZ Nl Bk—1

o (YR 2 dek) diyr
Numerical comparisons in [67] showed that @ESCENT outperformed L-BFGS and several
other nonlinear conjugate gradient methods on a set of 1dtdems from the CUTEr (The Con-
strained and Unconstrained Testing Environment, red}itest set [173] with dimensions ranging
from 50 to 10,000. Thus, C®@ESCENT should be seriously considered for the geometry opti
mization problem.

Some of the best-performing nonlinear conjugate gradiegthods today are hybrid meth-

ods [66]. These methods dynamically adjust the formulaoas the iterations evolve. In [65],

41



several numerical experiments were performed which coetplaybrid NLCG methods with
CG_DESCENT and L-BFGS. The top performers relative to CPU time W&BeDESCENT, a
code based upon a hybrid DY/HS scheme, and Liu’s and NosedaBFGS code. Thus, the
hybrid DY/HS scheme also has excellent potential for usénergeometry optimization problem.
Baysal et al. [10] studied the performance of several pdaicoinimization algorithms as
applied to models of peptides and proteins. In particutey tompared the performance of Liu’s
and Nocedal’s L-BFGS code with the performances of the trigachlewton (TN) method with
automatic preconditioner of Nash and the nonlinear cotgugeadient algorithm (CG) of Shanno
and Phua. Their results [10] show that for one potentialggnEarmulation, the truncated Newton
method outperformed L-BFGS and CG by a factor of 1.2 to 2. Witbtlaer potential energy
formulation, L-BFGS outperformed TN by a factor of 1.5 to 2risl&CG by a larger factor.

7.2.6 lterative subspace methods

The £nal class of optimization methods we review are thoseetiploy iterative subspace opti-
mization. Electronic structure packages which employatiee subspace methods include VASP
and CPMD. One algorithm in this class is the Direct Inversiotthie Iterative Subspace (DIIS)
method [139, 140] which is also referred to as Residual Mimation Method-Direct Inversion in
the Iterative Subspace (RMM-DIIS). DIIS is the same as a Krgobspace method in the case
of solving a linear system without preconditioning. Theatgnship between the methods in the
nonlinear case is more complicated and is described in [68].

DIIS was £rst used to accelerate self-consistent £eld caicntabefore it was extended to
the geometry optimization problem and to charge-mixinge Mame of the method that has been
specifcally tailored for the geometry optimization problismGeometry Optimization in the Iter-
ative Subspace (GDIIS) [31].

GDIIS is different from quasi-Newton methods in that it asss a linear connection between
the coordinate and gradient changes; this is similar toguairquadratic approximation to the
potential energy surface. However, in the quasi-Newtoe cidme linear connection was between
the Hessian matrix and the gradient.

We now give the derivation for the GDIIS method from [42]. Tdwvelopment of the GDIIS
method is based on a linear interpolation (and extrapaiatd previous molecular geometries,
r;, that minimizes the length of an error vector. The formulathe interpolation/extrapolation is

given by:
r = Zci r;, where Zci =1.

An error vectorg;, is created for each molecular geometry using a quadratitehod the potential
energy surface. First, a simple relaxation si€pjs computed using a Newton ste,,

I’;-k =T, — Vzg_lgi.
Then, the corresponding error vectey, is taken to be the displacement from the atomic structure:
e, = I'? — I, = —V2571gi.

The error (or residual) vector fai* is the linear combination of the individual error vectorsl as
given by:
zZ = Z cie =e".
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Next, the coeffcients are obtaining by solving the leastsegi problem which corresponds to
minimizing ||z||* subject to the constraint that ¢, = 1. Finally, the next atomic geometry in the
optimization procedure is given by

1 =1 +2z= E ¢ Ty

According to [42], this version of the GDIIS method is quit€@ent in the quadratic vicinity
of a minimum. However, farther away from the minimum, the noet is not as reliable and
can fail in three major ways: convergence to a nearby clipoint of higher order, oscillation
around an inaection point on the potential energy surface,raimerical instability problems in
determining the GDIIS coefEcients. In [42], Farkas and Sglgive an improved GDIIS method
which overcomes these issues and performs as well as algjaagon RFO method on a test set
of small molecules. On a system with a large number of atones; improved GDIIS algorithm
outperformed the quasi-Newton RFO method.

7.3 Practical recommendations

We conclude this section on geometry optimization with s@maetical recommendations. First,
it is important toconsider different starting pointsA given optimization algorithm might not
be globally convergent. It also might converge to anothpetgf critical point such as a local
maximum or a saddle point. The user can distinguish the t§geitacal point by calculating the
eigenvalues at the solution. One example of a system intératiire where global convergence
was not achieved with an optimization algorithm is the biphenolecule. When started from
anything other than a cat geometry, the geometry optimizghimduced an acceptable result.
However, when starting with the @at geometry, it produced airgtgeometry which corresponds
to a maximum [99].

Second, the user cary different algorithmic parameters, approximate initldessian matri-
ces(in the case of quasi-Newton methods), dadnination criterion for example, as these can
dramatically affect the algorithms’ convergence, as wettan also be helpful tory using various
optimization algorithm=n one’s geometry optimization problem. Different optiatian algo-
rithms perform better on some problems and not as well orr piiedlems as was demonstrated in
this paper. Which algorithm will produce the best resultsa@iven problem depends on several
characteristics of the problem such as: deviation of theailye function from quadratic, condi-
tion number of the Hessian (or approximate Hessian) matraanvexity, and eigenvalue structure.
See [119] for a numerical study which compares the perfooesnf the L-BFGS method, a trun-
cated Newton method, and the Polak-Ribiere conjugate gradiethod on a set of test problems
and analyzes the results in terms of these quantities.

Finally, it may be worth to consider usiragdifferent coordinate systenn [3], Baker studied
the use of Cartesian and natural internal coordinates (hgsmuthe bonds and angles in the ma-
terial) for geometry optimization; he concluded that foodastarting geometries and initial Hes-
sian approximations, geometry optimizations performe@antesian coordinates are as effcient
as those using natural internal coordinates. Thus, thelatdrCartesian coordinates are recom-
mended for £nding local minima. However, for the case of nmalhHessian information, natural
internal coordinates were more effective. Thus, natutarimal coordinates are recommended for
£nding a global minimum. See [4, 142] for alternative cooatlnsystems.
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8 Concluding remarks

Though signi£cant progress has been made in recent yeargalogmg effective practical meth-
ods for studying electronic structure of materials, theesfilom an algorithmic point of view many
challenges remaining. Developing effective techniquessédving large eigenvalue problems in
the case of a very large number of eigenvectors still remamgnportant issue. Interestingly,
the large andienseeigenvalue problem will gain importance as systems becanged. This is
because most methods solve a dense eigenvalue problem avisel from projecting the Hamil-
tonian into some subspace. As the number of states increhsedense problem can reach sizes
in the tens of thousands. Because of the cubic scaling of atdreigenvalue methods for dense
matrices, these calculations may become a bottleneck.

In the same vein, as systems become larger, eigenfunceensiiethods may start playing a
major role. Although there has been much work done in thia éseeg.g, the survey [59], and
[96]), linear scaling methods in existence today have échapplicability and it becomes important
to explore their generalizations. There are also many guesto explore from a more theoretical
viewpoint; seee.g, [93] for an overview. Work needs to be done, for example aimigg a better
understanding of the relation between the choice of theangh correlation functional and the
nature of the resulting nonlinear eigenvalue problem. Tthesself-consistent iteration is slow to
converge in many cases., metallic compounds). It is known that such problems amisically
harder due to several factors, including the small gap betwige eigenvalues of the occupied states
and the others. In situations like these, it is intuitivet tha solution will be more sensitive to small
changes in the equations than in other cases. In partitidesolutions may depend more critically
on the functional used for the exchange correlation energy.
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