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RECONSTRUCTION OF THE SHAPE AND SURFACE IMPEDANCE

FROM ACOUSTIC SCATTERING DATA FOR ARBITRARY

CYLINDER

J.J. LIU∗, G. NAKAMURA† , AND M. SINI ‡

Abstract. The inverse scattering for an obstacle D ⊂ R2 with mixed boundary condition can
be considered as a prototype for radar detection of complex obstacles with coated and non-coated
parts of the boundary. We construct some indicator functions for this inverse problem using the
far-field pattern directly, without the necessity to transform the far-field to the near field. Based
on the careful singularity analysis, these indicator functions enable us to reconstruct the shape of
the obstacle and distinguish the coated from the non-coated part of the boundary. Moreover, an
explicit representation formula for the surface impedance in the coated part of the boundary is
also given. Our reconstruction scheme reveals that the coated part of the obstacle is less visible
than the non-coated one, which corresponds to the physical fact that the coated boundary absorbs
some part of the scattered wave. Numerics are presented for the reconstruction formulas, which
show that both the boundary shape and the surface impedance in the coated part of boundary can
be reconstructed accurately. The theoretical reconstruction techniques proposed in this work can
be applied in the practical 3-dimensional electromagnetic inverse scattering problems with hopeful
numerical performances, which are of great importance in the design of non-detectable obstacles.

Key words. Inverse scattering, far-field, impedance boundary, singularity analysis, numerics.

AMS subject classifications. 35P25, 35R30, 78A45.

1. Introduction and examples. The inverse scattering problems aim to iden-
tify some properties of an obstacle such as the boundary shape and type from the
information contained in the scattered wave for given incident waves. The optimiza-
tion techniques are well-known for reconstructing the obstacle, up to some accuracy,
by minimizing the objective functional for unknown obstacle from given inversion
input data by iterations procedures. However, it seems that a good initial guess is
needed.

In the recent years, some new inversion methods for the reconstruction of obstacle
boundary have been proposed. The general and common idea of these methods is
the construction of some indicator functions from given inversion input data, which
depend on some detecting point (a parameter) varying inside or outside the obstacle.
When this point approaches the obstacle, these indicator functions blowup. The
linear sampling method [7], the factorization method [16] and the singular sources
method [21] construct the indicator functions from the far-field pattern directly, while
the probe method [13, 14] constructs the indicator in terms of the near field. The
near field can be obtained from the far field by some regularization procedures [21].
However, we can also state the natural version of the probe method directly from the
far field data, without reducing the far field to the near field, see [11]. For a review
of these methods, the readers are referred to [22, 23] and for some relations between
them to [11, 20].

If the scattering is caused by multiple obstacles with different types of boundary
or with mixed boundary condition, one should identify both the boundary shape,
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boundary type and the surface impedance. These kinds of problems come from some
industry designs such as radar detection by electromagnetic wave scattering, see [10].
The obstacle is illuminated by an electromagnetic wave coming from an antenna. The
wave is scattered by the obstacle and received by an antenna located in a different
place. One of the objectives is to design the shape of the obstacle such that the
reflected wave can be avoided or minimized in some directions. One possible way
for this goal is to introduce a coating on the surface of the obstacle or on some of
its parts. This is motivated by the fact that reflections are minimized by applying
such a surface coating. The surface coating is modelled by introducing an impedance
boundary condition on a part or on the whole surface of the scatterer, which gives a
relation between the electric and the magnetic field through a coefficient called surface
impedance.

Due to this practical importance, the reconstruction of boundary impedance has
been addressed by many authors. In [1], the authors construct the inhomogeneous
boundary impedance for a cylinder obstacle with known shape using only one incident
wave, assuming that the surface impedance is distributed along the whole boundary of
the obstacle. In this case, the scattering of electromagnetic waves can be described by
the 2-dimensional Helmholtz equation. We also refer to [17], where an optimization
method is applied. After reducing the far field to the near field, a moment method
is suggested in [6] to reconstruct the surface impedance approximately in the case
of completely coated obstacle, and the identification of different types of multiple
obstacles is given in [5] in the case where on each obstacle we have one type of
boundary condition.

The problem whether a part of the surface of the obstacle is coated or not is
of relevant importance. Answering to this question and reconstructing the surface
impedance, in case of coating, from far field measurements is our main object. In this
work, we restrict ourself to the acoustic wave scattering governed by 2-dimensional
Helmholtz equation, noticing that the 3-dimensional electromagnetic wave scattering
in the cylinder case can be modelled by the 2-dimensional Helmholtz equation [8].
These issues have been firstly considered in [2, 3], by the linear sampling method,
where the authors simultaneously reconstruct the obstacle and compute the L∞-norm
of the surface impedance. This can be used to answer the question of existence or
absence of coating and give the value of the surface impedance in case it is known to
be constant.

Motivated by these last works, our aim is to give another way to consider these
issues and give further information on the obstacle. We proceed by constructing
some indicator functions giving a direct link between the far-field pattern and the
physical parameters of the obstacle. More precisely, we establish pointwise formulas
which enable us to detect the boundary of the scatterer and distinguish and recognize
the coated and the non-coated parts of the obstacle surface. In addition, on the
coated part of the obstacle, the indicator functions give explicitly the pointwise values
of this surface impedance as a functional of the far fields. These types of results
have been initiated in [19], where the theoretical justification of these formulas in
3-dimensional acoustic scattering is given. Since we need more singularity analysis
in the 2-dimensional case than in 3-dimensional case, which is due to the use of a
more singular point source, we give the theoretical justification of the steps where it
is necessary and refer to [19] for the rest of proof. We would like to emphasize that we
are reconstructing the obstacle, localizing the eventual coated part and reconstruct
the surface impedance in on step, i.e. simultaneously, compare with [[1], [2], [3], [5],
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[6], [17]]. Also, since the analysis is done pointwise, then we can also consider the
multiple obstacles and give similar results.

The validity of the theoretical reconstruction formula presented in this paper is
also checked by numerical tests with satisfactory performances. We would like to men-
tion the following observations from the numerics. The coated part of an obstacle with
larger impedance is less visible than the other part in terms of the value of the indi-
cator. This explains the practical motivation for introducing the coating, i.e, to avoid
or perturb the detection of an obstacle by applying the absorbing boundary layer.
On the other hand, for non-convex obstacles with mixed boundary conditions, the
inversion formulas proposed in this paper also generate a satisfactory reconstruction
by combining different blowing-up criterion together. These reconstruction perfor-
mances are supported by our numerical implementations given in the last section of
this paper.

The rest of the paper is organized as follows. In section 1, we state the problem
mathematically. In section 2, we present the results which we prove in section 3. The
section 4 is devoted to the numerical tests.

2. Statement of the problem. Let D be a bounded domain of R2 such that
R2 \ D is connected. We assume that its boundary ∂D is of class C2 and has the
following form

∂D = ∂DI ∪ ∂DD, ∂DI ∩ ∂DD = ∅,

where ∂DD and ∂DI are open surfaces in ∂D.
The propagation of time-harmonic acoustic fields in homogeneous cylinder media

can be modeled by the Helmholtz equation

∆u + κ2u = 0 in R2 \ D, (2.1)

where κ > 0 is the wave number. At the part ∂DI of the obstacle boundary, we
assume the total field u to satisfy the impedance boundary condition while on the
part ∂DD to satisfy the Dirichlet boundary condition. That is,

∂u

∂ν
+ iκσu = 0 on ∂DI (2.2)

with some impedance function σ and

u = 0 on ∂DD, (2.3)

where ν is the outward unit normal of ∂D. We assume that σ is a real valued Holder
continuous function of order β ∈ (0, 1] and has a uniform lower bound σ− > 0 on ∂DI .
The part ∂DI is referred to by the coated part of ∂D and ∂DD is the non-coated part.

For a given incident plane wave ui(x, d) = eiκd·x with incident direction d ∈ S1,
where S1 is a unit circle in R2, we look for a solution u := ui + us of (2.1), (2.2) and
(2.3), where the scattered field us satisfies the Sommerfeld radiation condition

lim
r→∞

√
r(

∂us

∂r
− iκus) = 0 (2.4)

with r = |x| and the limit is uniform for all directions x̂ ∈ S1.

The mixed problem (2.1)− (2.4) is well posed. More generally, for f ∈ H
1

2 (∂DD)

and h ∈ H− 1

2 (∂DI), there exists a unique solution of the mixed problem



4 J.J. Liu, G. Nakamura and M. Sini





(∆ + κ2)u = 0, in R2 \ D,
u = f on ∂DD,
∂u
∂ν + iκσu = h, on ∂DI ,
limr→∞

√
r(∂u

∂r − iκu) = 0,

(2.5)

and the solution satisfies

‖u‖H1(ΩR∩(R2\D)) ≤ CR(‖f‖H1/2(∂DD) + ‖h‖
H−

1

2 (∂DI)
) (2.6)

where ΩR is a disk of radius R and CR is positive constant depending on R, see [4]
for more details.

It is well known, see [8], that the scattered wave has the asymptotic behavior:

us(x, d) =
eiκr

√
r

u∞(x̂, d) + O(r−3/2), r := |x| → ∞, (2.7)

where the function u∞(·, d) defined on S1 is called the far-field of the scattered wave

us corresponding to incident direction d. We introduce a constant γ2 := eiπ/4

√
8πκ

and

Φ(x, y) :=
i

4
H

(1)
0 (κ|x − y|), x 6= y, x, y ∈ R2,

the fundamental solution to the Helmholtz equation in R2, where H
(1)
0 is the Hankel

function of the first kind of order zero. In this paper, we will consider the following

Inverse scattering problem for an obstacle with mixed boundary type:

Given u∞(·, ·) on S1 × S1 for the scattering problem (2.1) - (2.4), reconstruct the
shape of obstacle D, identify ∂DI and ∂DD and reconstruct the surface impedance
σ(x) on ∂DI .

3. Presentation of the results. It is well known also, see [8], that the scattered
field associated with the Herglotz incident field vi

g := vg defined by

vg(x) :=

∫

S1

eiκx·dg(d) ds(d), x ∈ R2 (3.1)

with g ∈ L2(S1) is given by

vs
g(x) :=

∫

S1

us(x, d)g(d) ds(d), x ∈ R2 \ D, (3.2)

and its far field is

v∞
g (x̂) :=

∫

S1

u∞(x̂, d)g(d) ds(d), x̂ ∈ S1. (3.3)

We will need the following identity, see [8],

u∞(x̂, d) = −γ2

∫

∂D

{
∂us(y, d)

∂ν
e−iκx̂·y − ∂e−iκx̂·y

∂ν
us(y, d)

}
ds(y) (3.4)
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Fig. 3.1. Geometric configuration

and the representation formula for the scattered wave Φs(·, z) in R2 \ D for point
source Φ(·, z)

Φs(x, z) = −
∫

∂D

{
∂Φs(y, z)

∂ν(y)
Φ(x, y) − Φs(y, z)

∂Φ(x, y)

∂ν(y)

}
ds(y), x, z ∈ R2 \ D.

(3.5)
Assume that D ⊂⊂ Ω for some known Ω with smooth boundary. For a ∈ Ω \ D,

denote by {zp} ⊂ Ω \ D a sequence tending to a. For any zp, set Dp
a a C2− regular

domain such that D ⊂ Dp
a with zq ∈ Ω \ Dp

a for every q = 1, 2, · · · , p and that the
Dirichlet interior problem on Dp

a for the Helmholtz equation is uniquely solvable, see
Figure 3.1 for the configuration. In this case, the Herglotz wave operator H defined
from L2(S1) to L2(∂Dp

a) by

H[g](x) := vg(x) =

∫

S1

eiκx·dg(d) ds(d) (3.6)

is injective, compact with dense range, see [8]. Let z∗p be a point on ∂Dp
a near zp such

that z∗p → a as zp → a, as chosen in Figure 3.1. Denote by ν(z∗p) the outward normal
of ∂Dp

a at z∗p . Now we consider the sequence of point sources Φ(·, zp). For every p
fixed, we construct two density sequences {gp

n} and {fp
m} in L2(S1) by the Tikhonov

regularization such that

‖vgp
n
− Φ(·, zp)‖L2(∂Dp

a) → 0, n → ∞ (3.7)

‖vfp
m
− ∂

∂ν(z∗p)
Φ(·, zp)‖L2(∂Dp

a) → 0, m → ∞, (3.8)

where ∂ν(z∗

p)Φ(·, zp) := ∇xΦ(x, zp) ·ν(z∗p). Since both vgp
n

and Φ(·, zp) satisfy the same

Helmholtz equation in Dp
a, (3.7) implies that

‖vgp
n
− Φ(·, zp)‖

H
1

2 (∂D)
→ 0, n → ∞ (3.9)

and

‖ ∂

∂ν
vgp

n
− ∂

∂ν
Φ(·, zp)‖

H−
1

2 (∂D)
→ 0, n → ∞ (3.10)

Similarly, it follows from (3.8) that

‖vfp
m
− ∂

∂ν(z∗p)
Φ(·, zp)‖

H
1

2 (∂D)
→ 0, m → ∞ (3.11)
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and

‖ ∂

∂ν
vfp

m
− ∂

∂ν
(

∂

∂ν(z∗p)
Φ(·, zp))‖

H−
1

2 (∂D)
→ 0, m → ∞ (3.12)

Multiplying (3.4) by fp
m(d)gp

n(x̂) and integrating over S1 × S1, we have

−
∫

S1

∫

S1

u∞(−x̂, d)fp
m(d)gp

n(x̂) ds(x̂)ds(d)

= γ2

∫

∂D

{∫

S1

∂us(y, d)

∂ν
fp

m(d) ds(d) ·
∫

S1

eiκx̂·ygp
n(x̂) ds(x̂) −

∫

S1

∂eiκx̂·y

∂ν
gp

n(x̂) ds(x̂) ·
∫

S1

us(y, d)fp
m(d) ds(d)

}
ds(y)

= γ2

∫

∂D

{
∂vs

fp
m

∂ν
(y)vi

gp
n
(y) −

∂vi
gp

n

∂ν
(y)vs

fp
m

(y)

}
ds(y). (3.13)

From (3.9), (3.10) and (3.13), we have

lim
n→∞

∫

S1

∫

S1

u∞(−x̂, d) fp
m(d) gp

n(x̂) ds(x̂)ds(d)

= γ2

∫

∂D

{
vs

fp
m

∂Φ(y, zp)

∂ν(y)
−

∂vs
fp

m

∂ν(y)
Φ(y, zp)

}
ds(y)

= γ2v
s
fp

m
(zp) (3.14)

from the Green formula, where vs
fp

m
(·) is the scattered wave corresponding to incident

wave vi
fp

m
(x) = H[fp

m](x).

Denote by Es(x, zp) the scattered wave corresponding to the incident wave
∂Φ(x,zp)
∂ν(z∗

p) ,

which is well defined for every x ∈ R2 \ D. Then it follows from (3.11), (3.12), the
well posedness of the direct scattering problem and the use of interior estimate that

Es(x, zp) = lim
m→∞

vs
fp

m
(x), x ∈ R2 \ D. (3.15)

Finally, it follows from (3.14) that

lim
m→∞

lim
n→∞

∫

S1

∫

S1

u∞(−x̂, d) fp
m(d) gp

n(x̂) ds(x̂)ds(d) = γ2E
s(zp, zp). (3.16)

The reconstruction of ∂D as well as its surface impedance in the coating part can
be established based on (3.16). For this purpose, an analysis of Es(x, z) near ∂D is the
key point. We need the natural C2 smoothness assumption on the regularity of ∂D.
Precisely, for every point a ∈ ∂D, there exists a rigid transformation of coordinates
under which the image of a is 0 and a function f ∈ C2(−r, r) such that

f(0) =
df

dx
(0) = 0, D ∩ B(0, r) = {(x, y) ∈ B(0, r); y > f(x)} (3.17)

in terms of the new coordinates where B(0, r) is the 2-dimensional ball of center 0

with radius r.
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For the points a ∈ ∂D, we choose the sequence {zp}p∈N included in Ca,θ, where
Ca,θ is a cone with center a, angle θ ∈ [0, π

2 ) and axis ν(a). The main theoretical
result of this paper is as follows.

Theorem 3.1. Assume that the boundary ∂D is of class C2 and σ is a real valued
Holder continuous function with positive lower bound. Then the boundary properties
of the obstacle D can be identified by the following indicator functions.

1. The obstacle boundary ∂D can be constructed from the following property

lim
p→∞

lim
m,n→∞

∣∣∣∣Re

[
γ−1
2

∫

S1

∫

S1

u∞(−x̂, d)fp
m(d)gp

n(x̂) ds(x̂)ds(d)

]∣∣∣∣ =

{
+∞, a ∈ ∂D,
< +∞, a ∈ Ω \ D.

(3.18)
Precisely, we have the blowup rate:

lim
m,n→∞

Re

[
γ−1
2

∫

S1

∫

S1

u∞(−x̂, d)fp
m(d)gp

n(x̂) ds(x̂)ds(d)

]
=

±1

4π|(zp − a) · ν(a)|+
(3.19)

+O(| ln |zp − a||2),

where zp := (zp,1, zp,2) and a = (a1, a2). The sign (+) is for a ∈ ∂DD while the
sign (−) is for a ∈ ∂DI .

2. The coating and the non-coating parts of ∂D can also be distinguished from
the following properties

lim
p→∞

lim
m,n→∞

Im
[
γ−1
2

∫
S1

∫
S1 u∞(−x̂, d)fp

m(d)gp
n(x̂) ds(x̂)ds(d)

]

| ln |(zp − a) · ν(a)||s =

{
+∞, a ∈ ∂DI ,
0, a ∈ ∂DD

(3.20)
by choosing any fixed s ∈ (0, 1).

3. The impedance coefficient on ∂DI can be detected by the following formula:

lim
p→∞

lim
m,n→∞

Im
[
γ−1
2

∫
S1

∫
S1 u∞(−x̂, d)fp

m(d)gp
n(x̂) ds(x̂)ds(d)

]

| ln |(zp − a) · ν(a)|| =
κ

π
σ(a), a ∈ ∂DI .

(3.21)

Remark 3.2. The formula (3.18) is also true if fp
m is replaced by gp

n. That is,
the singularity of Φ(x, zp) is theoretically enough for identifying ∂D. However, as
the blowup rate in this 2-dimensional case is of logarithmic order, it is not suitable
to localize the obstacle clearly in the numerical experiments. Due to this reason, we
introduced the density fp

m which is related to a stronger singularity ∂
∂ν(z∗

p)Φ(·, zp) to

get a blowup rate of order |zp−a|−1. For the formulas (3.20) and (3.21), the stronger
singularity of ∂

∂ν(z∗

p)Φ(·, zp) is necessary. Moreover, we can in fact use ν(a) instead

of ν(z∗p), since ∂D has been determined in terms of (3.18). The formula (3.19) can
also be used to distinguish the coated part ∂DI from the non-coated ∂DI .

Remark 3.3. Theorem 3.1 is stated for the case of single obstacle. But these
results are still true for the multiple obstacle case with coated and non-coated parts.

Remark 3.4. If a ∈ D, then the limit in (3.18) is conjectured to be ∞, see [11].
However up to now, we do not have the full answer. The approach in [15] can be used
to justify it in the case where the frequency κ is small enough.
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4. Proof of Theorem 3.1.. For any given point a ∈ ∂D, we firstly take the
rotation Ra and the translation Ma such that

Ra(ν(a)) = (0, 1), Ra(a) + Ma = 0

in the new coordinate system x̃. Under the transform x̃ := T(x) := Ra(x) + Ma, it
follows that

T(ν(a)) = (0, 1), T(a) = 0.

Define σ̃(x̃) := σ(x) and consider the following two problems in the coordinate
x̃ = (x̃1, x̃2) for any given z̃ = (z̃1, z̃2) ∈ R2

+. We set w̃+
σ̃(0)(x̃, z̃) and w̃+

D(x̃, z̃) to be

two functions satisfying

{
∆w̃+

σ̃(0) = 0, x̃ ∈ R2
+

( ∂
∂x̃2

w̃+
σ̃(0) + iκσ̃(0)w̃+

σ̃(0))(x̃, z̃)|x̃2=0 = −( ∂
∂x̃2

+ iκσ̃(0)) ∂
∂x2

Γ(x̃, z̃)|x̃2=0,
(4.1)

{
∆w̃+

D = 0, x̃ ∈ R2
+,

w̃+
D(x̃, z̃)|x̃2=0 = − ∂

∂x2

Γ(x̃, z̃)|x̃2=0
(4.2)

respectively, where Γ(x̃, z̃) = 1
2π ln 1

|x̃−z̃| and the subscript D in w̃+
D(x̃, z̃) refers to the

Dirichlet boundary condition in (4.2).
We give explicit solutions to these two problems in the following proposition.
Proposition 4.1. We have the explicit form of w+

σ̃(0)(x̃, z̃)

w̃+
σ̃(0)(x̃, z̃) =

1

4π

∫

R

ei(x̃1−z̃1)ξ1e−(x̃2+z̃2)|ξ1| |ξ1| + iκσ̃(0)

|ξ1| − iκσ̃(0)
dξ1, (4.3)

while w̃+
D(x̃, z̃) has the form

w̃+
D(x̃, z̃) = − 1

4π

∫

R

ei(x̃1−z̃1)ξ1e−(x̃2+z̃2)|ξ1|dξ1. (4.4)

This proposition can be proven by expressing

w̃+
σ̃(0)(x̃, z̃) = (U+[x̃2]φ+)(x̃1), w̃+

D(x̃, z̃) = (U+[x̃2]φ−)(x̃1)

in R2
+ with (U±[x̃2]φ)(x̃1) := 1

2π

∫
R

eix̃1ξ1∓x̃2|ξ1|φ̂(ξ1, z̃)dξ1 and computing the den-

sity functions φ± from the boundary value problems (4.1), (4.2), where φ̂ is the
1-dimensional Fourier transform of φ, see [19] for explicit computations.

Define

w+
σ(a)(x, z) = w̃+

σ̃(0)(Tx, Tz), w+
D(x, z) = w̃+

D(Tx, Tz)

for x, z ∈ R2 \ D near a, which is well-defined by the definition of T.
The next proposition gives the relation between Es(x, z) and w+

σ(a)(x, z), w+
D(x, z)

near the point a.
Proposition 4.2. If a ∈ ∂DI , then there exist δ(a) > 0 and C > 0 such that

|Im Es(x, z) − Im w+
σ(a)(x, z)| ≤ C, for (x, z) ∈ B+(a, δ(a)) ∩ Ca,θ, (4.5)
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|Re Es(x, z)−Re w+
σ(a)(x, z)| ≤ C| ln |x−a||·| ln |zp−a||, for (x, z) ∈ B+(a, δ(a))∩Ca,θ,

(4.6)
where B+(a, δ(a)) := B(a, δ(a)) ∩ (R2 \ D) and B(a, δ(a)) is the ball of center a and
radius δ(a).
Similarly, if a ∈ ∂DD, we obtain (4.5) and (4.6) by replacing w+

σ(a) by w+
D.

Remark 4.3. The estimate of |Re Es(x, z) − Re w+
σ(a)(x, z)| is not optimal.

We do not need the term | ln |x − a||. The upper bound in (4.6) can be replaced by
Cα|z − a|−α, for any α > 0 where Cα depends on α. But to prove Theorem 3.1 the
estimate given in (4.6) is enough. Now we can prove Theorem 3.1 based on these
propositions.

Proof of Theorem 3.1.

Step A: It follows from Proposition 4.2 that

|Re Es(x, zp) − Re w+(x, zp)| ≤ C ln
1

|zp − a| (4.7)

uniformly for all x, zp near any fixed point a ∈ ∂D, where w+(zp, zp) may be w+
σ(a)(zp, zp)

or w+
D(zp, zp), depending on the position of a. For w+(zp, zp) = w+

D(zp, zp), it follows
from (4.4) that

Re w+(zp, zp) = − 1

4π

∫

R

e−2|zp,2−a2||ξ1|dξ1 =
1

4π|zp,2 − a2|
,

while for w+(zp, zp) = w+
σ(a)(zp, zp) it holds from (4.3) that

Re w+(zp, zp) =
1

4π

∫

R

e−2|zp,2−a2||ξ1| |ξ1|2 − κ2σ2(a)

|ξ1|2 + κ2σ2(a)
dξ1 = − 1

4π|zp,2 − a2|
+ O(1),

where zp = (zp,1, zp,2) → a = (a1, a2) ∈ ∂D as p → ∞. The application of the above
relations in (4.7) leads to (3.19) and then limp→∞ |Re Es(zp, zp)| = +∞. (3.18) is
proven for a ∈ ∂D.

Suppose that a is outside D. We can construct z∗p , zp tending to a as we did for
a ∈ ∂D. Recall that Es(x, zp) satisfies





(∆ + κ2)Es(x, zp) = 0 in R2 \ D,
Es(·, zp) = − ∂Φ

∂ν(z∗

p) (x, zp) on ∂DD

( ∂
∂ν + iκσ(x))Es(x, zp) = −(∂ν + iκσ(x)) ∂Φ

∂ν(z∗

p) (x, zp) on ∂DI

Es(·, zp) satisfies the Sommerfeld radiation conditions,

where ν(z∗p) is the unit outward normal on ∂Dp
a at the point z∗p . Hence the boundary

condition is bounded with respect to x in H1/2(∂DD) and H− 1

2 (∂DI), respectively,
for z∗p , zp near a. It follows from the well-posedness of the direct problem and interior
estimates near a (i.e. away from ∂D) that Es(x, zp), and then Es(zp, zp), is bounded.

Step B. Let a ∈ ∂DI . From (4.3) we have

w̃+
σ̃(0)(z̃, z̃) =

1

4π

∫

R

e−2z̃2|ξ1| |ξ1| + iκσ̃(0)

|ξ1| − iκσ̃(0)
dξ1. (4.8)

By taking the imaginary part and setting z̃ = (z̃1, z̃2) = Ra(z) + Ma for z ∈ C(a, θ),
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we get

Im(4πw+
σ(a)(z, z)) = 4κσ(a)

∫ +∞

0

e−2(z−a)·ν(a)rr

r2 + κ2σ(a)2
dr

= 4κσ(a) [− ln(κσ(a)) − ln((z − a) · ν(a))+

2

∫ +∞

0

ln(r2 + κ2|(z − a) · ν(a)|2σ2(a))e−2rdr],(4.9)

which leads to the first relation in (3.20) by dividing by | ln((z − a) · ν(a))|s for
0 < (z−a) ·ν(a) < 1 with 0 < s < 1 using (4.5) and (3.16). The representation (3.21)
for σ(a) can be gotten from the above relation by dividing by | ln((z − a) · ν(a))| for
0 < (z − a) · ν(a) < 1.

Step C. Let a ∈ ∂DD. Proposition 4.2 for w+
D(x, z) and (3.14) imply the second

relation in (3.20), noticing the fact that Imw+
D(z, z) = 0. ¤

The rest of this section is devoted to the proof of Proposition 4.2. As we said in
the introduction, in the 2D case, we need more singularity analysis than in [19]. This
is due to the use of the more singular point source ∂

∂ν(z∗

p)Φ(·, zp). We give the detailed

analysis and refer to [19] for the steps which do not need important changes.

4.1. Proof of Proposition 4.2.. We give the proof for a ∈ ∂DI . The proof for
a ∈ ∂DD is similar.

Let Ẽs(x, zp) be the solution of





(∆ + κ2)Ẽs(x, zp) = 0 in R2 \ D,

( ∂
∂ν + iκσ(x))Ẽs(x, zp) = −(∂ν + iσ(x)) ∂

∂ν(z∗

p)Φ(x, zp) on ∂D

Ẽs(·, z) satisfies the Sommerfeld radiation condition.

(4.10)

Hence (Es − Ẽs)(x, zp) satisfies





(∆ + κ2)(Es − Ẽs)(x, zp) = 0 in R2 \ D,

( ∂
∂ν + iκσ(x))(Es − Ẽs)(x, zp) = 0 on ∂DI

(Es − Ẽs)(·, zp) = − ∂
∂ν(z∗

p)Φ(x, zp) − Ẽs on ∂DD

(Es − Ẽs)(·, z) satisfies the Sommerfeld radiation condition.

(4.11)

We state Hσ(x, z) := Ẽ(x, z) + ∂ν(z∗

p)Φ(x, z). Hence H satisfies





(∆ + κ2)Hσ(x, z) = −∇δ(x, z) · ν(z∗p) in R2 \ D,

( ∂
∂ν + iκσ(x))Hσ(x, z) = 0 on ∂D

Hσ(·, z) satisfies the Sommerfeld radiation condition.
(4.12)

We have the following estimates:




|Gσ(x, z)| ≤ c| ln |x − z||
|∇Gσ(x, z)| ≤ c|x − z|−1

|Hσ(x, z)| ≤ c|x − z|−1

|∇Hσ(x, z)| ≤ c|x − z|−2

in R2 \ D where c is a positive constant. (4.13)

The justification of these properties can be derived following, for instance, the ap-
proach of [24] and [25] since an explicit form of a local fundamental solution for the
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half space case can be derived as we did in Proposition4.1. See also [18] and [12] for
the case of elliptic problems with rough coefficients.

From these estimates, we deduce that Ẽ(·, zp) and its derivatives are bounded
for x ∈ ∂DD and zp near a ∈ ∂DI . The well posed-ness of (4.11) implies that

(Es−Ẽs)(·, zp) is bounded in H1
loc(R

2\D) for zp near a. Introducing a cutoff function

near the point a and using (4.11), we deduce that (Es − Ẽs)(·, zp) is bounded for x
near ∂DI and zp near a.

This means that we can replace in Proposition 4.2 Es by Ẽs.
We introduce ws

σ(·, zp) as the solution of




(∆ + κ2)ws
σ(x, zp) = 0 in R2 \ D,

( ∂
∂ν + iκσ(x))ws

σ(x, zp) = −(∂ν + iσ(x)) ∂
∂ν(a)Φ(·, zp) on ∂D

ws
σ(·, z) satisfies the Sommerfeld radiation condition,

(4.14)

and denote by ws
σ(a)(·, zp) the solution of (4.14) replacing σ(x) by σ(a). Then we have

Lemma 4.4. There exist δ(a) > 0 and C(R) > 0 such that

|(Ẽs − ws
σ)(x, zp)| ≤ C(R)| ln d(x, ∂D)| · | ln d(zp, ∂D)|,

|Im(Ẽs − ws
σ)(x, zp)| ≤ C(R), |(ws

σ − ws
σ(a))(x, zp)| ≤ C(R)

for zp ∈ B(a, δ(a)) ∩ Ca,θ and x ∈ (R2 \ D) ∩ B(0, R), for any R > 0 fixed.
Let ws

σ(a),Φ(·, z) be the solution of





(∆ + κ2)ws
σ(a),Φ(x, z) = 0 in Ω \ D,

( ∂
∂ν + iκσ(a))ws

σ(a),Φ(x, z) = −( ∂
∂ν + iκσ(a)) ∂

∂ν(a)Φ(x, zp) on ∂D

ws
σ(a),Φ(·, z) = − ∂

∂ν(a)Φ(x, zp) on ∂Ω

(4.15)

and ws
σ(a),Γ(·, z) be the solution of (4.15) replacing Φ by Γ. Then we have

Lemma 4.5. There exists C > 0 such that

|(ws
σ(a) − ws

σ(a),Φ)(x, z)| ≤ C, |(ws
σ(a),Φ − ws

σ(a),Γ)(x, z)| ≤ C

for z ∈ Ω \ D near D and x ∈ Ω \ D.
We define ws,0

σ(a) to be the solution of (4.15) replacing Φ by Γ and the Helmholtz

equation by the Laplace equation. Then we have
Lemma 4.6. There exists C > 0 such that |(ws

σ(a),Γ − ws,0
σ(a))(x, z)| ≤ C, for

z ∈ Ω \ D near D and x ∈ Ω \ D. Finally, we have
Lemma 4.7. There exist C > 0, δ(a) > 0 such that
1. |(Im ws,0

σ(a) − Im w+
σ(a))(x, z)| ≤ C for (x, z) ∈ B(a, δ(a)) ∩ Ca,θ.

2. |(Rews,0
σ(a) − Rew+

σ(a))(x, z)| ≤ C| ln d(zp, ∂D)| for (x, z) ∈ B(a, δ(a)) ∩ Ca,θ.

By combining all the lemmas stated above, we end the proof of Proposition 4.2. ¤

In the proofs of these lemmas we do not, in general, specify the interdependency
of the constants appearing in the estimates. However we distinguish the constant
depending on the angle θ and the ones which do not depend.

Proof of Lemma 4.4. The function Ẽs(x, zp) − ws
σ(x, zp) satisfies





(∆ + κ2)(Ẽs − ws
σ)(x, zp) = 0 in R2 \ D,

( ∂
∂ν + iκσ)(Ẽs − ws

σ)(x, zp) = −( ∂
∂ν + iκσ)∇Φ · [ν(z∗p) − ν(a)] on ∂D,

(Ẽs − ws
σ)(·, zp) satisfies the Sommerfeld radiation condition.

(4.16)
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We need the following lemma.
Lemma 4.8. We have the estimate:

|ν(z∗p) − ν(a)| ≤ C|z∗p − a|,

for z∗p near a where C is a positive constant. Proof of Claim 4.8. Take a point b ∈ ∂Ω

and connect it to a by a C3 smooth curve l such that l(0) = a, l(1) = b, l(s) ∈ Ω \ D

(s ∈ (0, 1)). By Theorem 7.1 of [11], there is a C2 strict deformation family {Dl(s)
a }

of a and ∂Ω. That is, each ∂D
l(s)
a is C2 diffeomorphic to the unit circle and {Dl(s)

a }
satisfies the following properties:

(i) a ∈ ∂D
l(0)
a , D ⊂ D

l(0)
a ⊂ Ω.

(ii) ∂D
l(1)
a = ∂Ω, D

l(s)
a ⊂ D

l(s′)
a (0 ≤ s < s′ ≤ 1).

(iii) l intersects ∂D
l(s)
a at l(s).

(iv) ∂D
l(s)
a depends C2 smoothly on s ∈ [0, 1].

For every s ∈ [0, 1] we denote ν(l(s)) to be the unit normal of ∂D
l(s)
a at l(s). From

(iv), the map s ∈ [0, 1] → ν(l(s)) is C1. Choosing l to be a one to one curve near
a, we deduce that the map l(s) ∈ l([0, 1]) → ν(l(s)) is also C1 near l(0). Now let
{sp} ⊂ [0, 1] be such that sp → 0 (p → ∞) and l be a C3 smooth curve such that
z∗p := l(sp) and {zp}p∈N ⊂ l([0, 1]). Since for every p, zp and z∗p are in Ω \D, then we

can always choose l such that l(s) ∈ Ω \ D, (s ∈ [0, 1]). We set Dp
a := D

l(sp)
a . Hence

the sequence ν(z∗p) satisfies Claim 4.8. ¤

The function Im(Ẽs − ws
σ) satisfies





(∆ + κ2)Im(Ẽs − ws
σ)(x, z) = 0 in R2 \ D,

∂
∂ν Im(Ẽ−ws

σ)(x, z) = [κσRe(Ẽs − ws
σ) − [ ∂

∂ν Im∇Φ + κσRe∇Φ] · [ν(z∗p) − ν(a)]](x, z)
on ∂D.

(4.17)
Hence we have

−Im(Ẽs − ws
σ)(x, zp) =

∫

∂D

F (y, zp)GN (y, x)ds(y)+

+

∫

∂BR

Im(Ẽs − ws
σ)(y, zp)

∂

∂ν
GN (y, x)ds(y) (4.18)

where

F (x, zp) := κσ(x)Re(Ẽs −ws
σ)(x, z)+ [− ∂

∂ν
Im∇Φ−κσ(x)Re∇Φ](x, z) · [ν(z∗p)− ν(a)]

and GN (x, y) is the Green’s function of the problem given by the Helmholtz equation
in BR\D with Neumann boundary condition on ∂D and Dirichlet boundary condition
on ∂BR. The normal ν is oriented outside B \ D.

From (4.16), we have

−(Ẽs − ws
σ)(x, zp) =

∫

∂D

Gσ(x, y)(
∂

∂ν
+ iκσ(y))[∇Φ · (ν(z∗p) − ν(a))](y, zp)ds(y).

Hence

|(Ẽs − ws
σ)(x, zp)| ≤ c

∫

∂D

(ln |x − y|)|y − zp|−2|z∗p − a|ds(y)
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For y ∈ ∂D and zp ∈ Ca,θ we have the inequality |zp − a| ≤ C(θ)|zp − y|. Applying
this inequality to z∗p , enlarging θ if necessary, we have

|(Ẽs − ws
σ)(x, zp)| ≤ c

∫

∂D

(ln |x − y|)|y − zp|−1ds(y) (4.19)

since |z∗p − y| ≤ |zp − y|, for y ∈ ∂D and zp near a. Hence for every α > 0 there exists
Cα > 0 such that

|(Ẽs − ws
σ)(x, zp)| ≤ Cα|x − zp|−α.

From the explicit form of Φ, we have | ∂
∂ν Im∇Φ(x, zp)|·|ν(z∗p)−ν(a)| ≤ c|x−zp|−1|z∗p−

a| and Re∇Φ(x, zp)|·|ν(z∗p)−ν(a)| ≤ c|x−zp|−1|z∗p−a|. Hence F (y, zp) ≤ Cα|y−zp|−α

for y ∈ ∂D. Using the estimate |GN (x, y)| ≤ Cα ln |x − y| and choosing α < 1 we
deduce from (4.18) that

|Im(Ẽs − ws
σ)(x, zp)| ≤ Cα.

We have the first estimate of Lemma 4.4 from (4.19), i.e

|(Ẽs − ws
σ)(x, zp)| ≤ C ln d(x, ∂D)| · | ln d(zp, ∂D)|.

Now consider the third estimate of Lemma 4.4. We set R(x, z) := ws
σ(x, z)−ws

σ(a)(x, z).
Then it satisfies




(∆ + κ2)R(x, z) = 0 in R2 \ D,
∂R(x,z)

∂ν + iκσ(a)R(x, z) = −iκ(σ(x) − σ(a))(ws
λ(x, z) + ∂

∂ν(a)Φ(x, z)) on ∂D,

R(·, z) satisfies the Sommerfeld radiation condition.
(4.20)

From (4.20), we have the representation:

R(x, z) = −
∫

∂D

iκ(σ(y)−σ(a))Gσ(a)(y, x)(ws
σ+

∂

∂ν(a)
Φ)(y, z)ds(y), for (x, z) ∈ R2\D.

(4.21)
We define K(x, z) := −( ∂

∂ν + iκσ(x)) ∂
∂ν(a)Φ(x, z). From (4.14) we have the following

representation

ws
σ(x, z) =

∫

∂D

Gσ(a)(y, x)K(y, z)ds(y),

hence due to the estimates of the Green’s function Gσ(a)(x, y) and Φ(x, y), we have

|ws
σ(x, z)| ≤

∫

∂D

| ln(|y − x|)||z − y|−2ds(y) ≤ c

|x − z| .

From (4.21) and the Holder regularity of σ(x), we deduce that

|R(x, z)| ≤ c

∫

∂D

|y − a|β ln(|y − x|)||z − y|−1ds(y).

From the inequality |y−a| ≤ c(θ)|y− z| for y ∈ ∂D and z ∈ Ca,θ ∩B(a, δ(a)) we have

|y − a|β
|y − z| ≤ c(θ)βC

|y − z|1−β
,
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which implies

|R(x, z)| ≤
∫

∂D

c(θ)βC| ln |y − x||
|y − z|1−β

dy

and therefore |R(x, z)| = O(1) for x ∈ R2 \ D and z ∈ Ca,θ ∩ B(0, R). ¤

Proofs of Lemma 4.5 and Lemma 4.6.

Similarly to the proof of Lemma 4.4, the proofs are based on the use of integral
representations and the pointwise estimates of the Green’s functions of the corre-
sponding problems. So, we omit the details. ¤

Proof of Lemma 4.7. Since ws,0
σ(a) satisfies





∆ws,0
σ(a)(x, z) = 0 in Ω \ D,

( ∂
∂ν + iκσ(a))(ws,0

σ(a)(·, z)) = −( ∂
∂ν + iκσ(a)) ∂

∂ν(a)Γ on ∂D,

ws,0
σ(a)(·, z) = − ∂

∂ν(a) (Γ) on ∂Ω,

(4.22)

then it is clear that G0
σ(a) := ws,0

σ(a)(x, y) + ∂ν(a)Γ(x, y) satisfies





∆(G0
σ(a))(x, z) = − ∂

∂ν(a)δ(x − y) in Ω \ D,

( ∂
∂ν + iκσ(a))(G0

σ(a))(·, z) = 0 on ∂D,

(G0
σ(a))(·, z) = 0 on ∂Ω.

(4.23)

We can assume without loss of generality that a = (0, 0) and ν(a) = (0, 1) by using
the rigid transformation of coordinates [Ra(ν(a)) + Ma]. Let ξ = F (x) be the local
change of variables

ξ1 = x1, ξ2 = x2 − f(x1), (4.24)

where f is the function defined in the introduction. We have the following properties:





c1|x − z| ≤ |F (x) − F (z)| ≤ c2|x − z|,
|F (x) − x| ≤ c3|x|2,
|DF (x) − I| ≤ c4|x|

(4.25)

for x, z near the point a, where ci(i = 1, 2, 3, 4) are positive constants, which is due
to hypothesis on the regularity of ∂D.

Let x, z be points near a. From (4.23), we deduce that G̃0
σ(a)(ξ, η) = G0

σ(a)(x, z)
satisfies:

{
∇ξ · B(ξ)∇ξG̃

0
σ(a) = −JT (ξ)∇ξδ(ξ − η) · (0, 1) near F (a),

|J−T ν|B(ξ)∇ξG̃
0
σ(a) · ν̃ + iκσ(a)G̃0

σ(a) = 0 on ∂R2
+ near F (a),

(4.26)

where ξ := F (x) and η := F (z), B := JJT and J := ∂ξ
∂x (F−1(ξ)) and ν̃ := (0, 1) is the

unit normal to ∂R2
+. We denoted by J−T the adjoint of J−1. We have from (4.25)

that

|JT (ξ) − JT (0)| ≤ c|ξ|, |B(ξ) − B(0)| ≤ c|ξ|

and J(0) = B(0) = I.
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We set Γσ(a)(x, z) := (w+
σ(a) + ∂

∂x2

Γ)(x, z) and write R̃(ξ, η) := G̃0
σ(a)(ξ, η) −

Γσ(a)(ξ, η). Then the function R̃(·, η) satisfies

{
∇ξ · B(ξ)∇ξR̃ = ∇ξ · (I − B)∇ξΓσ(a) + (I − JT (ξ))∇ξδ(ξ − η) · (0, 1),

B(ξ)∇ξR̃ · ν̃ + iκσ(a)R̃ = (I − B)∇ξΓσ(a) · ν̃ + iκσ(a)(1 − |J−T ν|−1)R̃,
(4.27)

where the first relation holds in R2
+ near F (a), while the second one is satisfied on

∂R2
+ near F (a).
We remark that (I − JT (ξ)) is equal to the matrix given by the two line vectors

(0,−f(ξ)) and (0, 0). Hence we have

(I − JT (ξ))∇ξImΓσ(a)(ξ, η) · (0, 1) = 0.

With this remark, the problem (4.27) is exactly the one studied in [19]. We write
∂B+

r = Sr ∪Sc
r with Sr := ∂B+

r ∩ ∂F (D). Arguing as in [19], we obtain the following
estimate

|Im R̃(ξ, η)| < c for ξ ∈ Sr and η ∈ CF (a),θ.

and

|Re R̃(ξ, η)| < c| ln |ξ − η|| for ξ ∈ Sr and η ∈ CF (a),θ.

We go back to R(x, z) := G0
σ(a)(x, z) − Γσ(a)(x, z). We have

R(x, z) = G0
σ(a)(x, z) − Γσ(a)(F (x), F (z)) + Γσ(a)(F (x), F (z)) − Γσ(a)(x, z),

which can be rewritten as

R(x, z) = R̃(F (x), F (z)) + [Γσ(a)(F (x), F (z)) − Γσ(a)(F (x), z)]+

+

[Γσ(a)(F (x), z) − Γσ(a)(x, z)]. (4.28)

By the same argument as in [19], we end up with the estimate:

|Im R(x, z)| ≤ c(θ) (4.29)

for x ∈ B(a, δ(a)) such that F (x) ∈ Sr and z ∈ Ca,θ ∩ B(a, δ(a)).

For z ∈ Ca,θ ∩ B(a, δ(a)
2 ) and x ∈ [∂B(a, δ(a))] ∩ R2 \ D, we have

|Im R(x, z)| ≤ c (4.30)

with some positive constant c, because Ca,θ ∩ B(a, δ(a)
2 ) and [∂B(a, δ(a))] ∩ R2 \ D

are separated sets. Since in B(a, δ(a)) ∩ (R2 \ D), we have ∆xIm R(x, z) = 0, then
using (4.29) and (4.30) we have |Im R(x, z)| ≤ c(θ) for x ∈ [R2 \ D] ∩ B(a, δ(a)) and

z ∈ Ca,θ ∩ B(a, δ(a)
2 ), by the maximum principle.

Similarly we have |ReR(x, z)| ≤ C| ln |x− z|| for x ∈ B(a, δ(a)) such that F (x) ∈
Sr and z ∈ Ca,θ ∩ B(a, δ(a)). Hence |ReR(x, z)| ≤ C| ln d(z, ∂D)| for x ∈ B(a, δ(a))
such that F (x) ∈ Sr and z ∈ Ca,θ ∩ B(a, δ(a)) which is the counterpart of (4.30) for

ReR̃. The rest of the proof is the same as the one for the imaginary part. ¤
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5. Numerical tests. In this section, we consider two reconstruction model prob-
lems for numerical tests based on Theorem 3.1. In the first model we take the obstacle
to be a disc and on its whole boundary we impose the impedance boundary condition.
The purpose of considering such a model is to show the influence of wave number κ
and singularity strength on the inversion scheme. In the second model, we consider a
non-convex obstacle with mixed boundary conditions. We check our inversion formu-
las fully, especially for the identification of different type of boundary. Also we show
the effect of the non-convex part on the inversion performance.

In the reconstruction scheme, the approximation of Φ(x, zp) and Φν(a)(x, zp) by
the Herglotz wave function plays a key role. To do this, we need to construct the
approximate domain Dp

a in the way mentioned in Section 2. Then their density
functions can be determined by the standard argument of minimum norm solution of
the integral equation of the first kind. In this way the numerators in (3.18), (3.20)
and (3.21) can be computed for every sequence of points (zp)p∈N approaching to ∂D
in terms of the far-field pattern.

In testing our inversion scheme, we simulate the inversion input data (far-field
pattern) by solving the direct problem using the combined single- and double-layer
potential method, see [8] and [9].

In the subsections 4.1 and 4.2, we consider the first model, while subsection 4.3 is
dedicated to a non-convex obstacle with mixed boundary conditions, from which we
can test our theoretical results.

5.1. Reconstruction of ∂D. For the numerical test we take ∂D = {x =
(x1(t), x2(t)) = 1.2(cos t, sin t) : t ∈ [0, 2π]}. We can construct Dp

a in a special way by

∂Dp
a = {(x̃1(t), x̃2(t)) = (1.2 + δ0(p))(cos t, sin t) : t ∈ [0, 2π]}

and take zp = (x̃1(t0), x̃2(t0))+δ1(p)(cos t0, sin t0) outside of D
p

a for a = 1.2(cos t0, sin t0)
in ∂D. The smallness of δ1(p) determines the singularity of Φ(x, zp), Φν(a)(x, zp) on
∂Dp

a near zp.
Example 1. Construction of ∂D with unknown impedance σ(x) for given far-field

data.
It follows from the first point of Theorem 3.1 that the boundary ∂D can be

reconstructed from the blow up behavior of the approximate values of the indicator
function:

Im,n(zp) :≈
( π

N

)2

∣∣∣∣∣∣

2N−1∑

i,j=1

Re
(
γ−1
2 U∞(i, j)F p

m(j)Gp
m(i)

)
∣∣∣∣∣∣

(5.1)

for large m,n, where Gp
n(i) := gp

n(x̂i), F p
m(j) := fp

m(d̂j) and U∞(i, j) represents
u∞(−x̂i, dj).

Therefore, we can test the numerical performance of this formula by taking zp

approaching to ∂D. If Im,n(zp) is greater than some a-priori given large value, for
fixed m,n large enough, we consider zp to be almost in ∂D. Notice that only the
singularity in Φν(z̃p)(x, zp) is needed in this procedure, we do not need the boundary
∂D.

In our numerical implementations, we take κ = 0.6, N = 32 and keep the singu-
larity of Φ(·, zp) unchanged near ∂Dp

a by fixing δ1 = 0.015. When zp approaches to
∂D by decreasing δ0 from different directions t0, we get different values of Im,n(zp).
We choose the same constant CB as the criterion for the blowing-up of the indicator
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Im,n(zp(t0)) at different direction t0. That is, we choose zp(t0) as the approximation
of the point a ∈ ∂D in the direction t0 when Im,n(zp(t0)) is larger than CB. Then
the constructed approximate position of ∂D is given by interpolating those points.
In this way, we can draw the approximate shape of ∂D by choosing all directions t0
using the same given CB. As obtained in the theoretical result, the larger the value
CB is, the better the approximation of ∂D should be.

Consider the boundary reconstruction problem with non-constant impedance

σ(x) =
2 + x1x2

(3 + x2)2
, x ∈ ∂D.

Under this configuration, the reconstructions for different blowing-up criteria are
shown in Figure 5.1 (left), while the distribution of indicator value is also given in the
right picture.
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Fig. 5.1. Reconstruction of ∂D for variable impedance with κ = 0.6 with different blowing-up
constants CB, the values of indicator are small in the directions corresponding to large impedance.

There is an interesting phenomena in the numerics. For a reasonable indicator
value CB = 2, we can see the whole rough shape of ∂D. However, for larger values,
i.e. CB = 3, most of the part of ∂D can be seen with more satisfactory accuracy,
but some part, i.e. (ÂB), is not visible. In this part the indicator value is less than 3
(but, of course, bigger than 2). This numerical performance is closely related to the
impedance distribution in ∂D. It can be seen from the right part of Figure 5.1 that
the indicator value is obviously smaller in the narrow domain at each radius layer.
Therefore as r decreases, the part of ∂D related to these angles can not be detected
with the same accuracy. Considering the distribution of boundary impedance, this
part corresponds to σ(x) with large value, so it can not be seen by using the same
criterion values CB, as clearly as the other part. This may be explained by the fact
that the scattered wave along these directions will be much absorbed. Another, but
related, reason is the property (3.19), i.e.

lim
m,n→∞

Re

[
γ−1
2

∫

S1

∫

S1

u∞(−x̂, d)fp
m(d)gp

n(x̂) ds(x̂)ds(d)

]
=

±1

4π|(zp − a) · ν(a)|+

+O(| ln |zp − a||),

where O(| ln |zp − a||) may be large if σ is large near the point a. Hence numerically
the second term can weaken the blowup of the first term.

Physically, this is the reason why we introduce the coated part of an obstacle, i.e.
to avoid or perturb the detection of the obstacle.
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The other special property of this example is that the whole boundary shape can
be well-reconstructed using only one blowing-up criterion CB. This comes from the
special geometric shape and the fact that we have a complete impedance boundary
condition. However, in the case of general problems, as for non-convex obstacle,
with mixed boundary condition, we need to use multiple blowing-up values to get a
satisfactory reconstruction, see subsection 4.3.

5.2. Reconstruction of σ(x) for known ∂D. For a given a ∈ ∂D, we take
zp ∈ R2 \ D

p

a with D ⊂⊂ Dp
a.

By the theoretical result given (3.21), the approximate formula for σ(a) is

κ

π
σ(a) ≈ 1

| ln((zp − a) · ν(a))|
(π

n

)2 2n−1∑

i,j=1

Im
(
γ−1
2 U∞(i, j)F p

m(j)Gp
n(i)

)
(5.2)

for large m,n and small |zp − a|.
Example 2. Consider the variable impedance distribution given in Example 1.
We take n = 32. First, let us keep the singularity unchanged by fixing δ1 and

shrink the radius of ∂Dp
a such that zp → a ∈ ∂D. The computed values of σ(x(t))

with fixed δ1 = 0.015 and different δ0 = 1.22, 0.82, 0.12, 0.02 for two wave number
κ = 0.6, κ = 0.7 are shown in Figure 5.2. It can be seen from this figure that when
δ0 → 0 (δ0 = 0.02), the reconstruction results are satisfactory for both wave numbers.

It is interesting to see that when δ0 is large enough (δ0 = 1.22), the reconstruction
is invalid, even if here we use a strong singularity δ1 = 0.015. This is reasonable since
the approximation to the strong singularity of the fundamental solution contain much
error.
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Fig. 5.2. Reconstruction of σ(x) = 2+x1x2

(3+x2)2
for δ0 = 1.22, 0.82, 0.12, 0.02 with two different

wave numbers κ = 0.6(left) and κ = 0.7(right), where we fix δ1 = 0.015.

Finally, we fix ∂Dp
a near ∂D and take zp tending to ∂Dp

a. In our configuration,
this means δ1 → 0 for fixed small δ0. The tests with δ0 = 0.002 for two wave
number κ = 0.6, 1.0 at different δ1 = 0.025, 0.020, 0.015, 0.010 are given in Figure 5.3,
which show the influence of the singularity. It can be seen that the approximation
is sensitive to the wave number κ. The reason is that we ignore the remained term
C/| ln |(zp−a)·ν(a)||, where the constant C comes from (4.5). Theoretically, this terms
tend to 0 as zp → a. However, this procedure causes a difficulty in approximating the
fundamental solution. We expect that the constant C becomes large as κ becomes
small. This is naturally related to the following relation, in the 2-dimensional, case
between the fundamental solution to the Helmholtz and Laplace equations:

H
(1)
0 (κ|x − y|) = − 1

2π
ln(|x − y|) − lnκ + O(1)
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locally for x, y ∈ R2 and κ small enough, see [8]. This implies that the difference
between the fundamental solution behaves as lnκ. So the constant C should have a
similar behavior with respect to κ. These remarks on the dependency on wave number
κ are also observed in the tests for detecting ∂D. However, we think that this is just
a 2D phenomenon.
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Fig. 5.3. Reconstruction of σ(x) = 2+x1x2

(3+x2)2
for δ1 = 0.010, 0.015, 0.025, 0.035 with two different

wave numbers κ = 0.6(left) and κ = 1.0(right), where we fix δ0 = 0.002.

5.3. Reconstruction of an obstacle with mixed type boundary. Since
the main advantage of our inversion method is its ability to identify the full complex
obstacle simultaneously, here we consider the numerical behavior of our inversion
method acting on a non-convex obstacle with mixed boundary condition.

Example 3. Consider a non-convex obstacle D with the boundary

∂D = {x : x(t) = (x1(t), x2(t)) = (cos t + 0.65 cos 2t − 0.65, 1.5 sin t), t ∈ [0, 2π]}.

Let ∂D be composed of sound-soft part ∂DD for t ∈ [0, 1.42π] and impedance part
∂DI for t ∈ [1.42π, 2π]. In ∂DI , we assume the impedance coefficient σ(x(t)) ≡ 3.

We also choose ∂Dp
a and zp in a special way. For two small constants δ0, δ1 > 0,

we take
{

∂Dp
a = {y(t) := x(t) + δ0 × (cos t, sin t) : x(t) ∈ ∂D, t ∈ [0, 2π]},

zp(t) = y(t) + δ1 × (cos t, sin t) for t ∈ [0, 2π].
(5.3)

In terms of Theorem 3.1, the inversion schemes contain the following three steps:
Step 1. Identify the location of ∂D using (3.18);
Step 2. Distinguish the different parts of ∂D in terms of (3.20);
Step 3. Reconstruction of σ(x) in ∂DI from (3.21).

We present the numerical results with fixed wave number κ = 0.9 and δ1 = 0.01.
Step 1. we take n = 16 and decrease δ0 = l × 0.05 by taking l from 20 to 2.

The indicator values in (3.18) for ∂D are computed for zp(t) and ∂Dp
a specified here

for every direction tj and different δ0. Then we draw the contour line to obtain an
approximation of ∂D. As for example 1 and example 2, we choose some appropriate
value CB for the stopping rule of l. In the case if the indicator is always less than CB
in some direction, we take zp for the initial guess (the largest l) as an approximate
location of points in ∂D.

In this case, the situation is different from the examples given in the previous
subsections, the reconstruction of the boundary using only one blowing-up value CB
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is not sufficient, see the left picture in Figure 5.4 for the reconstruction of CB = 3.0,
where the kite-shape in red color is the exact obstacle. Enlarging CB can improve the
reconstruction along some directions, but the approximation to the whole boundary
is still not satisfactory. The reason for this phenomena is that our theoretical results
do not guarantee the uniform blowing-up property for all directions.
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Fig. 5.4. Reconstruction of ∂D with CB = 3.0 (left) and 4 CB′s (right) by concave-hull.
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Fig. 5.5. Reconstruction of ∂D by concave-hull using 8 CB′s (left) and 12 CB′s (right).

To overcome this difficulty and apply our reconstruction formula, we propose to
combine the reconstruction results for different CB together and take the concave
hull. Then ∂D can be approximated very well, see Figure 5.4 where we compare the
shape given by using one CB only and the one obtained by using and 4 CB values. In
Figure 5.5, we show the reconstruction results by using eight and twelve CB values.
Precisely, the reconstructions in Figure 5.4 and Figure 5.5 correspond the following
CB′s values:

Figure 5.4 (Right): 4 values–CB = 0.8, 2.5, 3.0, 3.5;
Figure 5.5 (Left): 8 values–CB = 0.8, 2.5, 3.0, 3.5, 1.2, 1.5, 5.5, 6.5;
Figure 5.5 (Right): 12 values–CB = 0.8, 2.5, 3.0, 3.5, 1.2, 1.5, 5.5, , 6.5, 2.0, 3.2, 4.5, 6.0.
It can be seen that the reconstruction is satisfactory. This means that using the

technic of combining several CB’s, the theoretical formulas provide good reconstruc-
tions.

We give the indicator value distribution in Figure 5.6 for all directions t with
different l at each direction. We can see how the indicator near t = 0.58π, π, 1.42π
has some special property, which explains the difficulty of reconstructing these parts
shown in Figure 5.4 and Figure 5.5.

Next we consider Step 2 and Step 3 by using (3.20) and (3.21), that is, test
the numerical behavior in distinguishing the boundary type and impedance in ∂DI .
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Fig. 5.6. The indicator values for boundary shape.

Different from the formula (3.18), these two formulas need the boundary shape ∂D
which is theoretically obtained from (3.18). Since we can only get some approximation
to ∂D numerically in terms of (3.18), it is necessary to check the approximate versions
of (3.20) and (3.21) for distinguishing the boundary type and recovering σ(x) on the
coating part.

Step 2. We express the quantitative behavior for distinguishing ∂DD and ∂DI by
given the indicator distribution. As explained in Step 1, by using different blowing-up
criterion in the shape reconstruction, we can get a good approximation to ∂D. In this
step, we specify ∂D̃ ≈ ∂D with an explicit expression given by

∂D̃ =

(
cos δ∗ − sin δ∗

sin δ∗ cos δ∗

)
[∂D + {δ∗ × (cos t, sin t) : t ∈ [0, 2π]}] (5.4)

with small constant δ∗ > 0, for simplicity. In this way, D̃ is no more symmetric with
respect to x1 and the location for corner part also differs from that of ∂D. To check
the effect of this domain approximation on (3.20) and (3.21), we also evaluate them
using the exact ∂D.

We generate (∂D̃p
a, ∂Dp

a) from (∂D̃, ∂D) and therefore the sequences ({z̃p}, {zp})
as in (5.3). In this way, we have z̃p → ã ∈ ∂D̃, zp → a ∈ ∂D and δ0, δ1 → 0. In
the computation, we take n = 32 and decrease δ0 = l × 0.05 → 0 by taking l from
10 to 2. The indicator behavior using the same far-field pattern for ∂D and ∂D̃ with
δ∗ = 0.05 are given in Figure 5.7.
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Fig. 5.7. Indicator values for different part of the boundary using exact ∂D (left) and ∂D̃ with
δ∗ = 0.1 (right).

Noticing the fact that the sound-soft part corresponds to the parameter t ∈
[0, 1.42π], while the impedance part is related to t ∈ [1.42π, 2π], the above numerical
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behavior supports (3.21) strongly with a large difference in [0, 1.42π] and [1.42π, 2π],
that is, we can distinguish the boundary type in terms of the obvious difference
of indicator values when zp approaches to the boundary (for small l), even if the
boundary shape is known with a relative error.

Step 3. We compute the impedance coefficient on ∂DI by applying the formulas
for ∂D and also for its approximation ∂D̃, respectively. The reconstruction behavior
for exact ∂D as well as its approximation ∂D̃ with δ∗ = 0.05 is shown in Figure
5.8. It can be seen that, for given exact boundary shape ∂D, the theoretical result
(3.21) for the impedance is valid (left figure), except near the end points of ∂DI .
The rough approximation in this part is reasonable, since this part is near to the
sound-soft boundary. Using the approximate domain ∂D̃, the impedance can still be
captured (right figure). Of course, the reconstruction is less accurate. Due to the non-
convex property of the obstacle and the mixed boundary condition, we think these
results are satisfactory. However, if the perturbation for ∂D is very large, then the
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Fig. 5.8. Recovery of σ using exact ∂D (left) and approximate ∂D̃ with δ∗ = 0.05 (right).

reconstruction of σ(x(t)) is much contaminated. The reason is due to the sensitivity of
the approximate reconstruction to the boundary shape, especially for the corner part
of the non-convex domain, noticing that in the formula (3.21), the normal direction
ν(a) appears. The perturbation scheme (5.4) moves the position of the corner part by
rotation. An inversion result for the impedance with δ∗ = 0.1 is shown in Figure 5.9.
From the left picture of this figure, we see how the corner part of ∂D̃ with δ∗ = 0.1
has been much moved from that of ∂D with a relative error almost 10%.
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Fig. 5.9. Approximate ∂D̃ with δ∗ = 0.05, 0.1 (left) and reconstruction of σ for different l from
approximate ∂D̃ with δ∗ = 0.1 (right).

We conclude that the theoretical results (3.20) and (3.21) are well supported by
our numerical tests even for non-convex domains. If the approximate domain ∂D̃
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is used in these two formulas, then we can still distinguish the boundary type in
terms of the obvious blowing-up property of the indicator. However, the quantitative
identification of impedance depends on the error level of ∂D.
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