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Abstract. We study spatially localized states of a spiking neuronal network populated by a pulse-coupled phase
oscillator known as the lighthouse model. We show that in the limit of slow synaptic interactions in the continuum limit
the dynamics reduce to those of the standard Amari model. For non-slow synaptic connections we are able to go beyond
the standard firing rate analysis of localized solutions allowing us to explicitly construct a family of co-existing one-bump
solutions, and then track bump width and firing pattern as a function of system parameters. We also present an analysis
of the model on a discrete lattice. We show that multiple width bump states can co-exist and uncover a mechanism for
bump wandering linked to the speed of synaptic processing. Moreover, beyond a wandering transition point we show that
the bump undergoes an effective random walk with a diffusion coefficient that scales exponentially with the rate of synaptic
processing and linearly with the lattice spacing.
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1. Introduction. A goal of theoretical neuroscience is to develop a tractable model of a spiking
neuronal network. This must necessarily involve a single cell model, capable of generating spikes of activity
(so-called action-potentials), that when connected into a synaptic network can generate the rich repertoire
of behavior seen in a real nervous system. For all of the popular conductance-based single neurons models,
and also the simpler integrate-and-fire (IF) variety, a full understanding of network dynamics has proved
elusive. In essence this is because we have not yet developed an appropriate mathematical framework to
understand the neurodynamics of spiking networks. To date progress in this area has been restricted to
firing rate neural models [1, 2, 3, 4], which cannot adequately capture known spike-train correlations, or
the analysis of phase-locked states and instabilities of homogeneous steady states in spiking IF networks
[5, 6, 7, 8, 9, 10].

The lighthouse model of Haken is a candidate single neuron model that falls between spiking neuron
models and firing rate descriptions (see [11] and references therein). We show that in the limit of slow
synaptic interactions it reduces to the classic Wilson-Cowan and Amari firing rate models. For fast
synaptic interactions, it displays some of the complex properties that have been observed in simulations
of spiking neuronal networks. Importantly the lighthouse model is sufficiently simple that it may also
be analyzed at the network level even for fast synaptic responses. Hence, a detailed investigation into
the network dynamics of the lighthouse model may pave the way to the development of a specific soluble
spiking neurodynamics.

With this in mind we turn our attention to spatially localized bumps of persistent activity, which
have been linked to working memory (the temporary storage of information within the brain) [12, 13, 14].
In many models of working memory, transient stimuli are encoded by feature-selective persistent neural
activity. Such stimuli are imagined to induce the formation of a spatially localized bump of persistent
activity which coexists with a stable uniform state (with low firing rate). The most popular mathematical
formulations of such models assume long-range inhibition with local recurrent excitation and invoke a
population level description in terms of a rate model (see for example [15, 16]). Although interesting in
their own right and s 6.–*/ed by a number of authors (surveyed in [17]), such models are only useful for
describing systems with slow synaptic interactions.

The study of localized states in fully spiking network models with fast synaptic interactions has
typically only been possible with the aid of numerical simulation. For example, the work of Laing and
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Chow [18] on IF networks shows a number of interesting behaviors that would be absent in a firing rate
study. These include the observation that i) a bump solution can exist in a spiking network (co-existing
with the quiescent state) provided the neurons fire asynchronously within the bump and ii) that a bump
can lose stability with increasing rate of synaptic processing to a wandering bump or a traveling wave.
Wandering was also observed in a model of working memory that had populations of excitatory and
inhibitory spiking neurons [19].

It is precisely these observations that we revisit in this paper within the context of the lighthouse
model of a spiking neural network. Not only does the lighthouse model support similar behavior as that
seen in the IF network, it is sufficiently simple to admit to further mathematical analysis. In this regard it
is a minimal model of a spiking neural network. Although to date only patterns of synchronized activity
have been analyzed [11] it is clearly a model that may be studied further in more interesting scenarios,
such as the one we now present. Importantly this allows us to uncover the mechanism that governs the
transition from a stable to a wandering bump.

In the next section we introduce the lighthouse model and survey some of its known properties.
For simplicity we first study the model in the continuum limit, which allows us to more easily show its
correspondence with the Amari model in the limit of slow synaptic processing. Next we introduce the
definitions of a bump, a stationary bump and an equiperiod bump so that we may carefully formulate
appropriate existence conditions for bumps and wandering bumps. We then show how one may analyze
spatially localized states of the continuum lighthouse model for non-slow synaptic processing and explicitly
construct a family of spiking bump solutions. We follow the continuum description with a treatment of
dynamics on a lattice, including bump wandering. Finally, we discuss natural extensions of the work in
this paper.

2. The lighthouse model. The lighthouse model was introduced by Haken as a pulse coupled
model of a spiking neural network whose behavior could be explicitly analyzed at the network level [20, 21].
Much is now known about phase-locked solutions and the effect of noise and delays on stability and is
summarized in the book by Haken [11]. As we will show, the lighthouse model exhibits a transition to
wandering like the integrate-and-fire model but is easier to analyze. Here we briefly outline the lighthouse
model before presenting our new results on bump solutions.

The lighthouse model is a hybrid between a phase-oscillator and a firing rate model. Indexing a
lighthouse neuron with i ∈ Z, the dynamical description of a discrete network is cast as a system of
ordinary differential equations for the phase variable θi = θi(t) ∈ [0, 1), t ∈ R

+, in the form

dθi

dt
= H(ui − h), (2.1)

with

ui(t) =

N∑

j=1

wijEj(t), Ei(t) =
∑

m

η(t− Tm
i ), (2.2)

andH(·) is interpreted as a firing rate function, with threshold h. Haken uses the Naka-Rushton sigmoidal
function (though many of the analytical results for the lighthouse model are obtained for a linear firing
rate function). Throughout this paper we work with the Heaviside step function such that H(x) = 1 for
x ≥ 0 and is zero otherwise. The quantity ui is recognized as the input to neuron i, mediated by the
synaptic processing of a set of incoming spikes. The spike time Tm

j marks the mth firing of neuron j,
given by the times for which θj(t) = 1. Each time neuron i fires, a synaptic pulse η(t) (with η(t) = 0 for
t < 0) is transmitted to other neurons j = 1, . . . , N with coupling weight wij . We shall take the synaptic
response to be normalized, such that

∫∞

0
η(t)dt = 1. When the input to a neuron exceeds the threshold,

h, the phase will advance towards threshold at a constant rate which we have arbitrarily set to one. We
note that the activity of a given neuron need not be periodic. Depending on the nature of the inputs it
could also be quiescent or fire irregularly.

We consider two versions of the lighthouse model. In the first version, which is the model originally
proposed by Haken, whenever the input is below threshold or drops below threshold the phase immediately
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resets to zero. In this case the neuron can only fire if it receives input that remains above threshold for
an entire period. In the second version the phase is not reset, except when the neuron fires. We will
see that the two versions have different possible bump solutions and dynamics. In particular the instant
reset version does not have wandering bumps.

We consider lateral inhibition-type synaptic coupling on a one dimensional lattice. The system has
two length scales – the lattice spacing and the coupling footprint. We take the array length to be much
longer than either of these two length scales. We can index the N neurons in the array by a distance
via x = iδx, where δx is the lattice spacing. The continuum limit is given by N → ∞, δx → 0 with
δxN a constant. To make the connection to the continuum limit transparent we rewrite the coupling
function as wij = w([i− j]δx)δx. A continuum version of the lighthouse model (along the whole real line)
is obtained under the replacement (θi, ui, T

m
i , w((i − j)δx)) → (θ(x, t), u(x, t), Tm(x), w(x − y)) x ∈ R,

and is governed by the dynamics

∂θ(x, t)

∂t
= H(u(x, t) − h), (2.3)

with

u(x, t) =
∑

m

∫ ∞

0

dsη(s)

∫ ∞

−∞

dyw(x − y)δ(s− t+ Tm(y)). (2.4)

Here the function w(x) plays the role of the connectivity kernel, which we shall assume to be homogeneous
so that w(x) = w(|x|). For concreteness we will use the explicit functions η(t) = α exp(−αt)H(t) and the
“wizard hat” w(x) = A exp(−a|x|) − exp(−|x|).

2.1. Connection to the Amari model. We first consider the continuum limit for slow synapses
and show it is identical to the classical Amari model. Taking the time average of (2.4) gives

〈u(x, t)〉 =
1

T

∫ t+T

t

ds

∫ ∞

−∞

dyw(x − y)

∫ ∞

0

ds′η(s′)
∑

m

δ(s′ − s+ Tm(y))

=

∫ ∞

−∞

dyw(x − y)

∫ ∞

0

dsη(s)Ω(y, t− s). (2.5)

where Ω(x, t) = M(x, t)/T is the firing rate and M(x, t) =
∫ T+t

t

∑
m δ(s + Tm(x))ds is the number of

firing events at position x within a window T .

We next recognize that the firing rate is given by

Ω(x, t) =
∂θ(x, t)

∂t
= H(u(x, t) − h). (2.6)

Substituting (2.6) into (2.5) gives

〈u(x, t)〉 =

∫ t

−∞

dsη(t− s)

∫ ∞

−∞

dyw(x − y)H(u(y, s) − h). (2.7)

For slow synaptic interactions (such that η(t) is approximately constant over the timescale T ), then we
have the condition u(x, t) = 〈u(x, t)〉. For the specific choice η(t) = αe−αtH(t), (2.7) may be written in
the form

1

α

∂u(x, t)

∂t
= −u(x, t) +

∫ ∞

−∞

dyw(x− y)H(u(y, t) − h), (2.8)

which is recognized as the well known Amari model [22]. The equivalence between the lighthouse model
and the Amari equation is only strictly true in the limit of α → 0 where u(x) is constant in time. For
nonzero α we will see that the dynamics between the two models deviate substantially.
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3. Bump solutions. For a threshold h > 0 neurons will not fire spontaneously. However, for a
lateral-inhibition-type coupling function, a group of neurons could mutually excite each other to sustain
activity. Indeed for this choice of interaction function the Amari model given by (2.8) is known to support
spatially localized solutions, commonly referred to as bumps. Moreover, their stability is insensitive to
variation in the synaptic rate parameter α. It is therefore of interest to ascertain whether the analog of
such solutions can be found in the full spiking lighthouse network, and whether they are also stable to
variations in α. As we shall see, the answers to these questions are “yes” and “no” respectively.

Definitions. We are interested in analyzing the existence and dynamics of localized pulses of activity
or bumps. A bump is defined as a group of contiguous neurons that fire together. However, given the
discontinuous nature of spiking events and that the bump location may change in time it is necessary to
make this idea more precise with the following definitions.

Definition 1. A bump at time t is the set of all contiguous neurons that fired in the time interval
[t− 1, t].

Definition 2. A stationary bump is a bump which persists in a single location for all time i.e.
the same set of neurons continue to fire indefinitely.

Definition 3. An equiperiod bump is a stationary bump for which the neurons in the bump all
fire with the same rate.

On a lattice any of the above states are invariant to shifts by arbitrary lattice spacings. As we will
demonstrate, the position or the width of the bump need not be constant in time.

We first consider conditions for the existence of a continuum equiperiod bump in the limit of infinitely
slow decaying synapses (α→ 0). In this case each neuron in the bump receives constant above threshold
input and thus all neurons within the bump will fire with rate one. All neurons outside of the bump
receive below threshold input and never fire. We suppose that a bump exists on the domain L = [x1, x2].
This implies that u(x, t) is above threshold on L and below threshold outside of L and equal to the
threshold at x = x1 and x2. From (2.4)

u(x, t) =

∫ x2

x1

w(x − y)P (t− ψ(y))dy, (3.1)

where P (t) =
∑

m η(t −m) is a periodic function (with period one) and ψ(y) is the location dependent
phase. If w(x) is symmetric, we only need to consider one edge. For infinitely slow synapses P (t) = 1.
This leads to the Amari existence condition

h =

∫ ∆

0

w(y)dy, ∆ = x2 − x1. (3.2)

We note that in the Amari limit the bump solution is insensitive to the phases of the neurons. For
a standard lateral-inhibition type coupling there are two bump solutions that arise in a saddle node
bifurcation [3]. Importantly, it is possible to construct a class of bump solutions for the full continuum
lighthouse model, and thus take a step beyond the standard Amari style analysis of localized states.

3.1. Continuum bump solutions in the lighthouse model. For the original lighthouse model
with instant phase reset whenever activity drops below threshold, an equiperiod bump is expected since
neurons within the bump will fire with rate one and those outside of the bump will not fire. For the
second version without the phase reset condition, phases may ride on long sub-threshold plateaus. In this
case the generic solution is a spatially localized solution with an ‘interior’ and ‘exterior’ region. Within
the interior, neurons fire with rate one. In the exterior, the firing rate falls off to zero as the bump edge
is approached. However, the contribution from the exterior region only weakly perturbs the location of
the inner edge, so that the solution in the absence of a phase reset may be regarded as a perturbation of
the one with a phase reset.

Here we focus on the class of (symmetric) maximally firing one-bump solutions (with firing rate
unity) for the instant reset model parameterized by

Tm(x) = m+ [β|x| mod 1], (3.3)
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such that u(x, t) ≥ h for x ∈ [x1, x2] for all t, and u(x, t) < h otherwise. Here we take x1 = −∆/2 = −x2.
We are free to choose such a coordinate system by translational invariance of the continuum model. In this
case u(x, t) is given by (3.1) with ψ(y) = β|y|. Introducing the Fourier transform P̃ (k) =

∫∞

−∞
dtP (t)e−ikt

means that we may write (3.1) as

u(x, t) =

∫ ∞

−∞

dk

2π
P̃ (k)F (k, x)eikt, (3.4)

where

F (k, x) =

∫ x2

x1

w(x − y)e−ikβ|y|dy. (3.5)

Note that u(x, t) has period one (inherited from P (t)). It is also continuous if β is nonzero. For slow

synapses P (t) may be regarded as a constant so that P̃ (k) = 2πδ(k). In this case (3.4) becomes time-
independent, with u(x, t) = F (0, x). Moreover, the width of the bump is independent of β and is given
implicitly by h = F (0,∆/2). This solution is identical to the one bump solution describing the time-
independent localized state of the standard Amari model [3]. In general, however, we proceed with the
evaluation of (3.4) using the result that

P̃ (k) = 2πη̃(k)
∑

n

δ(k − 2πn). (3.6)

Substitution into (3.4) gives us the following Fourier series representation for u(x, t):

u(x, t) =
∑

n

η̃(2πn)F (2πn, x)e2πint. (3.7)

To determine the width of a bump in a self-consistent fashion we must enforce the condition that at the
boundaries x = xj , the infimum of u (over t) must equal the threshold h. Hence, the existence condition
for a bump in the continuum lighthouse model is simply

inf
t
u(∆/2, t) = h. (3.8)

The bump width ∆ is then determined by

h =

∫ ∆

0

w(y)dy + 2Re

(
∑

n>0

η̃(2πn)g(2πn)e2πint∗

)
, (3.9)

where g(k) = F (k,∆/2). Here t∗ denotes the value of t for which u(∆/2, t) has a minimum. The value
of t∗ is calculated by differentiating (3.7) and then solving

0 = Re

(
i
∑

n>0

η̃(2πn)g(2πn)ne2πint∗

)
, (3.10)

subject to ∂ttu(∆/2, t)|t=t∗ > 0. In some sense we may regard the second term on the right hand side
of (3.9) as a correction to the standard Amari firing rate model description that takes into account the
effects of non-slow synaptic processing.

For our choice of temporal and spatial kernels a short calculation gives η̃(k) = α/(α+ ik), and

g(k) = A

{
e−ikβ∆/2 − e−a∆/2

a− ikβ
+

e−a∆/2 − e−a∆e−ikβ∆/2

a+ ikβ

}

−
e−ikβ∆/2 − e−∆/2

1 − ikβ
+

e−∆/2 − e−∆e−ikβ∆/2

1 + ikβ
. (3.11)
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Fig. 3.1. A plot of u(x) of a bump with α = 0, A = a = 2, h = 0.1 given by (3.12). For u(x) ≥ 0.1, the neuron will
fire with rate 1.

In the limit α→ 0 the β-independent shape of a bump is given explicitly by

u(x) =





W (x1 − x, x2 − x) x < x1

W (0, x− x1) +W (0, x2 − x) x1 ≤ x ≤ x2

W (x− x2, x− x1) x > x2,

(3.12)

where

W (xa, xb) =

∫ xb

xa

w(y)dy =
A

a

[
e−axa − e−axb

]
−
[
e−xa − e−xb

]
, xb > xa > 0, (3.13)

and ∆ satisfies h =
∫ ∆

0
w(y)dy. Figure 3.1 shows an example of the shape of u(x) given by (3.12). This is

the classic Amari bump. When u(x) > h, the neuron fires with rate 1. Of the two branches of solutions to
∆ = ∆(h), it is known that the branch with largest ∆ is stable for all α in the Amari model [3, 23, 24, 25].
To see the effects of a non-zero choice of α in the lighthouse model we need only to calculate remaining
terms from the right hand side of (3.9).

We evaluate (3.9) and (3.10) numerically to determine the pair (∆, t∗) as a function of system
parameters. An example of this is shown in Figure 3.2, where for a fixed (non-zero) value of α we plot
∆ = ∆(h) for the synchronous solution (β = 0). As for the standard Amari solution we see two branches
of solutions with a saddle-node bifurcation with increasing h. Moreover, taking α as the bifurcation
parameter shows that such solutions cannot exist if α is chosen too large, as once again there is a
saddle-node bifurcation as seen in the middle panel of Figure 3.2. In the right hand panel of Figure
3.2 we effectively combine the information from the other two panels into an existence plot, such that
synchronous solutions are found below the curve shown in the (α, h) plane. In Figure 3.3 we show a plot of
how the solution with the largest width varies as a function of β. This theoretical curve is compared with
direct numerical simulations of the instant rest lighthouse model and found to be in excellent agreement.

We see in Figure 3.3 that as β is increased there is a general trend towards increasing width with a
weak oscillation imposed. We now explain this behavior. The function g(2πn) has a periodic modulation
in β of fundamental period β = 2/∆. Hence, from (3.10) t∗ will oscillate as β is varied. From (3.9) we
expect a similar modulation of ∆ = ∆(β). Note that when β = 2/∆ the firing times are asynchronous
and the system may be said to be in a so-called splay state. The synchronous state (β = 0) has an
infimum at t∗ = ∆, and hence all other non-synchronous states are such that t∗β=0 > t∗β 6=0, at least
avoiding resonances where 2β/∆ = n. Hence, from (3.7) inft u(x, t

∗
β=0) < inft u(x, t

∗
β 6=0). Since u(x, t) is

a decreasing function of x (in the neighborhood of the bump edges where x = ±∆/2), the synchronous
solution has the smallest width as a consequence of condition (3.8). As β increases the phases become
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Fig. 3.2. Left: Bump width as a function of h for the synchronous solution (β = 0) with α = 1. Middle: Bump
width as a function of α for the synchronous solution with h = 0.1. Right: Existence window (below the curve) for the
synchronous solution in the (α, h) plane obtained by the numerical continuation of the limit point in the left hand plot. In
all plots A = a = 2.

0 2 4 6 8 10
 β

1

1.5

2

2.5

 ∆

Fig. 3.3. A plot of the theoretical curve (red) for ∆ = ∆(β) with h = 0.1 and other parameters as in the left hand
panel of Figure 3.2. Black crosses denote results from direct numerical simulations of the lighthouse model with instant
reset.

more splayed and pass through resonances with the width, ultimately resulting in the local peaks seen in
Figure 3.3.

An example of a spiking bump state is shown in Figure 3.4 with the left and right panels showing
simulation results with and without phase reset. The interior and exterior regions are clearly visible in
the no phase reset model. Moreover, simulations show that with increasing α bumps can lose stability and
begin to wander in exactly the same fashion as seen in earlier work of Laing and Chow on IF networks [18].
Examples of this will be presented in Sec. 3.4. Direct simulation results are obtained by approximating
the continuum model as a finite system sampled at a discrete set of grid points, i.e. a lattice model. We
now proceed with a treatment of the lighthouse model dynamics on a lattice.

3.2. Bumps on a lattice: slow synapses. We first derive the existence conditions of a bump on
a discrete lattice. Suppose neuron j fires periodically with period one and has a phase ψj ∈ [0, 1), i.e.
Tm

j = m + ψj . The periodic synaptic output of neuron j is given by Ej(t) = P (t − ψj). In the limit of
infinitely slow synapses P (t− ψj) = 1. Without loss of generality we fix one end of the bump at neuron
index 0. The bump is then specified by the set i ∈ {0, . . . ,m} where

ui =

m∑

j=0

wij ≥ h, i ∈ {0, . . . ,m}, (3.14)
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Fig. 3.4. A direct numerical simulation of the continuum model approximated by a finite system with lattice spacing
δx = 0.004 on N = 1000 grid points. The dots in the raster plot indicate the times of firing events. Data is shown for the
parameters of Figure 3.3 with β = 2. The left and right panels show results with and without phase reset respectively.

and ui < h elsewhere. The phase does not appear in the existence condition so any configuration of
phases is allowed. Thus a family of solutions satisfying condition (3.14) defines an equiperiod bump at a
given location. To make this condition more explicit we introduce two more definitions:

Definition 4. The edge of a contiguous set of firing neurons is a neuron in the set that has one
neighbor in the set and one neighbor not in the set.

Definition 5. The next edge of a set of contiguous of firing neurons is a neuron that is not in the
set but has one neighbor that is an edge.

Thus the edge neurons i = 0,m must satisfy u0 ≥ h, um ≥ h and the next edge neurons i = −1,m+1
must satisfy u−1 < h, um+1 < h. Unlike the continuum version, the discrete bump must satisfy two
independent conditions, i.e. the edge neuron is above threshold and the next edge neuron is below
threshold. If wij is symmetric, the bump will be symmetric and thus we only need to consider one edge.
Following the Amari strategy, we construct two existence functions:

φne
m =

m∑

j=0

w−1,j =

m+1∑

j=1

w0,j , (3.15)

φe
m =

m∑

j=0

w0,j . (3.16)

A bump of width m will exist for any m for which φne
m < h ≤ φe

m. In the continuum limit, the existence
condition is φne

m = φe
m = h.

We now consider conditions on the coupling weight and threshold for which this existence condition
can be satisfied. We note that if φne

m < φe
m for some m then we can choose h to lie between the existence

curves. This can be satisfied in a number of ways. One is if wi−1,j − wi,j < 0 for i < j, i.e. the weight
function is monotonically decreasing in |i− j|. This can be proved by comparing the terms individually
in the sums (3.15) and (3.16). We note that the weight function only needs to decrease monotonically
for |i − j| ≤ m + 2. If wij is positive at i = j and decreases in |i − j| then φne

m and φe
m will increase

until wij becomes negative whereupon φne
m and φe

m will begin to decrease. The existence curves will
then be concave functions. Hence, if h is initially greater than the maximum of the existence curves, no
bump solutions exist. Bump solutions will appear if h is lowered so that it intersects with the existence
curves. In the continuum limit, if h is initially above the existence curve and then reduced, two bump
states will arise from a saddle-node bifurcation. However, in the discrete case, a set of states can arise
simultaneously or in succession. We summarize the conditions for the existence of a bump in Proposition
1.
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Fig. 3.5. Existence functions for wij = 2e−0.05|i−j| − e−0.01|i−j|. In this example, multiple bump states are possible
for the large bump but not the small bump.

Proposition 1. A symmetric bump or set of bumps can exist for some threshold h > 0 if wij is a)
symmetric, b) maximal and strictly positive at i = j, c) is decreasing in |i − j| (for some large enough
finite set around i = j). These are sufficient but not necessary conditions.

Figure 3.5 shows an example of the existence functions. We immediately can see that unlike the
continuum version, there is a possibility that sets of “small” and “large” bump solutions can exist.
Multiple bump solutions are possible if the slope of the existence function is not too steep. More precisely,
for any m > 0 and k > 1 satisfying φe

m > φe
m−k and φe

m−k > φne
m , there are k bump solutions with widths

ranging from m− k to m for the small set of bumps. Using (3.15) and (3.16), these conditions become∑m
j=m−k+1

w0,j > 0 and w0,0 −
∑m+1

j=m−k+1
w0,j > 0. For φe

m−k > φe
m and φe

m > φne
m−k, there are k

solutions with widths ranging from m − k to m for the large set of bumps. In terms of the coupling
function, the conditions are

∑m
j=m−k+1

w0,j < 0 and w0,0 +
∑m

j=m−k+2
w0,j > 0. Thus k solutions are

possible for the small bump set if the self-excitation to a neuron exceeds the excitation arriving from k
neurons a bump width away. For the large bump set, multiple solutions are possible if self-excitation
dominates the inhibition arriving from k neurons a bump width away.

3.2.1. Stability. A given equiperiod bump with infinitely slow synaptic processing (α = 0) is
degenerate to arbitrary phase arrangements. Hence, any perturbation of the phase will not affect a
bump. Additionally, infinitesimally small perturbations to the input to any neuron will also have no
effect since generically no neuron in the network has an input that is arbitrarily close to threshold. Thus
all firing states in a lattice network are stable to small enough perturbations. Hence, the more relevant
question is whether or not the bump states are attractors with a nontrivial basin of attraction. Consider
a lateral-inhibition-like coupling function that yields a single large and small bump. In the Amari model,
the large bump is stable and the small bump is not. As we have discussed, in the discrete model, both
are stable to infinitesimal perturbations. In order to address the nonlinear stability question we need to
address the full dynamics.

We examine the ensuing dynamics of threshold crossing perturbations to the edge and next edge
neurons. Consider first the small bump. Here, the recurrent excitation between the neurons in the bump
is just sufficient to sustain the bump. If the edge neuron is suppressed, the internal neurons will receive
subthreshold input and cease firing. The bump will then collapse to the zero state. Conversely, if the
next edge is induced to fire it will induce its neighbor and the opposite next edge to fire. Thus the set
of firing neurons will spread. These dynamics can be directly deduced from Figure 3.5. If neuron m+ 1
begins to fire, the input to neuron −1 will cross threshold and begin to fire. On the other hand if neuron
m stops firing, the edge neuron 0 will stop firing as well.
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Now consider the large bump where the opposite edges inhibit each other. If the next edge neuron
fires it suppresses the opposite edge neuron. If the edge neuron stops firing, inhibition is lessened on the
opposite next edge and it is induced to begin firing. Thus, a large bump of width m is stable although it
could shift location if given a strong enough perturbation. Dynamically, if too many neurons fire they will
suppress each other and the bump will shrink. If too few neurons fire, they inhibition will be released and
the silent neurons will be induced to fire. The mechanism for this stability is a discretized version of the
continuum case first established by Amari [3]. These observations will be relevant later when we consider
wandering. It is important to note that stability and existence are inherently intertwined. Henceforth,
when we refer to a stable neuron we imply nonlinear stability.

3.3. Bumps on a lattice: fast synapses. We now consider the case where the synaptic decay
rate α is nonzero. Simulations on a discrete lattice show that a stable bump is possible for small enough
α. However, if the synaptic decay rate α is increased sufficiently, a stationary bump will not exist. For
the no phase reset version of the model, for large enough α, the location of the bump can shift in a
seemingly random way which we call wandering. However, as we will discuss in Section 3.4, the instant
reset version does not support wandering for large α. In the instant reset model, a neuron must receive
continuous above threshold input to fire, so a finite set of neurons cannot maintain self-sustained firing
if the synaptic decay rate is so fast that the sum total of the input to any neuron that exceeds threshold
has a time duration less than one. As such, the instant reset model, either has a stationary equiperiod
bump solution or the zero solution where no neuron fires.

Hence in this section we examine possible stationary solutions for the no phase reset version of
the lighthouse model for nonzero synaptic decay rate. In this version, each time a neuron receives above
threshold input its phase advances towards threshold. As shown in the proposition below, if α is extremely
large then no self-sustaining bump can exist. However, there can be a range of α for which stationary
and wandering bumps can exist.

Proposition 2. For a fixed coupling function and lattice spacing, there exists an α large enough so
no self-sustained activity can exist in a finite set of neurons. Hence no bump can exist for large enough
α.

We can prove this by considering a set of m neurons that form a self-sustaining set. Whenever a
neuron receives suprathreshold input, its phase is advanced at rate one for the duration of time that the
input exceeds threshold. Hence, suprathreshold input must total a time of one before the neuron will
fire. The maximum rate a neuron can fire in the lighthouse model is one. To sustain activity in a set of
neurons, the net output of the neurons in the set must provide sufficient input to maintain firing in all
the neurons. The input to a neuron is the weighted sum of synaptic pulses from all neurons in the bump.
For any fixed threshold, the synaptic decay rate α can be made large enough so that the suprathreshold
duration for the synaptic input due to a given firing event can be made arbitrarily short. When the
duration is so short that a neuron requires more than m firing event inputs to fire, then the network
cannot sustain itself.

We now investigate the dynamics for α nonzero but not large enough so that no bump can exist. For
α nonzero and all neurons firing periodically with rate one, the synaptic input to a neuron is no longer
constant in time but is given by

ui(t) =

m∑

j=0

wijP (t− ψj). (3.17)

where P (t) = P (t+ 1). For our specific example P (t) = αe−αt/(1 − e−α), 0 ≤ t < 1. The input function
ui(t) now depends on the phases of the firing times of the neurons. As before, in order for a stationary
equiperiod bump to exist, the input to the edge neuron must be entirely above threshold and the input
to the next edge must be entirely below threshold. We can thus re-express the existence conditions in
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terms of the following generalized existence functions

φne
m (α) = sup

t

m∑

j=0

w−1,jP (t− ψj), (3.18)

φe
m(α) = inf

t

m∑

j=0

w0,jP (t− ψj). (3.19)

Again we require

φne
m (α) < h ≤ φe

m(α), (3.20)

for an equiperiod bump.

We see for our specific choice of η(t) that as α increases, the maximum of P (t) increases and the
minimum decreases. Thus for large enough α the existence conditions will be violated and no equiperiod
bump can exist. We can show this more explicitly. When α increases from zero, ui(t) on the edge may
not remain above h for an entire period. As an example consider a synchronous bump where all neurons
fire together. First we define the sum

Wm
i =

m∑

j=0

wij . (3.21)

If all the neurons in the bump are synchronized, we can shift the phase so that ui(t) = Wm
0 P (t). On

[0, 1), the minimum of P (t) is αe−α/(1− e−α) and the maximum is α/(1− e−α). The existence condition
of an equiperiod bump will not be satisfied when

φne
m = Wm

−1

α

1 − e−α
≥ h (3.22)

or

φ0
m = Wm

0

αe−α

1 − e−α
< h. (3.23)

Thus, for each fixed α, there is a critical lattice spacing, below which there is no equiperiod bump.
Consider the difference dm = Wm

0 −Wm
−1. By translational invariance of wij , dm = w00 −w0,m+1. Recall

that wij = w(|i − j|δx)δx for a fixed function w(x). Consider keeping the bump width ∆ fixed in space
while reducing δx. This implies that the number of neurons in the bump m must scale as m = ∆/δx.
We can then write dm = (w(0) − w(∆ + δx))δx. As expected, dm scales as δx. Hence, as the lattice
spacing decreases, Wm

0 approaches Wm
−1 which implies that φne

m (α) will approach φe
m(α). When the two

existence curves meet, the equiperiod bump will no longer exist.

The crucial fact for the nonexistence of the equiperiod bump is that if the input function ui(t) is not
constant then it will have a maximum and a minimum. The minimum of the edge must remain above
threshold while the maximum of the next edge must remain below threshold for an equiperiod bump to
exist. Figure 3.8 shows an example of ui(t) of the edge and next edge neurons of a bump situated above
and below threshold respectively. As the lattice spacing decreases, the maximum of the next edge will
approach the minimum of the edge and eventually violate the condition for the existence of an equiperiod
bump. Hence, even if the neurons do not fire synchronously, the existence condition for α nonzero will
still be violated for α large enough or δx small enough. For any phase arrangement ψj , ui(t) will always
have a time dependence on a finite lattice. The input function ui(t) will only be constant if P (t) is
constant and P (t) is constant only if α = 0.

In fact, the input function u(t) cannot be constant even in the continuum. We can see this by
considering (3.1). Clearly if ψ(y) is differentiable then u(x, t) is not a constant unless either P (t) or w(x)
are constant. If ψ(y) is discontinuous on a countable set in the interval then the integral can be written
as a sum of integrals over separate intervals between the discontinuous points. Each piece is not constant
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in time so the same argument that u(x, t) cannot be constant applies. We summarize our results (for the
no phase reset lighthouse model) in the following propositions.

Proposition 3. For a fixed lattice spacing δx, there exists a large enough α such that there is
no equiperiod bump. Conversely, for a fixed α > 0, there exists a small enough δx so that there is no
equiperiod bump.

Proposition 4. A continuum equiperiod bump cannot exist for α > 0 if neither w(x) nor P (t) are
constants.

Propositions 3 and 4 do not negate the possibility of a nonequiperiod bump. During the time that
the input is suprathreshold, the phase of the neuron will advance at rate one. When the accumulated
time of the intervals of suprathreshold input is equal to one, the neuron will reach threshold and fire.
Thus we could have an α such that a set of interior neurons receive above threshold input while a set of
adjacent neurons receive above threshold input intermittently. These neurons will advance towards the
firing threshold at a rate slower than one. This could result in a bump solution with an interior region
of neurons firing with rate one and an exterior region where the rate decreases to zero as the edge is
approached. An example of a nonequiperiod bump is shown in Figure 3.4.

Determining the width of a nonequiperiod bump is difficult because the firing rate in the exterior
region must be calculated explicitly from the neuronal dynamics. However, we can present an argument
that nonequiperiod bumps can exist for α > 0 for a suitably chosen coupling kernel. We first introduce
the following definition.

Definition 6. The interior edge of a bump is the neuron nearest to the edge that is firing with
period one. It divides the bump into an interior region where the firing rate is one and an exterior

region where the firing rate is nonzero but not one.

Suppose we choose wij so that a symmetric equiperiod bump with all neurons firing in phase on the
set {0, . . . ,m} exists for α = 0 so φne

m < h ≤ φe
m. We want to show that there exists an α > 0 such that

the original next edge neurons of this bump will fire and become the new edge of a nonequiperiod bump.
The original edge becomes an interior edge. Hence we need to show that there exists an α such that 1)

inf
∑m+2

j=0
w1,jPj(t− ψj) ≥ h, 2) sup

∑m+2

j=0
w0,jPj(t− ψj) > h, and 3) φne

m+2 < h.

Consider a stable large bump so that wij is positive for |i − j| > n where n < m and negative
elsewhere so neurons in the bump give a positive stimulus to their near neighbors. We also suppose that
they give a weaker negative stimulus to the neurons on the opposite side of the bump. We can then
choose h such that it is larger than φe

m+2 to satisfy condition 3). We note that for a neuron firing with
period T , 1/T − α/2 ≤ P (t) ≤ 1/T + α/2. Thus, we can choose an α such that the original next edge
begins to fire at an arbitrarily low rate which satisfies condition 2). Each time this neuron fires it gives
a stimulus to each neuron in the network. For a symmetric bump, the two next edges fire synchronously
so the net effect is a positive impulse on the original edge. Since the input is already above threshold
this added input will not violate condition 1). The new next edge will also receive a positive stimulus.
However, for a small enough α it can remain below threshold so that condition 3) is still not violated.
Thus we have a nonequiperiod bump with m neurons in the interior and two neurons in the exterior.

3.4. Bump wandering states. It was found in simulations of the IF model that as the synaptic
decay rate α was increased, the stationary bump state can destabilize and begin to wander [18]. For
even larger α traveling waves can arise and finally for fast enough α no sustained activity exists. In
simulations of the no phase reset lighthouse model, we find that for increasing α there is a transition to
wandering and for high enough α, a bump cannot be self-sustained. However, traveling waves are not
observed in the lighthouse model. Figure 3.6 shows an example of wandering in a numerical simulation
of the lighthouse model.

We can see how wandering may occur by considering the conditions for firing near the edge of the
bump. For increased α, the firing rate of the edge neuron could decrease while the next edge could begin
to receive suprathreshold input (for some of the time) and thus begin to fire. The next edge firing would
then give inhibitory input to the opposite edge and may cause it to cease firing. In this case the bump
could experience a state of frustration where there is no satisfactory equilibrium state to which it can
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Fig. 3.6. Raster of a wandering bump. Parameters are N = 400, h = 0.1, wij = 2.1e−|i−j|/60 − 2e−|i−j|/75 and α = 3.5.

settle. The consequence is that a set of contiguous firing neurons could exist but the set may not be of a
fixed width or at a fixed location. The result could be a wandering set of contiguous neurons.

We have shown previously that for large enough α, the edge neurons will decrease their firing rate
and next edge neurons will receive above threshold input and begin to fire. Recall that a bump is defined
as the set of contiguous neurons that fired within the last window of period one. Given that the edge
and next edge neurons fire at a slower rate than the interior neurons, the bump width for time intervals
over this window will not be stationary. However, the bulk of the bump could still remain in place. If α
is not too large, the neurons in the interior of the bump will receive above threshold input continuously
and fire with period one. With this in mind, we make the concept of wandering more precise with the
following definition.

Definition 7. A bump is wandering if the position of the interior edge is neither time stationary
nor periodic.

We argue that a wandering state can exist by first demonstrating that there is a nonstationary
attractor state comprised of a contiguous set of firing neurons. As we discussed in Section 3.2.1 there
exists an attractor for a set of bump widths. Consider a stable large bump of width m for α = 0 with
existence functions of the generic form in Fig. 3.5. For such a bump, contiguous sets of firing neurons
broader than m will result in strong inhibition to the edge neurons and the set will diminish. Conversely,
for sets smaller than m, but not smaller than the small bump, inhibition will be reduced to the next edge
neurons inducing them to fire and the set will expand. For α nonzero, the inputs to each neuron will no
longer be constant in time but will remain bounded. However, for nonzero α there will be a range of α
for which this attractor property will still hold.

To show that wandering can exist we must first establish the following proposition.

Proposition 5. The firing of the interior edge can be perturbed by the firing of a single exterior
neuron and depends sensitively on the firing phase.

We first consider a nonequiperiod bump where the interior has more neurons than the exterior and
the input from exterior neurons is positive to the adjacent interior edge but negative to the opposite
interior edge. For small enough α, the input to the interior edge is bounded away from the threshold h.
As α increases, two things can occur. One is that the infimum of the interior edge input will decrease.
The second is that the maximum amplitude of inputs from exterior neurons will increase. When α is
large enough such that the input from an exterior neuron is large enough to drop the the interior edge
input below threshold for some temporal duration then the interior neuron’s firing will be delayed and it
will no longer fire with rate one.
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Fig. 3.7. Rasters for α = 2.789 with 0.001 difference in θi initial conditions. Parameters are N − 1200, wij =

2.1e−|i−j|/60 − 2e−|i−j|/75 and h = 0.1

For a bump with a finite number of neurons, the infima of the interior edge is a finite set. Input from
the exterior region will arrive as individual positive or negative exponentially decaying pulses. Hence,
there should exist a range of α such that an exterior neuron can slow the firing rate of the interior edge
only if it fires in a time window that overlaps with an interior edge infimum. This window can be made
arbitrarily small by adjusting α. When the interior edge slows, it no longer has rate one and hence no
longer belongs to the interior set. Conversely, a next edge neuron could be receiving input that is above
threshold except at a few isolated locations around the infima. When these neurons receive a positive
input that overlaps with an infimum, they can fire with rate one and thus become an interior edge. Hence,
the location of the interior depends sensitively on the firing phase of the exterior neurons.

This also explains why there is no wandering for the instant reset lighthouse version. Here, when
the input to an interior neuron drops below threshold for no matter how brief a time, the phase will be
instantly reset to zero and thus the neuron will no longer fire. Additionally, while the next edge neurons
receive intermittent above threshold input, their phases do not advance because they are reset each time
the input drops below threshold. Hence, they can never fire. Thus infinitesimal perturbations can only
shrink a bump so no wandering can occur.

Figure 3.7 shows the sensitivity to initial conditions for a bump that is initially near synchronous in
a simulation. The bump was driven above threshold for the first 20 time units. The initial phases were
randomized within a small neighborhood of zero phase (θi(t = 0) < 0.01). In Figure 3.7 a), a stable bump
is present. Note that the edge neurons fire at a slightly slower rate than the interior neurons and the next
edge fires with a very long period. The initial conditions in b) differs from a) by randomizing the phases
in a small neighborhood of the zero phase that is 0.1% larger but a wandering bump arises. Thus there
is a neighborhood of initial phases around zero that tend to lead to a stationary bump. Initial conditions
outside of this neighborhood lead to wandering. For voltages initialized to random values between 0 and
1, wandering would be generic. The crucial event that induced wandering occurs at time 30 when one
of the next edges fires but the other does not. If both fire together then their effects on the interior
edges essentially cancel out and the stable bump will persist. Figure 3.8 shows the input to the lower
edge and next edge. In a), we can see that the inputs to the neurons just barely cross threshold but the
bump can tolerate such excursions. However, in b) one of the crossings disrupts the bump and wandering
ensues. Figure 3.9 shows the voltages of the two opposite next edges. In a) we see the voltages reach
threshold together and thus fire together. However, in b), one of the next edges reaches threshold first
and gives an inhibitory pulse to the opposite next edge delaying its firing. This breaking of symmetry
allows wandering to take place.

The implication of Proposition 5 is that time stationary bumps do not exist for sufficiently large α
since arbitrarily small rearrangements of the phases could change the input to the neurons and shift the
interior edge. However, this does not show that the bumps will wander. It could breathe in and out at
a given location or move back and forth periodically. What we need to show is that the bump can shift
either left or right and the shift does not depend on history. Given that an interior edge can become
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Fig. 3.8. Inputs to one edge (red) and next edge (blue) for wij = 2.1e−|i−j|/60 − 2e−|i−j|/75, h = 0.1 and α = 2.789
for the same initial conditions as in Figure 3.7.
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Fig. 3.9. Voltage of opposite next edges for wij = 2.1e−|i−j|/60 − 2e−|i−j|/75, h = 0.1 and α = 2.789 for the same
initial conditions as in Figure 3.7.

an exterior neuron and vice versa, we see that shifts could occur in either direction. For a stable large
bump, the edges on opposite sides of the bump inhibit each other. Thus, if say the left inner edge moves
left, inhibition will increase on the right edge and force it to move left as well. If the inner edge moves
right, inhibition will be lessened on the right edge and it will move right as well. For the exponential
synaptic function, if α > 1, the influence of a neuronal firing decays quickly beyond one period. Thus,
past shifts should have little or no affect on future shifts. Hence, after each period, the bump is as likely
to move left or right. Thus, wandering is equivalent to a random walk on a lattice. This implies that the
position of the inner edge of a bump x will obey 〈(x(t) − x(t − τ))2〉 = Dτ , with D ∝ δx2/Ts where δx
is the lattice spacing, and Ts is the average time for a perturbation of a firing neuron to cause a right or
leftward shift. The graph of 〈(x(t)− x(t− τ))2〉 versus τ in Figure 3.10 for a direct numerical simulation
of the lighthouse model verifies that that wandering is a random walk (i.e. diffusion process).

Figure 3.11 shows a plot of the diffusion constant for different δx. We see that it increases linearly
in δx. We can see why this should be true by examining the four key quantities that govern wandering:
1) the amplitude of the input due to the firing of one neuron, 2) the distance to threshold for the interior
edge and next interior edge neurons, 3) the average shift size of the bump, and 4) the average time step
per shift. The amplitude of the input to location x from a single neuron at y is given by η(t)w(x− y)δx.
The distances to threshold are given by dne

T = φne
m (α) − h and de

T = φe
m(α) − h. For small δx, given

the smoothness of u(x, t) in x, dne
T and de

T both should scale as δx. As δx decreases, the amplitude of
an individual input from a neuron will decrease but so too will the distance to threshold. Hence, as the
lattice spacing decreases, the threshold α for initiating wandering will not change appreciably. However,
the minimum shift the interior edge can take also scales as δx. Thus, at the lattice length scale, wandering
of the interior edge will take place regardless of the spacing. However, on the global length scale of the
bump the wandering step size will decrease with δx. Finally, each step is potentially induced by the
firing of a neuron within the bump. Therefore, it is reasonable to expect that the step time Ts will scale
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Fig. 3.10. An example of 〈[x(t) − x(t − τ)]2〉 vs τ for a numerical simulation with N = 400, δx = 1, h = 0.1,
wij = 2.1e−|i−j|/60 −2e−|i−j|/75 and α = 1.4. The graph was obtained from an average over 20 trial runs of length 20,000
time units. Linear scaling with τ indicates that wandering is a diffusion process.
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Fig. 3.11. Diffusion coefficient as a function of δx, with α = 2.5 and the other parameters as in Figure 3.10.

with δx since the number of neurons in the bump scales as δx−1. Hence, the result is that wandering
decreases to zero as δx approaches zero. Figure 3.12 shows the dependence of the diffusion coefficient on
α. Interestingly, the dependence seems to be D ∝ ekα, for some constant k. Thus D(α, δx) ∝ ekαδx.

4. Discussion. In this paper we have re-visited the lighthouse model within the context of localized
reverberatory activity that can underly the formation of attractor bump states, both stationary and
non-stationary (wandering). In particular we have shown how this model can be viewed as a natural
extension of the Amari model to include the effects of non-slow synaptic processing. Although, the model
is clearly a highly simplified and abstract model of a neuron, it does possess network behavior that is
reminiscent of more biological neuron models.

One prediction of our work, supported by direct numerical simulations, is the possibility that bump
states with differing widths can coexist. This simple prediction would not be forthcoming in a purely
firing rate model (that has no knowledge of underlying spiking patterns), and would seem to be a hard
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Fig. 3.12. Diffusion coefficient as a function of α for wij = 2.1e−|i−j|/60 − 2e−|i−j|/75, δx = 1, N = 400 and h = 0.1.

quantitative prediction to make from the analysis of integrate-and-fire networks.

Moreover, its simplicity lends itself naturally to both continuum and lattice studies. Indeed by
analyzing both we have been able to clarify the role of discreteness in contributing to emergent bump
dynamics. In particular we have shown that multiple width bumps can coexist on a discrete lattice and
that wandering bumps can coexist with stationary bump states. Moreover, by tracking the dynamics of
bump edges we have seen a form of competition giving rise to an equal probability of a bump moving left
or right, resulting in an effective random walk of the bump. Our studies suggest a diffusion coefficient
that scales with the exponential of the rate of synaptic processing and linearly with the lattice spacing.
Interestingly, our numerical simulations of the IF model (data not shown) also seems to exhibit similar
scaling for the diffusion coefficient on α and δx. Although this result warrants further investigation, it
does give further evidence that the lighthouse model can generate dynamics consistent with that of other
popular spiking neural networks.

A number of natural extensions of the work presented here suggest themselves. One would be to study
the dynamics of moving bumps. In contrast to an IF network the lighthouse model does not generate
waves in response to a brief localized initial stimulus. To obtain a traveling bump in the first instance
one would need to augment the lighthouse model to include a form of spike frequency adaptation, as in
the work of Hansel and Sompolinsky [26] and Pinto and Ermentrout [23], or perhaps an asymmetry in
the synaptic footprint, as in the work of Zhang et al. [27], or even an adaptive threshold, as in the work
of Coombes and Owen [28]. The persistence of solutions in the presence of noise is also of interest. We
say so mainly because the addition of noise is known to reduce wave speed to turn a traveling bump into
a stationary bump, so that in this sense noise can lead to stabilization [29]. Another important study
would be to treat heterogeneous networks, say with a distribution of natural single neuron frequencies
and thresholds, i.e., by considering θ̇i = ωiH(ui − hi). Even for a globally coupled network this may
shed light on how heterogeneity can often lead to the emergence of long time-scale oscillations, as in the
network studies of Smolen et al. [30]. Moreover, deviation from the lattice is completely equivalent to
manipulating the coupling function w. The influence of this type of heterogeneity could certainly destroy
bump solutions. Including them in the lighthouse model would open up a whole new avenue of research,
that might initially be tackled using techniques developed in [31, 32, 33].
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