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Abstract

Augmented Lagrangian methods with general lower-level constraints are considered in
the present research. These methods are useful when efficient algorithms exist for solving
subproblems where the constraints are only of the lower-level type. Two methods of this
class are introduced and analyzed. Inexact resolution of the lower-level constrained sub-
problems is considered. Global convergence is proved using the Constant Positive Linear
Dependence constraint qualification. Conditions for boundedness of the penalty parameters
are discussed. The reliability of the approach is tested by means of an exhaustive comparison
against LANCELOT . All the problems of the CUTE collection are used in this comparison.
Moreover, the resolution of location problems in which many constraints of the lower-level
set are nonlinear is addressed, employing the Spectral Projected Gradient method for solv-
ing the subproblems. Problems of this type with more than 3 x 10® variables and 14 x 106
constraints are solved in this way, using moderate computer time.

Key words: Nonlinear programming, Augmented Lagrangian methods, global convergence,
constraint qualifications, numerical experiments.

1 Introduction

Many practical optimization problems have the form

Minimize f(z) subject to x € Q1 N Qa, (1)
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where the constraint set €25 is such that problems of type
Minimize F'(z) subject to x € Q9 (2)

are considerably easier than problems of type (1). The constraints represented by 2 will
be called upper-level constraints and the constraints corresponding to Qo will be lower-level
constraints. In these cases, it is natural to solve (1) by means of a sequence of problems of the
form (2).

In this paper we consider an Augmented Lagrangian approach for performing this task. At
each outer iteration, a subproblem of the form (2) will be (perhaps inexactly) solved and, after
each call to the algorithm that solves (2), Lagrange multipliers and penalty parameters will be
updated.

Bertsekas [3] analyzed an Augmented Lagrangian method for solving (1) in the case in which
the subproblems are solved exactly. Our theoretical contribution in this paper is to address the
inexact solution of the subproblems and to prove the following global convergence results:

1. If z, is a limit point of a sequence generated by the algorithms introduced here, then at
least one of the following possibilities hold:

e The point x, is feasible. (This is necessarily the case if the penalty parameters are
bounded.)

o . is a KKT point of a sum of squares of upper-level infeasibilities, subject to lower-
level constraints.

e 1, does not satisfy the lower-level constant positive linear dependence (CPLD) con-
straint qualification [2, 38] 1.

2. If a limit point x, is feasible then at least one of the following possibilities hold:

e z, is a KKT point of the original problem.

e 1, does not satisfy the CPLD constraint qualification related to all the constraints.

We analyze two versions of the main algorithm: with only one penalty parameter and with
one penalty parameter per constraint. In the first case we prove boundedness of the sequence
of penalty parameters. We use the reduction to the equality-constraint case introduced in [3].

The global convergence results that use the CPLD constraint qualification are stronger than
previous results for more specific problems. In particular, Conn, Gould and Toint [14] and Conn,
Gould, Sartenaer and Toint [12] proved global convergence of Augmented Lagrangian methods
for equality constraints and linear constraints using the assumption of linear independence of
all the gradients of active constraints. Their assumption is much stronger than our CPLD-like
assumptions. Convergence proofs for Augmented Lagrangian methods with equalities and box
constraints using CPLD were given in [1].

LA feasible point of a nonlinear programming problem is said to satisfy the CPLD constraint qualification if
the positive linear dependence of any set of gradients of active constraints implies the linear dependence of the
same gradients in a whole neighborhood of the point.



We describe a particular implementation of the algorithms introduced in the paper for the
case in which the lower-level set is a box. For solving the subproblems we use the code GENCAN
[6]. We compare the default version of our method with the default version of LANCELOT [13]
using all the problems of the CUTE collection [10].

The most interesting applications of our approach arises when the lower-level set is arbitrary,
perhaps nonconvex or defined by nonlinear constraints. A location problem is defined as an
example of this situation. In this case, it is known that the Spectral Projected Gradient method
SPG [7, 8, 9] is particularly efficient when only the lower-level constraints are present, but SPG
cannot be applied for the problem with the two types of constraints.

This paper is organized as follows. The algorithms are defined in Section 2. Section 3 is
devoted to global convergence results. In Section 4 we prove boundedness of the penalty param-
eters. In Section 5 we show the numerical experiments. Applications, conclusions and lines for
future research are discussed in Section 6.

Notation.
We denote:
R, ={teR|t>0},

R++:{t€lR|t>0},
N=1{0,1,2,...},
|| - || an arbitrary vectorial norm .

[v]; is the i—th component of the vector v. If there is no possibility of confusion we may also
use the notation v;.

For all y € R", y+ = (max{0,y1},...,max{0,y,}).

[A]; is the j—th column of the matrix A.

IfF:R"— R" F=(f1,...,fm), we denote VF(x) = (Vfi(x),...,Vfn(x)) € R"™.

If v € R" and a € IR, we say that v > a (respectively, v > a) if [v]; > a (respectively,
[v]; >a)foralli=1,... n

For all v € IR™ we denote Diag(v) € IR"*™ the diagonal matrix with entries [v];.

If K ={ko,ki,ka,...} CIN (kjt1 > k;Vj), we denote

lim zp = lim xp..
keK j—oo 7

2 Augmented Lagrangian algorithms

We will consider the following nonlinear programming problem:

Minimize f(z) subject to hi(x) = 0,91(z) < 0,ha(z) =0, g2(x) <0, (3)

where f : IR" — IR,h; : R" — IR™ hy : IR® — IR"™,g; : IR"® — IRP' g9 : IR" — IRP2. We
assume that all these functions admit continuous first derivatives on a sufficiently large and open
domain. We define

O ={zx e R"|hi(z)=0,91(x) <0}



and
Oy ={x € R" | ha(z) =0, g2(x) < 0}.

For all x € IR",p € ]Rfjfp A e R™,u € RY we define the Augmented Lagrangian
31, 37, 41]:

L\ i p) = +ZA @) L +Z mac{O, 1+ ol 11191 (@)1 12

=1 m1 +i
(4)

Algorithm 2.1.
Let x¢p € IR™ an arbitrary initial point.
The given parameters for the execution of the algorithm are:

T€[0,1),y>1,
—00 < [Mmin)i < [Mmax)i <0 Vi=1,...,mq,
[fimin]i <0 < [fimax)i <00 Vi=1,...,p1,
po, p1 € RTIPL,
[AMi € [[Aminki> [Amax)i] Vi =1,...,my,
[Fi0)is )i € [0, [fimax)s] Vi =1,....p1.
Finally, {ex} C IR, is a sequence of tolerance parameters such that

lim e = 0. (5)

k—oo

({ex} will be called the tolerance sequence from now on.)

Step 1. Initialization
Set k«— 1. For j =1,...,p1, compute

i — Inax T ] —7[/10]]
ol = e {fn )~ ©)

Step 2. Solving the subproblem
Compute (if possible) zj € IR™ such that there exist vy € IR™2, uy € IRP? satisfying

IV L (s Moy ik i) + 2202 [vr]iV [ha (xn))i + 3072 [uniViga(@p)ill < ex, (7)
[92(z1)]; < e for all j =1,...,pa, (8)

u > 0, (9)

[92(2k)]; > —ex or [ug]; =0forall j=1,...,po, (10)

[ho(zp)] < ek (11)

If it is not possible to find z satisfying (7)-(11), stop the execution of the algorithm.



Step 3. Estimate multipliers
For all i =1,...,mq, compute

Nir1li = ali + [prdilln (z)]i (12)
and
Met1li € [[Pminis [Amax]i]- (13)
(Usually, [Ar41]; will be the projection of [A\;41]; on the interval [[Amin]i, [Amax]:].) For all j =
1,...,p1, compute

[1r41]j = max{0, [fig]; + [pk]m, +5l91 (zx)]5 1}, (14)
oy = {[gl( ol [Pk]mljﬂ'}’
and
[fik+1]5 € [0, [fimax];]- (15)

(Usually, [fig+1]; will be the projection of [p441]; on the interval [[fimin]j, [fimax);]-) Since, by
(14), [pr+1]; is always nonnegative, the given value of [fimin]; < 0 is, in practice, irrelevant.
However, we maintain this parameter for theoretical reasons.)

Step 4. Update the penalty parameters
Update the penalty parameters according to one of the following rules:

Rule 1. If
max{|[h1(zx)lloo; ok lloc} < 7max{|lh1 (zx—1)lloc, [lok—1lloc },
define
Pry1li = [prli, i=1,...,m1 +p1.
Else, define

lpra1)i = Ylprli, 1=1,...,m1 +p1.
Rule 2. For each t =1,...,mq, if

|[Pa(@i)]i| < 7|[h(zk-1)lil;
define
[Pra1)i = [prli-
Else, define
[Pkt 1)i = YIoki-
For each j =1,...,py, if
|low];] < Tllow-1ll,
define
[ok1lmi+i = [Prklmi+j-
Else, define
[Pr+1lma+s = V[Ok]ma+j-



Step 5. Begin a new outer iteration
Set k «— k + 1. Go to Step 2.

Remarks
1. The conditions (7)—(11) are approximate KKT conditions of the subproblem
Minimize L(z, \g, fir, px) subject to x € Q. (16)

In the convergence proofs we assume that one is able to compute x, v, up satisfying those
conditions. The fulfillment of this practical assumption depends on the characteristics
of the set Q9 and the objective function of (16). Let us assume that a KKT point Z of
(16) exists with multipliers 0 € IR™2,u € IRY?>. Assume, moreover, that we are able to
approximate (Z,v,u) by a convergent sequence

(Z¢,0g,Uy) € R™ x R™ x RE' £ € IN.
(This sequence will be probably generated by a numerical algorithm.) Therefore:

lim (:/E\f)afvaé) = (i\ai}\a ’L/Z) (17)
{—00
In spite of (17), it is possible that no element of the sequence (Z, vy, ty) fulfills the condition
(10). This happens if, for some j, [g(Z)]; < —ex (so [u]; = 0) but [u]; > 0 for all £ € IN.
In other words, although lim,_.[u]; = [u]; = 0, [U]; might remain strictly positive for
all £ € IN.

Fortunately, this situation can be overcome in the following way: For all £ € IN, if [¢(Z)]; <

—&y, define [uy]; = 0. Otherwise, [uj|; = [ug];. Clearly, the condition (10) is fulfilled
replacing u; by uw,. Moreover,
z,0,u)

lim (Zy, Vg, Uy) = (T,0,0).
{—o0

Therefore, the conditions (7), (8) and (11) are also fulfilled by (Zy, vy, uy) if ¢ is large
enough.

2. The parameters py and fip are used only to compute o( in (6). So, they can be elimi-
nated setting og as a parameter of the algorithm. We prefer the present formulation for
theoretical reasons related to the forthcoming equivalence Theorem 4.1.

3. Although there seems to be little motivation to use different updating rules at different
iterations, the structure of the algorithm allows one to proceed in this way:.

3 Global convergence

In this section we assume that the algorithm does not stop at Step 2. In other words, it is
always possible to find xj, satisfying (7)-(11). Problem-dependent sufficient conditions for this



assumption can be given in many cases. (However, it must be warned that the algorithm
necessarily stops at Step 2 in some situations, for example if the lower-level set is empty.)

We will also assume that at least a limit point of the sequence generated by Algorithm 2.1
exists. A sufficient condition for this is the existence of € > 0 such that the set

{z e R" | g(z) <e,[|h(z)|| <&}

is bounded. This condition may be enforced adding artificial simple constraints to the set .
(However, one should be cautions when doing this, due to the danger of destroying the structure
of QQ)

We are going to investigate the status of the limit points of sequences generated by Algo-
rithm 2.1. Firstly, we will prove a result on the feasibility properties of a limit point. Theorem
3.1 shows that, either a limit point is feasible or, if the CPLD constraint qualification with
respect to (2o holds, it is a KKT point of a weighted sum of squares of upper-level infeasibilities.

Theorem 3.1. Let {x} be a sequence generated by Algorithm 2.1. Let x, be a limit point of
{zr}. Then, if the sequence of penalty parameters {px} is bounded, the limit point x, is feasible.
Otherwise, at least one of the following possibilities hold:

(i) There exists p € [0,1]™ TP p =£ 0, such that x. is a KKT point of the problem

Minimize % [Z[p]z[hl(a:)]f + Z[p]mlﬂ- max{0, [g1 ()];}2| subject to x € Qy.  (18)
i=1 i=1

Moreover, if Rule 1 is used at all the iterations of Algorithm 2.1 and [po); = [po]1 for all
i=1,...,mq + p1, the property above holds with [p|; =1,i=1,...,m1 + p1.

(i1) x. does not satisfy the CPLD constraint qualification [2, 38] associated to Qs.

Proof. Let K be an infinite subsequence in IN such that

lim zp = x,.
keK

By (5), (8) and (11), we have that ga(x.) < 0 and ha(z,) = 0. So,
Zy € Qo. (19)
Now, we consider two possibilities:
(a) The sequence {pr} is bounded.
(b) The sequence {py} is unbounded.

Let us analyze first Case (a). In this case, from some iteration on, the penalty parameters
are not updated. Therefore, both updating rules imply that

khm [hl(a:k)]z = klim [O’k]j =0Vi= 1,...,m1, j = 1,...,])1.



Therefore,
hi(x,) = 0. (20)

Moreover, if [g1(2)]; > 0 then [g1(x)]; > 0 for k € K large enough. This would contradict the
fact that [o}]; — 0.

Therefore,
[91($*)]z SO \V/Zzl,,pl (21)

By (19), (20) and (21), x. belongs to Q1 N Qs. So, the nonnegative objective function of (18)
vanishes at x,. This implies that z, is feasible.

Therefore, we proved the thesis in the case that {pj} is bounded.

Consider now Case (b). So, {pk}rex is not bounded. By (4) and (7), we have:

flzg) + Z ([Me)s )ilh1 (zk)]:) V] (2g)]; + ZmaX{O, k)i + [Pr)myvilgr (@i)]i YV [g1 (2]
i=1
p2
+ Z vg)iV[ha(zr)]i + Z[uk]jV[gg(a:k)]j = 0, (22)
j=1
where, by (5),
lim 16| = 0. (23)

If [ga(x4)]; < O, there exists k1 € IN such that [ga(xy)]; < —ep for all k& > ki,k € K.
Therefore, by (10), [ux]; =0 for all k € K,k > k.
Thus, by (19) and (22), for all k € K,k > ki we have that

p1

flzy) + Z wlilha ()]0 VI (@) + D max{0, [@)i + [orlma+ilgr (@)1} V[gr (i)l

=1

+ka ho(a)li+ > sl Viga(zp)]; = .

[92(z+)];=0

Dividing by ||pk|lc We get:

Vf(:ck)Jer:( uli Il ) ) VGl D mae 0. 25 I, 1 by ),

loklloo = \llprlloo  lloKlloo — loklloe  lloklloo
=1 =1
S [ug]; O,
+> Viha(z)li + > Viga(zr)]; =
— || prlloc o2(of=0 [l Pkl oo lloklloo”

By Caratheodory’s Theorem of Cones (see [4], page 689) there exist
I c {L..yma}, Ji © {5 | [ga(2)); = 0},

[Okli, 1€ 7, and [ug); >0, j€ T



such that the vectors
{Viha(@p)]iicr, U{VIg2(@r)ls} ;7

are linearly independent and

T2 5 (el P g g )W man o, P Bt o o,

19kl oo loxlloo Pkl P loxlloo NPkl
(24)
. Ok
+ ) (Bl Viha (@)l + > k] Viga(a) :
= ~ ioelle
=n J€T

Since there exist a finite number of possible sets I, ks jk, there exists an infinite set of indices
K such that
K1C{k€K’ka1},

Iy =1,
and L
J=Jp C{j|g2(zs)]; = 0} (25)
for all k € Kj. Then, by (24), for all £ € K; we have:

mZ( Pl [hmm)V[m(m]ﬁpzlmax{0 Fidi [otmas [m(m)]i}wgaxkni
HpkHoo — HpkHoo 1Pkl pat loklloo  [lorlloo
(26)
+ > [0kl Vha (@)l + Y [k VIga(ak)] HpiT! :
iel jeJ o
and the gradients
{Viha(@p)]i}icr U{VIg2(@)]s} e 7 (27)

are linearly independent.
We consider, again, two cases:

1. The sequence {||(0g, ur)||, k¥ € K1} is bounded.
2. The sequence {||(Vk, ug)||, ¥ € K7} is unbounded.

If the sequence {||(Vk, Ur)||}rek, is bounded, there exist p € [0,1]™ 1P p £ 0, (v,a),u > 0
and an infinite set of indices Ko C K; such that

i (5 ) — (5.5
kg}(lQ(vkauk) (v,7)

and
[pk]l — Pi, Z: 1
keKz || ok loo

.,m1 +p1.



By (13), (15) and (23), taking limits for k € K in (26), we obtain:

mi p1
D [Plilha (@) Vb (@)l [Pl s max{0, [g1 (2]} VIgr (@)]i+ Y | 0V [ha(z))i+ Y | 8 V[ga(2)]; = 0.
i=1 i=1 iel jeJ

Therefore, by (19) and (25), z. is a KKT point of (18).

The reasoning above is valid for both updating rules defined in Algorithm 2.1. Now, if Rule 1
is chosen for all k£ and all the penalty parameters are the same at the first outer iteration, it is
obvious that they remain equal for all k. Therefore, all the entries of p must be the same and
the thesis for Rule 1 holds.

Now, assume that {||(Uk, ur)|| }rek, is unbounded. Let K3 C K be such that limge g, || (Vk, Ug)|| =
oo and (v,u) # 0,7 > 0 such that

(Uk, ug) N

lim || = (v, ).

ke || (O, ur)

Dividing both sides of (26) by ||(V, u)| and taking limits for k € K3, we get:

> 5 V[ho(z)li + Y1 V[ga(@)]; = 0.

iel jeJ

Then, the gradients
{Viha(z)liticr U{VIg2(z)]itic 7

are positively linearly dependent. But [g2(z,)]; = 0 for all j € J. Then, by (27), x, does not sat-
isfy the CPLD constraint qualification associated with the set (25. This completes the proof. O

In what follows we prove an optimality result. We saw that a limit point of a sequence
generated by Algorithm 2.1 may be feasible or not. Roughly speaking, Theorem 3.1 says that,
if z, is not feasible, then (very likely) it is a local minimizer of the upper-level infeasibility,
subject to lower-level feasibility. From the point of view of optimality, we are interested in the
status of feasible limit points. In Theorem 3.2 we will prove that, under the CPLD constraint
qualification, feasible limit points are stationary (KKT) points of the original problem. Let us
recall that the CPLD condition was introduced in [38] and its status as a constraint qualifica-
tion was revealed in [2]. Since CPLD is strictly weaker than the Mangasarian-Fromovitz (MF)
constraint qualification, it turns out that the following theorem is stronger than results where
KKT conditions are proved under MF or regularity assumptions.

Theorem 3.2. Let {xk}rev be a sequence generated by Algorithm 2.1. Assume that z. € Q1N
is a limit point that satisfies the CPLD constraint qualification related to 21 N Q. Then, x, is
a KKT point of the original problem (3). Moreover, if x, satisfies the Mangasarian-Fromovitz
constraint qualification [33, 42] and {z}}rkek is a subsequence that converges to ., the set

Ukt sl ol el eese s bounded. (28)

10



Proof. For all k € IN, by (7), (9), (12) and (14), there exist uy € IRY*, §; € IR™ such that
10kl < e and

p2

VI @)+ iV @o)li+ Y i Vig @)t [orliViba (@)l [ukl;Viga(xx)]; = 6.
i=1 i=1

i=1 Jj=1

(29)
By (14), pg11 € RE! for all k € IN.
Let K C IN be such that

lim zp = x,.
keK

Suppose that [g2(z«)]; < 0. Then, there exists k1 € IN such that Vk € K,k > ki, [g2(xr)]i <
—ek. Then, by (10),
i =0 Vke K k> k.

Let us prove now that a similar property takes place when [g1(z4)]; < 0. In this case, there
exists ko > ki such that
[91(2x)]i <0 VE € K,k > k.

We consider two cases:
1. {[pk]my+i} is unbounded.
2. {[pk)mi+i} is bounded.

In the first case we have that limge [px]m,+i = 00. Since {[fg]:} is bounded, there exists
k3 > ko such that, for all k € K,k > kg,

(k)i + [Pr)my 4491 (zr)]i < 0.

By the definition of 41 this implies that

rt1]i =0 Vke K k> ks.
Consider now the case in which {[px|m,+:} is bounded. In this case,

k—o0

Therefore, since [g1(z)]; is bounded away from zero for k € K large enough,

LRl =0

So, for k € K large enough,
[fiki + [orlmi+ilgr (i)l < O.

By the definition of p11, there exists k4 € IN such that [ugi1]; =0 for k € K,k > ky.
Therefore, there exists k5 > max{ks, k4} such that for all k € K, k > ks,

[gl(:l?*)]i <0= [,ukﬂ]i =0 and [92($*)]Z <0= [uk]z =0. (30)

11



(Observe that, up to now, we did not use the CPLD condition. So (30) takes place even
without constraint qualification assumptions.)
By (29) and (30), for all k € K,k > ks, we have:

[z +Z MepaliVIh(@)li+ Y e )iVign(an)] +Z vgiV [ha(z)]
[91(2)}i=0

+ [ukl; Viga(zk)]; = Ok, (31)
[92(2+)];=0

with pgy1 € ]Rﬁl,uk € sz
By Caratheodory’s Theorem of Cones, for all k£ € K,k > k5, there exist

Eﬂ - {17 s aml}v j;f - {.7 | [gl(:p*)]j = 0}7fk C {17 s 7m2}7 jk: - {] | [92(117*)]]' = 0},
[)\k] Vi € Ik, [/Lk] >0Vje Jk, [Uk] Vi € Ik, [uk] >0Vje Jk
such that the vectors
{VIh(z)]iticr, UAVIg(@r)]ities, ULV IRa(ai)]itics, U{VIg2(zr)]itic,
are linearly independent and
V1 k) + Cieq, PV (on))s + Zicz, (k)i g () i+
> ici, [UkliVha(zk)]i + 3¢ 5, [Wl; Vg2 (@k)]; = O

Since the number of possible sets of indices Eg, j;f, I ks Jy, is finite, there exists an infinite set
K, c {k € K| k> ks} such that

(32)

Li=T,Jx=J Iy =1,J,=J,

for all k£ € K;.
Then, by (32),

VI @r) + XMl VI (@)l + e 7 V[gn (24)) i+
> icilkliVha(zr)]i + 32 ¢ 5 [Uk]; Viga(k)]j = Ok
and the vectors
{Vihi(zi)]i},cr YAV (r)lite 7 UAVIR2(2r)]i e 7 UV [92(@8)]i }ic 5 (34)

are linearly independent for all k € K.
Let us define

Sy, = max{max{|[A]s|,i € I}, max{[fig)i,i € J}, max{|[Ox)s|,i € I}, max{[ix)i,i € J}}.

We consider two possibilities:

12



(a) {Sk}rek, has a bounded subsequence.
(b) hmkEKl Sk = OQ.
If {Sk}rek, has a bounded subsequence, there exists Ko C K such that

lm Dl = s
kg}gg[kk]z iy

1 — ;>
kéI}{lQ[Nk]z fii >0,

kléIII(lg [Ok)i = s,

lim [ag]; = u; > 0.
keKo

By (5) and the fact that ||0x| < ek, taking limits in (33) for k € K3, we obtain:

Vi@ + > AVha(@)l + > GVl (@) + > 6V [ha()]i + > 8 Viga(2.)]; =0,

iel ieJ iel jeJ
with z1; > 0,u; > 0. Since z, € Q1 N Qg, we have that z, is a KKT point of (3).

Suppose now that limge g, Sy = co. Dividing both sides of (33) by Sj we obtain:

Vi) 5 P (@) + e B Vg ()

(35)
u Ok
+zmskvm@n+zﬁjﬁvmumrmk
where R
Aili <1, [[ix )i <1 Uk <1, [tk <1
Sk Sk Sk Sk
Therefore, there exists K3 C K; such that
s Al _ - Ol [l -
1 —AZ, >0, lim =v;, lim —* =u; > 0.
kéIII(ld Sk kEK3 Sk =M keKs3 Sk v kéIII{ls Sk i

Taking limits on both sides of (35) for k € K3, we obtain:

S NV (@) + Y BiVigi(@))i + Y 6V ha(z)]i + Y @ V[ga(@.)]; = 0.

iel ieJ il jeJ
But the modulus of at least one of the coefficients Xi, i, Ui, u; is equal to 1. Then, the gradients

(VI (@)l U{VIg(@)litie 7 U{VIh2(z0)li}ic; U{VIg2(z)]i}ic 5

are positively linearly dependent. By the CPLD condition, the gradients
{VIh(@)]i};cr ULVIg(@))i}c 7 U{VIha(2)]i}ie; U{VIg2(2)]i}ie 5
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must be linearly dependent in a neighborhood of z,. This contradicts (34). Therefore, the main
part of the theorem is proved.

Finally, let us prove that the property (28) holds if x, satisfies the Mangasarian-Fromovitz
constraint qualification. Let us define

By, = max{|[Art1lloc, [l+1lloos [0k lloos 1unlloc boe k-

If (28) is not true, we have that limgex By, = oco. In this case, dividing both sides of (31) by By
and taking limits for an appropriate subsequence, we obtain that the set of gradients

{VIha(z)]i 12 U{VIg1 ()i gy @api=0 U A VIh2(2:0)]i 125 UV 92(7:)]i }ga ()]0

is positively linearly dependent. So, x, does not satisfy the Mangasarian-Fromovitz constraint
qualification. O

4 Boundedness of the penalty parameters

When the penalty parameters associated to Penalty or Augmented Lagrangian methods are too
large, the subproblems tend to be ill-conditioned and its resolution becomes harder. Level sets
of the objective function of the subproblems may emulate long narrow valleys, approximately
“parallel” to the penalized constraint set. One of the main motivations for the development of
the basic Augmented Lagrangian algorithm is the necessity of overcoming this difficulty. There-
fore, the study of conditions under which penalty parameters are bounded plays an important
role in Augmented Lagrangian approaches. In this section we prove a penalty boundedness
result for Algorithm 2.1. The technique will be the reduction to the equality-constrained case,
as in [3], Chapter 2, page 143.

4.1 Equivalence result

The following equality-constrained nonlinear programming problem is equivalent to problem (3):

Minimize F'(y) subject to Hi(y) =0,G1(y) =0, Ha(y) = 0,G2(y) =0, (36)

where
y = (v,w,z) € R"TP1TP2,

F(y) = f(z), Hi(y) = hi(z), H2(y) = ha(x),
[Gl(y)]z = [91(33)]2 + wzzvz =1,...,p1,
[G2(y)]l = [92(‘7:)]2 + Z?,Z' =1,...,pa.

In this section we will assume that {zj} is generated by the application of Algorithm 2.1 to
problem (3) and we will consider the application of Algorithm 2.1 to problem (36). In this case,
the upper-level constraints will be

Hi(y) =0, Gi(y) =0
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and the lower-level constraints will be
Hy(y) =0, Ga(y) = 0.

We also consider that, when we apply Algorithm 2.1 to (36), the algorithmic parameters
7,7, Po, p1 are the ones used in the application of the algorithm to the original problem (3). The
initial safeguarded vector of Lagrange multipliers estimates for (36) is (A1, ji;) € IR™ 1. The
vector of lower bounds for the Lagrange multipliers estimates is (S\mm, fimin) € IR™ TP and the
vector of upper bounds is (Amax, fimax) € IR™ TP1. Finally, in the application of Algorithm 2.1
to problem (36), we use the same initial point x( as in the application to (3) and we complete

the vector yg = (xg, wo, o) setting

ol = {0z~ T

po]m1 +1

[20): = \/maX{O, —[g2(x0)]i},i=1,...,pa.

Theorem 4.1. Assume that the sequence {x}} is generated by the application of Algorithm 2.1
to problem (3). Suppose that limy_, o xp = . € Q1 N Qo and that at least one of the following
two conditions hold:

1. There are no inequality constraints in the definition of Qg (so py =0).

2. The point x, satisfies the Mangasarian-Fromovitz constraint qualification. In this case, let
C > 0 be such that
[ugl: < C foralli=1,...,pa, k € IN.

(A constant with this property exists by Theorem 3.2.)

Define

[wg]i = \/maX{O,—[gl(:rk)]i - [['u_ik]z},z =1,...,p1,ke N,

pk]ml—i-i

[Zk]i = \/maX{07 _[QQ(mk)]l}az = ]-7 -5 D2, ke N? (37)
yp = (x5, Wy, 2x) for all k € IN.

Then, the sequence {yr} may be generated by Algorithm 2.1 applied to problem (36) with the
same sequence of penalty parameters and the tolerance sequence {éi} defined by

€ = Chor max{ey, 2C /e },

where Cpop is a constant that depends only of the chosen norm | - ||.

Proof. The rigorous proof of this theorem is by induction on k. The complete verification is
rather tedious and follows as in the exact case (see [3], Chapter 3, page 158). Here we give some
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details on the step that presents some difficulty, due to the inexactness in the solution of the
subproblem.
The Augmented Lagrangian associated with problem (36) is

mi oo p1 ,
Ly, 11, p) +ZA )+ Y D +Zuz G+ 3 i, )2
i=1 i=1
Using that xj, satisfies (7)-(11), we must prove that y; satisfies:
(i)
B my p2
HVLE(yk, Moo iy k) + Y [orliVIH(yn)]i + D [un]iVIGa(yn)]i|| < &,

=1 =1
1 Ha(yr) |l < éx,

G2 (yr)|| < ék.

The derivative with respect to z; of Lg is:

0 T -
a—LE(yk, Ak e i) = 2[2k]ilurls-
Zi
If [g2(zk)]i < —ek, by (10), we have that [ug]; = 0.
If [g2(xk)]; > 0, by the definition of [zx];, we have that [z]; = 0.
Consider the case in which —ej, < [ga(xr)]; < 0. Since [ug);, [2k]i > 0, we have, by (37), that:

0 < 2[zgi[ukli = 2+/ —[g2(wk)]i[ur]i < 2v/Ex[ugli-

The remaining conditions are easy to verify. So, the required result follows from the equivalence
of norms in IR™. O

4.2 Boundedness in equality constrained problems

Due to the identification of the sequence generated by Algorithm 2.1 (applied to problem (3))
with a sequence generated by the same Algorithm applied to a problem that has only equal-
ity constraints, for studying boundedness of the penalty parameters we only need to consider
equality-constrained problems.
With this purpose in mind, we consider now f : IR"™ — IR,c1 : IR™ — IR™ ,¢cy : IR® — IR™
and the problem
Minimize f(x) subject to ¢1(z) =0, ca(z) = 0. (38)
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The Lagrangian function associated with problem (38) is given by
Lo(z, A, v) = f(2) + (c1(2), A) + {c2(2), v),

forallz € IR", A € IR™, v € IR™2.
We will use the following assumptions:

Assumption 0. The sequence {x} is generated by the application of Algorithm 2.1 to the
problem (38) and

lim xp = 2.
k—oo

Assumption 1.

1. The point z is feasible (ci(xy) =0 and ca(zs) =0).

2. The gradients Vici(xz))1,. .., Ve1(xe)lm,, Vica(z)h, .., Vea(xi)|my are linearly inde-
pendent.

3. The functions f,c1 and co admit continuous second derivatives in a neighborhood of x .

4. The sufficient second order condition for local minimizers holds. This means that, if
(A, v4) € IR™*™2 js the vector of Lagrange multipliers associated with ., then:

(2, V2, Lo (24, Ay 0,)2) > 0

for all z # 0 such that Vei(z4)T2 =0 and Veg(zs)T2 = 0.

Assumption 2. Forallk € IN, i =1,...,my, [Aeg1]i will be the projection of [Ary1]i on the

interval [[Aminli, [Amax]i)-

Assumption 3. For alli=1,...,mq,

[)\*]7, € ([)\min]ia [)\max]i)'

Lemma 4.1. Suppose that Assumption 1 (item 4) holds. For all p € IR} define m(p) =
(L/[pl1s---+1/[plmy)- Then, there exists p > 0 such that, for all p € R™ such that p > p, the

matriz
V2. Lo(Zs, M, Vi) Ver(xy) Vea(xy)

Ver (a.)" —Diag(w(p)) 0
VCQ(m*)T 0 0

18 nonsingular.
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Proof. The matrix is trivially nonsingular for 7(p) = 0. So, the thesis follows by the continuity
of the matricial inverse. O

Lemma 4.2. Suppose that Assumptions 0 and 1 hold. Let p be as in Lemma 4.1. Suppose that
there exists kg € IN such that py, > p for all k > kg. Define

o = VL(mk, S\k, pk) + VCQ(ﬂik)Uk (39)

and
ﬂk = CQ((L’k). (40)
Then, there exists M > 0 such that, for all k € IN,

[Aelr = il [Almy = Pl |
E— Mmax{ o Sy WkH} (41)
and _ _
Tl Y S IV 0l Y

s = Al < Mmax{ mil ), uﬂku}. (42)

[Pkl [Pk)m,

Proof. Define, for all k € IN,i =1,...,mq,

[tk]l - [pk]z ’ (43)
1
(i) = ol (44)

By (12), (39) and (40),

VL(z, Mg, pr) + Veo(xg)vr — ag = 0,

Akt1li = [Meli + [orliler(@p)]is i =1, oma

and
ca2(r) — B =0

for all £ € IN.
Therefore, by (43) and (44), we have:

Vf(zg)+ Ver(xg)Ner1 + Vea(zg)vg — ag, =0,

le1(xr))i — [TrliMea)i + Bili + [meli M) =0, i =1,...,my

and
c2(wp) — B = 0.
Define, for all = € [0,1/p]™,

F, R"x R™ x IR™ x R™ x R" x R™ — R"™ x IR"™ x IR™
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b
' Vf(z)+ Ve (z)N+ Ve (z)v — a
[er ()1 = [7a[Al + [th + [7]1 A

Fﬂ—(l‘, A7U7t7a7ﬁ) =

[Cl (x)]ml - [ﬂ-]ml [)\]ml + [t]ml + [ﬂ-]ml [)\*]ml

co(z) — B
Clearly,
Fﬂk(mka)\k+lavk7tk7aka/8k) :0 (45)
and, by Assumption 1, we have that
Fr(24, Ay 04,0,0,0) =0 V€ [0,1/p]™. (46)

Moreover, the Jacobian matrix of F with respect to (x, \,v) computed at (z, As,v4,0,0,0) is:

V2. Lo(zs, s, v)  Ver(zs)  Vea(wy)
Vey(z)T —Diag() 0
Ve (zy)T 0 0

By Lemma 4.1, this matrix is nonsingular for all # € [0,1/p]™!. By continuity, the norm
of its inverse is bounded in a neighborhood of (z., A«,v4,0,0,0) uniformly with respect to
m € [0,1/p]™ . Moreover, the first and second derivatives of F; are also bounded in a neigh-
borhood of (24, A, v4,0,0,0) uniformly with respect to 7 € [0,1/p]™'. Therefore, the bounds
(41) and (42) follow from (45) and (46) by the Implicit Function Theorem and the Mean Value
Theorem of Integral Calculus. O

Lemma 4.3. Suppose that Assumptions 0 and 1 hold and

lim [pg)i =00 Vi=1,...,m.
k—o0

Then,

lim A = A.. (47)
Proof. Since |lag| < ek, ||Bk]| < ex and {Ax} is bounded, the right-hand side of (42) tends to
zero. This implies that (47) holds. O

Lemma 4.4. In addition to the hypotheses of Lemma 4.3, suppose that Assumptions 2 and 3
hold. Then B

for k large enough.

Proof. By Lemma 4.3, A\ tends to A, which, by Assumption 3, belongs to the open set

([Amin]1, [Amax)1) X -+ X ([Amin]m1» [Amax)mi )-
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Therefore, \;, belongs to this open set for k large enough. Then, by Assumption 2, A\jy1 =
Ak41 for k large enough. This completes the proof. O

Theorem 4.2. Suppose that Assumptions 0, 1, 2 and 3 are satisfied by the sequence generated
by Algorithm 2.1 applied to the problem (38). In addition, assume that:

1. Rule 1 is used at all the iterations of the algorithm and [pol; = [po]1 for alli=1,...,m;.

2. There exists a sequence ni — 0 such that

er < kller(zr) oo (48)
for allk € IN.

Then, the sequence of penalty parameters {py} is bounded.

Proof. In order to simplify the notation, since Rule 1 is the one used here, we write pg = [pxli
foralli=1,...,my,k € IN.
Assume, by contradiction, that
lim pj = oc. (49)

k—o0
Since ¢1(z«) = 0, by the continuity of the first derivatives of ¢; there exists L > 0 such that,
for all k € IN,
ler(@r)lloo < Lk — @4]|.

Therefore, by (41), (48) and Lemma 4.4, we have that

Ak — s
Jeato e < E0 mae {12l ey )
for k large enough. Since 7 tends to zero, this implies that
Ak — Axlloo

ler(zn)lloo < LM (50)

Pk
for k large enough.
By (13) and Lemma 4.4, we have that A\ = Ap_1 + pr_1¢1(zp_1) for k large enough. There-
fore,

M= Mectlloe et = Al % = Aullos
Pk—1 Pk—1 Pk—1

for k large enough.
Now, by (42), Lemma 4.4 and (48),

Ae = Aslloo < M<”)"f—;;)‘*uoo

+77k—1||01(33k—1)||oo>

for k large enough. So,

A1 — Aelloo S Ak = Aslloo
Pk—1 - M

— =11 (@r—1)]l o

20



for k large enough. Therefore, by (51),

1 1 1
> [\ — S Y s -

for k large enough. Thus,
Ak = Aslloe < 3M|ler(zk—1)l|o0

for k large enough. By (50), this implies that

3LM?

ler (@)oo < ller(@r—1)loo-

Therefore, since pp — 00, there exists k1 € IV such that

ler(@e)l] < Tller (@)l

for all k£ > k;. This implies that pg11 = pg for all £ > k;. Thus, (49) is false. O

4.3 Boundedness in the general case

The final boundedness result for the penalty parameters associated to Algorithm 2.1 is given in
Theorem 4.3. As in Theorem 4.2 a crucial assumption will be that the precision used to solve sub-
problems must tend to zero faster than the upper-level feasibility measure. This type of require-
ment is usual in many Augmented Lagrangian and Multiplier methods [3, 4, 12, 14, 19, 20, 21, 30].

Assumption 5. We assume that
1. The sequence {xy} is generated by the application of Algorithm 2.1 to the problem (3) and

lim xp = z4.
k—oo

2. The point x, is feasible (hy(zs) = 0,91(x4) < 0,ho(xy) =0, g2(x,) <0.)

3. The gradients

{V[hl («T*)]Z}?illa {v[gl (m*)]l}[gl(x*)]zzw {V[h2 (:1:*)]7«}?;217 {V[QQ (‘T*)]Z}[gg(x*)]zZO
are linearly independent.

4. Strict complementarity takes place at x.. This means that, if p. € ZPJZ1 and u, € ZRI:’_2
are the Lagrange multipliers corresponding to the constraints g1(x) < 0 and ga(z) < 0,
respectively, then:

[91(2:)]i = 0= [ps]i >0

and
[g2(z4)]i = 0 = [ux]; > 0.
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5. The functions f,h1,g1,hs and go admit continuous second derivatives in a neighborhood
of Ty.

6. Define the tangent subspace T as the set of all z € IR™ such that
Vhi(z:)T 2 = Vhy(z,) 2 =0,
(Vigr(z.)]i 2) = 0
for all i such that [g1(z4)]; =0 and
(Viga(.)]i 2) = 0

for all i such that [g2(x4)]; = 0.
Then, for all z € T,z # 0,

L [V2f (s ~I—Z V2[hy () +Z 14)iV2[g1 () +Z 0. )iV [ha(z,) +Z )i V2 [g2(24)]i]2) > 0.

Proposition 4.1 Suppose that Assumption 5 holds. Define

\/ 91 «73* gl x*)]m)a
\/ 92 33'* 92 x*)]p2)

and
Y = (Tu, Wy, 24).

Consider problem (36) with

ci(y) = (Hi(y), G1(y)), c2(y) = (Ha(y), G2(y))-

Then, Assumption 1 is satisfied for problem (36).
Proof. See Proposition 3.2 of [3]. O

Theorem 4.3. Suppose that Assumptions 5 holds. In addition, assume that:

1. Rule 1 is used at all the iterations of the algorithm and [po); = [po]1 for alli=1,...,m1+
p1.

2. There exists a sequence ni — 0 such that

er < M max{[|h1 (21 |loo, [|ok oo} V k € IN.

3. [)\*]z S ([)\min]ia [Amax]z) Vi=1,...,mq and [M*]z € ([,amin]i’ [ﬂmax]i) Vi=1,...,p1.
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4. [Mes1li is the projection of [Mks1)i on [Aminli, [Amax)i] and [fig41]; is the projection of
[Nk—i—l]j on [[ﬂmin]j7 [/jmax]j] fOT all i = 17 s 7m17j = 17 s 7p17k € IN.

Then, the sequence of penalty parameters {py} is bounded.

Proof. Consider the equivalent problem (36). By the hypotheses of the present theorem and
Proposition 4.1, the assumptions of Theorem 4.2 are fulfilled. So, the desired result follows by
Theorem 4.2. a

5 Numerical experiments

5.1 Box lower-level constraints

In order to assess the performance of the main algorithm in the widely established Augmented
Lagrangian framework in which the subproblems are bound-constrained problems, we compared
it against LANCELOT [13]. The implementation of the algorithm for the case in which the lower-
level set is a box uses the code GENCAN [6] for solving the subproblems, so it will be called
ALGENCAN (Augmented Lagrangian using GENCAN) from now on.

We test two versions of ALGENCAN: with only one penalty parameter and with one penalty
parameter per constraint (the penalty parameters are updated using Rules 1 and 2 of Step 4,
respectively). We also consider two versions of LANCELOT: with all its default options and using
true Hessians and Conjugate gradients. To perform the numerical experiments, we considered
all the problems of the CUTE collection [10]. As a whole, we tried to solve 873 problems.

For both versions of ALGENCAN , based on the numerical experiments reported in [1, 5], we
set 7= 0.5, v =10, fimin = Amin = —10%°, Hmax = Amax = 1020, e, = 107% for all k, and po and
p1 with all their components equal to 10. For fig = fi; and \;, as well as for the calculation of fiy,
and \j, at Step 3 of ALGENCAN , we consider the projections of g and A onto [fimin, fmax)P! and
[Xmin, j\max]m17 respectively. For ALGENCAN and LANCELOT we use the initial guess xg provided
by CUTE and the null vector for the initial Lagrange multipliers approximation. As stopping
criterion we used max(||h1(zx)]loo, |0k loo) < 107% and ||Poox|r — VL(Zk, Ak, fire, ok)] — Zi|loo <
10~4, where Py represents the projection onto the lower-level box.

All experiments were done in a Sun Fire 830 with 8 900 Mhz UltraSPARC III Processors,
32 Gb of RAM memory, running SunOS 5.8. The codes were written in Fortran 77 and compiled
with Forte Developer 7 Fortran 95 7.0 2002/03/09. We used the option -O3 to optimize the
code.

We compared four methods: two versions of LANCELOT and two versions of ALGENCAN .
Given a fixed problem, for each method M, we define a:é‘flal the final point obtained by M when
solving the given problem. In this numerical study we say that xé‘{lal is feasible if

M M —
max{|[h1 (@figar)lloos 191 (han)+lloc} < 1075

(Observe that, by the structure of the lower-level constraints and the solvers of the subproblems,
lower-level constraints are always satisfied.)
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We define
Soest = mjvlln{ fz )| x| is feasible}.

We say that the method M found a solution of the problem if xé‘{lal is feasible and

f(xé/r[lal) § fbest + 10_3|fbest| + 10_6.
Finally, let t* be the computer CPU time that method M used to arrive to :Uévr[lal. We define

oM _ tMif method M found a solution,
~ | oo, otherwise.

The performance profiles for comparing ALGENCAN and LANCELOT use r as a performance
measurement. See Figure 1. Readers familiar with performance-profile curves [18] may recognize
that ALGENCAN with one penalty parameter is more efficient that the other three Augmented
Lagrangian algorithms. With respect to robustness (right-hand side of the performance-profile
function), we found that this version of ALGENCAN found a solution in 731 (83.73%) problems,
whereas the many-parameter version of ALGENCAN did it in 707 (80.99%) problems, the default
LANCELOT solved 712 (81.56%) problems and the Hessian-CG LANCELOT solved 669 (76.63%)

problems.

ALGENCAN versus LANCELOT

1
' ' I ALGEN(IZAN (with 0r|1e penalty plarameter) I
LANCELOT (default version) -------
ALGENCAN (with a penalty parameter per constraint) --------
LANCELOT (Hessians and CG) -
5‘
0.6 1:- -
|
04 | -
0.2 | —
O 1 1 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800

Figure 1: Comparison between ALGENCAN and LANCELOT using performance profiles.
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5.2 General lower-level constraints

Here we will consider a variant of the family of location problems introduced in [8]. In the
original problem, given a set of np disjoint polygons P, P, ..., Py, in IR? one wishes to find
the point z! € P; that minimizes the sum of the distances to the other polygons. Therefore, the
problem was:

min

ZHZ — 2|2
2t i=1,..mp MNP —

subject to z' € P, i =1,...,np.

In the variant considered in the present work, we have, in addition to the np polygons, nc
circles. Moreover, there is an ellipse which has a non empty intersection with P; and such that

z1 must be inside the ellipse and z;,¢ = 2,...,np + nc must be outside. Therefore, the problem
considered in this work is
: 1 np+i 1
min 2 — 2z + z -z
2%, i=1,...,np+nc nc+np Z H ”2 Z ” ”2

subject to  g(z!) < 0,
g(zt) > 0, i=2,...,np+nc,
2 € B, 1=1,...,np,
ZWH ¢ Oy i=1,...,nc,

where g(z) = (z1/a)? + (v2/b)? — ¢, and a, b, ¢ € IR are positive constants.

We generated 18 problems of this class, varying nc and np and choosing randomly the lo-
cation of the circles and polygons and the number of vertices of each polygon. The details of
the generation, including the way in which we guarantee empty intersections (in order to have
differentiability everywhere), are rather tedious but, of course, are available for interested read-
ers. In Table 1 we display the main characteristics of each problem (number of circles, number
of polygons, total number of vertices of the polygons, dimension of the problem and number of
lower-level and upper-level constraints). Figure 2 shows the solution of a very small twelve-sets
problem that has 24 variables, 81 lower-level constraints and 12 upper-level constraints.

To solve this family of problems, we will consider g(z') < 0 and g(z*) > 0,i =2,...,np+nc
as upper-level constraints, and z° € P;,i = 1,...,np and 2™+ € C;,i = 1,...,nc as lower-level
constraints. In this way the subproblems can be efficiently solved by the Spectral Projected
Gradient method (SPG) [7, 8] as suggested by the experiments in [8]. So, we implemented an
Augmented Lagrangian method that uses SPG to solve the subproblems. This implementation
will be called ALSPG. In general, it would be interesting to apply ALSPG to any problem
such that the selected lower-level constraints define a convex set for which it is easy (cheap) to
compute the projection of an arbitrary point.

Table 2 shows figures that allow us to have an ideia of the numerical performance of ALSPG
applied to the problems of Table 1. We used € = 104 as a tolerance for feasibility and optimality.
ALSPG satisfied the convergence criterion in all the problems.

25



Problem ne np totnus n p1 D2
1 2,929 4,935 61,755 15,728 7,864 64,684
2 4,403 7,346 91,896 23,498 11,749 96,299
3 6,370 10,732 134,165 34,204 17,102 140,535
4 13,344 22,158 276,927 71,004 35,502 290,271
5 19,924 33,265 415,691 106,378 53,189 435,615
6 29,998 49,754 621,824 159,504 79,752 651,822
7 26,288 43,775 546,943 140,126 70,063 573,231
8 39,459 65,891 823,823 210,700 105,350 863,282
9 59,494 98,875 1,236,031 316,738 158,369 1,295,525
10 65,146 109,360 1,367,104 349,012 174,506 1,432,250
11 98,138 163,854 2,048,239 523,984 261,992 2,146,377
12 147,511 245,983 3,074,109 786,988 393,494 3,221,620
13 130,344 218,296 2,729,187 697,280 348,640 2,859,531
14 195,725 327,418 4,093,497 1,046,286 523,143 4,289,222
15 293,913 490,522 6,130,282 1,568,870 784,435 6,424,195
16 260,705 436,037 5,449,661 1,393,484 696,742 5,710,366
17 391,023 653,802 8,172,819 2,089,650 1,044,825 8,563,842
18 587,182 980,615 12,257,368 3,135,594 1,567,797 12,844,550

Table 1: Location problems and their main features. The problem generation is based on a
grid. The number of city-circles (nc) and city-polygons (np) depend on the number of points in
the grid, the probability of having a city in a grid point (procit) and the probability of a city
to be a polygon (propol) or a circle (1 — propol). The number of vertices of a city-polygon is
a random number and the total number of vertices of all the city-polygons together is totnuvs.
Finally, the number of variables of the problem is n = 2(nc 4 np), the number of upper-level
inequality constraints is p; = nc + np and the number of lower-level inequality constraints is
p2 = nc + totnvs. The central rectangle is considered here a “special” city-polygon. The lower-
level constraints correspond to the fact that each point must be inside a city and the upper-level
constraints come from the fact that the central point must be inside the ellipse and all the others

must be outside.
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Problem Oult Inlt Fent Gent Time (secs) f

1 9 334 488 343 12.28 4.5601D+-02
2 9 677 949 686 41.30  5.6228D+-02
3 11 245 390 256 23.63 6.8965D+02
4 7T 69 120 76 18.11 4.6149D+02
) 9 283 476 292 111.45 5.6461D+-02
6 10 8 170 98 58.68  6.9408D+02
7 771 122 78 40.29 4.6326D+02
8 7T 65 121 72 58.09  5.6419D+02
9 8 105 165 113 136.42  6.9382D+-02
10 8 71 135 79 111.41  4.6272D+02
11 7T 66 121 73 158.23  5.6425D+02
12 9 87 163 96 308.75  6.9381D+02
13 7 55 98 62 185.13  4.6280D+02
14 7T 91 151 98 421.58  5.6440D+-02
15 10 83 166 93 602.97  6.9384D+-02
16 8§ 68 138 76 458.96 4.6271D+-02
17 7 80 140 87 765.60 5.6433D+02
18 10 & 171 95 1234.53 6.9408D+02

Table 2: Performance of ALSPG on the location problems. The memory limitation is the only
inconvenient for ALSPG solving problems with higher dimension than problem 18 (approximately
3 x 106 variables, 1.5 x 10% upper-level inequality constraints, and 1.2 x 107 lower-level inequality
constraints), since computer time is very reasonable.
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Figure 2: Twelve-sets very small location problem.
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6 Final Remarks

In the last few years many sophisticated algorithms for nonlinear programming have been pub-
lished. They usually involve combinations of interior-point techniques, sequential quadratic
programming, trust regions [15], restoration, nonmonotone strategies and advanced sparse lin-
ear algebra procedures. See, for example [11], [26], [27], [28], [29], [34] and the extensive reference
lists of these papers. Moreover, methods for solving efficiently specific problems or for dealing
with special constraints are often introduced. Many times, a particular algorithm is extremely
efficient for dealing with problems of a given type, but fails (or cannot be applied) when con-
straints of a different class are incorporated. Unfortunately, this situation is quite common
in engineering applications. In the Augmented Lagrangian framework additional constraints
are naturally incorporated to the objective function of the subproblems, which therefore pre-
serve their constraint structure. For this reason, we conjecture that the Augmented Lagrangian
approach (with general lower-level constraints) will continue to be used for many years.

This fact motivated us to improve and analyze Augmented Lagrangian methods with arbi-
trary lower-level constraints. From the theoretical point of view our goal was to eliminate, as
much as possible, restrictive constraint qualifications. With this in mind we used, both in the
feasibility proof and in the optimality proof, the Constant Positive Linear Dependence (CPLD)
condition introduced by Qi and Wei in [38]. This condition has been proved to be a constraint
qualification in [2] where its relations with other constraint qualifications have been given.

In addition, we proved a result on the boundedness of penalty parameters for which we used
a more restrictive constraint qualification than CPLD.

We felt that the reliability of an Augmented Lagrangian approach with general constraints
needed to be assessed in two different ways: On one hand, we felt the necessity of providing
a robust and efficient computer algorithm for the version of the method with simple (box)
lower-level constraints. Our implementation was based on the robust GENCAN algorithm for
box-constrained minimization [6]. We used a large basis of comparison: all the problems of the
CUTE collection and we compared our default version with the default version of LANCELOT .
We showed that our basic algorithm is at least as robust and efficient as LANCELOT for solving
this set of problems. This was rather surprising since the default version of LANCELOT uses
second-derivative-based preconditioners, which are not present at all in the implemented version
of GENCAN .

On the other hand, we provided a family of examples (Location Problems) where the po-
tentiality of the arbitrary lower-level approach is clearly evidenced. This example represents a
typical situation in applications. A specific algorithm (SPG) is known to be very efficient for a
class of problems but turns out to be impossible to apply when additional constraints are incor-
porated. Fortunately, the Augmented Lagrangian approach is able to deal with the additional
constraints taking advantage of the efficiency of SPG for solving the subproblems. In this way,
we were able to solve nonlinear programming problems with more than 3,000,000 variables and
14,000,000 constraints in less than half an hour of CPU time.

Among the many situations in which the arbitrary lower-level approach may be used, it is
worthwhile to mention:

1. Minimizing a quadratic subject to a ball and linear constraints: This problem is useful
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in the context of trust-region methods for minimization with linear constraints. In the
low-dimensional case the problem may be efficiently reduced to the classical trust-region
subproblem [25, 35], using a basis of the null-space of the linear constraints, but in the
large-scale case this procedure may be impractical. On the other hand, efficient methods for
minimizing a quadratic within a ball exist, even in the large-scale case [40, 43]. Therefore,
it is attractive to solve the problem keeping the ball in the lower level and defining the
linear constraints as upper-level ones.

. Bilevel problems with “additional” constraints [16]. A basic bilevel problem consists in

minimizing f(z,y) subject to the fact that y solves an optimization problem whose data
depend on z. Efficient algorithms for this problem have already been developed (see [16]
and references therein). When additional constraints (h(z,y) = 0, g(x,y) < 0) are present
the problem is more complicated. These additional constraints are serious candidates to
become upper-level constraints in an Augmented Lagrangian approach since, in that case,
the subproblems are “ordinary” bilevel problems. Similar considerations can be made for
many mathematical programming problems with equilibrium constraints [32].

. Minimization with orthogonality constraints [22, 24, 36, 44]. Important problems on this

class appear in many applications, such as the “ab initio” calculation of electronic struc-
tures. Reasonable algorithms for minimization with (only) orthogonality constraints exist,
but they cannot be used in the presence of additional constraints. When these additional
constraints appear in an application the most obvious way to proceed is to incorporate
them to the objective function, keeping the orthogonality constraints in the lower level.

Many interesting open problems remain:

1.

The constraint qualification used for obtaining boundedness of the penalty parameter
(regularity at the limit point) is still too strong. We conjecture that it is possible to obtain
the same result using the Mangasarian-Fromovitz constraint qualification.

. An alternative definition of o at the main algorithm seems to be well-motivated: instead

of using the approximate multiplier already employed it seems to be natural to use the
current approximation to the inequality Lagrange multipliers (pxy1). It is possible to
obtain the global convergence results with this modification but it is not clear how to
obtain boundedness of the penalty parameter. Moreover, from the practical point of view
it is not clear if such modification produces numerical improvements.

. The inexact-Newton approach employed by GENCAN for solving box-constrained sub-

problems does not seem to be affected by the nonexistence of second derivatives of the
Augmented Lagrangian for inequality constrained problems. There are good reasons to
conjecture that this is not the case when the box-constrained subproblem is solved using
a quasi-Newton approach. This fact stimulates the development of efficient methods for
minimizing functions with first (but not second) derivatives.

. The implementation of Augmented Lagrangian methods (as well as other nonlinear pro-

gramming algorithms) is subject to many decisions on the parameters to be employed.
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Some of these decisions are not easy to take and one is compelled to use parameters
largely based on experience. Theoretical criteria for deciding the best values of many
parameters need to be developed.

5. In [1] an Augmented Lagrangian algorithm with many penalty parameters for single

(box) lower-level constraints was analyzed and boundedness of the penalty parameters
was proved without strict complementarity assumptions. The generalization of that proof
to the general lower-level constraints case considered here is not obvious and the existence
of such generalization remains an open problem.

6. Acceleration and warm-start procedures must be developed in order to speed the ultimate

rate of convergence and to take advantage of the solution obtained for slightly different
optimization problems.
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