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AMBIGUOUS RISK MEASURES AND OPTIMAL ROBUST
PORTFOLIOS∗
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Abstract. This paper deals with a problem of guaranteed (robust) financial decision-making
under model uncertainty. An efficient method is proposed for determining optimal robust portfolios
of risky financial instruments in the presence of ambiguity (uncertainty) on the probabilistic model
of the returns. Specifically, it is assumed that a nominal discrete return distribution is given, while
the true distribution is only known to lie within a distance d from the nominal one, where the
distance is measured according to the Kullback–Leibler divergence. The goal in this setting is to
compute portfolios that are worst-case optimal in the mean-risk sense, that is, to determine portfolios
that minimize the maximum with respect to all the allowable distributions of a weighted risk-mean
objective. The analysis in the paper considers both the standard variance measure of risk and the
absolute deviation measure.
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1. Introduction. A classical problem in computational finance is that of opti-
mally selecting a portfolio of finitely many risky assets so as to maximize the expected
return of the investment while keeping “risk” under control. In the mainstream ap-
proach, dating back to the seminal work of Markowitz [25], risk is measured according
to the variance of the portfolio return, and the determination of an optimal portfolio
amounts to the solution of a convex quadratic programming problem. Since the in-
troduction of this basic mean-variance model for portfolio selection, however, many
criticisms have been raised on its practical relevance, especially in regard to the sensi-
tivity of the optimal portfolios with respect to the statistical errors in the parameters
(the estimated expected returns and covariances of the assets), and possible remedies
have been proposed. An in-depth overview of this literature is out of the scope of the
present work, but the interested reader could find some useful pointers in [3, 6, 8, 26].

More recently, the issue of model uncertainty in portfolio optimization has been
the subject of study from different groups of researchers; see, for instance, [13, 18,
24, 34, 37]. Many of these recent contributions propose ideas and computational
tools derived from the robust convex optimization field [4, 14]. The general approach
in this setting is to model the uncertain market parameters (expected returns and
covariances) as deterministic unknown-but-bounded quantities, and then take a worst-
case approach where an optimal portfolio is sought that minimizes the worst risk
that the investor may face as the market parameters vary in any possible way inside
their admissible domains. These deterministic models are practically and theoretically
sound, since they either are naturally derived from confidence regions around the least-
squares estimates of the market parameters (see [18]) or may reflect an analyst feeling
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of the reliability of the parameter estimates. In this latter case, the uncertainty model
typically takes the form of elementwise bounds on some or all entries of the expected
return vector and covariance matrix; see [13, 34]. Specifically, El Ghaoui, Oks, and
Oustry in [13] consider the problem of computing and optimizing the worst-case value-
at-risk of a portfolio, under bounded uncertainty on the mean and covariance matrix of
the returns, and show how the computation can be efficiently performed by recasting
the problem in the form of a semidefinite optimization program [33, 35]. Goldfarb and
Iyengar in [18] develop a robust factor model for the returns, show how the uncertainty
description can be naturally obtained from confidence regions of standard statistical
estimation techniques, and pose the corresponding robust allocation problem in the
form of a convex second order cone program (SOCP); see [23]. Tütüncü and Koenig
in [34] propose the use of an interval uncertainty model for the return mean and
covariance and solve the resulting worst-case Markowitz problem via an ad hoc saddle-
point algorithm.

While the mentioned approaches are specific to portfolio selection problems, more
general models dealing with uncertainty in the underlying probability measures have a
long history and have been studied in different fields, such as economics, finance, and
stochastic optimization; see, e.g., [7, 11, 12, 32, 36]. Uncertainty in the probabilistic
model is usually referred to as ambiguity in the decision theory literature. The recent
work from Erdoğan and Iyengar [15] discusses ambiguous chance-constrained problems
and employs the Prohorov metric to describe the uncertainty “ball” of admissible
distributions. As we shall see in section 2.1, in this paper we adopt a similar approach
for describing the “ambiguity” set around a nominal distribution and employ the
Kullback–Leibler divergence function as a distance measure among distributions. This
distance measure has nice invariance and convexity properties, and the degree of
ambiguity in this metric can be estimated from samples; see [20].

The main goal of this paper is to present an efficient computational framework for
robust portfolio selection in the situation of asset returns described by an ambiguous
discrete joint probability distribution. We consider two risk measures (see [2, 30])
given by composite objectives of the form ρ(x, π) − γμ(x, π), where ρ(x, π) is either
the variance or the expected absolute deviation of the portfolio, μ(x, π) is the portfolio
expected return, and γ is a nonnegative parameter. Here, x denotes the portfolio mix
and π the discrete distribution of the returns (see section 2 for precise definitions and
notation). The measure based on the expected absolute deviation is (for γ ≥ 2) a
coherent measure of risk in the sense of Artzner et al. [2]. The measure based on the
variance is instead not coherent, since it violates a monotonicity condition; see [30].
However, the use of this latter measure is justified by both historical reasons and its
wide popularity.

In the nominal case—i.e., when the probability distribution π is known and
given—minimizing the above objectives is equivalent either to a standard Markowitz
problem (in the case of the variance-based risk measure) or to the absolute deviation
problem, discussed, for instance, in [21, 31]. It is well known that, in this latter case,
the optimal portfolio can be found by solving a linear programming problem.

The key point in this paper is to consider the return distribution π to be impre-
cisely known. In particular, we assume that a nominal value η for the distribution
is given, but that the actual π is only known to lie in a region at distance no larger
than d from its nominal value, where d is a user-definable parameter that quantifies
the (lack of) confidence in the nominal probability (the “index of ambiguity,” in the
terminology of [20]). To measure the distance among distributions, we use the stan-
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dard metric given by the Kullback–Leibler divergence. In this setting, we define the
worst-case risk of a portfolio x as the supremum of ρ(x, π)−γμ(x, π) for π that ranges
over its uncertainty set. An optimal worst-case portfolio is a composition vector x
that minimizes this worst-case risk.

We detail in the paper two numerical schemes that permit us to efficiently evaluate
and optimize the worst-case risk in both the variance and the absolute deviation
cases. For the variance-based risk measure, the worst-case optimal portfolio can be
determined using an interior-point barrier method, in conjunction with an analytic
center cutting plane technique. The absolute deviation-based risk measure poses a
slight additional complication, due to nonconcavity in π of this function. This issue
is here resolved by adding a suitable line search to the algorithm.

The paper is organized as follows. Section 2 sets the stage by providing the basic
definitions and introducing the distribution uncertainty model. Section 3 discusses a
barrier method for computing the worst-case variance-based risk of a given portfolio,
whereas section 4.1 describes the overall cutting plane algorithm for optimizing the
worst-case risk over the portfolio composition. Section 5 extends the methodology to
the absolute deviation-based risk measure. Some numerical examples are presented
in section 6, and conclusions are finally drawn in section 7. To improve readability,
some of the technical details have been relegated to appendices.

1.1. Notation. Whenever useful for notational compactness, we use MATLAB-
like notation for operations on vectors. If x, y are two vectors of compatible dimen-
sions, relational operators such as >,≥, etc., are to be intended elementwise (e.g.,
x > y means that all entries of vector x − y are positive). Similarly, powers and
operators +,−, ∗, / work elementwise, and the same holds for standard functions. For
example, log x/y denotes a vector whose ith entry is log xi/yi.

2. Preliminaries. Consider a collection of assets or asset classes a1, . . . , an and
let

r
.
=
[
r1 · · · rn

]�
be a random vector describing the returns of the considered assets over a fixed period
of time. Let r(1), . . . , r(T ) be T possible scenarios for the outcomes of the random
return vector r, and let πk be the probability associated to the scenario r(k), with
the obvious properties that

πk ≥ 0, k = 1, . . . , T,
T∑

k=1

πk = 1.

Defining the probability vector

π
.
= [π1 · · · πT ]�,

the two previous conditions are simply rewritten as π ≥ 0, 1�π = 1, where 1 denotes
a vector of ones of suitable dimensions. Now let

x
.
=
[
x1 · · · xn

]�
be a vector such that xi represents the fraction of an investor portfolio that is invested
in asset ai. We shall refer to x as the “portfolio composition,” or “portfolio mix.”
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The portfolio composition can be subject to various kinds of constraints, which we
assume to be representable by the condition

x ∈ X , where X is a given polytope.

For example, a typical form for the set X is

X =

{
x :

n∑
i=1

xi = 1, xi ≥ 0 for i = 1, . . . , n

}
,(2.1)

which reflects the standard situation where the investor cannot hold a negative amount
of an asset (i.e., short-selling is not allowed). However, the results in this paper are
not restricted to the specific admissible portfolios set in (2.1) and apply to the general
polytopic case.

With the positions above, the investor’s total return at the end of the investment
period is represented by the random variable

w
.
= r�x,(2.2)

whose expected value is

μ(x, π)
.
= E

{
r�x

}
=

T∑
k=1

πkr
�(k)x =

(
T∑

k=1

πkr
�(k)

)
x = r̂�(π)x,

where r̂(π)
.
= E {r} =

∑T
k=1 πkr(k).

The portfolio risk is quantified as a measure of variability of w around its expec-
tation. A classical measure of variability (see, e.g., [25]) is given by the variance

ρ2(x, π)
.
= E

{(
r�x− E

{
r�x

})2}
= x�Σ(π)x,(2.3)

where

Σ(π)
.
= E

{
(r − r̂(π))(r − r̂(π))�

}
=

T∑
k=1

πk(r(k) − r̂(π))(r(k) − r̂(π))�

is the covariance matrix of r. In this paper, we also consider an alternative measure
of risk, which is based on the expected absolute deviation, and whose justification in
the portfolio selection context is discussed, for instance, in [21, 31]:

ρ1(x, π)
.
= E

{∣∣r�x− E
{
r�x

}∣∣} =

T∑
k=1

πk|r�(k)x− μ(x, π)|.

Following a mean-risk approach, we introduce an objective function which repre-
sents a tradeoff between risk (variance or expected absolute deviation) and expected
return of the portfolio. Specifically, for given γ ≥ 0, we define an objective based on
the variance measure

Υ2(x, π)
.
= ρ2(x, π) − γμ(x, π)(2.4)

and one based on the absolute deviation measure

Υ1(x, π)
.
= ρ1(x, π) − γμ(x, π).(2.5)
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Notice that if the probability distribution π is known and given, then minimiz-
ing Υ2(x, π) over x ∈ X is a well-known Markowitz problem, whose solution can be
obtained by solving numerically a convex quadratic programming problem. Minimiz-
ing Υ1(x, π) in this same situation amounts instead to solving a linear programming
problem; see, for instance, [21, 31].

The point of this paper is to propose computationally efficient schemes for de-
termining optimal worst-case portfolios, when the probability distribution π is not
precisely known. To this end, we introduce in the next section an uncertainty model
for π and define the related robust risk functions.

2.1. Distribution ambiguity and robust measures of risk. Assume that a
nominal return probability distribution η is given, for instance, as a result of estima-
tion from samples. Then the Kullback–Leibler (KL) divergence (see [22]) represents a
natural measure of the expected amount of information in a sample from the unknown
distribution for discriminating against η [19], and it is a frequently used information-
theoretic “distance” measure between probability distributions; see, e.g., [1, 10]. If π,
η are two probability vectors in R

T , with η > 0 describing the nominal probability,
the KL distance between π and η is defined as

KL(π, η)
.
=

T∑
k=1

πk log
πk

ηk
.

We shall henceforth assume that the “true” probability π is only known to lie within
KL distance d ≥ 0 from η, i.e., π ∈ K(η, d), where

K(η, d)
.
= {π ∈ Π : KL(π, η) ≤ d},

Π being the probability simplex Π = {π : π ≥ 0, 1�π = 1}.
K(η, d) thus represents the ambiguity set for the return distribution, and d ≥ 0 is

the uncertainty level (radius of ambiguity). The risk functions (2.4), (2.5), with π ∈
K(η, d), are ambiguous risk functions. The nominal distribution η and the ambiguity
level may either be assigned by expert advice or estimated from data; see, for instance,
[20]. In what follows we shall not investigate further the issue of determination of η
and d and shall assume that these quantities are given data.

Remark 1 (domain, range, and convexity of KL(π, η)). Notice that, since πk log πk

is a convex function over the domain πk ≥ 0,1 then KL(π, η) is a convex function in
π over Π, and hence the uncertainty set K(η, d) is convex.

The function KL(π, η), with π ∈ Π, takes values in the interval [0, log 1/ηmin],
where ηmin = mink=1,...,T ηk. The lower end of the interval is attained for π = η,
whereas the higher end is attained for π = ei, where i is the index of the smallest
element in η, and ei is the ith vector in the standard basis of R

T .
Figure 2.1 gives a pictorial idea of the shape of the set K(η, d) in a three-

dimensional example where η is assumed to be the uniform distribution.
We pursue a worst-case approach in dealing with ambiguity in the risk functions.

Notice that it is known (see [30, Theorem 2]) that the risk functions (2.4), (2.5), for
a fixed probability π, can be represented in dual form as the result of a maximization

Υ(x, π) = max
ζ∈A(π)

[
〈ζ, r�x〉π − Υ∗(ζ)

]
,

1It is assumed by continuity that 0 log 0 = 0.
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Fig. 2.1. A visualization of the subsets K(η, d) of the probability simplex in a three-dimensional
example with η = [1/3 1/3 1/3] and d = 0.01, 0.05, 0.1, 0.2.

where A(π) is a closed convex set of measures, Υ∗ is the conjugate of Υ, and 〈ζ, w〉π =∑
i ζiwiπi. In the the worst-case approach that we follow in this paper, the “robust-

ness” of the nominal risk functions is improved by adding a second level of maximiza-
tion over a set of admissible probabilities K. That is, we shall consider robust risk
functions of the form

Υwc(x) = max
π∈K

Υ(x, π) = max
π∈K

max
ζ∈A(π)

[
〈ζ, r�x〉π − Υ∗(ζ)

]
.

Specifically, given the ambiguity model K(η, d) for the return distribution, we
define the following worst-case (or robust) measures of risk for a portfolio with com-
position x:

Υwc2(x)
.
= max

π∈K(η,d)
ρ2(x, π) − γμ(x, π)(2.6)

for the variance-based measure, and

Υwc1(x)
.
= max

π∈K(η,d)
ρ1(x, π) − γμ(x, π)(2.7)

for the absolute deviation-based measure.
The distribution πwc that attains the supremum in the above optimization prob-

lems is named the worst-case distribution, and the corresponding value function
Υwc(x) is the worst-case risk (to uncertainty level d) of the portfolio x. In the next
section we provide an efficient numerical scheme for solving (2.6). We anticipate that
the existence of a polynomial-time algorithm for computing the worst-case variance-
based risk is due to the fact that we can construct a self-concordant barrier for the
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convex domain K(η, d). Successively, in section 4, we develop a polynomial-time al-
gorithm that permits us to further optimize Υwc2(x) with respect to x, and hence to
find an optimal portfolio mix that minimizes the worst-case variance-based risk. In
section 5, we describe a similar approach for dealing with the absolute deviation-based
objective (2.7).

3. Computing the worst-case variance-based risk. Let the portfolio com-
position x be fixed, let w(k) = r�(k)x, k = 1, . . . , T , and define

w
.
=
[
w(1) · · · w(T )

]�
.

Then from (2.2)–(2.3) we have

ρ2(x, π) = E
{
(w − E {w})2

}
= E

{
w2
}
− E2{w} = π�w2 − π�Ωπ,

where Ω
.
= ww�. Since Ω is symmetric positive semidefinite, it follows that ρ2(x, π)

is a concave function of the probability vector π. Therefore, the objective function
(2.4),

Υ2(x, π) = ρ2(x, π) − γμ(x, π) = −π�Ωπ − π�(γw − w2),

is also concave in π; hence problem (2.6) can be written in the equivalent form of a
convex minimization problem as follows:

Υwc2 = −min
π

π�Ωπ + π�(γw − w2)(3.1)

subject to KL(π, η) ≤ d,(3.2)

π ≥ 0,(3.3)

1�π = 1.

We next develop an interior-point barrier method for solving problem (3.1).

3.1. A logarithmic barrier method. For a fixed portfolio x, we solve problem
(3.1) by solving a sequence of equality constrained problems of the form

min
π

f(π)
.
= tf0(π) + φ(π)(3.4)

subject to 1�π = 1(3.5)

for increasing values of t ≥ 0, where

f0(π)
.
= π�Ωπ + π�(γw − w2)

is the objective function of (3.1),

b(π)
.
=

T∑
k=1

πk log πk −
T∑

k=1

πk log ηk − d,(3.6)

and

φ(π)
.
= − log (−b(π)) −

T∑
k=1

log πk(3.7)
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is a logarithmic barrier for the inequality constraints (3.2), (3.3). For fixed t ≥ 0, we
denote by π∗(t) the corresponding optimal solution of (3.4). The central path is the
curve π∗(t) obtained varying t from 0 to ∞. A standard implementation of a barrier
method is hence the following.

Algorithm 1 (barrier method [5]).
Given strictly feasible π, set t = t(0) > 0, � > 1, tolerance ε > 0.
repeat

1. Centering step:
Compute π∗(t) by solving (3.4) using the Newton method, starting at π.

2. Update: π = π∗(t).
3. Stopping criterion: quit if (T + 1)/t < ε.
4. Increase t: t = �t.

Notice that since η > 0, an initial feasible point for the algorithm is simply
given by π = η. For this algorithm, π∗(t) tends to the optimal solution of problem
(3.1) as t → ∞. The convergence properties of the method are analyzed in terms of
the number of outer iterations (centering steps) needed to reach a solution with the
desired accuracy ε and the number of inner iterations (i.e., the iterations required by
the Newton method to compute each center, up to accuracy εnw). A standard result
states that the number of outer iterations (centering steps) is given exactly by (see
[5, section 11.3.3])

1 +

⌈
log(T + 1)/(εt(0))

log �

⌉
.

The analysis of complexity of each centering step relies on the property of self-
concordance of the objective function in (3.4), which is discussed next.

3.2. Centering step and self-concordance. In their seminal work [28], Nes-
terov and Nemirovskii provided a key condition under which the complexity of the
Newton method could be analyzed, that is, self-concordance of the objective func-
tion. We next show that the objective function in (3.4) is indeed self-concordant and
provide a bound on the number of Newton steps required in each centering phase.

We start with some definitions. A function of a scalar variable ψ(z) : R → R is
self-concordant if it is convex and

|ψ(3)(z)| ≤ kψ(2)(z)3/2

for all z in the domain of ψ, where ψ(2), ψ(3) denote the second and the third deriva-
tives of ψ, respectively, and k is a positive constant. A function ψ(z) of vector variable
z ∈ R

n is self-concordant if it is self-concordant along any line in its domain, i.e., if
the function of scalar variable ψ̃(α)

.
= ψ(z+αv) is a self-concordant function of α ∈ R

for all z in the domain of ψ and for all v.
The following proposition on the self-concordance of the barrier function (3.7)

holds; see Appendix A for a proof.
Proposition 3.1. The function φ(π) in (3.7) is a self-concordant barrier for the

domain

{(π, d) : π > 0, ϕ(π) < d}.

Since the sum of self-concordant functions is self-concordant, and since convex
quadratic functions are obviously self-concordant (they have zero third derivative;
see also some standard rules of “self-concordant calculus” in [5]), we deduce from
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Proposition 3.1 that the objective function in (3.4) is indeed self-concordant. It then
follows that using an (equality-constrained) Newton method with backtracking line-
search, each center can be computed up to accuracy εnw in at most (see, for instance,
[5, section 11])

(T + 1)(�− 1 − log �)


+ log2 log2

1

εnw

Newton steps, where  is a constant that depends on two technical parameters used in
the line-search phase of the algorithm. We conclude this section by reporting explicitly
the gradient and Hessian of the function f(π) in (3.4). We have

∇f(π) = t∇f0(π) + ∇φ(π),

∇2f(π) = t∇2f0(π) + ∇2φ(π)

with

∇f0(π) = 2Ωπ + (γw − w2),

∇φ(π) =
1

−b(π)
∇b(π) − π−1; ∇b(π) = 1 + log

π

η

and

∇2f0(π) = 2Ω,

∇2φ(π) =
1

−b(π)
diag(π−1) +

1

b2(π)
∇b(π)∇�b(π) + diag(π−2).

4. Minimizing the worst-case variance-based risk. In the previous section,
we described a numerically efficient technique for computing the worst-case risk of a
given portfolio mix x, i.e., for evaluating the function Υwc2(x) in (2.6). We now elab-
orate on this technique and develop an efficient algorithm for determining a portfolio
mix that minimizes the worst-case risk. That is, we now aim at solving the portfolio
design problem

min
x∈X

Υwc2(x).(4.1)

We shall do so by employing an analytic center cutting plane technique, which is
described in the next section. Notice preliminarily that function Υ2(x, π) in (2.4),

Υ2(x, π) = xTΣ(π)x− γr̂�(π)x,

is convex (and quadratic) in x for any given π, whence the function Υwc2(x), which
is defined as the pointwise maximum of Υ2(x, π) over π, is also convex in x. At any
given π, the gradient of Υ2(x, π) with respect to x is

∇xΥ2(x, π) = 2Σ(π)x− γr̂(π).(4.2)

The gradient defines a supporting hyperplane for the epigraph of Υ2(x, π), i.e.,

Υ2(z, π) ≥ Υ2(x, π) + [∇xΥ2(x, π)]�(z − x) ∀z ∈ X .(4.3)

Now let x be a given point and let π∗(x) be the probability vector that attains
the optimal value in problem (2.6) (such an optimal argument is attained, since the
feasible set is compact), so that

Υwc2(x) = Υ2(x, π
∗(x)).(4.4)
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Evaluating (4.3) in π = π∗(x), we get

Υ2(z, π
∗(x)) ≥ Υ2(x, π

∗(x)) + [∇xΥ2(x, π
∗(x))]�(z − x) ∀z ∈ X .

Since Υwc2(z) ≥ Υ2(z, π
∗(x)), continuing the previous inequality on the left and using

(4.4), we obtain

Υwc2(z) ≥ Υwc2(x) + [∇xΥ2(x, π
∗(x))]�(z − x) ∀z ∈ X ,(4.5)

which means that ∇xΥ2(x, π
∗(x)) is a subgradient of Υwc2(x) at the point x. Notice

that each time we solve problem (2.6)—or its equivalent formulation (3.1)—for a given
x, we get both the value of Υwc2(x) and the worst-case probability vector π∗(x), and
hence (evaluating (4.2) for π = π∗(x)) a subgradient of Υwc2(x) at x.

4.1. An analytic center cutting plane algorithm for optimizing the port-
folio mix. We now briefly describe an analytic center cutting plane (ACCP) method
for solving problem (4.1). An overview of ACCP techniques for convex optimization
can be found, for instance, in [29].

Let initially P1 = X , and compute the analytic center x(1) of P1. The analytic
center of a polytope can be efficiently computed by minimizing a logarithmic barrier
via a Newton-type algorithm; see, for instance, [17]. Then solve problem (2.6) to get
Υwc2(x

(1)), along with the worst-case probability π∗(x(1)) and a subgradient

g1
.
= ∇xΥ2(x

(1), π∗(x(1)))

of Υwc2(x) at x = x(1). Using inequality (4.5), notice next that for all points in the
hyperplane

{z : g�1 (z − x(1)) > 0}

we have that Υwc2(z) > Υwc2(x
(1)), hence all such points are worse than the current

point x(1) in terms of the objective value that we are trying to minimize. Therefore,
the optimal point should lie in the complementary hyperplane

H1
.
= {z : g�1 (z − x(1)) ≤ 0}.

Hence, we update the current polytope by adding the constraint H1 to P1, i.e., we set

P2 = P1 ∩H1

and iterate the whole process (compute the analytic center x(2) of P2, etc.).
The convergence of this method relies on the fact that the polytopes Pk shrink at

each iteration, thus eventually localizing the optimal solution x∗. The ACCP method
converges to a solution in polynomial time. A precise assessment of the numerical
complexity of the ACCP method and some of its variants has been discussed in several
papers; see, for instance, [16, 17].

In a practical implementation of the method, we may terminate the iterations if
either ‖x(k) −x(k−1)‖ goes below a given threshold εac or the Chebyshev radius of Pk

becomes sufficiently small.2

2The Chebyshev radius of a polytope is defined as the radius of the largest Euclidean hypersphere
contained in the polytope. Computing the Chebyshev radius amounts to solving a linear program-
ming problem; therefore checking the exit condition based on the Chebyshev radius requires some
additional numerical effort.
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A schematic implementation of an algorithm that permits us to solve (up to a
numerical tolerance) the robust portfolio design problem is given next.

Algorithm 2 (ACCP).

Given the exit tolerance εac > 0, and the initial polytope X , set P = X .
repeat

1. Centering step:
Compute the analytic center x of P.

2. Solve subproblem (2.6):
Compute Υwc2(x), π∗(x), and a subgradient g of Υwc2 at x.

3. Stopping criterion:
If Chebyshev-radius(P) < εac, then quit.

4. Update the polytope:

Set P = P ∩ {z : g�(z − x) ≤ 0}.

5. The worst-case absolute deviation-based risk. The robust design ap-
proach outlined in the previous section for the variance-based measure can be ex-
tended to the absolute deviation-based measure (2.7). In this section, we mainly
discuss how to evaluate the worst-case absolute deviation risk of a given portfolio x,

Υwc1(x)
.
= max

π∈K(η,d)
Υ1(x, π),(5.1)

and then hint at how to minimize Υwc1(x) over x ∈ X in section 5.1.1. This lat-
ter process is completely analogous to the one described for the variance-based risk
function.

The main technical difference with respect to the case considered previously
is that, contrary to the variance function ρ2(x, π), the absolute deviation function
ρ1(x, π) is not concave in π; see, e.g., Figure 5.1, and Appendix B for a proof. There-
fore, the inner problem (5.1) cannot be solved by directly using a logarithmic barrier
method such as the one described in section 3.1. However, we show in the next sec-
tion that (5.1) can still be solved efficiently to any given accuracy by using the barrier
method in conjunction with a one-dimensional search.

5.1. Evaluating the worst-case absolute deviation risk. We assume the
portfolio composition x to be fixed, and use the notation introduced in section 3. The
absolute measure and objective function in (5.1) are then

ρ1(π)
.
= ρ1(x, π) =

T∑
k=1

πk|w(k) − w�π|,(5.2)

Υ1(π)
.
= Υ1(x, π) =

T∑
k=1

πk|w(k) − w�π|,−γw�π.(5.3)

As we mentioned before, the function ρ1(x, π), and hence Υ1(x, π), is not concave
(nor convex) over π ∈ Π. However, Υ1(x, π) is concave (and actually linear) in π if
we fix the value of the expected value: w�π

!
= μ.

The solution idea is therefore the following one. First, determine the extreme
feasible values for the portfolio mean return:

μmin = min
π∈K(η,d)

w�π; μmax = max
π∈K(η,d)

w�π(5.4)
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Fig. 5.1. Projection of the superlevel sets of (5.2) on the π1, π2 plane in an example with T = 3
and w = [0.1 0.2 0.3]�.

(we show in Appendix C that these two values can be computed very quickly via a
scalar bisection algorithm). Then, for μ ∈ [μmin, μmax], define

ϕ(μ)
.
= max

π∈K(η,d)

T∑
k=1

πk|w(k) − μ| − γμ(5.5)

subject tow�π = μ.

Clearly, we have that

Υwc1(x) = max
π∈K(η,d)

Υ1(x, π) = max
μ∈[μmin, μmax]

ϕ(μ).(5.6)

In practice, we divide the interval [μmin, μmax] into N grid points μ1, . . . , μN ,
where N is chosen in accordance to the desired solution accuracy. For i = 1, . . . , N ,
computing ϕ(μi) is a convex optimization program that can be solved efficiently us-
ing, for instance, a barrier method such as the one described in section 3.1. An
approximate solution to (5.1) is hence given by

Υwc1(x) � max
i=1,...,N

ϕ(μi).

Notice that the main difficulty in (5.5) is due to the presence of the KL constraint.
It is instructive to detail the solution of (5.5) in the particular situation when this
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constraint is not present, since a closed-form solution is obtained in this case. The
solution in (5.7) is computed basically at no cost, and it is optimal for problem (5.5)
if the constraint KL(π, η) ≤ d happens to be inactive.

Proposition 5.1. Assume without loss of generality that the values w(1), . . . ,
w(T ) are arranged in increasing order, and let π be such that

π1 =
w(T ) − μ

w(T ) − w(1)
, π2 = 0, . . . , πT−1 = 0, πT =

μ− w(1)

w(T ) − w(1)
.(5.7)

If KL(π, η) ≤ d, then π is an optimal solution for problem (5.5), with corresponding
optimal value function

ϕ(μ) = 2
−μ2 + μ(w(1) + w(T )) − w(1)w(T )

w(T ) − w(1)
− γμ.(5.8)

A proof of this proposition is given in Appendix D.

5.1.1. Optimizing over the portfolio composition. The procedure described
in the previous section can further be wrapped by a cutting plane scheme, similarly
to the one described in section 4, in order to optimize Υwc1(x) over the portfolio mix
x.

Notice that the absolute deviation measure (2.5) is convex in x for any given π.
A subgradient of Υ1(x, π) at point x is given by

gx(x, π) =

T∑
k=1

πk(r(k) − r̂(π))sk − γr̂(π),

where

sk
.
=

{
1 if (r(k) − r̂)x ≥ 0,
−1 otherwise.

Now let π∗(x) denote the probability of attaining the optimum in problem (5.6): fol-
lowing steps similar to (4.2)–(4.5) we have that gx(x, π∗(x)) is a subgradient of Υwc1(x)
at x. This subgradient can be used in the cutting plane scheme of section 4.1, thus
providing an overall polynomial-time method to solve the worst-case design problem
minx∈X Υwc1(x).

6. Numerical examples. We considered a financial allocation problem over
five asset classes, where each class is represented by a sector index. We used the
following indices to represent the classes: (1) Russell 1000 Large Cap Growth Index
(RKGR), (2) Russell 1000 Large Cap Value Index (RKVA), (3) Russell 2000 Small
Cap Growth Index (R2KGR), (4) Russell 2000 Small Cap Value Index (R2KVA),
(5) Merrill Lynch Intermediate Bond Index (MACTX), with historical data of daily
logarithmic returns collected over the period from July 14, 2004 to December 30, 2005
(T = 371 scenarios). We assumed that the return on the next day after the observed
period can take on any of the historical values, with equal probability. This amounts
to choosing a uniform nominal distribution η on the scenarios, which also conforms
to the approach undertaken in [21, 31].

Return-risk analysis. We first analyze a fixed portfolio xfix which allocates 30% of
the wealth in bonds, and the rest equally distributed among the remaining assets. The
nominal expected return for this portfolio is μ(xfix, η) = 3.8782 × 10−4, the nominal
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Fig. 6.1. Upper and lower limits for the expected return of portfolio xfix as a function of the
percent uncertainty level (%u.l.).

variance is ρ2(xfix, η) = 3.3307 × 10−5, and the nominal absolute deviation risk is
ρ1(xfix, η) = 0.0046.

We can perform various worst-case analyses on this portfolio. First, we com-
puted the range of variation of the expected return, using the technique discussed
in Appendix C. The results are shown in Figure 6.1 (the uncertainty level in the
plots is expressed in percent units of the maximum allowable value of d, i.e., %u.l. =
100 d

log 1/ηmin
).

Next, we evaluated the worst-case variance-based risk (2.6) of portfolio xfix, with
γ = 0.1 and for increasing values of the percent uncertainty level; see Figure 6.2.
An analogous plot, obtained from the absolute deviation-based risk measure (2.7)
is instead shown in Figure 6.3. Notice from these plots that relatively low uncer-
tainty levels may induce significant variations in the risk measure, with respect to the
nominal (no uncertainty) situation.

Return-risk optimization. We next tested the ACCP algorithm described in sec-
tion 4.1 for optimizing the worst-case variance-based risk. We computed worst-case
optimal portfolios at different levels of uncertainty, which resulted in the plot shown
in Figure 6.4. The composition of the worst-case optimal portfolios is shown in Fig-
ure 6.5.

Numerical performance. In the previous numerical tests, based on nonoptimized
codes run under MATLAB 7.2 on an AMD Opteron 280 workstation, we experienced
times of less than one minute to compute a worst-case optimal portfolio to an εac =
10−5 accuracy.

As a further example, we considered the 30 assets composing the Dow Jones
Industrial Average Index (DJI) and collected T = 138 historical daily return scenarios
from March 24, 2006 to October 9, 2006. We ran the variance-based ACCP algorithm
on these data, setting γ = 0.2, %u.l. = 0.1, and exit accuracy εac = 10−5. Algorithm 2
executed 82 iterations before returning the optimal portfolio. The total execution
time was 23.9 seconds. Figure 6.6 shows the reduction in the Chebyshev radius of the
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868 GIUSEPPE C. CALAFIORE

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.5

0

0.5

1

1.5

2

2.5 x 10-4

Percent uncertainty level

O
pt

im
al

 ri
sk

 m
ea

su
re

 risk measure for portfolio xfix

risk measure for worst-case optimal portfolios

γ w
c2

Fig. 6.4. Dashed line: risk measure of portfolio xfix (same as in Figure 6.2). Solid line: risk
measure for optimal portfolios.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Percent uncertainty level

C
om

po
si

tio
n 

of
 o

pt
im

al
 p

or
tfo

lio
s

RKVA

RKGRR2KGR R2KVA

MACTX

Fig. 6.5. Composition of worst-case optimal portfolios.



AMBIGUOUS RISK MEASURES AND ROBUST PORTFOLIOS 869

0 10 20 30 40 50 60 70 80 90
0

0.005

0.01

0.015

0.02

0.025

0.03

ACCP iterations

C
he

by
ch

ev
 ra

di
us

Fig. 6.6. Chebyshev radius of the localization polytope versus iteration count for computing an
optimal robust portfolio in the DJI example.

5 5.5 6 6.5 7 7.5 8 8.5 9 9.5
0.4

0.6

0.8

1

1.2

1.4

1.6 x 10
− 3

Risk (standard deviation)

Ex
pe

ct
ed

 re
tu

rn

x 10
 -3

nominal

robust (%u.l. = 0.01)
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localization polytope versus the iteration count.
Finally, Figure 6.7 shows a discrete approximation of a portion of the nominal and

robust efficient frontiers for the DJI data. The frontiers have been computed at 20
discretized values of γ ∈ [0.005, 0.3]. The dashed curve plots the expected return and
standard deviation of efficient portfolios under the nominal distribution η (uniform).
The solid curve plots the expected return and standard deviation of efficient portfolios
under the worst-case distributions (each value of γ results in a different worst-case
distribution) for percent ambiguity level %u.l. = 0.01. The worst-case curve was
obtained in about 8.5 minutes.
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7. Conclusions. Following the recent stream in the literature dealing with sta-
tistical model uncertainty (ambiguity) in asset allocation problems, this work explores
the case where the ambiguity level in a discrete return distribution is measured accord-
ing to the Kullback–Leibler divergence. A methodology is proposed for assessing and
optimizing the worst-case risk of a portfolio under this type of uncertainty. Two stan-
dard risk measures (expected return composed with variance or absolute deviation)
are examined, and polynomial-time algorithms are developed for solving efficiently
the ensuing problems.

The proposed algorithms are based on interior-point barrier methods for convex
optimization, in conjunction with a cutting plane technique. Although it is known in
general that cutting plane methods have quite a high iterations-per-digit ratio, they
do provide polynomial-time guaranteed convergence to the global optimum to any
given practical accuracy. Moreover, in the specific application area discussed in this
paper, they permit one to decouple a portfolio analysis phase (step 2 in Algorithm 2)
from a mix optimization one (step 1). The numerical experiments show that worst-
case optimal portfolios can be computed in reasonable time on a modern computer,
and suggest that the proposed methods may be potentially useful in practice for
controlling analytically the effects of model uncertainty on financial risk.

Appendix A. Proof of Proposition 3.1. Consider the function

ϑ(π) =
T∑

k=1

πk log πk −
T∑

k=1

πk log ηk,

which is convex and three times differentiable over the domain π > 0, and let
D2ϑ(π)[h, h], D3ϑ(π)[h, h, h] denote, respectively, the second and third differentials
of ϑ(π), taken at π along the direction h ∈ R

T . That is,

D2ϑ(π)[h, h] =
d2

dt2
ϑ(π + th)

∣∣∣∣
t=0

=

T∑
k=1

h2
k

πk
,

D3ϑ(π)[h, h, h] =
d3

dt3
ϑ(π + th)

∣∣∣∣
t=0

=

T∑
k=1

−h3
k

π2
k

.

We have that

∣∣D3ϑ(π)[h, h, h]
∣∣ ≤ T∑

k=1

|hk|3
π2
k

=

T∑
k=1

h2
k

πk
· |hk|
πk

≤

√√√√ T∑
k=1

(
h2
k

πk

)2

·

√√√√ T∑
k=1

(
|hk|
πk

)2

≤
T∑

k=1

h2
k

πk
·

√√√√ T∑
k=1

(
|hk|
πk

)2

= D2ϑ(π)[h, h] ·

√√√√ T∑
k=1

h2
k

π2
k

,

where the first inequality in the chain is the triangle inequality, the second is Hölder’s
inequality, and the third follows from the inequality ‖x‖2 ≤ ‖x‖1 between the 2 and
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1 norms. Summarizing, the relation

∣∣D3ϑ(π)[h, h, h]
∣∣ ≤ D2ϑ(π)[h, h] ·

√√√√ T∑
k=1

h2
k

π2
k

holds for all π > 0 and h ∈ R
T . We now apply a known result on logarithmic barriers:

Due to the previous inequality, function ϑ(π) satisfies the hypotheses of Lemma 2 of
[9], from which it follows that the function

− log(d− ϑ(π)) −
T∑

k=1

log πk

(which coincides with function φ(π) defined in (3.7)) is a self-concordant barrier for
the domain {(π, d) : π > 0, ϑ(π) < d}, thus concluding the proof.

Appendix B. Nonconcavity of the absolute deviation function. Assume
without loss of generality that the data w(k) are arranged in increasing order. The
function

ρ1(π) =
∑
k

πk|w(k) − w�π|

is not only nonconcave over the simplex, but it is nonconcave also on the restricted
domains

Ri
.
= {π ∈ Π : w�π ∈ (w(i), w(i + 1))}.

For π ∈ Ri, we have that w(k) − w�π > 0 for k ∈ K+
.
= {i + 1, . . . , T} and w(k) −

w�π < 0 for k ∈ K−
.
= {1, . . . , i}. Hence, for π ∈ Ri, we may write

ρ1(π) =
∑

k∈K+

πk(w(k) − w�π) −
∑

k∈K−

πk(w(k) − w�π)

=
∑

k∈K+

πkw(k) −
∑

k∈K−

πkw(k) − w�π

⎛
⎝ ∑

k∈K+

πk −
∑

k∈K−

πk

⎞
⎠ .

From the latter expression, since
∑

k∈K−
πk = 1 −

∑
k∈K+

πk and
∑

k∈K−
πkw(k) =

w�π −
∑

k∈K+
πkw(k), we further have

ρ1(π) = 2
∑

k∈K+

πk(w(k) − w�π).

Now let πa, πb ∈ Ri and consider

ρ1

(
1

2
(πa + πb)

)
= 2

∑
k∈K+

πa
k + πb

k

2

(
w(k) − w�πa + πb

2

)

=
1

2

∑
k∈K+

πa
k(w(k) − w�πa) +

1

2

∑
k∈K+

πb
k(w(k) − w�πb)

+
1

2

∑
k∈K+

πa
k(w(k) − w�πb) +

1

2

∑
k∈K+

πb
k(w(k) − w�πa)
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=
1

2

∑
k∈K+

πa
k(w(k) − w�πa) +

1

2

∑
k∈K+

πb
k(w(k) − w�πb)

+
1

2

∑
k∈K+

πa
k(w(k) − w�πa) +

1

2
(w�πa − w�πb)

∑
k∈K+

πa
k

+
1

2

∑
k∈K+

πb
k(w(k) − w�πb) − 1

2
(w�πa − w�πb)

∑
k∈K+

πb
k

=
1

2
ρ1(π

a) +
1

2
ρ1(π

b) +
1

2
(w�πa − w�πb)

∑
k∈K+

(πa
k − πb

k).

The last term in the sum is sign-indefinite (in particular, it does not hold in general
that w�πa −w�πb > 0 implies

∑
k∈K+

πa
k −

∑
k∈K+

πb
k > 0); hence ρ1 is not concave

over the domain Ri. To see this latter point, take, for instance, πa all zero, except for
πa
i = πa

i+1 = 1/2, and πb all zero, except for πb
i−1 = 1/2 − ε, πb

i+1 = 1/2 + ε, with

max

(
0, εmax − 1

2

w(i + 1) − w(i)

w(i + 1) − w(i− 1)

)
< ε < εmax; εmax

.
=

1

2

w(i) − w(i− 1)

w(i + 1) − w(i− 1)
.

Then one can check by direct inspection that πa, πb ∈ Ri, w�πa − w�πb > 0, but∑
k∈K+

πa
k −

∑
k∈K+

πb
k < 0.

Appendix C. Computing the range for the expected return. We discuss
here an efficient technique for determining the extreme values (5.4) of the expected
return of a given portfolio. Consider the problem

μmin
.
= min

π
w�π(C.1)

subject to π ∈ K(η, d).

The Lagrangian for this problem is

L(π, λ(π), λ(kl), ν(1)) = w�π − λ(π)
�π + λ(kl)(KL(π, η) − d) + ν(1)(1

�π − 1),

where λ(π), λ(kl), ν(1) are Lagrange multipliers (dual variables). We assume henceforth
that λ(kl) is strictly positive.3 The Lagrange dual function is

g(λ(π), λ(kl), ν(1)) = inf
π

L(π, λ(π), λ(kl), ν(1))

= −λ(kl)d− ν(1) + inf
π

(
q�π + λ(kl) KL(π, η)

)
,

where

q
.
= w − λ(π) + ν(1)1.

Observe now that

∇π

(
q�π + λ(kl) KL(π, η)

)
= q + λ(kl)(1 + log π/η) = 0

for

πk = ηke
−qk/λ(kl)−1,

3When the KL constraint is inactive at optimum, the optimal value of the dual variable λ(kl) is
zero, due to the complementary slackness condition. However, in this case the solution to problem
(C.1) is trivially given by mink w(k).
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which yields

inf
π

(
q�π + λ(kl) KL(π, η)

)
= −λ(kl)

∑
k

ηke
−qk/λ(kl)−1,

and hence the dual function

g(λ(π), λ(kl), ν(1)) = −λ(kl)d− ν(1) − λ(kl)

∑
k

ηke
−qk/λ(kl)−1.

The dual to problem (C.1) is therefore

μmin
.
= max−λ(kl)d− ν(1) − λ(kl)

∑
k

ηke
−qk/λ(kl)−1

subject to λ(kl) > 0,

λ(π) ≥ 0

or, equivalently,

μmin
.
= −min λ(kl)d + ν(1) + λ(kl)

∑
k

ηke
−qk/λ(kl)−1(C.2)

subject to λ(kl) > 0,

λ(π) ≥ 0.

Notice that, for fixed λ(kl), λ(π), at the optimum the derivative of (C.2) with respect
to ν(1) must be zero, i.e.,

1 + λ(kl)

∑
k

ηke
−qk/λ(kl)−1 −1

λ(kl)

∂qk

∂ν(1)
= 1 −

∑
k

ηke
−qk/λ(kl)−1 = 0,

from which we obtain

e−ν(1)/λ(kl)

∑
k

ηke
(λ(π),k−w(k))/λ(kl)−1 = 1

⇓

ν(1) = λ(kl)

(
log

∑
k

ηke
(λ(π),k−w(k))/λ(kl) − 1

)
.

Substituting this latter expression into (C.2), we write the dual in the following re-
duced form:

− μmin
.
= minλ(kl)d + λ(kl) log

∑
k

ηke
(λ(π),k−w(k))/λ(kl)

subject to λ(kl) > 0,

λ(π) ≥ 0.

Observe further that, for any given λ(kl) > 0, the optimal choice for λ(π) is zero, which
finally yields the dual in the form of a univariate convex problem:

−μmin
.
= min fl(λ(kl))

.
= λ(kl)d + λ(kl) log

∑
k

ηke
− w(k)

λ(kl)

subject to λ(kl) > 0.
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An identical reasoning can be applied for computing the upper limit μmax of the
mean range. In this case, we obtain

μmax
.
= min fu(λ(kl))

.
= λ(kl)d + λ(kl) log

∑
k

ηke
w(k)
λ(kl)(C.3)

subject to λ(kl) > 0.

Both problems can be readily solved via a bisection scheme (such as the one
sketched in Algorithm 3 below), given the gradient of the objective function

gl(λ)
.
=

∂fl
∂λ

=
1

λ

(
fl(λ) +

∑
k w(k)ηke

−w(k)/λ∑
k ηke

−w(k)/λ

)

for the lower mean limit, and

gu(λ)
.
=

∂fu
∂λ

=
1

λ

(
fu(λ) −

∑
k w(k)ηke

−w(k)/λ∑
k ηke

w(k)/λ

)

for the upper limit.
Algorithm 3 (bisection).

Given initial λl = 0, λr = 1 and tolerance ε > 0
1. while g(λr) < 0, let λr = 2λr, end while;
2. while λr − λl > ε

2.a let λ = 1
2 (λr + λl)

2.b if g(λ) > 0, let λr = λ; else let λl = λ, end if
3. end while
4. return λ.

A perhaps interesting observation is that the function appearing in (C.3)

λ(kl) log
∑
k

ηke
w(k)
λ(kl)

tends to maxk w(k) as λ(kl) → 0. Indeed, for λ(kl) > 0, this function is a “uniform
smooth approximation” of the max function, using the terminology introduced in [27].

Appendix D. Proof of Proposition 5.1. Consider problem (5.5) without the
KL constraint, and with the values w(k) arranged in increasing order (see Figure D.1):

ϕ(μ)
.
= max

π

T∑
k=1

πk|w(k) − μ|(D.1)

subject to w�π = μ,

1�π = 1,

π ≥ 0.

It is immediate by inspection that (5.7) is a feasible solution for (D.1). We next
show that this solution is actually optimal.

Let d(k)
.
= |w(k) − μ|. The Lagrangian for problem (D.1) is

L(π, λ, ν) = −
T∑

k=1

πkd(k) −
T∑

k=1

λkπk + ν1

(
T∑

k=1

πkw(k) − μ

)
+ ν2

(
T∑

k=1

πk − 1

)
.
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w(1) w(2) w(k)…

(w(T)+ w(1))/2

μ

d(1)
d(k)

d(T)

data mid-point:

w(T)

Fig. D.1. Data arranged in increasing order. The d(k) are the distances from the mean:
d(k)

.
= |w(k) − μ|.

For a feasible π to be optimal, the Karush–Kuhn–Tucker (KKT) condition

∇πL(π, λ, ν) = −

⎡
⎢⎣

d(1)
...

d(T )

⎤
⎥⎦−

⎡
⎢⎣

λ1

...
λT

⎤
⎥⎦+ ν1

⎡
⎢⎣

w(1)
...

w(T )

⎤
⎥⎦+ ν2

⎡
⎢⎣

1
...
1

⎤
⎥⎦ = 0(D.2)

must hold for some ν1, ν2 and λk ≥ 0, along with the complementary slackness con-
dition

λkπk = 0, k = 1, . . . , T.(D.3)

We now show that for the solution in (5.7) we can find ν1, ν2 and λk ≥ 0 such that
(D.2), (D.3) hold. From (D.2) we have

λk = ν1w(k) + ν2 − d(k), k = 1, . . . , T.(D.4)

Since π1 > 0, πT > 0, (D.3) implies λ1 = λT = 0, and hence

ν1w(1) + ν2 − d(1) = 0,

ν1w(T ) + ν2 − d(T ) = 0,

from which we obtain

ν1 =
d(T ) − d(1)

w(T ) − w(1)
, ν2 =

d(1)[w(T ) − w(1)] − w(1)[d(T ) − d(1)]

w(T ) − w(1)
.(D.5)

Substituting into (D.4), for k = 2, . . . , T − 1, we get

λk =
[d(T ) − d(1)][w(k) − w(1)] + [w(T ) − w(1)][d(1) − d(k)]

w(T ) − w(1)
.(D.6)

We now verify that these λk are nonnegative. Define K−
.
= {k : w(k) ≤ μ} and

K+
.
= {k : w(k) > μ}. For k ∈ K− we have that (see Figure D.1)

w(k) − w(1) = d(1) − d(k); w(T ) − w(1) = d(1) + d(T ),

which, once substituted in (D.6), give

λk =
[d(T ) − d(1)][d(1) − d(k)] + [d(1) + d(T )][d(1) − d(k)]

w(T ) − w(1)

=
2d(T )[d(1) − d(k)]

w(T ) − w(1)
≥ 0, k ∈ K−.
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Similarly, for k ∈ K+ we have that

w(k) − w(1) = d(1) + d(k); w(T ) − w(1) = d(1) + d(T ),

which, once substituted in (D.6), give

λk =
[d(T ) − d(1)][d(1) + d(k)] + [d(1) + d(T )][d(1) − d(k)]

w(T ) − w(1)

=
2d(1)[d(T ) − d(k)]

w(T ) − w(1)
≥ 0, k ∈ K+.

Overall, we have that the primal feasible solution (5.7), together with the dual feasible
variables (D.5), (D.6), satisfies the KKT conditions (D.2), (D.3), and hence (5.7) is
optimal for problem (D.1). If this solution satisfies the constraint KL(π, η) ≤ d, then
clearly the solution is also optimal for the original problem (5.5).

Substituting (5.7) into the objective (D.1), we easily obtain the optimal value
function in (5.8), which concludes the proof.
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[34] R. H. Tütüncü and M. Koenig, Robust asset allocation, Ann. Oper. Res., 132 (2004), pp.

157–187.
[35] L. Vandenberghe and S. Boyd, Semidefinite programming, SIAM Rev., 38 (1996), pp. 49–95.
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