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Abstract

In this paper we give an explicit solution to the rank constrained matrix
approximation in Frobenius norm, which is a generalization of the classical
approximation of an m× n matrix A by a matrix of rank k at most.
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1 Introduction

Let Cm×n be set ofm×n complex valued matrices, and denote byR(m,n, k) ⊆ C
m×n

the variety of all m × n matrices of rank k at most. Fix A = [aij ]
m,n
i,j=1 ∈ C

m×n.

Then A∗ ∈ C
n×m is the conjugate transpose of A, and ||A||F :=

√∑m,n
i,j=1 |aij |

2

is the Frobenius norm of A. Recall that the singular value decomposition of A,
abbreviated here as SVD, is given by A = UAΣAV

∗
A, where UA ∈ C

m×m, VA ∈ C
n×n

are unitary matrices, ΣA := diag(σ1(A), . . . , σmin(m,n)(A)) ∈ C
m×n is a generalized

diagonal matrix, with the singular values σ1(A) ≥ σ2(A) ≥ . . . ≥ 0 on the main
diagonal. The number of positive singular values of A is r, which is equal to the
rank of A, denoted by rank A. Let UA = [u1 u2 . . .um], VA = [v1 v2 . . .vn] be the
representations of U, V in terms of their m,n columns respectively. Then ui and vi

are called the left and the right singular vectors of A, respectively, that correspond
to the singular value σi(A). Let

PA,L :=

rank A∑

i=1

uiu
∗
i ∈ C

m×m, PA,R :=

rank A∑

i=1

viv
∗
i ∈ C

n×n, (1.1)

be the orthogonal projections on the range of A and A∗ respectively. Denote by

Ak :=
k∑

i=1

σi(A)uiv
∗
i ∈ C

m×n

for k = 1, . . . , rank A. For k > rank A we define Ak := A (= Arank A). For
1 ≤ k < rank A, the matrix Ak is uniquely defined if and only if σk(A) > σk+1(A).
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The enormous application of SVD decomposition of A in pure and applied math-
ematics, is derived from the following approximation property:

min
X∈R(m,n,k)

||A−X||F = ||A−Ak||F , k = 1, . . . (1.2)

The latter is known as the Eckart-Young theorem [2]. We note that the work
[2] implied a number of extensions. We cite [4, 5, 7, 8] as some recent refer-
ences. Another application of SVD is a formula for the Moore-Penrose inverse
A† := VAΣ

†
AU

∗
A ∈ C

n×m of A, where

Σ†
A := diag( 1

σ1(A) , . . . ,
1

σrank A(A) , 0, . . . , 0) ∈ C
n×m. See for example [1].

2 Main Result

Below, we provide generalizations of the classical minimal problem given in (1.2).

Theorem 2.1 Let matrices A ∈ C
m×n, B ∈ C

m×p and C ∈ C
q×n be given.

Then

X = B†(PB,LAPC,R)kC
† (2.1)

is a solution to the minimal problem

min
X∈R(p,q,k)

||A−BXC||F , (2.2)

having the minimal ||X||F . This solution is unique if and only if either

k ≥ rank PB,LAPC,R or 1 ≤ k < rank PB,LAPC,R

and

σk(PB,LAPC,R) > σk+1(PB,LAPC,R).

Proof of Theorem 2.1 Recall that the Frobenius norm is invariant under the
multiplication from the left and the right by the corresponding unitary matrices.
Hence ||A − BXC||F = ||Ã − ΣBX̃ΣC ||, where Ã := U∗

BAVC and X̃ := V ∗
BXUC .

Clearly, X and X̃ have the same rank and the same Frobenius norm. Thus, it is
enough to consider the minimal problem min

X̃∈R(p,q,k)
||Ã− ΣBX̃ΣC ||F .

Let s = rank B and t = rank C. Clearly if B or C is a zero matrix, then X = 0

is the solution to the minimal problem (2.2). In this case either PB,L or PC,R are
zero matrices, and the theorem holds trivially in this case.

Let us consider the case 1 ≤ s, 1 ≤ t. Define B1 := diag(σ1(B), . . . , σs(B)) ∈
C
s×s, C1 := diag(σ1(C), . . . , σt(C)) ∈ C

t×t. Partition Ã and X̃ into four block
matrices Aij and Xij with i, j = 1, 2 so that Ã = [Aij ]

2
i,j=1 and X̃ = [Xij ]

2
i,j=1,

where A11,X11 ∈ C
s×t. (For certain values of s and t, we may have to partition Ã

or X̃ to less than four block matrices.) Next, observe that Z := ΣBX̃ΣC = [Zij ]
2
i,j=1,

where Z11 = B1X11C1 and all other blocks Zij are zero matrices. Since B1 and C1

are invertible we deduce

rank Z = rank Z11 = rank X11 ≤ rank X̃ ≤ k.
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The approximation property of (A11)k yields the inequality ||A11−Z11||F ≥ ||A11−
(A11)k||F for any Z11 of rank k at most. Hence for any Z of the above form,

||Ã− Z||2F = ||A11 − Z11||
2
F +

∑

2<i+j≤4

||Aij ||
2
F ≥ ||A11 − (A11)k||

2
F +

∑

2<i+j≤4

||Aij ||
2
F .

Thus X̂ = [Xij ]
2
i,j=1, where X11 = B−1

1 (A11)kC
−1
1 and Xij = 0 for all (i, j) 6= (1, 1)

is a solution to the problem min
X̃∈R(p,q,k)

||Ã− ΣBX̃ΣC ||F with the minimal Frobe-

nius form. This solution is unique if and only if the solution Z11 = (A11)k is the
unique solution to the problem min

Z11∈R(s,t,k)
||A11 − Z11||F . This happens if either

k ≥ rank A11 or 1 ≤ k < rank A11 and σk(A11) > σk+1(A11). A straightforward

calculation shows that X̂ = Σ†
B(PΣB ,LÃPΣC ,R)kΣ

†
C . Thus, a solution of (2.2) with

the minimal Frobenius norm is given by

X = B†UB(PΣB ,LU
∗
BAVCPΣC ,R)kV

∗
CC

†

= B†UB(U
∗
BPB,LAPC,RVC)kV

∗
CC

†

= B†(PB,LAPC,R)kC
†.

This solution is unique if and only if either k ≥ rank PB,LAPC,R or 1 ≤ k <

rank PB,LAPC,R and σk(PB,LAPC,R) > σk+1(PB,LAPC,R). ✷

A special case of the minimal problem (2.2), where X is a rank one matrix and
C the identity matrix, was considered by Michael Elad [3] in the context of image
processing.

3 Examples

First observe that the classical approximation problem given by (1.2) is equivalent
to the case m = p, n = q,B = Im, C = In. (Here, Im is the m×m identity matrix.)

Clearly PIm,L = Im, PIn,R = In, I
†
m = Im, I

†
n = In. In this case we obtain the

classical solution B†(PB,LAPC,R)kC
† = Ak.

Second, if p = m, q = n and B, C are non-singular, then rank (BXC) = rank X.

In this case, PB,L = Im and PC,R = In, and the solution to (2.2) is given by
X = B−1AkC

−1.

Next, a particular case of the problem (2.2) occurs in study of a random vector
estimation (see, for example, [9, 6]) as follows. Let (Ω,Σ, µ) be a probability space,
where Ω is the set of outcomes, Σ a σ–field of measurable subsets ∆ ⊂ Ω and
µ : Σ 7→ [0, 1] an associated probability measure on Σ with µ(Ω) = 1. Suppose
that x ∈ L2(Ω,Rm) and y ∈ L2(Ω,Rn) are random vectors such that x = (x1, . . . ,
xm)T and y = (y1, . . . , yn)

T with xi, yj ∈ L2(Ω,R) for i = 1, . . . ,m and j = 1,
. . . , n, respectively. Let Exy = [eij,xy] ∈ R

m×n, Eyy = [ejk,yy] ∈ R
n×n be correlation

matrices with entries

eij,xy =

∫

Ω
xi(ω)yj(ω)dµ(ω), ejk,yy =

∫

Ω
yj(ω)yk(ω)dµ(ω),

i = 1, . . . ,m, j, k = 1, . . . , n, ω ∈ Ω.
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The problems considered in [9, 6] are reduced to finding a solution to the problem

(2.2) with A = ExyE
1/2†
yy , B = In and C = E

1/2
yy where we write E

1/2†
yy = (E

1/2
yy )†.

Let the SVD of E
1/2
yy be given by E

1/2
yy = VnΣV

∗
n and let rank E

1/2
yy = r. Here,

Vn = [v1, . . . ,vn] with vi the i-th column of Vn. By Theorem 2.1, the solution
to this particular case of the problem (2.2) having the minimal Frobenius norm is

given by X = (ExyE
1/2†
yy VrV

∗
r )kE

1/2†
yy , where E

1/2†
yy VrV

∗
r = E

1/2†
yy . Therefore, X =

(ExyE
1/2†
yy )kE

1/2†
yy . The conditions for the uniqueness follow directly from Theorem

2.1.
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