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Abstract. Standing (solitary)-wave/steady-state solutions in many nonlinear wave motions and
Schrodinger flows lead to nonlinear eigenproblems. In [X. Yao and J. Zhou, SIAM J. Sci. Comput.,
29 (2007), pp. 1355-1374], a Rayleigh-local minimax method is developed to solve iso-homogeneous
eigenproblems. In this subsequent paper, a unified method in Banach spaces is developed for solving
non iso-homogeneous even non homogeneous eigenproblems and applied to solve two models: the
Gross-Pitaevskii problem in the Bose-Einstein condensate and the p-Laplacian problem in non-
Newtonian flows/materials. First a new active Lagrange functional is formulated to establish a
local minimax characterization. A local minimax method is then devised and implemented to solve
the model problems. Numerical results are presented. Convergence results of the algorithm and an
order of eigensolutions computed by the algorithm are also established.
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1. Introduction. To study pattern formation, (in)stability and other solution
properties in a wave motion

wtt = ∆w + κf(|w|)w(1.1)

or a ”Schrodinger flow”

−iwt = ∆w + κf(|w|)w,(1.2)

where κ is a physical parameter, the standing (solitary) wave solutions w(x, t) =
u(x)e−iλt, where λ is a normalized potential and u is a function of x, and also the
steady-state solutions w(x, t) = u(x) are particularly interested [5, 17, 26]. Then (1.1)
and (1.2) lead to two semilinear elliptic PDEs

∆u(x) + κf(|u|)u(x) = −µu(x),(1.3)
∆u(x) + κf(|u|)u(x) = 0,(1.4)

where µ = λ2 or µ = λ. When non Darcian/Newtonian fluids are considered, the
Darcy’s law is replaced by other relations between the specific discharge (shear stress)
~q and the flow head w. One of them is the Izbash formula [13, 6]: ~q = −M |∇w|p−2∇w
for some constant M > 0 and the (rheological) characteristic p > 1 of the fluid. Then
after replacing the Laplacian ∆u by the p-Laplacian ∆pu(x) = ∇·(|∇u(x)|p−2∇u(x)),
where∇u is the gradient of u, |∇u| is its Euclidean norm in Rn, (1.3) and (1.4) become
two quasilinear elliptic PDEs

−∆pu(x)− κf(|u(x)|)u(x) = µu(x),(1.5)
−∆pu(x) = κf(|u(x)|)u(x).(1.6)
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When p = 2, p < 2, p > 2, the fluid is called, respectively, (Darcian) Newtonian,
pseudo-plastic, dilatant. People are interested in knowing for what values of µ and
κ, (1.5) and (1.6) have nontrivial, positive or nodal solutions. To develop a unified
approach for solving the problems, we consider the following variational nonlinear
eigenproblem (NEP): for given α > 0, find eigenpairs, called eigensolutions, (λ, u) ∈
R×B s.t.

F ′(u) = λG′(u) in B′ subject to G(u) = α(1.7)

where B is a Banach space with the norm ‖ · ‖, B′ its dual, F ′ and G′ are the Frechet
derivatives of functionals F and G in C1(B,R), λ is called an eigenvalue and u, which
can be either real or complex-valued, is called an eigenfunction corresponding to λ.
We refer to [1,3,4,7,17] for more applications and theoretical studies of (1.7). The
simplest case is the eigenproblem in a Hilbert space B:

F (u) =
1
2
〈Au, u〉, G(u) =

1
2
〈u, u〉,(1.8)

where A is a linear self-adjoint operator from B to B and 〈, 〉 is the inner product.
Thus both F ′ and G′ are linear. For this problem, its wide applications are well known
and many numerical packages are available. When either F ′ or G′ is nonlinear, (1.7)
is a NEP. Recall that an NEP is homogeneous if there are integers m, l s.t.

F ′(tu) = tm−1F ′(u) and G′(tu) = tl−1G′(u), ∀t > 0, u ∈ B.(1.9)

If (1.9) is satisfied with m = l (a resonance case), then the NEP is called iso-
homogeneous. The well known NEP of the p-Laplacian ∆p and the Monge-Ampére
operator M in [26,20] are iso-homogeneous. A Rayleigh-local minimax method (R-
LMM) is developed in [26] to solve this class of NEP for multiple eigensolutions in
the order of their eigenvalues.

As a subsequent paper, here we develop a unified method to solve more general,
non iso-homogeneous even non homogeneous eigenproblems of (1.5) and (1.6) for
multiple solutions in certain sequential order. In particular, we consider two model
problems:

Model Problem 1: The Gross-Pitaevskii equation [2, 8, 9, 11,18]

iwt(x, t) = −1
2
∆w(x, t) + V (x)w(x, t) + β|w(x, t)|2w(x, t), t > 0, x ∈ Ω ⊆ Rd,(1.10)

w(x, t) = 0, x ∈ Γ = ∂Ω, t ≥ 0,(1.11)

in a bounded open domain Ω ∈ Rd, is used extensively as a mathematical model to
describe the single particle properties of the Bose-Einstein condensate, where w is the
macroscopic wave function of the condensate, t is the time, x is the spatial coordinate,
V (x) is a trapping potential which is usually harmonic and can be written as V (x) =
1
2 (γ2

1x2
1 + · · ·+ γ2

dx2
d) with γ1, ..., γd > 0, and β > 0 measures a repulsive nonlinearity.

This model has been shown a great agreement with experimental realization of the
Bose-Einstein condensate in several cases, e.g., the ground states of the condensate
[19], free expansion [12] and lower energy excitations [9]. Note that the original model
is set for solutions w on the entire space Rd under a localized property that w(x, t) → 0
as ‖x‖ → ∞. Thus the solutions w can be considered to satisfy the zero Dirichlet
boundary condition on a sufficiently large spherical or cubic domain. Then due to the
special form of V , with a proper scaling on w and V (x), the problem can be set on
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a unit spherical or cubic domain. An important invariant is the normalization of the
wave-function

∫

Ω

|w(x, t)|2dx = 1.(1.12)

Under (1.12), finding the solitary wave solutions w(x, t) = u(x)e−iµt to (1.10) leads
to

µu(x) = −1
2
∆u(x)+V (x)u(x)+β|u(x)|2u(x), x ∈ Ω s.t.

∫

Ω

|u(x)|2dx = 1,(1.13)

a non homogeneous NEP for eigensolutions (µ, u) ∈ R ×W 1,2
0 (Ω). Many researchers

have tried to numerically solve (1.13), see [10, 8, 2] and references therewith. Also
in [23], in addition to proposing new algorithms to solve (1.13) and proving their
local convergence, the authors presented a comparison of existing algorithms to solve
(1.13).

Model Problem 2: Consider NEP of finding (λ, u) ∈ R×W 1,p(Ω) \ {0} s.t.

−∆pu(x) = λw(x)|u(x)|q−2u(x), x ∈ Ω, u(x)|∂Ω = 0, s.t.
∫

Ω

w(x)|u(x)|qdx = 1,

(1.14)
in an open bounded domain Ω ⊂ Rn, where w is a (generalized) weight function. Such
a NEP appears in study of non-Newtonian fluids/materials [5, 6, 17]. It is clear that
NEP (1.14) (p 6= 2, q 6= 2) is homogeneous but non iso-homogeneous when p 6= q.

Due to the general space setting, nonlinearity of the problem and multiplicity
of solutions, (1.7) is extremely difficult to solve. So far a reasonably general and
mathematically justified numerical algorithm to solve (1.7) for multiple eigensolutions
in an order is still not available, although several existence results of multiple solutions
to (1.7) are established, see Proposition 44.26 in [27] and results in [14]. It is natural
to define its Lagrange functional

L(λ, u) = F (u)− λ(G(u)− α).(1.15)

Then (λ̄, ū) is an eigensolutions of (1.7) iff (λ̄, ū) is a critical point of (1.15), i.e., the
Frechet derivative ∇L(λ̄, ū) = 0. c = L(λ̄, ū) = F (ū) is called the critical value of
(λ̄, ū). The first candidates for critical points are the local extrema of L. Critical
points that are not local extrema are called saddle points, which appear as unstable
equilibria or excited states in a physical system. Thus their instability is an interesting
information to application.

Computationally whether or not an algorithm can find eigenfunctions in cer-
tain order is an important issue. With an order, a successful numerical algorithm
should be able to find at least the first few eigenfunctions. When (1.7) is linear in a
Hilbert space as in (1.8), due to the orthogonality between different eigenfunctions,
the Rayleigh-Ritz method [27] can be used to find eigenfunctions following the order
of their eigenvalues. Can one do so when (1.7) is nonlinear and the orthogonality
between different eigenfunctions no longer holds? Theoretically since all eigenvalues
of (1.7) are assumed to be real, the eigenfunctions can always be ordered in the or-
der of their eigenvalues. But the question is whether or not a numerical method can
find eigenfunctions of (1.7) following the order of their eigenvalues. So far such a
numerical algorithm is still not available. One may mention certain type of Newton’s
method or the newly proposed squared-operator iteration methods [23] for their fast
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local convergence. Theoretically they can find all the eigenfunctions as long as initial
guesses are selected sufficiently close to desired unknown solutions. But the question
is how can one select initial guesses sufficiently close to desired unknown solutions
while solution patterns are still unknown for many nonlinear systems? In particular,
how can one do so in an order? Note that those two types of methods do not assume
or use the variational structure of a problem. Their final solutions depend strongly on
initial guesses. Thus in general they alone are blind to an order of solutions. When
they are applied to solve Model Problem 1 (semilinear), it becomes a problem of se-
lecting initial guesses that are sufficiently close to desired unknown solutions in an
order. The algorithm developed in this paper can also serve for such purpose [22].
However, we do not know how to apply those two types of methods to solve Model
Problem 2 (quasilinear).

The local minimax method (LMM) developed in [15, 16, 28, 24, 25] can find
critical points of a functional following the order of saddles and their critical values,
which provides important information on the structural instability of a critical point.
It is interesting if we know the relation between the order of critical values of (1.15)
and the order of eigenvalues of (1.7). R-LMM developed in [26] can only solve an
iso-homogeneous NEP in the order of their eigenvalues, which also coincide with their
critical values. But many NEP in applications such as Model Problem 2 (p 6= q) and
Model Problem 1 appear as non iso-homogeneous even non homogeneous. Thus a
new method must be developed to solve such problems.

It is known that in order for (1.15) to possess multiple critical points and for
LMM to find them, the functional L in (1.15) needs to have certain structure, either
a global one or a local one surrounded by a barrier. For example, L needs to have
either a global mountain pass structure, i.e., for each (λ, u) ∈ (R \ {0})× (B \ {0})

t(λ,u) = arg local-max
t>0

L(t(λ, u)) > 0(1.16)

or a local mountain pass structure, i.e., (1.16) holds for each (λ, u) in an open set U
and t(λ,u) → +∞ when (λ, u) ∈ U and (λ, u) → ∂U , the boundary of U . Since for
most eigenproblems, (1.16) does not hold for λ = 0, a global mountain pass structure
cannot be expected for (1.15). Thus we assume only a local (mountain pass or linking)
structure (See Remark 2.1 (c)). But even this is not always true for (1.15). So we
replace (1.15) by a new and more general formulation, called an active Lagrange
functional

L(λ, u) = F (u)− λ(k)(G(u)− α),(1.17)

where k ≥ 1 is a parameter and λ(k) = |λ|k (or other form) is called an active
Lagrange multiplier. The merit of introducing an extra parameter k in (1.17) is
twofold: firstly, one may raise the value of k to improve the functional structure.
For example, when the growth order of G(u) is one less than that of F (u), for each
(λ, u) ∈ (R \ {0}) × (B \ {0}), (1.16) does not hold for (1.15), or (1.17) with k = 1.
Then we can raise the value of k in (1.17) s.t. (1.16) holds for each of such (λ, u),
and LMM can be applied; secondly, one may also raise the value of k to satisfy some
assumption in a convergence result of our algorithm, see Theorem 4.8 and Lemma 4.9
where k = `. Then the following lemma is obvious.

Lemma 1.1. Assume λ̄ 6= 0. Then (λ̄, ū) is a critical point of (1.17) iff (|λ̄|k, ū)
is an eigensolution of (1.7).

For most NEP, (0, u) is not a critical point of (1.17). Even it is, (1.17) does not
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provide any information about the constraint G(u) = α when k > 1. Thus such case
is not interested.

For (1.17), by assuming a local (linking) structure defined in Remark 2.1 (c), we
develop, in Section 2, a new local minimax characterization of saddle points and its
corresponding algorithm. In Section 3, we implement the algorithm to numerically
solve the two model problems for multiple eigensolutions. Finally in Section 4, we
present some theoretical results on the convergence of the algorithm and the order of
eigensolutions found by the algorithm.

2. Local Minimax Characterization and Method. Let 〈, 〉pr be the dual
relation between (R × B)∗, ‖(λ, u)‖pr =

√
|λ|2 + ‖u‖2 be the norm of each (λ, u)

in the product space R × B and R × B and Lpr = [(λ1, u1), ..., (λn−1, un−1)] be
the space spanned by n − 1 linearly independent previously found critical points
(λ1, u1), ..., (λn−1, un−1) ∈ (R \ {0}) × (B \ {0}). For each (λ, u) ∈ R × B, denote
[Lpr, (λ, u)] = {w =

∑n−1
k=1 tk(λk, uk) + tn(λ, u)|tk ∈ R, k = 1, ..., n}. Assume that

R×B = Lpr⊕L′pr and the corresponding linear bounded projection P : R×B → L′pr,
and the functional J(λ, u) = L(λ, u) in (1.17). For each subspace A of R×B, denote
SA the unit sphere of A.

2.1. A Local Minimax Characterization of Eigensolutions. Definition
2.1. Given an open set U of SL′pr

. A set-valued mapping P : U → 2R×B is the peak
mapping of J w.r.t. Lpr if for each (λ, u) ∈ U , P (λ, u) is the set of all local maximum
points of J in [Lpr, (λ, u)]. A single-valued mapping p : U → R×B is a peak selection
of J w.r.t. Lpr if p(λ, u) ∈ P (λ, u), ∀(λ, u) ∈ U .

Remark 2.1. (a) The above definition of a peak selection can be generalized
as below: Given an open set U of SL′pr

. A set-valued mapping P : U → 2R×B

is the Lpr-⊥ mapping of J if for each (λ, u) ∈ U , P (λ, u) is the set of all points
(µ,w) ∈ [Lpr, (λ, u)] s.t. 〈∇J(µ,w), (λ, u)〉pr = 0 and 〈∇J(µ, w), (λi, ui)〉pr = 0,
i = 1, 2, ..., n− 1. A single-valued mapping p : U → R×B is an Lpr-⊥ selection of J
if p(λ, u) ∈ P (λ, u), ∀(λ, u) ∈ U .
(b) It is clear that a peak selection is an Lpr-⊥ selection, and Lemma 2.3 and Theo-
rem 2.4 can be verified in the same way if a peak selection p is replaced by an Lpr-⊥
selection p.
(c) From now on we assume that U ⊂ SL′pr

is open s.t. a peak (Lpr-⊥) selection p
is defined in U and ‖p(λ, u)‖ → +∞ for (λ, u) ∈ U and (λ, u) → ∂U . Such a local
barrier structure is used for (1.17) to have and for LMM to find a critical point under
consideration.

In a descent direction method, the gradient of a functional plays an important
role in a Hilbert space. This role is replaced by a pseudo-gradient of a functional in
a Banach space.

Definition 2.2. Let X be a Banach space, J ∈ C1(X,R) and u ∈ X be a point
s.t. ∇J(u) 6= 0. For given θ ∈ (0, 1], a point Ψ(u) ∈ X is a pseudo-gradient of J at
u w.r.t. θ if

‖Ψ(u)‖ ≤ 1, 〈∇J(u), Ψ(u)〉 ≥ θ‖∇J(u)‖.(2.1)

Denote X̂ = {u ∈ X : ∇J(u) 6= 0}. A pseudo-gradient flow of J with a constant θ is
a continuous mapping Ψ : X̂ → X s.t. ∀u ∈ X̂, Ψ(u) satisfies (2.1). The following
lemma leads to a local minimax characterization of saddle points and also provides a
stepsize rule in Step 4 of the new algorithm.
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Lemma 2.3. Given γ > 0. Assume that a peak selection p of J defined in U is
continuous at v̄ = (λ̄, ū) ∈ U with ∇J(p(v̄)) 6= 0 and p(v̄) 6∈ Lpr. When s > 0 is

small, we have v̄(s) =
v̄ − sw(p(v̄))

‖v̄ − sw(p(v̄))‖pr
∈ U s.t.

s‖w(p(v̄))‖pr < γ and J(p(v̄(s))) < J(p(v̄))− sθ

4
|tn|‖∇J(p(v̄))‖pr

where p(v̄) =
∑n−1

i=1 ti(λi, ui) + tnv̄, w(p(v̄)) = sign(tn)P(G(p(v̄))) and G(p(v̄)) is a
pseudo-gradient of J at p(v̄) with constant θ ∈ (0, 1).

Proof. Note that

p(v̄(s)) ≡ p(
v̄ − sw(p(v̄))

‖v̄ − sw(p(v̄))‖pr
) =

n−1∑

i=1

ti(s)(λi, ui) + tn(s)
v̄ − sw(p(v̄))

‖v̄ − sw(p(v̄))‖pr
.

Hence, when s > 0 is small and o(s) = o(‖p(v̄(s))− p(v̄)‖pr), we have v̄(s) ∈ U and

J(p(v̄(s)))− J(p(v̄))
= 〈∇J(p(v̄)), p(v̄(s))− p(v̄)〉pr + o(s) = 〈∇J(p(v̄)), p(v̄(s))〉pr + o(s)

= −sign(tn)tn(s)s
〈∇J(p(v̄)), G(p(v̄))〉pr

‖v̄ − sw(p(v̄))‖pr
+ o(s) ≤ −1

4
sθ|tn|‖∇J(p(v̄))‖pr,

since ‖p(v̄(s))− p(v̄)‖pr → 0 as s → 0, 〈∇J(p(λ̄, ū)), G(p(v̄))〉pr ≥ ‖∇J(p(v̄))‖pr > 0
and p(v̄) 6∈ Lpr.

Theorem 2.4. Assume that a peak selection p of J is continuous at v̄ = (λ̄, ū) ∈
U . If J(p(v̄)) = local-min

v∈U
J(p(v)) and d(p(v̄), Lpr) > 0, then p(v̄) is a critical point

of J .
If we define a solution set M = {p(v) : v ∈ U}, then a local minimum of J on M

leads to a critical point p(v∗), which can be approximated by, e.g., a steepest descent
method.

2.2. A Local Minimax Algorithm for Finding Eigensolutions. The fol-
lowing is our local minimax algorithm for finding multiple eigensolutions.
Step 0. Given θ ∈ (0, 1), γ > 0, ε > 0 and k = 1. Choose (λ1

n, v1
n) ∈ U and

(t01, ..., t
0
n) ∈ Rn.

Step 1. Compute (µ1
n, u1

n) ≡ p(λ1
n, v1

n) =
n−1∑

i=1

t1i (λi, ui) + t1n(λ1
n, v1

n) where

(t11, ..., t
1
n) = arg local- max

t1,...,tn

J
[ n−1∑

i=1

ti(λi, ui) + tn(λ1
n, v1

n)
]

(2.2)

using initial guess (t01, ..., t
0
n).

Step 2. If ‖∇J(µk
n, uk

n)‖ ≤ ε, then output (µk
n, uk

n), stop. Otherwise, go to Step 3.
Step 3. Compute a descent direction wk

n = −sign(tkn)P(Gk
n), where Gk

n is a pseudo-
gradient of J at (µk

n, uk
n) with constant θ.

Step 4. Denote (λk
n(s), vk

n(s)) =
(λk

n, vk
n) + swk

n

‖(λk
n, vk

n) + swk
n‖

and

(µk
n(s), uk

n(s)) ≡ p(λk
n(s), vk

n(s)) =
n−1∑

i=1

tki (s)(λi, ui)+tkn(s)(λk
n(s), vk

n(s)) where
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(tk1(s), ..., tkn(s)) = arg local- max
t1,...,tn

J
( n−1∑

i=1

ti(λi, ui) + tn(λk
n(s), vk

n(s))
)

(2.3)

using the initial guess (tk1 , ..., tkn). Let

sk
n = max

m∈N

{
s =

γ

2m
|2m > ‖wk

n‖, (λk
n(s), vk

n(s)) ∈ U s.t.

J(µk
n(s), uk

n(s))− J(µk
n, uk

n) ≤ −sθ|tkn|
4

‖∇J(µk
n, uk

n)‖
}

.

Step 5. Set (λk+1
n , vk+1

n ) = (λk
n(sk

n), vk
n(sk

n)), (tk+1
1 , ...tk+1

n ) = (tk1(sk
n), ..., tkn(sk

n)),
(µk+1

n , uk+1
n ) =

∑n−1
i=1 tk+1

i (λi, ui) + tk+1
n (λk+1

n , vk+1
n ), k = k + 1 and go to

Step 2.
Remark 2.2. (a) The algorithm starts with Lpr = {(0, 0)} to find (λ1, u1). Then

use Lpr = [(λ1, u1)] to find (λ2, u2). By adding newly found solution (λn−1, un−1) to
expand Lpr, one may find (λn, un). One may also use a symmetry of the problem to
define Lpr, see [21];
(b) In Step 3, Gk

n can be computed by using a pseudo-gradient or by following a
pseudo-gradient flow. In our numerical implementation when B = W 1,r

0 (Ω), r > 1
and 1

r + 1
q = 1, we choose L′pr as follows: When r ≥ 2, B ⊂ B∗ = W 1,q

0 (Ω), it is quite
natural to set

L′pr = {(λ, u) ∈ R×B|〈(λ, u), (λi, ui)〉pr = 0, i = 1, 2, ..., n− 1};(2.4)

When 1 < r < 2, u1, u2, ..., un−1 are usually solutions of some differential equation
(see our numerical examples in Sections 3.1 and 3.2). They should be nice functions,
or, ui ∈ B∗ = W 1,q

0 (Ω), i = 1, 2, ..., n− 1. Then, we can use (2.4) again. A practical
technique to compute the projection of a pseudo-gradient to L′pr will be presented in
Section 2.3;
(c) In Step 1, since Lpr is finite-dimensional, we may either use a decomposition
and normalization to choose an initial (λ1

n, v1
n) ∈ SL′pr

or use observation, among all
functions ”orthogonal” to {u1, ..., un−1}, to choose a normalized v1

n with the simplest
nodal line structure. It does not have to be exact. Since λ1

n is a scalar and usually λ1
n >

λn−1, it can be selected after several trials. One way to select an initial eigenvalue is to
use a necessary condition λ1

n = 〈F ′(v1
n),v1

n〉
〈G′(v1

n),v1
n〉 . The key is to have p(λ1

n, v1
n) defined. For

example, when Lpr = {(0, 0)}, v1
1 can be any nonzero function, but a positive one has

the simplest nodal line structure. When Lpr = [(λ1, u1)] where u1 is positive, among
all functions ”orthogonal” to u1, we choose v1

2 to be sign-changing and normalized
with one nodal line, etc.
(d) Replacing a peak selection p by an Lpr-⊥ selection p in the algorithm, i.e., (2.2)
becomes

(t1i , ..., t
1
n) solves 〈(λ1

n, v1
n),∇J(µ1

n, u1
n)〉 = 0, 〈(λi, ui),∇J(µ1

n, u1
n)〉 = 0, i = 1, ..., n−1,

and (2.3) is replaced by

(tk1(s), ..., tkn(s))solves〈(λk
n, vk

n),∇J(µ1
n(s), u1

n(s))〉 = 0 and
〈(λi, ui),∇J(µ1

n(s), u1
n(s))〉 = 0, i = 1, ..., n− 1,

a min-⊥ algorithm can be designed.
(e) Due to the stepsize rule in Step 4, (λ1

n, u1
n) ∈ U implies (λk

n, uk
n) ∈ U for all

k = 2, 3....
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2.3. A Technique to Compute a Pseudo-Gradient. When B is a Hilbert
space, we can choose L′pr = L⊥pr and θ = 1. Then Gk

n = ∇J(µk
n,uk

n)
‖∇J(µk

n,uk
n)‖ is the most

efficient pseudo-gradient, i.e., θ = 1. To avoid being divided by a term going to the
zero, we can use Gk

n = ∇J(µk
n, uk

n) instead. Then we use wk
n = −sign(tkn)∇J(µk

n, uk
n)

and the inequality for the stepsize rule in Step 4 becomes

J(µk
n(s), uk

n(s))− J(µk
n, uk

n) ≤ −s|tkn|
4
‖∇J(µk

n, uk
n)‖2.(2.5)

Denote ‖ · ‖` the norm of R ×W 1,`
0 . When B = W 1,r

0 (Ω) (r > 1 and r 6= 2), a
technique to compute a pseudo-gradient in Step 3 is to use

Gk
n =

∇J(µk
n, uk

n)
‖∇J(µk

n, uk
n)‖r

and check γk
n =

‖∇J(µk
n, uk

n)‖22
‖∇J(µk

n, uk
n)‖r‖∇J(µk

n, uk
n)‖q

> θ0 > 0.

(2.6)
If the inequality is satisfied for some θ0 and 1

r + 1
q = 1, then Gk

n is a pseudo-gradient
of J at (µk

n, uk
n) with constant θ0, see [24]. This inequality is satisfied by all of our

numerical examples carried out so far. Thus, we can use wk
n = −sign(tkn)∇J(µk

n, uk
n)

and the inequality

J(µk
n(s), uk

n(s))− J(µk
n, uk

n) ≤ −s|tkn|
4
‖∇J(µk

n, uk
n)‖22

for the stepsize rule in Step 4.

3. Numerical Results of Two Model Problems. In this section, we im-
plement the new algorithm to numerically solve the two model problems. In our
computations, linear square or triangular elements are used. Triangular elements are
generated basically by a Matlab mesh generator. If a symmetry is used to make our
method more efficient (see [21]), a mesh with the same symmetry has to be gener-
ated based on the Matlab mesh generator. Finally ε = 10−3 is used to terminate an
iteration.

3.1. Model Problem 1: A Non Homogeneous NEP. The active Lagrange
functional of (1.13) is

J(λ, u) =
1
4

∫

Ω

[
|∇u(x)|2 + 2V (x)u2(x) + u4(x)

]
dx− |λ|k

2
(
∫

Ω

u2(x)dx− 1).(3.1)

We first choose k = 2.1, Ω = (−1, 1)× (−1, 1) ⊂ R2, β = 1 and compute three cases
γ1 = γ2 =

√
2

10 , γ1 = 1
10 , γ2 =

√
2

10 and γ1 = 1, γ2 =
√

2 in (1.13).
Since the Frechet derivative J ′u(λ, u) of J in u is in W−1,2(Ω), to keep the reg-

ularity of W 1,2
0 (Ω), we use its canonical identity d = ∇uJ(λ, u) = ∆−1(J ′u(λ, u)) ∈

W 1,2
0 (Ω). Thus the gradient ∇J(λ, u) = (∇λJ(λ, u),∇uJ(λ, u)) is used in our algo-

rithm where

∇λJ(λ, u) = −k

2
λ|λ|k−2(

∫

Ω

u2dx− 1)

and d = ∇uJ(λ, u) is solved from

∆d =
1
2
∆u− V u− u3 + |λ|ku, x ∈ Ω and d|∂Ω = 0,
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since J ′u(λ, u) = 1
2∆u− V u− u3 + |λ|ku, i.e., for each η ∈ W 1,2

0 (Ω), we have
∫

Ω

J ′u(λ, u)(x)η(x)dx =
d

dt

∣∣∣
t=0

J(λ, u + tη) =
∫

Ω

[1
2
∆u− V u− u3 + |λ|ku

]
η dx.

The profiles of the first seven numerical eigenfunctions and their eigenvalues of each
case are displayed in Figs. 3.1-3.3 following an order discussed in Section 4.2. By our
numerical computations, this order coincides with the order of eigenvalues, although
it has not yet been mathematically proved.

Note that the original Model Problem 1, (1.13) is defined in the domain Ω = R2

with a ”localized” property that u(x) → 0 as |x| → ∞. Thus it can be reasonably
solved on a sufficiently large bounded domain, e.g., Ωr = (−r, r) × (−r, r) with zero
Dirichlet boundary condition. Due to the special form of V (x) = 1

2 (γ2
1x2

1 + γ2
2x2

2),
under the transform

w(x1, x2) = ru(rx1, rx2),(3.2)

(1.13) becomes

λw(x) = −1
2
∆w(x) + U(x)w(x) + βw3(x), ∀x ∈ Ω1(3.3)

satisfying the same zero boundary condition on Ω1 and the constraint
∫

Ω1

w2(x)dx = 1,

where λ = r2µ,U(x) = 1
2 (α2

1x
2
1 + α2

2x
2
2) and αi = r2γi, i = 1, 2. Then the active

Lagrange functional under the transform becomes

I(λ,w) =
1
4

∫

Ω1

[
|∇w(x)|2+2U(x)w2(x)+w4(x)

]
dx−1

2
λk

[ ∫

Ω1

w2(x)dx−1
]
.(3.4)

Then the two active Lagrange functionals satisfy the relation

‖∇wI(λ,w)‖H1
0 (Ω1) = r‖∇uJ(µ, u)‖H1

0 (Ωr).(3.5)

This relation will be taken into account in the algorithm to control the computational
error.

Next to examine the ”localized” property of the problem, we solve (1.13) with
β = 1, γ1 = γ2 = 0.2 on Ω = Ωr, r = 10. Under the transform (3.2), we solve (3.3)
instead. The profiles of the first six scaled eigenfunctions and their eigenvalues are
displayed in Fig. 3.4.

We use Lpr = {(0, 0)} to compute solutions (a)-(f) in Fig. 3.1, solutions (a)-(d),
(f)-(g) in Fig. 3.2, solutions (a)-(e), (g) in Fig. 3.3 and solutions (a)-(c) and (e)-(f) in
Fig. 3.4. We set Lpr = [(λ1)

1
2.1 , u1)] to capture solution (g) in Fig. 3.1, solutions (e)

in Figs. 3.3 and 3.8, solution (f) in Fig. 3.2 and solution (d) in Fig. 3.4, where (λ1, u1)
is their first eigensolutions.

The following symmetry of the problem has been used to enhance the efficiency
in computing a specific solution: the odd symmetry about the y-axis for solutions
in Figs. 3.1 (b), Fig. 3.2 (c) and Fig.3.3 (c); the odd symmetry about the x-axis for
solutions in (b) of Figs. 3.2- 3.4; the odd symmetry about the line y = x for solutions
in (c) of Figs. 3.1 and 3.4, and (d) of Figs. 3.2 and 3.3; the odd symmetry about
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the x-axis and the y-axis for solutions in Figs. 3.1 (d), Fig. 3.4 (e), Fig. 3.2 (f) and
Fig. 3.3 (e); the odd symmetry about lines y = x and y = −x for solutions in (f) of
Figs. 3.1 and 3.4, and (g) of Figs. 3.2 and 3.3; the 4-rotation symmetry for solutions
in Fig. 3.1 (g), Figs. 3.2 (e), Fig. 3.4 (d) and Fig. 3.3 (f); the local odd symmetry
about the lines x = 1

3 and x = − 1
3 for solution in Fig. 3.1 (e); Even symmetry about

the x and y axes for solution in Fig.3.4 (g).
Following Remark 2.2 (c) about ”orthogonality” and nodal lines, selection of an

initial guess v1
n for computing an eigenfunction by our method can be flexible. To have

a desired profile, one can construct v1
n by using sine/cosine functions or by solving

−∆v1
n(x) = cv(x) in Ω and v1

n(x) = 0 on ∂Ω,(3.6)

where cv(x) = +/− if one wants v1
n to be concave up/down at x ∈ Ω and cv(x) = 0 if

the concavity of v1
n at x is not of concern. For instructional purpose, we list our choices

of cv(x) in (3.6) for initial guesses used in computing the first seven eigenfunctions
shown in Fig. 3.1. With our numerical results, by comparing (d)-(g) in Figs. 3.1 and

cv(x, y) = Refer cv(x, y) = Refer
−1 (a)&(g) −1 if x > 0, +1 if x < 0 (b)

−1 if y > x, +1 if y < x (c) −1 if xy > 0, +1 otherwise (d)
−1 if |x| > 0.15, +1 otherwise (e) −1 if |x| > |y|, +1 otherwise (f)

3.4, and (e)-(g) in Figs. 3.2 and 3.3, we noted some pattern order changing phenomena;
By comparing Fig. 3.1 with Fig. 3.4, we also noted that when the domain becomes
larger, the peaks of the eigenfunctions stay farther away from the boundary and
the corner effect of the domain to the eigenfunction profiles becomes less visible.
Consequently eigenfunctions (b) and (c), (e) and (f) in Fig.3.4 are virtually the same.
This observation illustrates the ”localized” property of the problem. Note that the
differences in the eigenvalues of Fig.3.4 (d)-(g) are within the computational error and
due to a pattern order change among (d)-(g) in Figs.3.1 and 3.4, it is reasonable to
believe that the eigenvalues of Fig.3.4 (d)-(g) are actually the same.
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Fig. 3.1. The first 7 eigenfunctions of (3.3) with β = 1, γ1 = γ2 =

√
2

10
and their eigenvalues

(a) 3.0142, (b) 6.7235, (c) 6.8136, (d) 10.4327, (e) 12.8946, (f) 12.9896 and (g) 12.9940.
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Fig. 3.2. The first 7 eigenfunctions of (3.3) with β = 1, γ1 = 1
10

, γ2 =
√

2
10

and their eigenvalues
(a) 3.0137, (b) 6.7222, (c) 6.7230, (d) 10.4327, (e) 12.8946, (f) 12.9896 and (g) 12.9940.
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Fig. 3.3. The first 7 eigenfunctions of (3.3) with β = 1, γ1 = 1, γ2 =
√

2 and their eigenvalues
(a) 3.2210, (b) 6.9995, (c) 7.0705, (d) 7.1207, (e) 10.8492, (f) 13.3125 and (g) 13.3180.
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Fig. 3.4. The first 7 eigenfunctions w(x)=10u(10x) of (3.3) with β = 1, γ1 = γ2 = 0.2 and their

eigenvalues µ (a) 0.229817, (b) 0.422992, (c) 0.422995, (d) 0.615675, (e) 0.617554, (f) 0.617599 and
(g) 0.619767. (h) Fine contours of w in (g).

3.2. Model Problem 2: A Homogeneous NEP. The active Lagrange func-
tional of (1.14) for k ≥ 1 is

J(λ, u) =
1
p

∫

Ω

|∇u(x)|pdx− |λ|
k

q
(
∫

Ω

w(x)|u(x)|qdx−1), (λ, u) ∈ R×(W 1,p
0 (Ω)\{0}).

(3.7)
The case p ≤ q has been solved in [24,26]. But the case q < p has not been solved so
far, since its standard Lagrange functional (1.15) or (3.7) with k = 1 fails to have a
mountain pass structure. While the new active Lagrange functional (3.7) possesses a
mountain pass structure if p < k + q. Thus now we are able to solve this case.

To compute a pseudo-gradient, follow the technique stated in Section 2.3, we need
to compute the gradient ∇J(λ, u) = (∇λJ(λ, u),∇uJ(λ, u)) where

∇λJ(λ, u) = −k

q
|λ|k−2λ(

∫

Ω

w(x)|u(x)|qdx− 1),

d = ∇uJ(λ, u)) = ∆−1(J ′u(λ, u)) ∈ W 1,q
0 (Ω),

J ′u(λ, u) ∈ W−1,q(Ω) is the Frechet derivative of J in u defined by
∫

Ω

J ′u(λ, u)(x)v(x)dx =
d

dt

∣∣∣
t=0

J(λ, u + tv)

=
∫

Ω

[
∆pu(x) + |λ|kw(x)|u(x)|q−2u(x)

]
v(x) dx,

for each v ∈ W 1,p
0 (Ω), i.e., d = ∇uJ(λ, u) is solved from

∆d(x) = ∆pu(x) + |λ|kw(x)|u(x)|q−2u(x), x ∈ Ω and d|∂Ω = 0.

The inequality γk
n > θ0 > 0 in Section 2.3 is satisfied in all our numerical computa-

tions. Many numerical examples are successfully solved. Here we only present the
cases where p = 1.75, 2.5, q = 2, w(x) ≡ 1 and Ω̄ ⊂ R2 is either the square [−1, 1]×[1, 1]
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or the unit disk. We use k = 2 in those cases. For each case, the profiles of the first
seven (on the square domain) and the first four (on the unit disk domain) numerical
eigenfunctions and their eigenvalues are displayed in Figs. 3.5-3.8 following an order
discussed in Section 4.2.

Except the eigensolutions in Figs. 3.5(f), 3.6(e), 3.7(d) and 3.8(d) that are com-
puted by using Lpr =[(

√
λ1, u1)] and the 4-rotation symmetry, where (λ1, u1) is their

first eigensolution, all the other eigensolutions are captured by using Lpr = {(0, 0)}
and their symmetries: more specifically, the odd symmetry about the line y = x
for Figs. 3.5(b) and 3.6(c); the odd symmetry about the y-axis for Figs. 3.5(c),
3.6(b), 3.7(b) and 3.8(b); the odd symmetry about the x-axis and the y-axis for
Figs. 3.5(d), 3.6(d), 3.7(c) and 3.8(c); the local odd symmetry about the lines x = ± 1

3
for Figs. 3.5(e) and 3.6(g); the odd symmetry about the lines y = ±x for Figs. 3.5(g)
and 3.6(f).

After observing our numerical results, we find some interesting pattern order
switching phenomena. For the p-Laplacian, when the parameter p changes from p < 2
across p = 2 to p > 2, e.g., p = 1.75 and p = 2.5, the pattern of some eigenfunctions
switch order, comparing Figs. 3.5(b) (peaks are corner-to-corner) and (c) (peaks are
side-to-side) with Figs. 3.6(b) (peaks are side-to-side) and (c) (peaks are corner-to-
corner); also comparing patterns in Figs. 3.5 (e), (f), (g) with patterns in Figs. 3.6 (e),
(f), (g). These phenomena imply that when p = 2, the p-Laplacian becomes the usual
Laplacian, the second eigensolution is of multiplicity 2 and the 4th eigensolution is of
multiplicity 3.
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Fig. 3.5. The first 7 eigenfunctions of (3.7) with Ω = (−1, 1) × (−1, 1), p = 1.75 and their

eigenvalues (a) 4.7189, (b) 10.2698 (peaks are corner to corner), (c) 10.3400 (peaks are side to side),
(d) 15.8714, (e) 18.6248, (f) 18.7970 and (g) 18.8347.
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Fig. 3.6. The first 7 eigenfunctions of (3.7) with Ω = (−1, 1) × (−1, 1), p = 2.5 and their
eigenvalues (a) 5.3876, (b) 17.5278 (peaks are side to side), (c) 17.7931 (peaks are corner to corner),
(d) 30.4723, (e) 41.7312, (f) 42.3187 and (g) 42.6471.
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Fig. 3.7. Eigenfunctions of (3.7) with Ω the unit disk, p = 1.75 and their eigenvalues (a)

5.3092, (b) 11.7245, (c) 19.7522 and (d) 21.7686.
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Fig. 3.8. Eigenfunctions of (3.7) with Ω the unit disk, p = 2.5 and their eigenvalues (a) 6.8327,

(b) 22.9888, (c) 46.9634 and (c) 58.4641.

4. Some Theoretical Results on the Algorithm. Now we present some
theoretical results related to our new method. We always assume that U is defined
as in Remark 2.1 (c).

4.1. On the Convergence of the Algorithm. The following PS condition is
commonly used in critical point theory.

Definition 4.1. A functional J ∈ C1(R × B,R) is said to satisfy the Palais-
Smale (PS) condition if for every (λn, wn) ∈ R × B s.t. J(λn, wn) is bounded and
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∇J(λn, wn) → 0, then (λn, wn) possesses a convergent subsequence.
The following lemmas will be used. Their proofs are similar to those in [25].

Lemma 4.2. ‖(λ, v)− (λ, v)− (µ,w)
‖(λ, v)− (µ,w)‖‖ ≤

2‖(µ,w)‖
‖(λ, v)− (µ,w)‖ , (λ, v) ∈ R × B,

‖(λ, v)‖ = 1, ∀(µ,w) ∈ R×B.
Lemma 4.3. Let (λ0, v0) ∈ U and p be an Lpr-⊥ selection of J defined in U .

If (1) p is continuous at (λ0, v0) and G(p(λ, v)) follows a pseudo-gradient flow with
constant θ ∈ (0, 1), or p is locally Lipschitz continuous in a neighborhood of (λ0, v0)
and G(p(λ, v)) is just a pseudo-gradient of J at p(λ0, v0) with constant θ ∈ (0, 1), (2)
d(p(λ0, v0), Lpr) > 0, and (3) ∇J(p(λ0, v0)) 6= 0, then there are ε > 0 and s0 = γ

2m0 ,
where m0 is a positive integer, s.t. ∀(λ, v) ∈ U with ‖(λ, v) − (λ0, v0)‖ < ε, we have
s0‖P(G(p(λ, v)))‖ ≤ γ and

J(p(λ(s0), v(s0)))− J(p(λ, v) < −1
4
s0θ|t(λ,v)|‖∇J(p(λ, v))‖,

where (λ(s0), v(s0)) =
(λ, v)− sign(t(λ,v))s0P(G(p(λ, v)))
‖(λ, v)− sign(t(λ,v))s0P(G(p(λ, v)))‖ , p(λ, v) = t(λ,v)(λ, v) +

w(λ,v) for some w(λ,v) ∈ Lpr and γ ∈ (0, 1) is a constant.
Denote ‖ · ‖` the norm of R×W 1,`

0 (Ω), ` > 1.
Lemma 4.4. Let B = W 1,r

0 (Ω) (1 < r < 2) and (λ0, v0) ∈ U . Assume p is a Lpr-
⊥ selection of J defined in U s.t. p is continuous at (λ0, v0) and d(p(λ0, v0), Lpr) > 0.
If ∇J(p(λ0, v0)) 6= 0, then there exists ε > 0 and s0 = γ

2m0 , where m0 is a positive inte-
ger, s.t. for every (λ, v) ∈ U , ‖(λ, v)−(λ0, v0)‖ < ε, we have s0‖P(∇J(p(λ, v)))‖ ≤ γ
and

J(p(λ(s0), v(s0)))− J(p(λ, v)) < −|t(λ,v)|s0

4
‖∇J(p(λ, v))‖22,

where (λ(s0), v(s0)) =
(λ, v)− sign(t(λ,v))s0P(∇J(p(λ, v)))
‖(λ, v)− sign(t(λ,v))s0P(∇J(p(λ, v)))‖ , p(λ, v) = t(λ,v)(λ, v)+

w(λ,v) for some w(λ,v) ∈ Lpr and γ ∈ (0, 1) is a constant.
Lemma 4.5. Let B = W 1,r

0 (Ω) (r > 2) and (λ0, v0) ∈ U . Assume p is a
Lpr-⊥ selection of J defined in U s.t. p is Lipschitz continuous in a neighborhood
of (λ0, v0) and d(p(λ0, v0), L) > 0. If ∇J(p(λ0, v0)) 6= 0, then for any (λk, vk) ∈
U , limk→∞(λk, vk) = (λ0, v0) and ‖∇J(p(λk, vk))‖r ≤ M for some constant M ,
there is s0 = γ

2m0 , where m0 is a positive integer, s.t. when k is large, we have
s0‖P(∇J(p(λk, vk)))‖ ≤ γ and

J(p(λk(s0), vk(s0)))− J(p(λk, vk)) < −|tk|s0

4
‖∇J(p(λk, vk))‖22,

where (λk(s0), vk(s0)) = (λk,vk)−sign(tk)s0P(∇J(p(λk,vk)))
‖(λk,vk)−sign(tk)s0P(∇J(p(λk,vk)))‖ , p(λk, vk) = tk(λk, vk)+wk

for some wk ∈ Lpr and γ ∈ (0, 1) is a constant.
We are ready to present a subsequence convergent result.
Theorem 4.6. Let J ∈ C1(R × B,R) satisfy the PS condition, p be an Lpr-

⊥ selection of J defined in U and {(λk
n, vk

n)} ⊂ U be a sequence of points gener-
ated by the min-⊥ algorithm with γ ∈ (0, 1). If (1) p is continuous in U and in
Step 2, Gk

n follows a pseudo-gradient flow, or p is locally Lipschitz continuous in U
and in Step 2, Gk

n is just a pseudo-gradient, (2) inf
1≤k<∞

d(p(λk
n, vk

n), Lpr) ≥ α > 0, (3)
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inf
1≤k<∞

J(p(λk
n, vk

n)) > −∞ and (4) {p(λk
n, vk

n)} is bounded, then

(a) {(λk
n, vk

n)}∞k=1 has a subsequence {(λkj
n , v

kj
n )} s.t. p(λkj

n , v
kj
n ) → a critical point of

J;
(b) if a subsequence p(λkj

n , v
kj
n ) → (µ0, u0) as j →∞, then (µ0, u0) is a critical point

of J .
Proof. (a) By the stepsize rule, for k = 1, 2, ..., we have

J(µk+1
n , uk+1

n )− J(µk
n, uk

n) ≤ −1
4
θ|tkn|sk

n‖∇J(p(λk
n, vk

n))‖.(4.1)

On the other hand, by assumption (2) and Lemma 4.2, for k = 1, 2, ...,

J(µk+1
n , uk+1

n )−J(µk
n, uk

n) ≤ − (1− γ)
8

θα‖(λk+1
n , vk+1

n )−(λk
n, vk

n)‖‖∇J(p(λk
n, vk

n))‖.
(4.2)
Suppose that there is δ > 0 s.t. ‖∇J(p(λk

n, vk
n))‖ ≥ δ for any k. From (4.2), we have

J(µk+1
n , uk+1

n )−J(µk
n, uk

n) ≤ − (1− γ)
8

θαδ‖(λk+1
n , vk+1

n )−(λk
n, vk

n)‖, ∀k = 1, 2, ....

(4.3)
Adding up (4.3) and applying assumption (3) give

−∞ < lim
k→∞

J(µk
n, uk

n)− J(µ1
n, u1

n) =
∞∑

k=1

[J(µk+1
n , uk+1

n )− J(µk
n, uk

n)]

≤ − (1− γ)
8

θαδ

∞∑

k=1

‖(λk+1
n , vk+1

n )− (λk
n, vk

n)‖,

i.e., {(λk
n, vk

n)} ⊂ U is a Cauchy sequence. Thus

(λk
n, vk

n) → (λ̂, v̂) ∈ Ū .(4.4)

Since we assume that {p(λk
n, vk

n)} is bounded, by our assumption on U , (λ̂, v̂) ∈ U . By
the continuity of p, we have ‖∇J(p(λ̂, v̂))‖ ≥ δ > 0. Moreover, in view of assumptions
(2) and (3), and adding up (4.1), we have

−∞ < lim
k→∞

J(µk
n, uk

n)− J(µ1
n, u1

n) ≤ −1
4
θα

∞∑

k=1

sk‖∇J(p(λk
n, vk

n))‖ ≤ −1
4
θαδ

∞∑

k=1

sk,

i.e., sk → 0. It contradicts Lemma 4.3. Therefore, there is a subsequence {(λkj
n , v

kj
n )}

s.t. ∇J(p(λkj
n , v

kj
n )) → 0 and {J(p(λkj

n , v
kj
n ))} is convergent. By the PS condition,

{p(λkj
n , vki

n )} has a subsequence that converges to a critical point (µ0, u0).
(b) Suppose (µ0, u0) = p(λ0, v0) is not a critical point. Then there is δ > 0 s.t.
‖∇J(µkj

n , u
kj
n )‖ > δ, j = 1, 2, .... By assumption (2) and (4.1), we have

J(µkj+1
n , ukj+1

n )− J(µkj
n , ukj

n ) ≤ −1
4
θαskj‖∇J(µkj

n , ukj
n )‖ < −1

4
θαδskj .

On the other hand, since
∑∞

k=1[J(µk+1
n , uk+1

n ) − J(µk
n, uk

n)] = limk→∞ J(µk
n, uk

n) −
J(µ1

n, u1
n), limi→∞(J(µkj+1,

n , u
kj+1
n ) − J(µkj

n , u
kj
n )) = 0. Hence, lim

j→∞
skj = 0. It con-

tradicts Lemma 4.3. Thus (µ0, u0) is a critical point.



METHODS FOR NONLINEAR EIGENPAIRS, PART II. 17

When the technique in Section 2.3 is used, we have the following convergence
result.

Theorem 4.7. Let B = W 1,r
0 (Ω) (r > 1 and r 6= 2) where Ω is bounded when

r > 2, J ∈ C1(R×B,R) satisfy the PS condition, p be an Lpr-⊥ selection of J defined
in U and {(λk

n, vk
n)} ⊂ U be a sequence generated by the algorithm with γ ∈ (0, 1). If

(1) p is continuous in U when 1 < r < 2 or p is locally Lipschitz continuous in U
when r > 2, (2) inf

1≤k<∞
d(p(λk

n, vk
n), Lpr) ≥ α > 0, (3) inf

1≤k<∞
J(p(λk

n, vk
n)) > −∞, (4)

{p(λk
n, vk

n)} is bounded and (5) γk
n ≥ θ > 0 when 1 < r < 2 or (5)’ ‖∇J(p(λk

n, vk
n))‖r ≤

M for some constant M > 0 when r > 2, then
(a) {(λk

n, vk
n)}∞k=1 has a subsequence {(λkj

n , v
kj
n )} s.t. p(λkj

n , v
kj
n ) → a critical point of

J;
(b) if a subsequence p(λkj

n , v
kj
n ) → (µ0, u0) as j →∞, then (µ0, u0) is a critical point

of J .
Proof. By the step-size rule, for k = 1, 2, ..., we have

J(µk+1
n , uk+1

n )− J(µk
n, uk

n) ≤ −1
4
|tkn|sk

n‖∇J(p(λk
n, vk

n))‖22.(4.5)

To r < 2, by assumption (2) and (5), from (4.5),

J(µk+1
n , uk+1

n )− J(µk
n, uk

n) ≤ −1
4
θαsk

n‖∇J(p(λk
n, vk

n))‖r‖∇J(p(λk
n, vk

n))‖q.(4.6)

By Lemma 4.2, from (4.6),

J(µk+1
n , uk+1

n )− J(µk
n, uk

n) ≤ − (1− γ)
8

θα‖(λk+1
n , vk+1

n )− (λk
n, vk

n)‖r‖∇J(p(λk
n, vk

n))‖q.

(4.7)
By using (4.6) and (4.7) instead of (4.1) and (4.2) and Lemma 4.4, conclusion (a) and
(b) can be verified in the same way to (a) and (b) of Theorem 4.6.
To r > 2, if there is δ0 > 0 s.t. ‖∇J(p(λk

n, vk
n))‖q ≥ δ0 for any k, then there is δ > 0

s.t. ‖∇J(p(λk
n, vk

n))‖2 ≥ δ for any k. Thus, by assumption (2) and (5)’, from (4.5),

J(µk+1
n , uk+1

n )− J(µk
n, uk

n) ≤ −1
4
αsk

nδ2 ≤ − 1
4M

αsk
nδ2‖∇p(λk

n, vk
n))‖r.(4.8)

By Lemma 4.2, from (4.8),

J(µk+1
n , uk+1

n )− J(µk
n, uk

n) ≤ − (1− γ)
8M

αδ2‖(λk+1
n , vk+1

n )− (λk
n, vk

n)‖.(4.9)

By using (4.8) and (4.9) instead of (4.1) and (4.3) and Lemma 4.5, conclusions (a)
and (b) can be verified in the same way as (a) and (b) of Theorem 4.6.

Assumption (4) in Theorems 4.6 and 4.7 is quite natural for any numerical algo-
rithm and can be verified under certain common conditions on F and G.

Theorem 4.8. Let the active Lagrange functional J(λ, u) = F (u)−|λ|`(G(u)−α)
where α > 0, ` > 1 and F, G ∈ C1(B,R) satisfy the conditions
(a) there is an m > 0 s.t. 〈G′(u), u〉 ≥ mG(u), and
(b) the term F (u)− 〈F ′(u),u〉

`+m is positive for any u 6= 0 and goes to +∞ as ‖u‖ → +∞.
Let (µk

n, uk
n) = p(λk

n, vk
n), (k = 1, 2, ...) be a sequence generated by the algorithm.

Then {(µk
n, uk

n)} is bounded.
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Proof. Since (µk
n, uk

n) = p(λk
n, vk

n) and p is an Lpr-⊥ selection of J ,

0 =
d

dt
J(t(µk

n, uk
n))|t=1 = 〈F ′(uk

n), uk
n〉 − `|µk

n|`(G(uk
n)− α)− |µk

n|`〈G′(uk
n), uk

n〉
= 〈F ′(uk

n), uk
n〉 − (` + m)|µk

n|`(G(uk
n)− α)− (mα + [〈G′(uk

n), uk
n〉 −mG(uk

n)])|µk
n|`

i.e.,

|µk
n|`(G(uk

n)− α) =
〈F ′(uk

n), uk
n〉

` + m
− mα + [〈G′(uk

n), uk
n〉 −mG(uk

n)]
` + m

|µk
n|`.

Then by our assumptions on ` and (a), (b), we have

J(µk
n, uk

n) = F (uk
n)− 〈F ′(uk

n), uk
n〉

` + m
+

mα + [〈G′(uk
n), uk

n〉 −mG(uk
n)]

` + m
|µk

n|` > 0.

Thus the stepsize rule of the algorithm leads to 0 < J(µk+1
n , uk+1

n ) < J(µk
n, uk

n), k =
1, 2, ..., or J(µk

n, uk
n) is bounded. Finally assumption (a) and (b) implies {(µk

n, uk
n)} is

bounded. Assumptions (a) and (b) in Theorem 4.8 can be directly verified for the
two model problems.

Lemma 4.9. Assumptions (a) and (b) in Theorem 4.8 are satisfied by (3.7) with
` = k, m = q and p < k + q, and by (3.1) with ` > m = 2.

Proof. Indeed for (3.7), we have

F (u)− 〈F ′(u), u〉
q + k

= (
1
p
− 1

q + k
)
∫

Ω

|∇u(x)|pdx,

and for (3.1), we have 〈F ′(u), u〉 = 2F (u) + 1
2

∫
Ω

u4(x)dx and

F (u)− 〈F
′(u), u〉
` + m

=
` + m− 2
4(` + m)

∫

Ω

(|∇u(x)|2+2V (x)u2(x))dx+
` + m− 4
4(` + m)

∫

Ω

u4(x)dx.

For both (3.7) and (3.1), we have 〈G′(u), u〉 = mG(u).
A sequence convergence result similar to Theorem 2.1 in [25] can be established.

4.2. On the Order of Eigenfunctions. We first prove that for a homogeneous
NEP, its eigenvalues are proportional to their critical values of the active Lagrange
functional (1.17).

Lemma 4.10. For given α > 0, consider the eigenproblem (1.7) where F, G satisfy
the homogeneous condition (1.9) with m, l > 1. The energy function J(λ, u) = L(λ, u)
is the active Lagrange functional (1.17). Then, for every eigensolution (|λ0|k, u0),

J(λ0, u0) =
lα

m
|λ0|k.(4.10)

Proof. Indeed, we have

F (u) =
∫ 1

0

d

dt
F (tu)dt =

∫ 1

0

〈F ′(tu), u〉dt =
∫ 1

0

tl−1〈F ′(u), u〉dt =
1
l
〈F ′(u), u〉.

(4.11)
Similarly, we have G(u) = 1

l 〈G′(u), u〉. Since (|λ0|k, u0) is an eigensolution, F ′(u0)−
|λ0|kG′(u0) = 0 and G(u0) = α. Thus

J(λ0, u0) = F (u0) =
1
m
〈F ′(u0), u0〉 =

1
m
〈|λ0|kG′(u0), u0〉 =

l|λ0|k
m

G(u0) =
lα

m
|λ0|k.



METHODS FOR NONLINEAR EIGENPAIRS, PART II. 19

The Morse index is widely used to order nondegenerate saddle points in Hilbert
spaces. As its generalization, an order of saddles in Banach spaces is defined in
[29] which can handle degenerate saddles and also be used to measure the structural
instability of saddle points. Following the same argument as in [29], the following
theorem can be proved.

Theorem 4.11. Assume that B is a Banach space, (λi, ui), i = 1, ..., n − 1 are
n − 1 linearly independent eigensolutions, Lpr = [(λ1, u1), ..., (λn−1, un−1)] and p is
a peak selection of J w.r.t. Lpr in U . If (1) J(p(λ̄, ū)) = min(λ,u)∈U J(p(λ, u)) and
p(λ̄, ū) is a strict maximum, (2) d(p(λ̄, ū), Lpr) > 0 and (3) p is differentiable at
(λ̄, ū), then p(λ̄, ū) is a critical point of J , whose order of saddles equal to dim(Lpr).

For a saddle point (µn, un), its order of saddles=dim(Lpr) is known before we use
LMM and Lpr to find the saddle point. Since LMM is a local method, different initial
guesses may lead to saddle points with the same order dim(Lpr) in different branches.
In this case, we compare their critical values, i.e., J or F values. We put the one with
less F value before the one with larger F value. When the homogeneous condition is
satisfied, the critical values are proportional to the eigenvalues by Lemma 4.10. Thus
an order of eigensolutions found by LMM can be established and can also be used to
measure the structural instability of eigensolutions found by LMM.

As a final remark, we point out that the algorithm developed in this paper is
basically a constrained steepest descent method. It can find multiple eigensolutions
in a sequential order by properly setting the subspace Lpr and selecting initial guesses.
The selection of an initial guess is flexible. It does not have to be sufficiently close
to a desired unknown solution. But by the nature of this algorithm, only a linear
convergence rate can be expected. Thus this method can be followed, after a few
iterations, by a Newton’s method [22] or one of the squared-operator iteration methods
[23], if applicable, to speed up local convergence.
Acknowledgement: We would like to thank an anonymous referee for providing us
with helpful suggestions and many useful references.
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