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EFFICIENT STRONG INTEGRATORS FOR LINEAR STOCHASTIC

SYSTEMS

GABRIEL LORD∗, SIMON J.A. MALHAM∗† , AND ANKE WIESE∗

Abstract. We present numerical schemes for the strong solution of linear stochastic differen-
tial equations driven by an arbitrary number of Wiener processes. These schemes are based on the
Neumann (stochastic Taylor) and Magnus expansions. Firstly, we consider the case when the gov-
erning linear diffusion vector fields commute with each other, but not with the linear drift vector
field. We prove that numerical methods based on the Magnus expansion are more accurate in the
mean-square sense than corresponding stochastic Taylor integration schemes. Secondly, we derive
the maximal rate of convergence for arbitrary multi-dimensional stochastic integrals approximated
by their conditional expectations. Consequently, for general nonlinear stochastic differential equa-
tions with non-commuting vector fields, we deduce explicit formulae for the relation between error
and computational costs for methods of arbitrary order. Thirdly, we consider the consequences in
two numerical studies, one of which is an application arising in stochastic linear-quadratic optimal
control.

Key words. linear stochastic differential equations, strong numerical methods, Magnus expan-
sion, stochastic linear-quadratic control
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1. Introduction. We are interested in designing efficient numerical schemes for
the strong approximation of linear Stratonovich stochastic differential equations of
the form

yt = y0 +

d∑

i=0

∫ t

0

ai(τ) yτ dW
i
τ , (1.1)

where y ∈ Rp, W 0 ≡ t, (W 1, . . . ,W d) is a d-dimensional Wiener process and a0(t)
and ai(t) are given p× p coefficient matrices. We call ‘a0(t) y’ the linear drift vector
field and ‘ai(t) y’ for i = 1, . . . , d the linear diffusion vector fields. We can express the
stochastic differential equation (1.1) more succinctly in the form

y = y0 + K ◦ y , (1.2)

where K ≡ K0 + K1 + · · · + Kd and (Ki ◦ y)t ≡
∫ t

0
ai(τ) yτ dW

i
τ . The solution of

the integral equation for y is known as the Neumann series, Peano–Baker series,
Feynman–Dyson path ordered exponential or Chen-Fleiss series

yt = (I− K)−1 ◦ y0 ≡ (I+ K+ K
2 + K

3 + · · · ) ◦ y0 .

The flow-map or fundamental solution matrix St maps the initial data y0 to the
solution yt = St y0 at time t > 0. It satisfies an analogous matrix valued stochastic
differential equation to (1.2) with the p × p identity matrix as initial data. The
logarithm of the Neumann expansion for the flow-map is the Magnus expansion. We
can thus write the solution to the stochastic differential equation (1.1) in the form

yt = (expσt) y0 ,
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where

σt = ln
(
(I− K)−1 ◦ I

)
≡ K ◦ I + K

2 ◦ I − 1
2 (K ◦ I)2 + · · · . (1.3)

See Magnus [41], Kunita [35], Azencott [3], Ben Arous [4], Strichartz [54], Castell [12],
Burrage [7], Burrage and Burrage [8] and Baudoin [6] for the derivation and conver-
gence of the original and also stochastic Magnus expansion; Iserles, Munthe–Kaas,
Nørsett and Zanna [30] for a deterministic review; Lyons [38] and Sipiläinen [53] for
extensions to rough signals; Lyons and Victoir [40] for a recent application to prob-
abilistic methods for solving partial differential equations; and Sussmann [56] for a
related product expansion.

In the case when the coefficient matrices ai(t) = ai, i = 0, . . . , d are constant and
non-commutative, the solution to the linear problem (1.1) is non-trivial and given by
the Neumann series or stochastic Taylor expansion (see Kloeden and Platen [33])

yneut =

∞∑

ℓ=0

∑

α∈Pℓ

Jαℓ···α1(t) aα1 · · ·aαℓ
y0 , (1.4)

where

Jαℓ···α1(t) ≡
∫ t

0

∫ ξ1

0

· · ·
∫ ξℓ−1

0

dWαℓ

ξℓ
· · · dWα2

ξ2
dWα1

ξ1
.

Here Pℓ is the set of all combinations of multi-indices α = {α1, . . . , αℓ} of length ℓ
with αk ∈ {0, 1, . . . , d} for k = 1, . . . , ℓ. There are some special non-commutative cases
when we can write down an explicit analytical solution. For example the stochastic
differential equation dyt = a1yt dW

1
t + yta2 dW

2
t with the identity matrix as initial

data has the explicit analytical solution yt = exp(a1W
1
t ) · exp(a2W 2

t ). However in
general we cannot express the Neumann solution series (1.4) in such a closed form.

Classical numerical schemes such as the Euler-Maruyama and Milstein methods
correspond to truncating the stochastic Taylor expansion to generate global strong
order 1/2 and order 1 schemes, respectively. Stochastic Runge–Kutta numerical meth-
ods have also been derived—see Kloeden and Platen [33] and Talay [57]. At the linear
level, the Neumann, stochastic Taylor and Runge–Kutta type methods are equivalent.
In the stochastic context, Magnus integrators have been considered by Castell and
Gaines [13], Burrage [7], Burrage and Burrage [8] and Misawa [46].

We present numerical schemes based on truncated Neumann and Magnus ex-
pansions. Higher order multiple Stratonovich integrals are approximated across each
time-step by their expectations conditioned on the increments of the Wiener processes
on suitable subdivisions (see Newton [49] and Gaines and Lyons [22]). What is new
in this paper is that we:

1. Prove the strong convergence of the truncated stochastic Magnus expansion
for small stepsize;

2. Derive uniformly accurate higher order stochastic integrators based on the
Magnus expansion in the case of commuting linear diffusion vector fields;

3. Prove the maximal rate of convergence for arbitrary multi-dimensional stochas-
tic integrals approximated by their conditional expectations;

4. Derive explicit formulae for the relation between error and computational
costs for methods of arbitrary order in the case of general nonlinear, non-
commuting governing vector fields.
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Our results can be extended to nonlinear stochastic differential equations with anal-
ogous conditions on the governing nonlinear vector fields, where the exponential Lie
series (replacing the Magnus expansion) can be evaluated using the Castell–Gaines
approach.

In the first half of this paper, sections 2–5, we focus on proving the convergence of
the truncated Magnus expansion and establishing Magnus integrators that are more
accurate than Neumann (stochastic Taylor) schemes of the same order. The numerical
schemes we present belong to the important class of asymptotically efficient schemes
introduced by Newton [49]. Such schemes have the optimal minimum leading error
coefficient among all schemes that depend on increments of the underlying Wiener
process only. Castell and Gaines [13, 14] prove that the order 1/2 Magnus integrator
driven by a d-dimensional Wiener process and a modified order 1 Magnus integrator
driven by a 1-dimensional Wiener process are asymptotically efficient. We extend
this result of Castell and Gaines to an arbitrary number of driving Wiener processes.
We prove that if we assume the linear diffusion vector fields commute, then an anal-
ogously modified order 1 Magnus integrator and a new order 3/2 Magnus integrator
are globally more accurate than their corresponding Neumann integrators.

There are several potential sources of cost contributing to the overall computa-
tional effort of a stochastic numerical integration scheme. The main ones are the
efforts associated with:

• Evaluation: computing (and combining) the individual terms and special
functions such as the matrix exponential;

• Quadrature: the accurate representation of multiple Stratonovich integrals.

There are usually fewer terms in the Magnus expansion compared to the Neumann
expansion to the same order, but there is the additional computational expense of
computing the matrix exponential. When the cost of computing the matrix exponen-
tial is not significant, due to their superior accuracy we expect Magnus integrators
to be preferable to classical stochastic numerical integrators. This will be the case
for systems that are small (see Moler and Van Loan [47] and Iserles and Zanna [31])
or for large systems when we only have to compute the exponential of a large sparse
matrix times given vector data for which we can use Krylov subspace methods (see
Moler and Van Loan [47] and Sidje [52]). Magnus integrators are also preferable when
using higher order integrators (applied to non-sparse systems of any size) when high
accuracies are required. This is because in this scenario, quadrature computational
cost dominates integrator effort.

In the second half of this paper, sections 6–8, we focus on the quadrature cost
associated with approximating multiple Stratonovich integrals to a degree of accuracy
commensurate with the order of the numerical method implemented. Our conclusions
apply generally to the case of nonlinear, non-commuting governing vector fields. The
governing set of vector fields and driving path process (W 1, . . . ,W d) generate the
unique solution process y ∈ Rp to the stochastic differential equation (1.1). For a
scalar driving Wiener process W the Itô map W 7→ y is continuous in the topology of
uniform convergence. For a d-dimensional driving processes with d ≥ 2 the Universal
Limit Theorem implies that the Itô map (W 1, . . . ,W d) 7→ y is continuous in the p-
variation topology, in particular for 2 ≤ p < 3 (see Lyons [38], Lyons and Qian [39]
and Malliavin [43]). Since Wiener paths with d ≥ 2 have finite p-variation for p > 2,
approximations to y constructed using successively refined approximations to the
driving path will only converge to the correct solution y if we include information
about the Lévy chordal areas of the driving path (the L2-norm of the 2-variation of
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a Wiener process is finite though). Hence if we want to implement a scheme using
adaptive stepsize we should consider order 1 or higher pathwise stochastic numerical
methods (see Gaines and Lyons [22]).

However simulating multiple Stratonovich integrals accurately is costly! For clas-
sical accounts of this limitation on applying higher order pathwise stochastic numerical
schemes see Kloeden and Platen [33, p. 367], Milstein [44, p. 92] and Schurz [51, p. 58]
and for more recent results see Gaines and Lyons [21, 22], Wiktorsson [58], Cruzeiro,
Malliavin and Thalmaier [17], Stump and Hill [55] and Giles [24, 25].

Taking a leaf from Gaines and Lyons [22] we consider whether it is computa-
tionally cheaper to collect a set of sample data over a given time interval and then
evaluate the solution (conditioned on that sample data), than it is to evaluate the
solution frequently, say at every sample time. The resounding result here is that of
Clark and Cameron [16] who prove that when the multiple Stratonovich integral J12 is
approximated by its expectation conditioned on intervening sample points, the max-
imal rate of L2-convergence is of order h/Q1/2 where h is the integration steplength
and Q is the sampling rate. We extend this result to multiple Stratonovich integrals
Jα1,...,αℓ

of arbitrary order approximated by their expectation conditioned on inter-
vening information sampled at the rate Q. Indeed we prove that the maximal rate
of convergence is hℓ/2/Q1/2 when α1, . . . , αℓ are non-zero indices (and an improved
rate of convergence if some of them are zero). In practice the key information is
how the accuracy achieved scales with the effort required to produce it on the global
interval of integration say [0, T ] where T = Nh. We derive an explicit formula for
the relation between the global error and the computational effort required to achieve
it for a multiple Stratonovich integral of arbitrary order when the indices α1, . . . , αℓ

are distinct. This allows us to infer the effectiveness of strong methods of arbitrary
order for systems with non-commuting vector fields. For a given computational effort
which method delivers the best accuracy? The answer not only relies on methods
that are more accurate at a given order. It also is influenced by three regimes for
the stepsize that are distinguished as follows. In the first large stepsize regime the
evaluation effort is greater than the quadrature effort; higher order methods produce
superior performance for given effort. Quadrature effort exceeds evaluation effort in
the second smaller stepsize regime. We show that in this regime when d = 2, or when
d ≥ 3 and the order of the method M ≤ 3/2, then the global error scales with the
computational effort with an exponent of −1/2. Here more accurate higher order
methods still produce superior performance for given effort; but not at an increas-
ing rate as the stepsize is decreased. However when d ≥ 3 for strong methods with
M ≥ 2 the global error verses computational effort exponent is worse than −1/2 and
this distinguishes the third very small stepsize regime. The greater exponent means
that eventually lower order methods will deliver greater accuracy for a given effort.

We have chosen to approximate higher order integrals over a given time step by
their expectations conditioned on the increments of the Wiener processes on suit-
able subdivisions. This is important for adaptive time-step schemes (Gaines and
Lyons [22]) and filtering problems where the driving processes (say W 1 and W 2) are
observed signals. However it should be noted that Wiktorsson [58] has provided a
practical method for efficiently sampling the set of multiple Stratonovich multiple in-
tegrals {Jij : i, j = 1, . . . , d} across a given time-step associated with a d-dimensional
driving process (see Gilsing and Shardlow [23] for a practical implementation). Wik-
torsson simulates the tail distribution in a truncated Karhunen–Loeve Fourier series
approximation of these integrals which produces a convergence rate of order hd3/2/Q
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where Q is analogously the number of required independent normally distributed
samples.

Other potential sources of computational effort might be path generation and
memory access. Path generation effort depends on the application context. This cost
is at worst proportional to the quadrature effort where we could subsume it. Memory
access efforts depend on the processing and access memory environment. To reveal
higher order methods (which typically require more path information) in the best
light possible, we have ignored this effect.

Our paper is outlined as follows. We start in Section 2 by proving that the
exponential of every truncation of the Magnus series converges to the solution of our
linear stochastic differential equation (1.1). In Section 3 we define the strong error
measures we use and how to compute them. Using these, we explicitly compare the
local and then global errors for the Magnus and Neumann integrators in Section 4
and thus establish our stated results for uniformly accurate Magnus integrators. In
Section 5 we show that when the linear diffusion vector fields do not commute we
cannot expect the corresponding order 1 Magnus integrator to in general be globally
more accurate than the order 1 Neumann integrator. We then turn our attention in
Section 6 to the method of approximating multiple Stratonovich integrals by their
conditional expectations. We prove the maximal rate of convergence for an arbitrary
multiple Stratonovich integral in Section 6. We then use this result in Section 7 to
show how the global error scales with the computational effort for numerical schemes
of arbitrary order. The shuffle algebra of multiple Stratonovich integrals generated
by integration by parts allows for different representions and therefore bases for the
solution of a stochastic differential equation. Some choices of basis representation are
more efficiently approximated than others and we investigate in Section 8 the impact of
this choice. In Section 9 we present numerical experiments that reflect our theoretical
results. To illustrate the superior accuracy of the uniformly accurate Magnus methods
we apply them to a stochastic Riccati differential system that can be reformulated as a
linear system which has commuting diffusion vector fields. Since for the linear system
expensive matrix-matrix multiplications can be achieved independent of the path, the
Neumann method performs better than an explicit Runge–Kutta type method applied
directly to the nonlinear Riccati system. We also numerically solve an explicit linear
system with governing linear vector fields that do not commute for two and also
three driving Wiener processes—Magnus integrators also exhibit superior accuracy
in practice in these cases also. Lastly in Section 10, we outline how to extend our
results to nonlinear stochastic differential equations and propose further extensions
and applications.

2. Strong convergence of truncated Magnus series. We consider here the
case when the stochastic differential equation (1.1) is driven by d Wiener processes
with constant coefficient matrices ai(t) = ai, i = 0, 1, . . . , d. The Neumann expansion
has the form shown in (1.4). We construct the Magnus expansion by taking the
logarithm of this Neumann series as in (1.3). In Appendix A we explicitly give the
Neumann and Magnus expansions up to terms with L2-norm of order 3/2. Let σ̂t

denote the truncated Magnus series

σ̂t =
∑

α∈Qm

Jα(t) cα , (2.1)

where Qm denotes the finite set of multi-indices α for which ‖Jα‖L2 is of order up to
and including tm. Note that here m is a half-integer index, m = 1/2, 1, 3/2, . . .. The
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terms cα are linear combinations of finitely many (more precisely exactly length α)
products of the ai, i = 0, 1, . . . , d. Let |Qm| denote the cardinality of Qm.

Theorem 2.1 (Convergence). For any t ≤ 1, the exponential of the truncated

Magnus series, exp σ̂t, is square-integrable. Further, if yt is the solution of the stochas-

tic differential equation (1.1), there exists a constant C(m) such that

∥∥yt − exp σ̂t · y0
∥∥
L2 ≤ C(m) tm+1/2 . (2.2)

Proof. First we show that exp σ̂t ∈ L2. Using the expression (2.1) for σ̂t, we see
that for any number k, (σ̂t)

k is a sum of |Qm|k terms, each of which is a k-multiple
product of terms Jαcα. It follows that

∥∥(σ̂t)
k
∥∥
L2 ≤

(
max
α∈Qm

‖cα‖op
)k

·
∑

αi∈Qm

i=1,...,k

‖Jα(1)Jα(2) · · ·Jα(k)‖L2 . (2.3)

Note that the maximum of the operator norm ‖ · ‖op of the coefficient matrices
is taken over a finite set. Repeated application of the product rule reveals that
the product Jα(i)Jα(j), where α(i) and α(j) are multi-indices of length ℓ(α(i)) and

ℓ(α(j)), is a linear combination of 2ℓ(α(i))+ℓ(α(j))−1 multiple Stratonovich integrals.
Since ℓ(α(i)) ≤ 2m for i = 1, . . . , k, each term ‘Jα(1)Jα(2) · · · Jα(k)’ in (2.3) is thus the

sum of at most 22mk−1 Stratonovich integrals Jβ. We also note that k ≤ ℓ(β) ≤ 2mk.
From equation (5.2.34) in Kloeden and Platen [33], every multiple Stratonovich

integral Jβ can be expressed as a finite sum of at most 2ℓ(β)−1 multiple Itô integrals
Iγ with ℓ(γ) ≤ ℓ(β). Further, from Remark 5.2.8 in Kloeden and Platen [33], ℓ(γ) +
n(γ) ≥ ℓ(β) + n(β), where n(β) and n(γ) denote the number of zeros in β and γ,
respectively. From Lemma 5.7.3 in Kloeden and Platen [33],

‖Iγ‖L2 ≤ 2ℓ(γ)−n(γ) t(ℓ(γ)+n(γ))/2 .

Noting that ℓ(γ) ≤ ℓ(β) ≤ 2mk and ℓ(γ) + n(γ) ≥ k, it follows that for t ≤ 1, we
have ‖Jβ‖L2 ≤ 24mk−1 tk/2. Since the right hand side of equation (2.3) consists of
|Qm|k 22mk−1 Stratonovich integrals Jβ , we conclude that,

∥∥∥
(
σ̂t

)k∥∥∥
L2

≤
(
max
α∈Qm

‖cα‖op · |Qm| · 26m · t1/2
)k

.

Hence exp σ̂t is square-integrable.
Second we prove (2.2). Let ŷt denote Neumann series solution (1.4) truncated to

included terms of order up to and including tm. We have

∥∥yt − exp σ̂t · y0
∥∥
L2 ≤

∥∥yt − ŷt
∥∥
L2 +

∥∥ŷt − exp σ̂t · y0
∥∥
L2 . (2.4)

We know yt ∈ L2 (see Gihman and Skorohod [23] or Arnold [2]). Furthermore, for
any order m, ŷt corresponds to the truncated Taylor expansion involving terms of
order up to and including tm. Hence ŷt is a strong approximation to yt to that order
with the remainder consisting of O(tm+1/2) terms (see Proposition 5.9.1 in Kloeden
and Platen [33]). It follows from the definition of the Magnus series as the logarithm
of the flow-map Neumann series, that the terms of order up to and including tm in
exp σ̂t · y0 correspond with ŷt; the error consists of O(tm+1/2) terms.
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Convergence of approximations based on truncations of the stochastic Taylor
expansion has been studied in Kloeden and Platen [33], see Propositions 5.10.1, 5.10.2,
and 10.6.3. Ben Arous [4] and Castell [12] prove the remainder of the exponential of
any truncation of the Magnus series is bounded in probability as t → 0 (in the full
nonlinear case). Burrage [7] shows that the first terms up to and including order 3/2
Magnus expansion coincide with the terms in the Taylor expansion of the same order.
Our result holds for any order in L2 for sufficiently small t. A more detailed analysis
is needed to establish results concerning the convergence radius. Similar arguments
can be used to study the non-constant coefficient case with suitable conditions on
the coefficient matrices (see Proposition 5.10.1 in Kloeden and Platen [33] for the
corresponding result for the Taylor expansion).

Note that above and in subsequent sections, one may equally consider a stochastic
differential equation starting at time t0 > 0 with square-integrable Ft0 -measurable
initial data y0. Here (Ft)t≥0 denotes the underlying filtration.

3. Global and local error. Suppose Stn,tn+1 and Ŝtn,tn+1 are the exact and
approximate flow-maps across the interval [tn, tn+1], respectively; both satisfying the
usual flow-map semi-group property: composition of flow-maps across successive inter-
vals generates the flow-map across the union of those intervals. We call the difference
between the exact and approximate flow-maps

Rtn,tn+1 ≡ Stn,tn+1 − Ŝtn,tn+1 (3.1)

the local flow remainder. For an approximation ŷtn+1 across the interval [tn, tn+1] the
local remainder is thus Rtn,tn+1ytn . Our goal here is to see how the leading order
terms in the local remainders accumulate, contributing to the global error.

Definition 3.1 (Strong global error). We define the strong global error associ-
ated with an approximate solution ŷT to the stochastic differential equation (1.1) over
the global interval of integration [0, T ] as E ≡ ‖yT − ŷT ‖L2 .

The global error can be decomposed additively into two components, the global
truncation error due to truncation of higher order terms, and the global quadrature
error due to the approximation of multiple Stratonovich integrals retained in the
approximation. If [0, T ] = ∪N−1

n=0 [tn, tn+1] where tn = nh then for small stepsize
h = T/N we have

E =

∥∥∥∥∥

(
0∏

n=N−1

Stn,tn+1 −
0∏

n=N−1

Ŝtn,tn+1

)
y0

∥∥∥∥∥
L2

=

∥∥∥∥∥

(
N−1∑

n=0

Ŝtn+1,tNRtn,tn+1 Ŝt0,tn

)
y0

∥∥∥∥∥
L2

+O
(
max
n

‖Rtn,tn+1‖
3/2
L2 h−3/2

)
. (3.2)

The local flow remainder has the following form in the case of constant coefficients
ai, i = 1, . . . , d, (see for example the integrators in Appendix A):

Rtn,tn+1 =
∑

α

Jα(tn, tn+1) cα .

Here α is a multi-index and the terms cα represent products or commutations of the
constant matrices ai. The Jα represent Stratonovich integrals (or linear combinations,
of the same order, of products of integrals including permutations of α). The global
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error E2 at leading order in the stepsize is thus

yT0
∑

α,β

(∑

n

E
(
Jα(tn, tn+1)Jβ(tn, tn+1)

)
E

((
Ŝtn+1,tN cαŜt0,tn

)T(
Ŝtn+1,tN cβŜt0,tn

))

+
∑

n6=m

E
(
Jα(tn, tn+1)

)
E
(
Jβ(tm, tm+1)

)
E

((
Ŝtn+1,tN cαŜt0,tn

)T(
Ŝtm+1,tN cβŜt0,tm

)))
y0.

Hence in the global truncation error we distinguish between the diagonal sum con-
sisting of the the first sum on the right-hand side above, and the off-diagonal sum

consisting of the second sum above with n 6= m.
Suppose we include in our integrator all terms with local L2-norm up to and

including O(hM ). The leading terms Jαcα in Rtn,tn+1 thus have L2-norm O(hM+1/2).
Those with zero expectation will contribute to the diagonal sum, generating O(hM )
terms in the global error, consistent with a global order M integrator. However those
with with non-zero expectation contribute to the off-diagonal double sum. They will
generate O(hM−1/2) terms in the global error. We must thus either include them in
the integrator, or more cheaply, only include their expectations—the corresponding
terms

(
Jα − E(Jα)

)
cα of order hM+1/2 in Rtn,tn+1 will then have zero expectation

and only contribute through the diagonal sum—see for example Milstein [44, p. 12].
This also guarantees the next order term in the global error estimate (3.2), whose

largest term has the upper bound maxn ‖Rtn,tn+1‖
3/2
L2 h−3/2, only involves higher order

contributions to the leading O(hM ) error.
Note that high order integrators may include multiple Stratonovich integral terms.

We approximate these multiple integrals by their conditional expectations to the local
order of approximation hM+1/2 of the numerical method. Hence terms in the inte-

grator of the form Jαcα are in fact approximated by E(Jα|FQ)cα, their expectation
conditioned on intervening path information FQ (see Section 6 for more details). This
generates terms of the form

(
Jα − E(Jα|FQ)

)
cα in the local flow remainder, which

have zero expectation and hence contribute to the global error through the diagonal
sum generating O(hM ) terms.

4. Uniformly accurate Magnus integrators. Our goal is to identify a class
Magnus integrators that are more accurate than Neumann (stochastic Taylor) integra-
tors of the same order for any governing set of linear vector fields (for the integrators
of order 1 and 3/2 we assume the diffusion vector fields commute). We thus com-
pare the local accuracy of the Neumann and Magnus integrators through the leading
terms of their remainders. We consider the case of constant coefficient matrices ai,
i = 0, 1, . . . , d.

The local flow remainder of a Neumann integrator Rneu is simply given by the
terms not included in the flow-map Neumann approximation. Suppose σ̂ is the trun-
cated Magnus expansion and that ρ is the corresponding remainder, i.e. σ = σ̂ + ρ.
Then the local flow remainder Rmag associated with the Magnus approximation is

Rmag = expσ − exp σ̂

= exp
(
σ̂ + ρ

)
− exp σ̂

= ρ+ 1
2 (σ̂ρ+ ρσ̂) +O(σ̂2ρ) . (4.1)

Hence the local flow remainder of a Magnus integrator Rmag is the truncated Magnus
expansion remainder ρ, and higher order terms 1

2 (σ̂ρ+ ρσ̂) that can contribute to the
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global error at leading order through their expectations. For the integrators considered
in this section these higher order terms do not contribute in this way, however for the
order 1 integrator we consider in the next section they do.

Definition 4.1 (Uniformly accurate Magnus integrators). When the linear dif-

fusion vector fields commute so that [ai, aj ] = 0 for all i, j 6= 0, we define the order 1
and order 3/2 uniformly accurate Magnus integrators by

σ̂
(1)
tn,tn+1

= J0a0 +

d∑

i=1

(
Jiai +

h2

12 [ai, [ai, a0]]
)
,

and

σ̂
(3/2)
tn,tn+1

= J0a0 +

d∑

i=1

(
Jiai +

1
2 (Ji0 − J0i)[a0, ai] +

h2

12 [ai, [ai, a0]]
)
.

By uniformly we mean for any given set of governing linear vector fields (or
equivalently coefficient matrices ai, i = 0, 1, . . . , d) for which the diffusion vector
fields commute, and for any initial data y0.

Theorem 4.2 (Global error comparison). For any initial condition y0 and suffi-

ciently small fixed stepsize h = tn+1 − tn, the order 1/2 Magnus integrator is globally

more accurate in L2 than the order 1/2 Neumann integrator. If in addition we assume

the linear diffusion vector fields commute so that [ai, aj] = 0 for all i, j 6= 0, then the

order 1 and 3/2 uniformly accurate Magnus integrators are globally more accurate

in L2 than the corresponding Neumann integrators. In other words, if Emag denotes

the global error of the order 1/2 Magnus integrator or the uniformly accurate Magnus

integrators of order 1 or order 3/2, respectively, and Eneu is the global error of the

Neumann integrators of the corresponding order, then at each of those orders,

Emag ≤ Eneu . (4.2)

Proof. Let Rmag and Rneu denote the local flow remainders corresponding to the
Magnus and Neumann approximations across the interval [tn, tn+1] with tn = nh. A
direct calculation reveals that

E
(
(Rneu)TRneu

)
= E

(
(Rmag)TRmag

)
+DM +O

(
h2M+1/2

)
,

where if we set R̂ ≡ Rneu −Rmag then

DM ≡ E
(
R̂TRmag

)
+ E

(
(Rmag)TR̂

)
+ E

(
R̂TR̂

)
. (4.3)

We now show explicitly in each of the three cases of the theorem that at leading order:
Rmag and R̂ are uncorrelated and hence DM is positive semi-definite. This implies
that the local remainder for the Neumann expansion is larger than that of the Magnus
expansion. Hereafter assume the indices i, j, k, l ∈ {1, . . . , d}.

For the order 1/2 integrators we have to leading order (see the form of the ex-
pansions in Appendix A)

Rmag =
∑

i<j

1
2 (Jij − Jji)[aj , ai] ,
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and

R̂ =
∑

i

(
Jii − 1

2h
)
a2i +

∑

i<j

1
2 (Jij + Jji)(ajai + aiaj) ,

which are uncorrelated by direct inspection.
We henceforth assume [ai, aj ] = 0 for all i, j. For the uniformly accurate order 1

integrator we have to leading order (again see Appendix A)

Rmag =
∑

i

1
2 (Ji0 − J0i)[a0, ai] ,

and

R̂ = 1
2h

2a20 +
∑

i

1
2

(
Ji0 + J0i)(a0ai + aia0) +

1
4h

2(a2i a0 + a0a
2
i )

+
∑

i,j,k

(
Jijk − E(Jijk)

)
akajai ,

which again, by direct inspection are uncorrelated.
For the uniformly accurate order 3/2 integrator the local flow remainders are

Rneu =
∑

i

(Jii0 − 1
4h

2)a0a
2
i + Ji0iaia0ai + (J0ii − 1

4h
2)a2i a0

+
∑

i<j

(
(J0ji + J0ij)aiaja0 + Jj0iaia0aj

+ Ji0jaja0ai + (Jji0 + Jij0)a0aiaj

)

+
∑

i,j,k,l

(
Jijkl − E(Jijkl)

)
alakajai ,

and

Rmag =
∑

i

1
12 (J

2
i J0 − h2 − 6Ji0i)[ai, [ai, a0]]

+
∑

i<j

1
6

(
J0JiJj − 3(Ji0j + Jj0i)

)
[aj , [ai, a0]] .

Consequently we have

R̂ = 1
12

∑

i

(
(6Ji0Ji − J2

i J0 − 2h2)a0a
2
i + 2(J2

i J0 − h2)aia0ai

+ (6J0iJi − J2
i J0 − 2h2)a2i a0

)

+ 1
6

∑

i<j

((
3(JiJ0j + JjJ0i)− J0JiJj

)
aiaja0

+
(
J0JiJj + 3(Ji0j − Jj0i)

)
aja0ai

+
(
J0JiJj + 3(Jj0i − Ji0j)

)
aia0aj

+
(
3(JiJj0 + JjJi0)− J0JiJj

)
a0aiaj

)

+
∑

i,j,k,l

(
Jijkl − E(Jijkl)

)
alakajai .
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First we note that the terms in R̂ of the form Jijklalakajai, for which at least three
of the indices distinct, are uncorrelated with any terms in Rmag. We thus focus on
the terms of this form with at most two distinct indices, namely

∑

i<j

(JiiJjj − 1
4h

2)a2ja
2
i +

∑

i6=j

JiiiJjaja
3
i +

∑

i

(Jiiii − 1
8h

2)a4i

and other remaining terms in R̂. Since E
[
Ji0i|Ji

]
≡ h(J2

i − h)/6 and E
[
Ji0j |Ji, Jj

]
≡

hJiJj/6 for i 6= j the following conditional expectations are immediate

E
[
(J2

i J0 − h2)(J2
i J0 − h2 − 6Ji0i)|Ji

]
= 0 ,

E
[
(Jiiii − 1

8h
2)(J2

i J0 − h2 − 6Ji0i)|Ji
]
= 0 ,

E
[
(JiiJjj − 1

4h
2)(J2

i J0 − h2 − 6Ji0i)|Ji, Jj
]
= 0 ,

E
[(
J0JiJj + 3(Ji0j − Jj0i)

)(
J0JiJj − 3(Ji0j + Jj0i)

)
|Ji, Jj

]
= 0 ,

E
[
(JiiJjj − 1

4h
2)
(
J0JiJj − 3(Ji0j + Jj0i)

)
|Ji, Jj

]
= 0 ,

E
[
JiiiJj

(
J0JiJj − 3(Ji0j + Jj0i)

)
|Ji, Jj

]
= 0 .

Hence the expectations of the terms shown are also zero. Secondly, direct computation
of the following expectations reveals

E
(
(6J0iJi − J2

i J0 − 2h2)(J2
i J0 − h2 − 6Ji0i)

)
= 0 ,

E

((
3(JiJ0j + JjJ0i)− J0JiJj

)(
J0JiJj − 3(Ji0j + Jj0i)

))
= 0 .

Hence Rmag and R̂ are uncorrelated.
The corresponding global comparison results (4.2) now follow directly in each of

the three cases above using that the local errors accumulate and contribute to the
global error as diagonal terms in the standard manner described in detail at the end
of Section 3. Note that we include the terms 1

12h
2[ai, [ai, a0]] in the order 1 uniformly

accurate Magnus integrator. These terms appear at leading order in the global re-
mainder where they would otherwise generate a non-positive definite contribution to
DM in (4.3).

Note that the Magnus integrator σ̂(1) is an order 1 integrator without the terms
1
12h

2[ai, [ai, a0]]. However they are cheap to compute and including them in the
integrator guarantees global superior accuracy independent of the set of governing
coefficient matrices.

5. Non-commuting linear diffusion vector fields. What happens when the
linear diffusion vector fields do not commute, i.e. we have [ai, aj ] 6= 0 for non-zero
indices i 6= j? Hereafter assume i, j, k ∈ {1, . . . , d}. Consider the case of order 1
integrators. The local flow remainders are

Rneu =
∑

i

(Ji0a0ai + J0iaia0) +
∑

i,j,k

Jkjiaiajak

and

Rmag =
∑

i

1
2 (Ji0 − J0i)[a0, ai] +

∑

i6=j

(
Jiij − 1

2JiJij +
1
12J

2
i Jj
)
[ai, [ai, aj]]

+
∑

i<j<k

(
(Jijk + 1

2JjJki +
1
2JkJij − 2

3JiJjJk)[ai, [aj , ak]]

+ (Jjik + 1
2JiJkj +

1
2JkJji − 2

3JiJjJk)[aj , [ai, ak]]
)
.
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Computing DM in (4.3) gives

DM = h2
∑

i6=j

UT
iijBUiij + h2

∑

i6=j 6=k

UT
ijkCUijk

where Uiij = (aja
2
i , aiajai, a

2
i aj , a

3
j , a0aj , aja0)

T ∈ R6p×p and in addition we have that

Uijk = (akajai, ajakai, akaiaj , aiakaj , ajaiak, aiajak)
T ∈ R6p×p. Here B,C ∈ R6p×6p

consist of p× p diagonal blocks of the form bkℓIp and ckℓIp where

b = 1
144




31 10 1 18 12 24
10 4 10 0 0 0
1 10 31 18 24 12
18 0 18 60 36 36
12 0 24 36 36 36
24 0 12 36 36 36




,

and

c = 1
36




4 1 1 1 1 −2
1 4 1 −2 1 1
1 1 4 1 −2 1
1 −2 1 4 1 1
1 1 −2 1 4 1
−2 1 1 1 1 4




.

Again, c is positive semi-definite with eigenvalues { 1
6 ,

1
6 ,

1
6 ,

1
6 , 0, 0}. However b has

eigenvalues { 1
6 ,

1
48 (5 +

√
41), 1

48 (5 −
√
41), 0.94465, 0.0943205,−0.03897}, where the

final three values are approximations to the roots of 288x3 − 2888x2 + 14x+ 1.
The eigenvalues of b and c, respectively, are multiple eigenvalues for the matrices

B and C, respectively. This implies that there are certain matrix combinations and
initial conditions, for which the order 1 Taylor approximation is more accurate in the
mean-square sense than the Magnus approximation. However, the two negative values
are small in absolute value compared to the positive eigenvalues. For the majority
of systems, one can thus expect the Magnus aproximation to be more accurate (as
already observed by Sipiläinen [53], Burrage [7] and Burrage and Burrage [8]). For
any given linear system of stochastic differential equations, the scheme that is more
accurate can be identified using the results above.

In this case there are terms from 1
2 (σ̂ρ+ρσ̂) in Magnus remainder expression (4.1)

that appear at leading order in the local flow remainder. These terms are of the form
1
12

(
ai[aj , [aj, ai]] + aj[ai, [ai, aj ]]

)
h2. They make a negative definite contribution to

global error, though this can be negated by including them as cheaply computable
terms in the Magnus integrator (indeed we recommend doing so).

6. Quadrature. We start by emphasizing that there are two inherent scales:
• Quadrature scale ∆t on which the discrete Wiener paths are generated;
• Evaluation scale h on which the stochastic differential equation is advanced.

The idea is to approximate multiple Stratonovich integrals by their corresponding
expectations conditioned on the σ-algebra representing intervening knowledge of the
Wiener paths (Clark and Cameron [16]; Newton [49]; Gaines and Lyons [22]). Hence
we approximate Jα(tn, tn+1) by E

(
Jα(tn, tn+1)| FQ

)
where

FQ = {∆W i
tn+q∆t : i = 1, . . . , d; q = 0, . . . , Q− 1; n = 0, . . . , N − 1} ,
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with ∆W i
tn+q∆t ≡ W i

tn+(q+1)∆t − W i
tn+q∆t, and Q∆t ≡ h, i.e. Q is the number of

Wiener increments. We extend the result of Clark and Cameron [16] on the maximum
rate of convergence to arbitrary order multiple Stratonovich integrals.

Lemma 6.1 (Quadrature error). Suppose at least two of the indices in the multi-

index α = {α1, · · · , αℓ} are distinct. Define

j∗ ≡ min{j ≤ ℓ− 1: αi = αl , ∀ i, l > j} .

Let n(α) denote the number of zeros in α, and n∗(α) = n({αj∗ , . . . , αℓ}). Then the

L2 error in the multiple Stratonovich integral approximation E
(
Jα(tn, tn+1)| FQ

)
is

∥∥Jα(tn, tn+1)− E
(
Jα(tn, tn+1)| FQ

)∥∥
L2 = O

(
h(ℓ+n(α))/2

Q(n∗(α)+1)/2

)
. (6.1)

Proof. For any s, t, we write for brevity

Ĵα(s, t) = E
(
Jα(s, t) |FQ

)
.

We define α−k as the multi-index obtained by deleting the last k indices, that is
α−k = {α1, · · · , αℓ−k}. We set τq ≡ tn + q∆t, where q = 0, . . . , Q− 1. Then

Jα(tn, tn+1) =

Q−1∑

q=0

∫ τq+1

τq

Jα−1(tn, τ) dW
αℓ
τ

=

Q−1∑

q=0

(
ℓ−1∑

k=1

Jα−k(tn, τq)Jαℓ−k+1,...,αℓ
(τq, τq+1) + Jα(τq, τq+1)

)
.

Thus we have

Jα(tn, tn+1)− Ĵα(tn, tn+1)

=

Q−1∑

q=0

(
ℓ−1∑

k=1

(
Jα−k(tn, τq)− Ĵα−k(tn, τq)

)
Jαℓ−k+1,...,αℓ

(τq, τq+1)

+ Ĵα−k(tn, τq)
(
Jαℓ−k+1,...,αℓ

(τq, τq+1)− Ĵαℓ−k+1,...,αℓ
(τq, τq+1)

)

+ Jα(τq , τq+1)− Ĵα(τq, τq+1)

)
. (6.2)

We prove the assertion by induction over ℓ. For ℓ = 2, the first two terms in the
sum (6.2) are zero and

∥∥∥∥
Q−1∑

q=0

(
Jα(τq, τq+1)− Ĵα(τq, τq+1)

)∥∥∥∥
2

2

= O
(
Q(∆t)ℓ+n(α)

)

= O
(

hℓ+n(α)

Qℓ+n(α)−1

)

= O
(

hℓ+n(α)

Qn∗(α)+1

)
.

Here we have used that fact that ℓ = 2, j∗ = 1 and thus n(α) = n∗(α).
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Assume now that ℓ > 2. We will investigate the order of each of the three types of
terms in (6.2) separately. If at least two indices in α−k are distinct, then by induction
hypothesis

∥∥Jα−k(tn, τq)− Ĵα−k(tn, τq)
∥∥2
2
= O

(
(τq − tn)

ℓ−k+n(α−k)

qn∗(α−k)+1

)
,

and since τq − tn = q∆t and Q∆t = h, we have for each k = 1, . . . , ℓ− 1,

Q−1∑

q=0

∥∥(Jα−k(tn, τq)− Ĵα−k(tn, τq)
)
Jαℓ−k+1,...,αℓ)(τq, τq+1)

∥∥2
2

= O
(

hℓ+n(α)

Qn∗(α−k)+n(α)−n(α−k)+k

)
.

Note that we have

n∗(α−k) + n(α) − n(α−k) + k ≥ n∗(α) + k ≥ n∗(α) + 1 . (6.3)

If all indices in α−k are equal, then
∥∥Jα−k(tn, τq)− Ĵα−k(tn, τq)

∥∥2
2
= 0.

For the second term in (6.2) we have for each k = 1, . . . , ℓ− 1,

Q−1∑

q=0

∥∥Ĵα−k(tn, τq)
(
Jαℓ−k+1,...,αℓ

(τq , τq+1)− Ĵαℓ−k+1,...,αℓ
(τq , τq+1)

)∥∥2
2

=




0 , if αℓ = . . . = αℓ−k+1 ,

O
(

hℓ+n(α)

Qn(α)−n(α−k)+k−1

)
, otherwise .

Note that in the second of these cases

n(α)− n(α−k) + k − 1 ≥ n∗(α) + 1 . (6.4)

For the third term we have

Q−1∑

q=0

∥∥Jα(τq, τq+1)− Ĵα(τq, τq+1)
∥∥2
2
= O

(
hℓ+n(α)

Qℓ+n(α)−1

)
.

Again, note that we have

ℓ + n(α)− 1 ≥ n∗(α) + 1 . (6.5)

Equality holds in at least one of (6.3) to (6.5). To see this we distinguish the
case when the last two indices are equal, αℓ−1 = αℓ, and the case when the last two
indices are distinct, αℓ−1 6= αℓ. If αℓ−1 = αℓ, then

n∗(α−1) + n(α)− n(α−1) = n∗(α) .

Since in this case at least two indices in α−1 are distinct, equality holds for k = 1
in (6.3). If αℓ−1 6= αℓ, then

n∗(α) = n(α) − n(α−2) ,
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and thus equality holds for k = 2 in (6.4). Hence the lemma follows.
Note that each multiple Stratonovich integral Jα(tn, tn+1) can be thought of as

an ℓ-dimensional topologically conical volume in (W 1, . . . ,W ℓ)-space. The surface of
the conical volume is panelled with each panel distinguished by a double Stratonovich
integral term involving two consecutive indices from α. The edges between the panels
are distinguished by a triple integral and so forth. The conditional expectation ap-
proximation E

(
Jα(tn, tn+1)| FQ

)
can also be decomposed in this way. In the L2-error

estimate for this approximation, the leading terms are given by sums over the panels
which also confirm the estimate (6.1).

Approximations of multiple Stratonovich integrals constructed using their condi-
tional expectations are intimately linked to those constructed using paths W i

t that
are approximated by piecewise linear interpolations of the intervening sample points.
The difference between the two approaches are asymptotically smaller terms. For
more details see Wong and Zakai [59], Kloeden and Platen [33], Hofmann and Müller-
Gronbach [29] and Gyöngy and Michaletzky [27].

7. Global error vs computational effort. We examine in detail the step-
size/accuracy regimes for which higher order stochastic integrators are feasible and
also when they become less efficient than lower order schemes. In any strong simula-
tion there are two principle sources of computational effort. Firstly there is evaluation
effort Ueval associated with evaluating the vector fields, their compositions and any
functions such as the matrix exponential. Secondly there is the quadrature effort Uquad

associated with approximating multiple stochastic integrals to an accuracy commen-
surate with the order of the method. For a numerical approximation of order M the
computational evaluation effort measured in flops over N = Th−1 evaluation steps is

Ueval = (cMp2 + cE)Th
−1 .

Here p is the size of the system, cM represents the number of scalar-matrix multipli-
cations and matrix-matrix additions for the order M truncated Magnus expansion,
and cE is the effort required to compute the matrix exponential. Note that if we im-
plement an order 1/2 method there is no quadrature effort. Hence since E = O(h1/2)
we have E = O

(
(Ueval)−1/2

)
.

Suppose we are required to simulate Jα1···αℓ
(tn, tn+1) with all the indices distinct

with a global error of order hM ; naturally ℓ ≥ 2 and M ≥ ℓ/2.
Lemma 7.1. The quadrature effort U measured in flops required to approximate

Jα1···αℓ
(tn, tn+1) with a global error of order hM when all the indices are distinct and

non-zero, is to leading order in h:

U = O
(
h−β(M,ℓ)

)
,

where

β(M, ℓ) = (ℓ− 1)(2M + 1− ℓ) + 1 .

Since we stipulate the global error associated with the multiple integral approximation

to be E = O(hM ), we have

E = O
(
U−M/β(M,ℓ)

)
.

Proof. The quadrature effort required to construct E
(
Jα1···αℓ

(tn, tn+1)| FQ

)
,

which is a (ℓ− 1)-multiple sum, over [0, T ] is U = O(Qℓ−1N) with N = Th−1. Using
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Table 7.1
Slopes of the logarithm of the global error E verses the logarithm of the quadrature effort U ,

i.e. the exponent −M/β(M, ℓ), for different values of ℓ and M when Jα1···αℓ
has distinct non-zero

indices.

ℓ = 2 ℓ = 3 ℓ = 4 ℓ = 5 ℓ = 6
no zero index

M = 1 −1/2 · · · · · · · · · · · ·

M = 3/2 −1/2 −1/2 · · · · · · · · ·

M = 2 −1/2 −2/5 −1/2 · · · · · ·

M = 5/2 −1/2 −5/14 −5/14 −1/2 · · ·

M = 3 −1/2 −1/3 −3/10 −1/3 −1/2

Lemma 6.1 to achieve a global accuracy of order hM and therefore local L2-norm of
order hM+1/2 for this integral, requires that Q = hℓ−1−2M .

In Table 7.1 we quote values for the exponent −M/β(M, ℓ) for different values of
M and ℓ in the case when all the distinct indices α1, . . . , αℓ are non-zero.

Suppose we are given a stochastic differential equation driven by a d-dimensional
Wiener process with non-commuting governing vector fields. To successfully imple-
ment a strong numerical method of order M we must guarantee that the global error
associated with each multiple integral present in the integrator that is approximated
by its conditional expectation is also of orderM . If we implement a numerical method
of order M ≤ d/2, we will in general be required to simulate multiple Stratonovich
integrals with distinct indices of length ℓ with 2 ≤ ℓ ≤ 2M ≤ d. We will also have to
simulate multiple integrals with repeated indices of length ℓr ≤ 2M . These integrals
will require the same or fewer quadrature points than those with distinct indices as we
can take advantage of the repeated indices—see Section 8 for more details. Such in-
tegrals therefore represent lower order corrections to the quadrature effort. Similarly
multiple integrals with distinct indices that involve a zero index have index length
that is one less than similar order multiple integrals with distinct non-zero indices.
Hence they will also represent lower order corrections to the quadrature effort.

To examine the scaling exponent in the relation between the global error E and the
quadrature effort Uquad, which is the sum total of the efforts required to approximate
all the required multiple integrals to order hM , we use Table 7.1 as a guide for the
dominant scalings. For methods of order M ≤ d/2, if d = 2 and we implement a
method of order M = 1, then the dominant exponent is −1/2. Similarly if d = 3 then
order 1 and 3/2 methods also invoke a dominant scaling exponent of −1/2 for the
integrals of length ℓ = 2 and ℓ = 3. If d = 4 then methods of order 1 and 3/2 have
the same scaling exponent of −1/2, however the method of order 2 involves multiple
integrals with three indices which are all distinct and the dominant scaling exponent
for them is −2/5.

If we implement a method of order M > d/2 then we will be required to simulate
multiple Stratonovich integrals with distinct indices of length ℓ with 2 ≤ ℓ ≤ d. We
must also simulate higher order multiple integrals with indices of length ℓr involving
repetitions with d ≤ ℓr ≤ 2M ; these may be cheaper to simulate than multiple
integrals of the same length with distinct indices (again see Section 8). When d = 2
the dominant scaling exponent is −1/2 for all orders. For d ≥ 3 the dominant scaling
exponent is at best −1/2, and so forth.

Lastly, we give an estimate for the critical stepsize hcr below which the quadrature
effort dominates the evaluation effort. Since ℓ = M + 1 minimizes β(M, ℓ) we have
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the following estimate.
Corollary 7.2. For the case of general non-commuting governing vector fields

and a numerical approximation of order M , we have Ueval ≥ Uquad if and only if

h ≥ hcr where the critical stepsize

hcr = O
((

T (cMp2 + cE)
)−1/(1−β(M,ℓmax))

)
,

where ℓmax = max{d,M + 1}.
In practice when we implement numerical methods for stochastic differential equa-

tions driven by a d-dimensional Wiener process we expect that for h ≥ hcr the evalu-
ation effort dominates the compuational cost. In this scenario integrators of order M
scale like their deterministic counterparts. Consider what we might expect to see in a
log-log plot of global error verses computational cost. As a function of increasing com-
putational cost we expect the global error for each method to fan out with slope −M ,
with higher order methods providing superior accuracy for a given effort. However
once the quadrature effort starts to dominate, the scaling exponents described above
take over. When d = 2 for example and all methods dress themselves with the scaling
exponent −1/2, then we expect to see parallel graphs with higher order methods still
providing superior accuracy for a given cost. However higher order methods that
assume a scaling exponent worse than −1/2 will eventually re-intersect the graphs of
their lower order counterparts and past that regime should not be used.

Note that in the case when all the diffusion vector fields commute, methods of
order 1 do not involve any quadrature effort and hence E = O

(
(Ueval)−1

)
. Using

Lemma 6.1, we can by analogy with the arguments in the proof of Lemma 7.1, de-
termine the dominant scaling exponents for methods of order M ≥ 3/2. For example
the L2-error associated with approximating J0i by its expectation conditioned on in-
tervening information is of order h3/2/Q. Hence we need only choose Q = h−1/2 to
achieve to achieve a global error of order 3/2. In this case the dominant scaling expo-
nent is −1. However the L2-error associated with approximating J0ij for i 6= j is of
order h2/Q1/2 whereas for Ji0j and Jij0 it is of order h2/Q. For the case of diffusing
vector fields we do not need to simulate J0ij , and so for a method of order 2 the
dominant scaling exponent is still −1. However more generally the effort associated
with approximating J0ij dominates the effort associated with the other two integrals.

8. Efficient quadrature bases. When multiple Stratonovich integrals contain
repeated indices, are they as cheap to compute as the corresponding lower dimensional
integrals with an equal number of distinct indices (none of them repeated)?

Let i · · · ip denote the multi-index with p copies of the index i. Repeated integra-
tion by parts yields the formulae

Ji···ipji···iq =

q∑

k=1

(−1)k+1Ji···ikJi···ipji···iq−k
+ (−1)q+2

∫
Ji···ipJi···iqdJj , (8.1a)

Ji···ipj···jq =

q−1∑

k=1

(−1)k+1Jj···jkJi···ipj···jq−k
+ (−1)q+1

∫
Ji···ipdJj···jq . (8.1b)

The first relation (8.1a) suggests that any integral of the form Ji···ipji···iq can always be
approximated by a single sum. This last statement is true for q = 1. If we assume it
is true for q−1 and apply the relation (8.1a) we establish by induction that Ji···ipji···iq
can be approximated by a single sum. A similar induction argument using (8.1b) then
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also establishes that any integral of the form Ji···ipj···jq can also be approximated by
a single sum. Hence in both cases the quadrature effort is proportional to QN .

Implicit in the relations (8.1) is the natural underlying shuffle algebra created
by integration by parts (see Gaines [20, 19], Kawksi [32] and Munthe–Kaas and
Wright [48]). Two further results are of interest. Firstly we remark that by inte-
gration by parts we have the following two shuffle product results:

Ji1i2i3Ji4 = Ji1i2i3i4 + Ji1i2i4i3 + Ji1i4i2i3 + Ji4i1i2i3 , (8.2a)

Ji1i2Ji3i4 = Ji1i2i3i4 + Ji1i3i2i4 + Ji3i1i2i4 + Ji3i4i1i2 + Ji3i1i4i2 + Ji1i3i4i2 . (8.2b)

If we replace {i1, i2, i3, i4} by {i, i, j, j} in (8.2b) and (8.2a) and then by {i, j, i, j}
in (8.2a) and (8.2b), respectively, we obtain the linear system of equations




1 1 1 1
0 2 0 1
0 0 1 1
0 0 0 2







Jjiji
Jijji
Jjiij
Jijij


 =




JiiJjj − Jiijj − Jjjii
JijiJj − Jjjii
JiijJj − 2Jiijj
JijJij − 4Jiijj


 . (8.3)

By direct inspection the coefficient matrix on the left-hand side has rank 4 and so
all the multiple Stratonovich integrals Jjiji, Jijji, Jjiij and Jijij can be expressed
in terms of Jiijj and Jjjii and products of lower order integrals, all of which can be
approximated by single sums (note that Jiji ≡ JijJi − 2Jiij).

Now consider the set of multiple Stratonovich integrals

J =
{
Ji1i2i3i4i5 : {i1, i2, i3, i4, i5} ∈ perms{i, i, i, j, j}

}
\
{
Jiiijj , Jjjiii

}
,

where we exclude the elements Jiiijj and Jjjiii which we know can be approximated by
single sums from (8.1b). By considering the shuffle relations generated by products of
the form: Ji1i2i3i4Ji5 , Ji1i2i3Ji4i5 , Ji1i2Ji3i4i5Ji5 and Ji1Ji2Ji3Ji4Ji5 and substituting
in the 10 elements with indices from ‘perms{i, i, i, j, j}’ we obtain an linear system
of equations analogous to (8.3) with 50 equations for the 8 unknowns in J. However
direct calculation shows that the corresponding coefficient matrix has rank 7. In
particular, all of the multiple integrals in J can be expressed in terms of Jiiijj , Jjjiii
and Jjijii. Hence the set of multiple integrals with indices from ‘perms{i, i, i, j, j}’
cannot all be approximated by single sums, but in fact require a double sum to
approximate Jjijii.

For simplicity assume d = 1. Consider numerical schemes of increasing order M .
If 3/2 ≤ M ≤ 3 all the necessary multiple integrals can be approximated by single
sums—at the highest order in this range indices involving permutations of {1, 1, 1, 1, 0}
and {1, 1, 0, 0} are included for which the corresponding integrals can be approximated
by single sums. For methods of order M ≥ 7/2 we require at least double sums to
approximate the necessary multiple integrals.

When d = 2, for methods of order M = 1, 3/2 the integrals involved can be
approximated by single sums, but for M = 2 integrals involving indices with permu-
tations of {2, 1, 0} are included which can only be approximated by double sums. If
there were no drift vector field then for 1 ≤ M ≤ 2 the necessary multiple integrals
can all be approximated by single sums, but for M = 5/2 we need to include multiple
integrals involving indices with permutations of {2, 2, 1, 1, 1} which require approxi-
mation by double sums. We can in principle extend these results to higher values M ,
however methods of order M ≥ d/2 for d ≥ 3 are not commonly implemented!

9. Numerical simulations.
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9.1. Riccati system. Our first application is for stochastic Riccati differential
systems—some classes of which can be reformulated as linear systems (see Freiling [18]
and Schiff and Shnider [50]). Such systems arise in stochastic linear-quadratic optimal
control problems, for example, mean-variance hedging in finance (see Bobrovnytska
and Schweizer [5] and Kohlmann and Tang [34])—though often these are backward
problems (which we intend to investigate in a separate study). Consider for example
Riccati equations of the form

ut = u0 +

d∑

i=0

∫ t

0

(
uτAi(τ)uτ +Bi(τ)uτ + uτCi(τ) +Di(τ)

)
dW i

τ .

If y = (U V )T satisfies the linear stochastic differential system (1.1), with

ai(t) ≡
(

Bi(t) Di(t)
−Ai(t) −Ci(t)

)
,

then u = UV −1 solves the Riccati equation above.
We consider here a Riccati problem with two additive Wiener processes, W 1 and

W 2, and coefficient matrices

D0 =

(
1
2

1
2

0 1

)
, D1 =

(
0 1
− 1

2 − 51
200

)
and D2 =

(
1 1
1 1

2

)
, (9.1)

and

A0 =

(
−1 1
− 1

2 −1

)
, and C0 =

(
− 1

2 0
−1 −1

)
.

All other coefficient matrices are zero. The initial data is the 2 × 2 identity matrix,
i.e. u0 = I2 and therefore U0 = I2 and V0 = I2 also. We found Higham [28] a very
useful starting point for our Matlab simulations.

Note that for this example the coefficient matrices a1 and a2 are upper right block
triangular and therefore nilpotent of degree 2, and also that a1a2 and a2a1 are iden-
tically zero so that in particular [a1, a2] = 0. The number of terms in each integrator
at either order 1 or 3/2 is roughly equal, and so for a given stepsize the uniformly
accurate Magnus integrators should be more expensive to compute due to the cost
of computing the 4 × 4 matrix exponential—we used a (6, 6) Padé approximation
with scaling to compute the matrix exponential. See Moler and Van Loan [47] and
also Iserles and Zanna [31], the computational cost is roughly 6 times the system size
cubed. Also note the order 1 integrators do not involve quadrature effort whilst the
order 3/2 integrators involve the quadrature effort associated with approximating J10
and J20. For comparison, we use a nonlinear Runge–Kutta type order 3/2 scheme for
the case of two additive noise terms (from Kloeden and Platen [33, p. 383]) applied
directly to the original Riccati equation:

Stn,tn+1 = Stn + f
(
Stn

)
h+D1J1 +D2J2

+ h
4

(
f(Y +

1 ) + f(Y −
1 ) + f(Y +

2 ) + f(Y −
2 )− 4f

(
Stn

))

+ 1
2
√
h

((
f(Y +

1 )− f(Y −
1 )
)
J10 +

(
f(Y +

2 )− f(Y −
2 )
)
J20
)
, (9.2)

where Y ±
j = Stn + h

2 f
(
Stn

)
±Dj

√
h and f(S) = SA0S +B0S + SC0 +D0.
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Fig. 9.1. Global error vs stepsize (top) and vs CPU clocktime (bottom) for the Riccati problem
at time t = 1. The Magnus integrators of order 1 and 3/2 shown are the uniformly accurate Magnus
integrators from Section 4.

In Figure 9.1 we show how the global error scales with stepsize and also CPU
clocktime for this Riccati problem. Note that as anticipated, for the same step size
(compare respective plot points starting from the left), the order 1 Magnus integrator
is more expensive to compute and more accurate than the order 1 Neumann integrator.
Now compare the order 3/2 integrators. For the nonlinear scheme (9.2), we must
evaluate f(S) five times per step per path costing 20p3+54p2 flops—here p = 2 refers
to the size of the original Riccati system. For the Neumann and Magnus integrators
the evaluation costs are 16(2p× p) = 32p2 and 6(2p)3 + 11(2p)2 = 48p3 + 44p2 flops,
respectively (directly counting from the schemes). Hence for large stepsize we expect
the Neumann integrator to be cheapest and the Magnus and nonlinear Runge–Kutta
integrators to be more expensive. However for much smaller stepsizes the quadrature
effort should start to dominate. The efforts of all the order 3/2 integrators will not
be much different and the Magnus integrator then outperforms the other two due to
its superior accuracy.

9.2. Linear system. Our second numerical example is for a homogeneous and
constant coefficient linear problem involving two Wiener processes with coefficient
matrices ai ≡ Di where the Di, i = 0, 1, 2 are given in (9.1) and do not commute, and
initial data y0 = (12 1)T . In Figure 9.2 we show how the error scales with stepsize
and CPU clocktime. We see that the superior accuracy of the Magnus integrators
is achieved for the same computational cost. Note that in the case M = 1 we have
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Fig. 9.2. Global error vs stepsize (top) and vs CPU clocktime (bottom) for the model problem
at time t = 1 with 2 driving Wiener processes. The error corresponding to the largest step size takes
the shortest time to compute.
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Fig. 9.3. Confidence intervals for the global errors of the uniformly accurate Magnus integrators
for the model problem at time t = 1 with 2 driving Wiener processes.

d = ℓ = 2. For the case when h ≤ hcr, when computational cost is dominated by
quadrature effort, the relation between the global error E1 and computational cost U
is, ignoring Ueval and taking the logarithm,

log E1 ≈ logK1 − 1
2 logU .
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Fig. 9.4. Global error vs stepsize (top) and vs CPU clocktime (bottom) for the model problem
at time t = 1 with 3 driving Wiener processes. The error corresponding to the largest step size takes
the shortest time to compute.

For the order 1/2 Magnus method the computational cost U is given solely by the
evaluation effort and therefore we have

log E1/2 = logK1/2 +
1
2 logT (c1/2p

2 + cE)− 1
2 logU .

Further note that K1/2 and K1 are strictly order one, and that T = 1, p = 2, c1/2 = 5
and c1 = 7 (counting directly from the inegration scheme). In addition cE ≈ 6p3 = 48
flops using the (6, 6) Padé approximation with scaling. Substituting these values into
the difference of these last two estimates reveals that

log E1 − log E1/2 ≈ − 1
2 log 68 ≈ −0.9 ,

which is in good agreement with the difference shown in Figure 9.2.
Also for this example, we have shown 90% confidence intervals in Figure 9.3 for

the global errors of the uniformly accurate Magnus integrators of orders 1 and 3/2.
The confidence intervals become narrower as the stepsize decreases and order of the
method increases, as expected—see Kloeden and Platen [33, pp. 312–316].

In Figure 9.4 we consider a linear stochastic differential system driven by three

independent scalar Wiener processes, with the same vector fields as in the linear sys-
tem with two Wiener processes just considered but with an additional linear diffusion
vector field characterized by the coefficient matrix

a3 =

(
1
4

2
5

1
6

1
7

)
,
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which does not commute with a0, a1 or a2. Using Table 7.1 we would expect to see
for small stepsizes for the order 1 and 3/2 Magnus and Neumann methods, that the
global error scales with the computational effort with exponent −1/2. This can be
seen in Figure 9.4.

10. Concluding remarks. Our results can be extended to nonlinear stochastic
differential equations. Consider a stochastic differential system governed by (d + 1)
nonlinear autonomous vector fields Vi(y)—instead of the linear vector fields ‘ai(t)y’
in (1.1)—and driven by a d-dimensional Wiener process (W 1, . . . ,W d). If we take the
logarithm of the stochastic Taylor series for the flow-map we obtain the exponential
Lie series (see Chen [15] and Strichartz [54])

σt =

d∑

i=0

Ji(t)Vi +

d∑

j>i=0

1
2 (Jij − Jji)(t)[Vi, Vj ] + · · · .

Here [· , ·] is the Lie–Jacobi bracket on the Lie algebra of vectors fields defined on Rp.
The solution yt of the system at time t > 0 is given by yt = expσt◦y0 (see for example
Ben Arous [4] or Castell and Gaines [13, 14]). Across the interval [tn, tn+1] let σ̂tn,tn+1

denote the exponential Lie series truncated to a given order, with multiple integrals
approximated by their expectations conditioned on intervening sample points. Then

ŷtn+1 = exp
(
σ̂tn,tn+1

)
◦ ytn

is an approximation to the exact solution ytn+1 at the end point of the interval. The
truncated and conditioned exponential Lie series σ̂tn,tn+1 is itself an ordinary vector
field. Hence to compute ŷtn+1 we solve the ordinary differential system

u′(τ) = σ̂tn,tn+1 ◦ u(τ)

with u(0) = ytn across the interval τ ∈ [0, 1] (see Castell and Gaines [13, 14]). If
we use a sufficiently accurate ordinary differential integrator commensurate with the
order of the truncation of the exponential Lie series then u(1) ≈ ŷtn+1 to that order.

Hence the order 1/2 exponential Lie series integrator is more accurate than the
Euler–Maruyama method. Further in the case of commuting diffusion vector fields,
the uniformly accurate exponential Lie series integrators of order 1 and 3/2 are more
accurate than the stochastic Taylor approximations of the corresponding order. This
generalization is discussed in Malham and Wiese [42]. An important future investiga-
tion to justify the viability of these schemes would be the relation between global error
and computational cost, which must take into account the additional computational
effort associated with the ordinary differential solver.

An important application for our results that we have in mind for the future are
large order problems driven by a large number of Wiener processes. High-dimensional
problems occur in many financial applications, for example in portfolio optimization or
risk management and in the context of option pricing when high-dimensional models
are used, for example for the pricing of interest rate options or rainbow options.
Large order problems also arise when numerically solving stochastic parabolic partial
differential equation driven by a multiplicative noise term which is white noise in
time and spatially smooth (see for example Lord and Shardlow [37]). Here we think
of projecting the system onto a finite spatial basis set which results in a large system
of coupled ordinary stochastic differential equations each driven by a multiplicative
noise term. The high dimension d of the driving Wiener process will now be an
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important factor in the computational cost for order M ≥ 1 as for example we will
need to simulate 1

2d(d−1) multiple integrals Jij ; though the results of Wiktorsson [58]
suggest this can be improved upon. Krylov subspace methods for computing large
matrix exponentials would be important for efficient implementation of our methods
for this case (see Moler and Van Loan [47] and Sidje [52]).

Lastly, extensions of our work that we also intend to investigate further are: (1)
implementing a variable step scheme following Gaines and Lyons [22], Lamba, Mat-
tingly and Stuart [36], Burrage and Burrage [10] and Burrage, Burrage and Tian [9]—
by using analytic expressions for the local truncation errors (see Aparicio, Malham
and Oliver [1]); (2) pricing path-dependent options; (3) deriving strong symplectic
numerical methods (see Milstein, Repin and Tretyakov [45]); and (4) constructing nu-
merical methods based on the nonlinear Magnus expansions of Casas and Iserles [11].
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Appendix A. Neumann and Magnus integrators. We present Neumann
and Magnus integrators up to global order 3/2 in the case of a d-dimensional Wiener
process (W 1, . . . ,W d), and with constant coefficient matrices a0 and ai, i = 1, . . . , d.
The Neumann expansion for the solution of the stochastic differential equation (1.1)
over an interval [tn, tn+1], where tn = nh, is

yneutn,tn+1
≈
(
I + S1/2 + S1 + S3/2

)
ytn ,

where (the indices i, j, k run over the values 1, . . . , d)

S1/2 = J0a0 +
∑

i

Jiai +
∑

i

Jiia
2
i ,

S1 =
∑

i6=j

Jijaiaj ,

S3/2 =
∑

i

(Ji0a0ai + J0iaia0) +
∑

i,j,k

Jkjiaiajak

+
∑

i

(J0iia
2
i a0 + Jii0a0a

2
i ) +

∑

i,j

Jiijja
2
i a

2
j + J00a

2
0 .

The corresponding approximation using the Magnus expansion is

ymag
tn,tn+1

≈ exp
(
s1/2 + s1 + s3/2

)
ytn ,
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where, with [·, ·] as the matrix commutator,

s1/2 = J0a0 +
∑

i

Jiai ,

s1 =
∑

i<j

1
2 (Jji − Jij)[ai, aj] ,

s3/2 =
∑

i

1
2 (Ji0 − J0i)[a0, ai] +

∑

i6=j

(Jiij − 1
2JiJij +

1
12J

2
i Jj)[ai, [ai, aj ]]

+
∑

i<j<k

(
(Jijk + 1

2JjJki +
1
2JkJij − 2

3JiJjJk)[ai, [aj , ak]]

+ (Jjik + 1
2JiJkj +

1
2JkJji − 2

3JiJjJk)[aj , [ai, ak]]
)

+
∑

i

(Jii0 − 1
2JiJi0 +

1
12J

2
i J0)[ai, [ai, a0]] .

To obtain a numerical scheme of global order M using the Neumann or Magnus
expansion, we must use all the terms up to and including SM or sM , respectively.
Leading order terms of order M + 1/2 with non-zero expectation can be replaced
by their expectations (as detailed at the end of Section 3). Further, extending these
solution series to the non-homogeneous and/or the non-constant coefficient case is
straightforward.
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Feynman, Seminar on Probability XVI, Lecture Notes in Math., 921 (1982), Springer,
pp. 237–285.

[4] G. Ben Arous, Flots et series de Taylor stochastiques, Probab. Theory Related Fields, 81
(1989), pp. 29–77.

[5] O. Bobrovnytska and M. Schweizer, Mean-variance hedging and stochastic control: beyond
the Brownian setting, IEEE Trans. on Automatic Control, 49(3) (2004), pp. 396–408.

[6] F. Baudoin, An introduction to the geometry of stochastic flows, Imperial College Press, 2004.
[7] P. M. Burrage, Runge–Kutta methods for stochastic differential equations, Ph.D. thesis, Uni-

versity of Queensland, 1999.
[8] K. Burrage and P. M. Burrage, High strong order methods for non-commutative stochas-

tic ordinary differential equation systems and the Magnus formula, Phys. D, 133 (1999),
pp. 34–48.

[9] K. Burrage, P. M. Burrage, and T. Tian, Numerical methods for strong solutions of stochas-
tic differential equations: an overview, Proc. R. Soc. Lond. A, 460 (2004), pp. 373–402.

[10] P.M. Burrage and K. Burrage, A variable stepsize implementation for stochastic differential
equations, SIAM J. Sci. Comput., 24(3) (2002), pp. 848–864.

[11] F. Casas and A. Iserles, Explicit Magnus expansions for nonlinear equations, Technical
report NA2005/05, DAMTP, University of Cambridge, 2005.

[12] F. Castell, Asymptotic expansion of stochastic flows, Probab. Theory Related Fields, 96
(1993), pp. 225–239.

[13] F. Castell and J. Gaines, An efficient approximation method for stochastic differential equa-
tions by means of the exponential Lie series, Math. Comput. Simulation, 38 (1995), pp. 13–
19.

[14] , The ordinary differential equation approach to asymptotically efficient schemes for
solution of stochastic differential equations, Ann. Inst. H. Poincaré Probab. Statist., 32(2)
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