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BOUNDARY-ROUGHNESS EFFECTS IN NEMATIC LIQUID

CRYSTALS

PAOLO BISCARI AND STEFANO TURZI∗

Abstract. We study the equilibrium configuration of a nematic liquid crystal bounded by a
rough surface. The wrinkling of the surface induces a partial melting in the degree of orientation.
This softened region penetrates the bulk up to a length scale which turns out to coincide with the
characteristic wave length of the corrugation. Within the boundary layer where the nematic degree
of orientation decreases, the tilt angle steepens and gives rise to a nontrivial structure, that may be
interpreted in terms of an effective weak anchoring potential. We determine how the effective surface
extrapolation length is related to the microscopic anchoring parameters. We also analyze the crucial
role played by the boundary conditions assumed on the degree of orientation. Quite different features
emerge depending on whether they are Neumann- or Dirichlet-like. These features may be useful to
ascertain experimentally how the degree of orientation interacts with an external boundary.
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Nematic liquid crystals are fluid aggregates of elongated molecules. When the
nematic rods interact with an external surface, the elastic strain energy induces them
to align parallel to the unit normal, even if the surface is not perfectly flat [1]. Recent
experimental observations confirm that the surface alignment of the nematic director
is completely determined by the roughness-induced surface anisotropy [2]. Further an-
alytical calculations, performed within the classical Frank model with unequal elastic
constants, have detected the bulk effects induced by a periodically-modeled external
boundary [3].

A crucial effect, still related to surface roughness, escapes the framework of Frank
theory, where the only order parameter is the director. Indeed, it is physically intu-
itive that nematic molecules will disorder if we force them to follow a rapidly varying
boundary condition. This surface melting was first experimentally detected in [4, 5].
Recent experimental observations have also measured a boundary-layer structure in
the degree of orientation [6]. The surface melting has been confirmed by approximated
analytical solutions [7], numerical calculations [8, 9], and molecular Monte-Carlo sim-
ulations [10].

The combined effect of a rapidly-varying director anchoring and surface melting
gives rise to an effective weak-anchoring effect that was first observed in [11]. The
problem of relating the effective anchoring extrapolation length to the microscopic
roughness parameters has been studied in several theoretical papers, all framed within
the Frank theory [12, 13, 14]. This observation is of basic significance, since weak an-
choring potentials have proven to influence deeply all nematic phenomena, beginning
with Freedericksz transitions [15, 16, 17]. Indeed, several theoretical studies have al-
ready determined the influence on anchoring energies of the presence of permanent
surface dipoles [18] or diluted surface potentials [19, 20].

In this paper we analyze in analytical detail the boundary-layer structure induced
by a rough surface which bounds a nematic liquid crystal. We frame within the
Landau-de Gennes order-tensor theory, to be able to detect the effects on both the
director and the degree of orientation. Our results confirm the surface melting already
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obtained in [7], but allow us to detect new phenomena. First, the nematic director
steepens close to the boundary, so giving rise to an effective weak anchoring potential,
that turns out to be deeply related to the surface-melting effect, and thus can be
correctly handled only within the order-tensor theory. Furthermore, the boundary
layers display a strong dependence on the type of boundary conditions imposed on
the degree of orientation. Indeed, the orders of magnitude of all the expected effects
depend on whether the boundary conditions are Neumann- or Dirichlet-like. We
discuss how these effects may help in ascertaining in experiments how the mesoscopic
parameter, which measures he degree of order, interacts with an external surface.

The paper is organized as follows. In Section 1 we present the model, we set
the geometry of a roughly-bounded sample, and derive the Euler-Lagrange partial
differential equations that determine the equilibrium configurations. In Section 2 we
perform the perturbative two-scales analysis that provides all the analytical details
of the boundary-layer structure. In Section 3 we solve an effective problem, in which
the rough surface is replaced by a weak-anchoring potential. The concluding Sec-
tion 4 compares our outcomes with the effective results of Section 3, and draws the
conclusions.

1. Equilibrium configurations. The degree of order decrease has been recog-
nized by many authors as a crucial effect of surface roughness [7, 9]. We thus describe
nematic configurations in the framework of the Landau-de Gennes Q-tensor theory
[21]. The order tensor is defined as the deviatoric part of the second-moment of the
probability distribution of molecular orientations:

Q(r) :=

∫

S2

(m ⊗m) fr(m) da− 1

3
I , (1.1)

where I denotes the identity tensor. Q is a second-order traceless symmetric tensor,
with spQ ⊂

[

− 1
3 ,

2
3

]

[16].
In order to keep computations simple, we adopt the one-constant approximation

for the elastic part of the free energy functional

fel[Q] =
1

2
K |∇Q|2 , (1.2)

where K is an average elastic constant. We stress, however, that it is straightforward
to generalize all what follows to take into account unequal material elastic constants.

The free-energy functional includes the Landau-de Gennes thermodynamic po-
tential as well

fLdG(Q) = A trQ2 −B trQ3 + C trQ4 . (1.3)

The material parameter A depends on the temperature, and in particular it becomes
negative deep in the nematic phase. On the contrary, B,C can be assumed to be
positive and temperature-independent. The potential (1.3) strongly favors uniaxial
phases, in which at least two of the three eigenvalues of Q coincide. In fact, Q is
expected to abandon uniaxiality mainly close to director singularities [22, 23, 24]. We
will not deal with any defect structure. Thus, though the uniaxiality constraint is not
essential for our purposes, we follow the attitude of avoiding unnecessary complica-
tions [25, 26], and restrict our attention to uniaxial states

Q(r) = s(r)

(

n(r)⊗ n(r)− 1

3
I

)

. (1.4)



BOUNDARY-ROUGHNESS EFFECTS IN NEMATICS 3

The scalar s ∈
[

− 1
2 , 1

]

and the unit vector n are respectively the degree of orientation

and the director . With the aid of (1.4), the potentials (1.2),(1.3) can be written as

fel[s,n] = K
(

s2|∇n|2 + 1
3 |∇s|2

)

and fLdG(s) =
2
3As2 − 2

9B s3 + 2
9C s4 . (1.5)

When A ≤ B2/(12C), the absolute minimum of the function fLdG(s) occurs at the
preferred degree of orientation

spr :=
3B +

√
9B2 − 96AC

8C
> 0 . (1.6)

In order to gain physical interpretation of the results, we also introduce the nematic

coherence length ξ and the dimensionless (positive) parameter ω, defined as

ξ2 :=
9K

C
and ω2 :=

2

3
(sprB − 4A) . (1.7)

The nematic coherence length compares the strength of the elastic and thermodynamic
contributions to the free energy functional. We will show below that it characterizes
the size of the domains where the degree of orientation may abandon its preferred
value spr. The number ω depends on the depth of the potential well associated with
spr. Indeed, it is defined in such a way that f ′′

LdG(spr) = ω2/ξ2.
By using (1.6),(1.7) we write the bulk free-energy density fb := fel + fLdG as

fb[s,n]

K
= s2|∇n|2 + 1

3
|∇s|2 + 1

ξ2

(

s4 − 4

3
s3

(

2spr −
ω2

spr

)

+ 2s2(s2pr − ω2)

)

. (1.8)

1.1. Modelling a rough surface. We aim at analyzing the effects that a rough
boundary induces in a nematic liquid crystal. Once again, we try to keep our analysis
as simple as possible, while still catching the essential features. We thus follow e.g. [12]
in modeling roughness by imposing a sinusoidally-perturbed homeotropic anchoring
condition on a flat surface. The amplitude and the wave length characterizing the
perturbation will be the crucial parameters in our results.

We focus attention on a thin boundary layer, attached to the external surface.
Consequently, we disregard the detailed structure of the bulk equilibrium configu-
ration, that will only enter our results as asymptotic outer solution for the surface
boundary layer. We introduce a Cartesian frame of reference {ex, ey, ez}, and assume
that the nematic spreads in the whole half-space B = {z ≥ 0}. We further simplify the
geometry by assuming that n(r) = sin θ(r) ex + cos θ(r) ez and that the asymptotic
bulk configuration depends only on z

θ(r) ≈ θb(z) as z → +∞ . (1.9)

In the presence of strong homeotropic anchoring on a flat surface, the boundary
condition to be imposed on the director would be θ(flat)(x, y, 0) = 0 . On the contrary,
we will require

θ(x, y, 0) = ∆cos
x

η
. (1.10)

The boundary condition (1.10) mimics the rugosity of the external surface by in-
troducing two new parameters: the (dimensionless) roughness amplitude ∆ and the
roughness length η. We remark that the oscillation rate increases as η → 0+, while
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all roughness effects are expected to vanish in the limit ∆ → 0+. The requirements
(1.9),(1.10) imply that the free-energy minimizer will not exhibit any dependence
on the transverse y-coordinate, so that we will henceforth restrict attention to the
dependence on the coordinates (x, z).

It is more complex to ascertain the correct type of boundary conditions which are
to be imposed on the degree of orientation s. From the mathematical point of view, it
would be natural to imitate the (Dirichlet) strong anchoring imposed on the director,
and thus set s(x, y, 0) to be equal to some fixed boundary value s̃. Nevertheless, while
it is well-established that we can induce an easy axis for the director on an external
boundary, it is questionable whether we may fix the value of a mesoscopic parameter,
that measures the degree of order in a distribution. From the physical point of view
it would appear then more natural to impose (Neumann) free boundary conditions on
the degree of orientation, leaving to the thermodynamic potential (1.3) the assignment
of inducing the preferred value spr in the bulk (z → ∞). To be safe, both possibilities
(Dirichlet and Neumann) will be analyzed in Section 2.

1.2. Euler-Lagrange equations. Once we consider that |∇n|2 = |∇θ|2, it is
easy to derive the Euler-Lagrange partial differential equations associated with the
functional (1.8). They read:

s2∆θ + 2 s∇s · ∇θ = 0 and ∆s− 3 s |∇θ|2 − 3
σ(s)

ξ2
= 0 , (1.11)

where

σ(s) := s(s− spr)

(

s− spr +
ω2

spr

)

. (1.12)

Since the boundary conditions (1.10) are x-periodic, with a period of 2πη, we look for
solutions of (1.11) in C2

2πη (the space of C2-functions, 2πη-periodic in the x-direction).
To complete the differential system (1.10), in §2.1 we will require











θ(x, 0) = ∆cos
x

η
∂s

∂z
(x, 0) = 0

and

{

θ(x, z) ≈ θb(z)

s(x, z) ≈ spr
as z → ∞ (1.13)

while in §2.2 we will choose







θ(x, 0) = ∆cos
x

η
s(x, 0) = s̃

and

{

θ(x, z) ≈ θb(z)

s(x, z) ≈ spr
as z → ∞ (1.14)

2. Two-scales analysis. Before proceeding with the perturbation analysis of
the differential equations, we state them in dimensionless form. It will turn out that
the correct scaling is obtained by measuring lengths in η-units, so that we introduce
the new dimensionless coordinates x̄ = x/η, z̄ = z/η, and define the dimensionless
parameter ε = ξ/η. Equations (1.11) become thus

s2∆θ + 2s∇s · ∇θ = 0 and ε2∆s− 3ε2s |∇θ|2 − 3σ(s) = 0 , (2.1)

where both the gradient and the laplacian are now to be intended with respect to the
scaled variables. The nematic coherence length is usually much smaller than all other
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characteristic lengths. Consequently, we will look for uniformly asymptotic solutions
to (2.1), by treating ε as a small parameter. In this limit, equation (2.1)2 is singular,
so that a regular asymptotic expansion would not provide a uniform approximation
of the solution. Indeed, the small parameter ε multiplies the highest derivative, so
that we may expect the solution to have a steep behavior in a layer of thickness
δ (to be determined), close to the boundary z = 0. We refer the reader to the
books [27, 28, 29, 30] for the details of the singular perturbation theory we will apply
henceforth and, in particular, for the technique of the two-scales method which directly
yields a uniform approximation of the solution.

A standard dominant balance argument (that requires to introduce a stretched
variable Z = z̄/δ) allows to recognize that the boundary layer thickness is δ = ε.
We then introduce the fast variable Z = z̄/ε. The two-scales chain rule requires to
replace ∂z̄ by

(

∂z̄ + ε−1∂Z
)

, and equations (2.1) take the form (when s 6= 0)

s
(

ε2θ,x̄x̄ + ε2θ,z̄z̄ + 2εθ,z̄Z + θ,ZZ

)

+ 2ε2s,x̄θ,x̄ + 2(εs,z̄ + s,Z)(εθ,z̄ + θ,Z) = 0 (2.2)

ε2s,x̄x̄ + ε2s,z̄z̄ + 2εs,z̄Z + s,ZZ − 3s
[

ε2(θ,x̄)
2 + (εθ,z̄ + θ,Z)

2
]

− 3σ(s) = 0 (2.3)

where a comma denotes differentiation with respect to the indicated variable. In
agreement with the two-scales method, θ and s are now to be intended as θ(x̄, z̄, Z)
and s(x̄, z̄, Z), that is functions of x̄, z̄ and Z regarded as independent variables. It
will be only at the very end of our calculations that we will recast the connection
between z̄ and Z: Z = z̄/ε. We seek for solutions which may be given the formal
expansions

θ(x̄, z̄, Z) = θ0(x̄, z̄, Z) + εθ1(x̄, z̄, Z) + ε2θ2(x̄, z̄, Z) +O(ε3) (2.4)

s(x̄, z̄, Z) = s0(x̄, z̄, Z) + εs1(x̄, z̄, Z) + ε2s2(x̄, z̄, Z) +O(ε3) . (2.5)

If we insert (2.4)-(2.5) in (2.2)-(2.3), we obtain the following sequence of differential
equations to O (1), O (ε), and O

(

ε2
)

{

1
s0

(

s20θ0,Z
)

,Z
= 0

s0,ZZ − 3s0(θ0,Z)
2 − 3σ(s0) = 0

(2.6)

{

1
s0

(

s20θ1,Z
)

,Z
+ 1

s1

(

s21θ0,Z
)

,Z
= −2 (s0θ0,Z),z̄ − 2s0,Zθ0,z̄

s1,ZZ − 6s0θ0,Zθ1,Z − 3s1
(

σ′(s0) + (θ0,Z)
2
)

= 6s0θ0,Zθ0,z̄ − 2s0,z̄Z
(2.7)































1
s0
(s20θ2,Z),Z + 1

s2
(s22θ0,Z),Z = − 1

s1
(s21θ1,Z),Z − 1

s0
(s20θ0,z̄),z̄ − 1

s0
(s20θ0,x̄),x̄

− 2 (s0θ1,Z),z̄ − 2 (s1θ0,Z),z̄ − 2s1,Zθ0,z̄ − 2s0,Zθ1,z̄

s2,ZZ − 3s2
[

σ′(s0) + (θ0,Z)
2
]

− 6s0θ0,Zθ2,Z = 3
2s

2
1σ

′′(s0)

+ 3s0

[

(θ0,z̄ + θ1,Z)
2 + (θ0,x)

2
]

+ 6θ0,Z (s1θ1,Z + s1θ0,z̄ + s0θ1,z̄)− 2s1,z̄Z − s0,z̄z̄ − s0,xx .

(2.8)

Analogous equations can be easily derived at any desired order. For any n ≥ 1, the
differential system obtained at O (εn) is linear in the unknowns θn,sn, and may be
solved analytically. By virtue of the multiscale method, we find the correct dependence
on z̄, Z by requiring that all sn, θn are uniformly bounded as ε → 0+ for expanding
intervals of the type 0 ≤ Z ≤ Z∗/ε, for a suitable positive constant Z∗. In most
practical cases this requirement is equivalent to asking the removal of secular terms
(i.e. terms that diverge as Z → +∞).
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2.1. Free surface degree of orientation. In terms of the scaled variables, the
boundary conditions (1.13) require

{

θ(x̄, 0) = ∆cos x̄

s,z̄(x, 0) = 0
and

{

θ(x̄, z̄) ≈ θb(ηz̄)

s(x̄, z̄) ≈ spr
when z̄ ≫ η . (2.9)

We introduce m := θ′b(0), the derivative of the asymptotic solution at z = 0, since
it will play an important role in the following discussion. The leading solutions in
expansions (2.4),(2.5) are

s0(x, z) = spr and θ0(x, z) = m z +∆e−z/η cos
x

η
. (2.10)

Higher order asymptotic solutions are gathered by means of laborious but straightfor-
ward calculations. After recasting the solutions in terms of the dimensional variables
x = η x̄ and z = η z̄, we find

s(x, z) = spr −
sprξ

2

ω2

(

m2 − 2m∆

η
e−z/η cos

x

η
+

∆2

η2
e−2z/η

)

+
2spr ξ

3

√
3ω3

e−
√
3ωz/ξ

(

∆2

η3
− m∆

η2
cos

x

η

)

+O
(

ε4
)

and (2.11)

θ(x, z) = m z +∆e−z/η cos
x

η
+

ξ2

ω2

(

2m∆2

η

(

1− e−2z/η
)

− ∆3

2 η2

(

e−z/η − e−3z/η
)

cos
x

η
− 2m2∆

η
z e−z/η cos

x

η

)

+O
(

ε4
)

. (2.12)

The above expansions have been carried out up to the first nontrivial correction of
the 0th-order approximation. Indeed, all calculations must be pushed to O

(

ε3
)

since
an internal ξ-layer is necessary to satisfy the boundary condition (1.13) in z = 0.
This layer is of O

(

ε3
)

because in the Neumann case the boundary condition (1.13)
concerns the first derivative of s, instead of the degree of orientation itself. We remark
that the solutions (2.11)-(2.12) are coherently ordered for every fixed value of η 6= 0.
However, they are not uniformly ordered when η ∈ (0, η̄], namely we don’t have a
uniform solution if η is allowed to become of order ξ or, still worse, tend to zero. In
other words, the above solutions remain valid as η → 0+ if and only if ξ = o (η). The
main properties of the equilibrium configurations in the mathematically appealing
but physically uncommon case in which η is of the order of, or even smaller than, ξ
will be presented elsewhere [31].

2.1.1. Surface melting. We can highlight three different contributions in the
degree of orientation (2.11). First, we notice a uniform decrease in the degree of order,
equal to −sprm

2ξ2/ω2. This disordering effect is triggered by the θ-derivative m, and
was certainly to be expected. In fact, a glance to the free energy functional (1.8)
suffices to show that a reduction in s decreases the free energy whenever the gradient
of the director is not null. We then find two boundary layers. The former, of thickness
η and O

(

ε2
)

, is a further reduction of the degree of orientation due to the boundary
roughness, that induces a director variation in the x-direction. An internal boundary
layer, of thickness ξ and order O

(

ε3
)

, is finally needed in order to cancel the normal
derivative of s at the external surface. If we take into account all the contributions,
the mean surface degree of orientation, defined as the x-average of s(x, 0), turns out
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to be

< s(x, 0) >x= spr

[

1− m2ξ2

ω2
− ∆2ξ2

ω2η2
+

2∆2ξ3√
3ω3η3

]

. (2.13)

Figure 2.1 evidences the reported behaviour of the mean degree of orientation as a
function of the distance from the surface.

0 ξ
η

1 2 3
0.6

0.7

spr

z/η

< s(x, z) >x

Fig. 2.1. Boundary layers in the mean degree of orientation < s(x, z) >x, when ξ = 0.25η,
spr = 0.8, ω = 0.6, m = 0.1/η, and ∆ = 1.5. The plot exhibits the presence of two boundary layers,
the internal one being required by the free boundary condition applied on s.

2.1.2. Effective surface angle. The tilt angle θ exhibits a boundary-layer
structure as well. Equation (2.12) shows that such layer is of O

(

ε2
)

and thickness η.
It gives rise to an interesting effective misalignment of the surface director. Indeed,
if we allow z ≫ η in (2.12) we find that

θ(x, z) ≈ θb(z) =
2m ξ2∆2

ηω2
+m z as z ≫ η . (2.14)

The asymptotic approximation (2.14) shows that an experimental observation, per-
formed sufficiently far from the external plate (with respect to the microscopic scale
η) would detect an effective tilt angle θb, whose value at the plate is different from
zero, since

θb(0) =
2m ξ2∆2

ηω2
. (2.15)

Thus, a coarse observation of the nematic configuration measures a surface tilt angle
slightly different from the homeotropic prescription θsurf = 0. Figure 2.2 evidences
this effect. In the next section we will analyze in more detail the result (2.15). Then
we will show how it matches the predictions of an effective weak anchoring potential.
We remark that the tilt angle does not exhibit any further boundary layer at the
smaller scale ξ.

2.2. Fixed surface degree of orientation. The perturbative analysis of the
differential equations (1.11), with the Dirichlet boundary conditions (1.14), would be
unnecessarily entangled because of the non-linearity of the thermodynamic potential



8 P. BISCARI AND S. TURZI

0 ξ
η

1 2 3
0◦

10◦

20◦

θb(0)

θb(z)

z/η

< θ(x, z) >x

Fig. 2.2. Boundary layer in the mean tilt angle < θ(x, z) >x, when ξ = 0.25η, spr = 0.8, ω =
0.6, m = 0.1/η, and ∆ = 1.5. The dashed line corresponds to the asymptotic, linear approximation
θb(z).

(1.12). In fact, in this case only implicit solutions for s0(x, z, Z) can be gathered. In
order to pursue our analysis, and still catch the essential features of the solutions,
we replace the function σ in (1.11) by its linear approximation σ1(s) = ω2(s − spr).
This is tantamount to replacing the Landau-de Gennes potential in (1.5) by a tangent
quadratic well, still centered in spr. Such approximation is certainly well-justified
deep in the nematic phase, when the isotropic state s = 0 becomes unstable, and the
second well of the Landau-de Gennes potential can be neglected.

The asymptotic properties of the solutions in this case depend critically on the
value s̃ forced on the surface. If s̃ 6= spr, the boundary layer induced by the Dirich-
let condition dominates over the roughness effect. Indeed, the leading asymptotic
solutions are given by

s(x, z) = spr − (spr − s̃) e−
√
3ωz/ξ

−
√
3 (spr − s̃)

ξ

ω
e−

√
3ωz/ξ

[

∆2

4η

(

1− e−2z/η
)

+
3

2
m2 z

− 3m∆
(

1− e−z/η
)

cos
x

η
+

∆2

2η

(

1− e−2z/η
)

cos
2x

η

]

+O
(

ε2
)

(2.16)

θ(x, z) = m z +∆e−z/η cos
x

η

+
ξ√
3ω

[

h

(

z

ξ

)

− h(0)

](

m− ∆

η
e−z/η cos

x

η

)

+O
(

ε2
)

, (2.17)

where

h(ζ) = log
[

spr − (spr − s̃) e−
√
3ω ζ

]

− (spr − s̃) e−
√
3ω ζ

spr − (spr − s̃) e−
√
3ω ζ

(2.18)

determines the tilt angle variation within the boundary-layer. The bulk-asymptotic
tilt angle is then given by

θ(x, z) ≈ θb(z) =
m ξ√
3ω

(

log
spr
s̃

+
spr − s̃

s̃

)

+m z as z ≫ η . (2.19)
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We remark that, when s̃ 6= spr, the leading contribution to θb(0) is independent of ∆,
and thus does not depend on the surface roughness. Furthermore, the effective surface
tilt angle depends linearly on ξ, which makes it significantly larger than the prediction
(2.15), derived with Neumann-like boundary conditions on s, which possesses an extra
ξ/η (small) factor. Finally, we remark the fact that θb(0) shares the sign of m if and
only if s̃ < spr. We will return below on the physical origin and implications of this
result.

When the induced degree of orientation s̃ does exactly coincide with spr, all
calculations simplify since h(ζ) ≡ log spr, and all first order correction in (2.17) vanish.
We therefore push our perturbation analysis, and obtain

s(x, z) = spr −
sprξ

2

ω2

[

m2 +
∆2

η2
e−2z/η − 2m∆

η
e−z/η cos

x

η

− e−
√
3ωz/ξ

(

m2 +
∆2

η2
− 2m∆

η
cos

x

η

)]

+O
(

ε3
)

(2.20)

θ(x, z) = m z +∆e−z/η cos
x

η
+

ξ2

ω2

(

2m∆2

η

(

1− e−2z/η
)

− ∆3

2 η2

(

e−z/η − e−3z/η
)

cos
x

η
− 2m2∆

η
z e−z/η cos

x

η

)

+O
(

ε3
)

. (2.21)

Equation (2.21) allows to compute the asymptotic tilt angle θb, when s̃ = spr. In fact,
once we drop all exponentially-decaying terms in (2.21), we arrive at the interesting
result that θb(z) does exactly coincide with (2.14), that is with the expression we
derived with a Neumann-like boundary condition on the degree of orientation. In
fact, the complete expression (2.21) for the tilt angle θ(x, z) coincides with (2.12) up
to O

(

ε3
)

. Thus, any observation on the tilt angle is not able to distinguish among
a free and a fixed boundary condition on the degree of orientation, as long as the
imposed value s̃ coincides with the preferred value spr. This similarity between the
Neumann and Dirichlet cases can be pursued further. Indeed, we can determine
the O

(

ε2
)

-contributions in (2.16)-(2.17) also when s̃ 6= spr. If we then use them to

compute the O
(

ε2
)

-correction to the asymptotic tilt angle (2.19), we arrive at the

following expression, valid at O
(

ε2
)

for any value of s̃:

θ(x, z) ≈ θb(z) =

[

m ξ√
3ω

(

log
spr
s̃

+
spr − s̃

s̃

)

+
2m ξ2∆2

ηω2

]

+m z as z ≫ η, (2.22)

that yields

θb(0) =
m ξ√
3ω

(

log
spr
s̃

+
spr − s̃

s̃

)

+
2m ξ2∆2

ηω2
. (2.23)

The O
(

ε2
)

-contribution to the effective surface angle θb(0) is thus fully a roughness
effect, and does not depend at all on the type of boundary conditions imposed on s.
On the other hand, equation (2.23) confirms that the effective surface angle possesses
also an O (ε)-term when Dirichlet conditions are imposed on the degree of orientation,
and s̃ 6= spr.

Figure 2.3 shows how the degree of orientation varies within the boundary layer,
as s̃ is fixed above, equal to, or below spr. A double boundary-layer structure emerges.
All plots exhibit a decrease of s in a region of characteristic size η: this effect comes
from the O

(

ε2
)

-contribution. A similar surface melting was already presented and
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discussed in Figure 2.1. Close to the boundary, the O (1)-term proportional to (s̃ −
spr) e

−
√
3ωz/ξ settles the desired boundary value of s in a thin boundary layer of

characteristic size ξ.

0 ξ
η

1 2 3

0.6

spr

1.0

z/η

< s(x, z) >x

Fig. 2.3. Boundary layers in the mean degree of orientation < s(x, z) >x, when ξ = 0.25η,
spr = 0.8, ω = 0.6, m = 0.1η, and ∆ = 1.5, when Dirichlet-like boundary conditions are applied on
the degree of orientation. The boundary degree of orientation s̃ is respectively equal to 1 (top), spr
(middle), and 0.6 (bottom).

3. Effective weak anchoring. Once the boundary layer effects fade away, the
main macroscopic effect of a rough surface on the director orientation is to allow for
an effective surface tilt angle θb(0), that apparently violates the homeotropic prescrip-
tion θ(0) = 0 (see (2.15) and (2.23)). It appears then natural to check whether the
same macroscopic effect may be modeled through a weak anchoring potential, acting
on a smooth surface. In this section we pursue this similarity, and we derive a rela-
tion connecting the microscopic roughness parameters with a macroscopic anchoring
strength.

To solve the weak-anchoring problem, we consider a nematic liquid crystal which
still spreads in the half-space B = {z ≥ 0}. To better compare our results with
classical weak-anchoring models, we settle within Frank’s director theory, and thus
look for the equilibrium distribution that minimizes the free-energy functional

F [n] := K

∫

B

∣

∣∇n
∣

∣

2
dv +W

∫

∂B
fw[n] da . (3.1)

The bulk free-energy density in the functional (3.1) can be derived from its order-
tensor theory counterpart by setting s ≡ 1 in (1.8). The anchoring potential fw is
required to attain its minimum at the homeotropic anchoring n

∣

∣

∂B = ez, while W is
the anchoring strength.

We look again for equilibrium distributions of the type n(z) = sin θ(z) ex +
cos θ(z) ez. Thus, the free energy functional (3.1) per unit trasverse area can be
written as

f [θ] := K

∫

θ′2(z) dz +W fw
(

θ(0)
)

, (3.2)

where we assume f ′
w(0) = 0 and f ′′

w(0) > 0, in order to guarantee the homeotropic
preference. The minimizers of (3.2) satisfy the trivial Euler-Lagrange equation θ′′ = 0,
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and the boundary condition

Kθ′(0)−Wf ′
w

(

θ(0)
)

= 0 . (3.3)

When the anchoring strengthW is large enough, the boundary condition (3.3) requires
θ(0) to be small. When this is the case, a Taylor expansion in (3.3) supplies

θ(0) ≈ Km

Wf ′′
w(0)

= λm , (3.4)

In (3.4) we have restored the notation m = θ′(0) to better compare this estimate with
our preceding results, and introduced the surface extrapolation length

λ :=
K

Wf ′′
w(0)

, (3.5)

a quantity that compares the relative strengths of the elastic and anchoring potentials.
The comparison between (3.4) and our results (2.15)-(2.23) relates the surface

extrapolation length to the microscopic roughness parameters and/or the surface value
of the degree of orientation. This analogy will be examined in the following section.

4. Discussion. We have examined both the boundary layer structure and the
bulk effects of a rough surface bounding a nematic liquid crystal. Our main results
may be summarized as follows.

• The roughness of the surface has been modeled by an oscillating anchoring
condition, characterized by an oscillation amplitude ∆ and a wave length η.
Figures 2.1 and 2.3 show that the rough boundary induces a partial melting
in a neighborhood (of size η) of the external boundary. When Neumann-like
boundary conditions are imposed on the degree of orientation, equation (2.13)
quantifies the mean degree of order at the boundary. On the contrary, were s
be forced to a prescribed value s̃ on the surface, equations (2.16) and (2.20)
show that the boundary condition induces a thin boundary layer, determined
by the nematic coherence length ξ.

• Once the degree of orientation decreases, the spatial variations of the tilt
angle become cheaper, and thus the θ is keen to steepen close to the external
boundary. Figure 2.2 illustrates this effect. As a consequence, the effective
boundary tilt angle θb(0), extrapolated from the asymptotic outer solution
θb(z), becomes different from the null homeotropic prescription (see equations
(2.15) and (2.23)). In the preceding section 3 we have shown that a similar
effective anchoring breaking takes place when a weak anchoring potential is
assumed on a smooth surface (see equation (3.5) for the characteristic surface
extrapolation length). To further pursue this similarity we need to consider
separately the different anchorings that may be applied on the degree of
orientation.

– When s is free to choose its boundary value, equation (2.15) shows that
the surface extrapolation length is given by

λ

ξ
=

2∆2

ω2

ξ

η
+O

(

ξ2

η2

)

. (4.1)

Thus, the anchoring strength increases when either the roughness am-
plitude ∆ decreases (towards a smooth surface) or the roughness wave-
length increases. An estimate of the order of magnitude of the effective
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roughness wave-length can be obtained by assuming typical values for
the quantities involved in (4.1). Indeed, if we assume λ ≈ ξ, ∆ ≈ 1, and
ω ≈ 1

2 we arrive at η ≈ 10ξ, that models a roughness wave length in the
hundredths of molecular lengths.

– When the boundary conditions fix the value of the degree of orientation
at the surface, equation (2.23) yields

λ

ξ
=

1√
3ω

(

log
spr
s̃

+
spr − s̃

s̃

)

+
2∆2

ω2

ξ

η
+O

(

ξ2

η2

)

. (4.2)

Equation (4.2) shows that the surface extrapolation length includes two
quite different contributions. The former depends on the difference be-
tween the boundary and the preferred values of the degree of orientation
(s̃ and spr, respectively), while the latter depends on the surface rough-
ness and indeed coincides with (4.1). However, equation (4.2) may lose
sense when s̃ > spr. Indeed, in this case λ may become negative, so pro-
viding an inverse weak anchoring effect. The physical origin of this odd
result may be easily understood if we again resort to the s2|∇θ|2-term
in the free-energy density. By virtue of that term, the tilt angle prefers
to limit its spatial variations in regions of higher s. If we force in the
surface a higher degree of orientation than the bulk value, the tilt angle
will flatten close to the surface, thus exhibiting the opposite behaviour
with respect to that shown in Figure 2.2. Equation (4.2) shows that this
inverse effect may occur whenever

s̃− spr
spr

&

√
3∆2

ω

ξ

η
+O

(

ξ2

η2

)

. (4.3)

If we again replace the estimates above for ∆, ω, η, we arrive at the
result that a fixed degree of orientation is able to completely hide the
roughness-induced effective weak anchoring whenever s̃ exceeds spr by
the 10% of the preferred value spr itself.

Acknowledgements. P.B. thanks Georges E. Durand for useful discussions on
the present topics.
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