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BOUNDARY HALF-STRIPS AND THE STRONG CHIP∗

EMIL ERNST† AND MICHEL THÉRA‡

Abstract. When the subdifferential sum rule formula holds for the indicator functions ιC and
ιD of two closed convex sets C and D of a locally convex space X, the pair (C,D) is said to have
the strong conical hull intersection property (the strong CHIP). The specification of a well-known
theorem due to Moreau to the case of the support functionals σC and σD subsumes the fact that
the pair (C,D) has the strong CHIP whenever the inf-convolution of σC and σD is exact. In this
article we prove, in the setting of Euclidean spaces, that if the pair (C,D) has the strong CHIP
while the boundary of C does not contain any half-strip, then the inf-convolution of σC and σD

is exact. Moreover, when the boundary of a closed and convex set C does contain a half-strip, it
is possible to find a closed and convex set D such that the pair (C,D) has the strong CHIP while
the inf-convolution of σC and σD is not exact. The validity of the converse of Moreau’s theorem in
Euclidean spaces is thus associated to the absence of half-strips within the boundary of concerned
convex sets.

Key words. strong conical hull intersection property, convex programming with convex in-
equalities, Euclidean space, exact infimal convolution, qualification conditions
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1. Introduction. This study concerns an application of a geometrical notion
called the strong conical hull intersection property (strong CHIP) introduced by Deutsch,
Li, and Swetits (see [6]). We say that the pair (C,D) of closed and convex subsets
of some locally convex space X has the strong CHIP if the subdifferential of the sum
and sum of the subdifferentials of their indicator functions coincide:

∂ (ιC + ιD) = ∂ιC + ∂ιD.(1.1)

As customary, ιA is the indicator function of a subset A of X and is defined by
ιA(x) = 0 if x ∈ A, and ιA(x) = +∞ otherwise. We also recall that the convex
subdifferential is an operator from X into the topological dual X⋆ of X, which assigns
to each extended-real-valued mapping Φ on X a set-valued operator between X and
X⋆ defined by

∂Φ(x0) = {x⋆ ∈ X∗ : 〈x− x0, x
⋆〉 + Φ(x0) ≤ Φ(x) ∀x ∈ X},

where 〈·, ·〉 : X ×X⋆ → R is the duality pairing between X and X⋆.
Recalling that the normal cone NC(x) at x ∈ X to a closed convex set C of X is

the set ∂ιC(x), the strong CHIP for the pair (C,D) amounts to saying that

NC∩D(x) = NC(x) + ND(x) ∀x ∈ C ∩D;(1.2)

i.e., every normal direction to C ∩D at some point x can be expressed as the sum of
normal directions at x to C and D.
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This property is important in convex optimization because when we consider the
problem of minimizing a convex functional Φ on the intersection of two sets C and D
which have the strong CHIP, the optimality condition for x̄ to be a minimizer becomes

0 ∈ ∂Φ(x̄) + NC(x̄) + ND(x̄).

In the case of convex differentiable optimization, it becomes

−∇f(x̄) ∈ NC(x̄) + ND(x̄).

Let us quote only the result proved when X is a Hilbert space by Deutsch (see
[4]). It says that the strong CHIP is the weakest constraint qualification under which
a minimizer x̄ of a convex function Φ : C1 ∩ C2 → R can be characterized using the
subdifferential of Φ at x and the normal cones of C1 and C2 at x.

The existence of conditions ensuring that a pair of closed and convex sets has
the strong CHIP is based on a classical result by Moreau ([9, Remarque 10.2]); the
result initially published in [8] makes use of another key concept of convex analysis,
namely the notion of infimal convolution (inf-convolution). Recall that, if Φ and Ψ
are extended-real-valued lower semicontinuous convex functions over X (this class of
functions from now on is denoted by Γ0(X)), the inf-convolution of Φ and Ψ is the
extended real-valued function Φ�Ψ defined by

Φ�Ψ(x) = inf
y∈X

(Φ(x− y) + Ψ(y)) .(1.3)

The infimal convolution between Φ and Ψ is said to be exact if Φ�Ψ ∈ Γ0(X) and
the infimum is achieved in (1.3) whenever Φ�Ψ(x) < +∞.

Let us also recall that given a convex closed set A in X, we note σA : X⋆ →
R ∪ {+∞}, the support function of A. It is defined by

σA(f) = sup
x∈A

〈x, f〉 .

Using this concept, Moreau’s theorem states that the subdifferential sum formula
(1.1) holds, provided that the inf-convolution of the support functionals of C and D
is exact. Remark that an equivalent way of expressing the exactness of the inf-convo-
lution of the support functionals σC and σD is to say that every linear functional
f ∈ X⋆ which is bounded above on C ∩D may be expressed as the sum of two linear
functionals f1 and f2, bounded above on C and D respectively, such that

sup
x∈C∩D

〈x, f〉 = sup
x∈C

〈x, f1〉 + sup
x∈D

〈x, f2〉 .

Let us observe that relation (1.2), i.e., the strong CHIP, is equivalent to the
following property: Every linear functional f ∈ X⋆ which achieves its maximum on
C ∩ D may be expressed as the sum of two linear functionals f1 and f2, achieving
their maximum on C and D, respectively, such that

max
x∈(C∩D)

〈x, f〉 = max
x∈C

〈x, f1〉 + max
x∈D

〈x, f2〉 .

The importance of Moreau’s theorem comes from the fact that several very general
qualification conditions are known to ensure the exactness of the inf-convolution of
support functionals (the reader is referred for further information to the excellent
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articles of Zălinescu [13], Gowda and Teboulle [10], and, respectively, Simons [11], in
which he/she may find a clear picture of the topic, as well as self-contained proofs for
most of the concerned results).

Accordingly, the result proved by Moreau gives the possibility of systematically
specifying every qualification condition as a criterion for the strong CHIP (see for
instance [5, Proposition 2.3].)

Let us remark that the exactness of the inf-convolution of the support functionals
is stronger than the simple strong CHIP. Indeed, Moreau’s condition concerns all the
continuous linear functionals bounded above on the intersection C ∩ D, while the
strong CHIP is formulated only in terms of those elements from X⋆ which achieve
their maximum on C ∩D. The question is thus raised of the validity of the converse
to this theorem.

The converse to Moreau’s theorem obviously holds for sets C and D such that
every linear and continuous map bounded above on any one of the sets C ∩ D, C,
or D necessarily achieve their maximums on this set. On this ground, a first partial
converse of the Moreau result has recently been proved by Bauschke, Borwein, and Li
for Hilbert spaces (see [1, Proposition 6.4]); the result was extended to the setting of
Banach spaces by Burachik and Jeyakumar [3, Proposition 4.2]. Their result states
that, if C and D is a pair of closed and convex cones with the strong CHIP, then the
inf-convolution of their support functionals is always exact.

However, it is not necessary to impose to every linear and continuous map which
is bounded above on any one of the sets C ∩ D, C, or D, to achieve its maximum
on this set, in order to ensure the validity of the converse to the above mentionned
Moreau’s theorem. It is the aim of this article to clearly define the best conditions
under which the converse of Moreau’s theorem holds. More precisely, we characterize
all the closed and convex subsets C of an Euclidean space X such that the following
converse of Moreau’s theorem holds: If, for some closed and convex set D, the pair
(C,D) has the strong CHIP, then the inf-convolution of σC and σD is exact.

Our main result states that the validity of the converse of Moreau’s theorem is
ensured if and only if the boundary of the closed and convex subset C of the Euclidean
space X does not contain any half-strip (by half-strip we mean, as customary, the
convex hull of two disjoint and parallel half-lines). Note that the class of closed and
convex sets without boundary half-strips is rather large, as it contains—the list is not
exhaustive—all the bounded sets, the strictly convex sets, or even the continuous sets
in the sense of Gale and Klee—sets such that their support functional is continuous
except at the origin (see [7]).

The outline of the paper is as follows. The case of closed and convex sets without
boundary half-strips is considered in section 2. We prove (Theorem 2.3) that, if the
pair (C,D) has the strong CHIP, and if the boundary of one of the sets, say C, does
not contain any half-strip, then the inf-convolution of the support functions of C and
D must be exact.

The last section is concerned with convex sets which do admit at least one bound-
ary half-strip. If the boundary of a closed and convex set C contains some half-strip,
then we give a construction of a closed and convex set D such that the pair (C,D)
has the strong CHIP, while the inf-convolution of σC and σD fails to be exact.

2. Convex sets without boundary half-strips. Now let us first collect some
conditions ensuring in every reflexive Banach space the validity of the converse of
Moreau’s theorem.
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Proposition 2.1. Let C and D be a pair of closed and convex subsets of a
reflexive Banach space X. If C and D have the strong CHIP, and at least one of the
following conditions holds:

(i) C ∩D is bounded;
(ii) C ∩D is a flat;
(iii) C ∩D is a half-line,

then the inf-convolution of the support functions of C and D is exact. In other words,
the converse of Moreau’s theorem is valid.

Proof of Proposition 2.1. We need the following standard convex analysis result.
Lemma 2.2. Let C and D be two closed and convex subsets of a locally convex

space X, and consider an element y of X⋆ expressed as the sum y = y1 + y2 of
two normal vectors y1 ∈ NC(x) and y2 ∈ ND(x), for some x ∈ C ∩ D. Then the
inf-convolution of the support functionals is exact at y, that is,

σC�σD(y) = σC(y1) + σD(y2) = 〈x, y〉 .(2.1)

Proof of Lemma 2.2. As y1 ∈ ∂ιC(x) and y2 ∈ ∂ιD(x), relation y = y1+y2 implies
that y ∈ ∂ιC∩D(x). Thus

σC(y1) = 〈x, y1〉 , σ2(y2) = 〈x, y2〉 , σC∩D(y) = 〈x, y〉 ,

and hence

σC∩D(y) = σC(y1) + σD(y2).(2.2)

Recall that σC∩D ≤ σC�σD, which means that

σC∩D(y) ≤ σC�σD(y).(2.3)

Finally, use the definition of the inf-convolution and the fact that y = y1 + y2 to
deduce that

σC�σD(y) ≤ σC(y1) + σD(y2).(2.4)

Relation (2.1) follows from relations (2.2), (2.3), and (2.4).
Let us now return to the proof of Proposition 2.1 and consider that case (i) holds;

i.e., we suppose that the pair (C,D) has the strong CHIP and C ∩D is bounded.
As, in addition, X is a reflexive Banach space, it is easy to see that, for every

y ∈ X⋆, there is an x ∈ C ∩ D such that y ∈ ∂ιC∩D(x). The pair (C,D) has the
strong CHIP, and thus y = y1 + y2, for some y1 ∈ ∂ιC(x) and y2 ∈ ∂ιD(x); we may
therefore apply Lemma 2.2 and deduce that

σC�σD(y) = σC(y1) + σD(y2) = 〈x, y〉 .(2.5)

On one hand, from relation (2.5) we observe that the Γ0(X
⋆)-functional σC�σD is

real-valued on X⋆ and thus, as X⋆ is a reflexive Banach space, is follows that σC�σD

is continuous. Taking into account that relation (2.5) implies, on the other hand, that
the infimum is always attained in the expression of the inf-convolution, we conclude
that the inf-convolution of the support functions σC and σD is exact.

Case (ii). Let L be the closed subspace of X parallel to the flat C ∩D (that is,
C ∩D = x0 + L for every x0 ∈ C ∩D), and factorize X with respect to L.

The quotient space X/L, say X̂, is again a reflexive Banach space. Since x0 +L ⊂
C for every x0 ∈ C, and x0 + L ⊂ D for every x0 ∈ D, it follows that Ĉ and D̂, the
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quotients of the sets C and D are closed, and convex subsets of X̂; moreover, it is
straightforward to prove that the pair (Ĉ, D̂) has the strong CHIP if and only if the
same holds for the pair (C,D), and that the inf-convolution of the support functions
of Ĉ and D̂ is exact if and only if the inf-convolution of the support functions of C
and D is exact.

But the intersection between Ĉ and D̂ reduces to a singleton, and case (ii) is
proved by applying the conclusion of case (i) to the pair (Ĉ, D̂).

Case (iii). Set x0 + R+x for the half-line C ∩ D. Obviously, when y ∈ X⋆ and
〈x, y〉 ≤ 0 we have y ∈ ∂ιC∩D(x0). Use the fact that the pair (C,D) has the CHIP
to deduce that y = y1 + y2 for some y1 ∈ ∂ιC(x0) and y2 ∈ ∂ιD(x0), together with
Lemma 2.2, to infer that

σC�σD(y) = σC(y1) + σD(y2) = 〈x0, y〉 ∀y ∈ X⋆, 〈x, y〉 ≤ 0.(2.6)

In order to obtain a similar relation for the case 〈x, y〉 > 0, note that, for every
z ∈ X⋆ such that 〈x, z〉 > 0 it holds that σC(z) = σD(z) = +∞. Moreover, the
inequality 〈x, z + v〉 > 0 means that at least one of the inequalities 〈x, z〉 > 0 and
〈x, v〉 > 0 holds. Combining these two facts, we deduce that

σC(z) + σD(v) = +∞ ∀z, v ∈ X⋆ such that 〈x, z + v〉 > 0,

which means that

σC�σD(y) = +∞ ∀y ∈ X⋆, 〈x, y〉 > 0.(2.7)

Combining relations (2.6) and (2.7) yields

σC�σD = ι{y∈X⋆: 〈x,y〉≤0} + 〈x0, ·〉 ,

which means that the inf-convolution of σC and σD is the sum between the indicator
function of a half-space and a linear and continuous functional, and clearly belongs
to Γ0(X

⋆). Use once more relation (2.6) to see that the infimum in the expression of
the inf-convolution is achieved, and conclude that the inf-convolution of σC and σD

is exact.
Apparently, Proposition 2.1 lists three completely disparate conditions, each one

being sufficient in its own way for the validity of the converse of Moreau’s theorem.
The geometric notion of a half-strip, that is, a convex hull of two parallel and disjoint
half-lines, allows us to spot a common property of cases (i), (ii), and (iii) in Proposition
2.1.

Theorem 2.3. Let C and D two closed and convex subsets of the Euclidean space
X, and assume that the boundary of the set C does not contain any half-strip. If the
pair (C,D) has the strong CHIP, then the inf-convolution of σC and σD is exact (in
other words, the converse of Moreau’s theorem holds).

Proof of Theorem 2.3. When the intersection C ∩D meets the interior of C, we
specify the well-known Moreau–Rockafellar internal point condition (see [9, Chap. 6,
section 6.8]) to prove that the inf-convolution of the support functionals is exact.

If C ∩ D is a part of the boundary of C, use—as the boundary of C does not
contain any half-strip—the obvious fact that the only closed and convex subsets of an
Euclidean space which do not contain any half-strip are the bounded sets, the half-
lines, and the lines, and completely prove Theorem 2.3 by making use of Proposition
2.1.
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Fig. 3.1. Closed and convex set with a boundary half-strip.

3. Convex sets with boundary half-strips. The following result completes
the analysis initiated in Theorem 2.3.

Theorem 3.1. Let C be a closed and convex subset of the Euclidean space X;
assume moreover that the boundary of C contains at least one half-strip. Then there
is a closed and convex set D such that the pair (C,D) has the CHIP while the inf-
convolution between σC and σD is not exact.

In other words, the existence of at least one boundary half-strip prevents the
converse of Moreau’s theorem from holding.

3.1. Construction and properties of the set D. Our strategy in this section
is to construct the set D. The following easy result will be useful. It says that when X
is Euclidean, every closed and convex set with a boundary half-strip may be contained
within some half-space such that its boundary half-strip lies within the hyperplane
which delimits this half-space.

Proposition 3.2. Let C be a closed and convex subset of an Euclidean space X
such that its boundary contains a half-strip. Then, there is an orthonormal basis of
X, B = {b1, b2, . . . , bn}, a positive parameter a > 0, and x0, an element of X, such
that

x0 + A ⊂ C ⊂ x0 + E3,

where A is the half-strip defined as

A = {x ∈ X : 0 ≤ x · b1, −2a ≤ x · b2 ≤ 2a, 0 = x · bi ∀i ≥ 3},

and the half-space E3 is given by the relation

E3 = {x ∈ X : x · b3 ≤ 0}.

Proof of Proposition 3.2. Let x1, x2, x in X be such that ‖x‖ = 1 and the half-
strip spanned by the half-lines x1 + R+x and x2 + R+x lies within the boundary of
the set C. Assume (if necessary after changing x1 into x2) that x2 · x ≥ x1 · x, and
set x3 = x1 + [(x2 − x1)x]x.

Clearly, x3 ∈ x1 + R+x; as the half-lines x1 + R+x and x2 + R+x are disjoint, it
follows that x3 and x2 cannot coincide. Set

a =
‖x3 − x2‖

4
and y =

x3 − x2

4a
=

x3 − x2

‖x3 − x2‖
.
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Note that

y · x =
1

4a
(x3 · x− x2 · x) =

1

4a
(x1 · x + (x2 − x1)xx · x− x2 · x) = 0.(3.1)

Finally, put

x0 =
x3 + x2

2
+ ax =

1

2
(x3 + ax) +

1

2
(x2 + ax);

as x3 + ax ∈ x1 +R+x and (x2 + ax) ∈ (x2 +R+x), we deduce that x0 belongs to the
half-strip spanned by the half-lines x1 +R+x and x2 +R+x, and thus belongs to the
boundary of C.

Since x0 is a boundary point of a closed and convex subset of an Euclidean space,
it is well known that there is some linear mapping z ∈ X, ‖z‖ = 1, which achieves its
maximum on C at x0,

z · x0 ≥ z · x ∀x ∈ C.(3.2)

Apply relation (3.2) for x = x0 − ax = x3+x2

2 to deduce that z · x ≥ 0, and then for
x = x0 + ax = 1

2 (x3 + 2ax) + 1
2 (x2 + 2ax) to obtain z · x ≤ 0 and therefore conclude

that

z · x = 0.(3.3)

Similarly, put x0 − ax− 2ay = x2 for x in relation (3.2), and using also relation (3.3),
deduce that z · y ≥ 0. Finally, putting x = x0 − ax + 2ay = x3 in relation (3.2), and
also taking into account relation (3.3), we infer z · y ≤ 0, that is,

z · y = 0.(3.4)

Relations (3.1), (3.3), and (3.4) prove that it is possible to complete the set {x, y, z}
up to B = {b1, b2, . . . , bn}, an orthonormal basis of X.

The proof of Proposition 3.2 will be completed if we remark that the set x0 +A is
nothing but the half-strip spanned by the half-lines (x3 + ax) +R+x and (x2 + ax) +
R+x, and thus lies within the boundary of C, while relation (3.2) implies that C is a
part of the half-space x0 + E3.

The basis B, the parameter a, and the element x0 thus defined allow us to proceed
to the construction of the set D. Let us first define the set F ,

F = (P1 + S) ∩ (P2 + T ),

where P1 ⊂ P2 are the sets bordered by two plane parabolae:

P1 =

{

x ∈ X : x · b1 ≤ −a(x · b2)2
4

, x · bi = 0 ∀i ≥ 3

}

,

P2 =

{

x ∈ X : x · b1 ≤ −a(x · b2)2
8

, x · bi = 0 ∀i ≥ 3

}

,

S is an orthogonal box in X:

S = {x ∈ X : x · b1 ≤ 0, −1 ≤ ax · b2 ≤ 1, x · b3 ≤ 0} ,
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Fig. 3.2. Sets needed in constructing the set D.

T is a closed and convex subset of S:

T =

{

x ∈ X : x · b1 ≤ 0, −1 < ax · b2 < 1, x · b3 ≤ − a2(x · b2)2
1 − a2(x · b2)2

}

,

and, as customary, Z⋆ means the polar set of some subset Z of X,

Z⋆ = {x ∈ X : x · y ≤ 1 ∀y ∈ Z}.

Set now

D = x0 + F ⋆ = x0 + ((P1 + S) ∩ (P2 + T ))⋆.

This definition grants to the set F (and thus D) several geometrical properties
which are crucial for our purpose.

Let us first notice that F is contained in the half-space E1 = {x ∈ X : x ·b1 ≤ 0};
accordingly, the half-line R+b1 lies within F ⋆, and thus the half-line x0 + R+b1 is a
part of both sets C and D = x0 + F ⋆. It follows that

σC(x) = σD(x) = +∞ ∀x ∈ X such that x · b1 > 0.

Let x ∈ X be such that x · b1 = 0; if y is such that y · b1 �= 0, then either y · b1 > 0 or
(x− y) · b1 > 0, so

σC(y) + σD(x− y) = +∞ ∀ x ∈ X, x · b1 = 0, y ∈ X, y · b1 �= 0;(3.5)

hence for every element x ∈ X such that x · b1 = 0 it results that

σC�σD(x) = inf
y∈X, y·b1=0

σC(y) + σD(x− y).(3.6)

The hyperplane L1 = {x ∈ X : x · b1 = 0} thus plays a very important role in
computing the inf-convolution of the support functions σC and σD. The following
lemma describes the intersection between the set F and L1; for convenience, we state
the result in terms of

γF (x) = inf
s>0

{

1

s
: sx ∈ F

}

,
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Fig. 3.3. Intersection between F and L1.

the gauge function of the set F .
Lemma 3.3. The set F is a closed and convex subset of the Euclidean space X.

Moreover, F ∩ L1 = T ∩ L1, and thus

γF (x) ≥ a|x · b2| ∀x ∈ L1,(3.7)

γF (x) > 1 ∀x ∈ L1 such that a|x · b2| = 1,(3.8)

and

lim
λ→+∞

γF

(

b2
a

− λb3

)

= 1.(3.9)

Proof of Lemma 3.3. Recall that the sum Z1 + Z2 of two closed and convex
subsets Z1 and Z2 of an Euclidean space is always convex. This sum is moreover
closed, provided that Z1 and −Z2 do not contain two parallel half-lines (see [12,
Corollary 9.1.2] ). This is obviously the case for the pairs of closed and convex sets
P1 and S, as well as P2 an T , and thus the sets P1 + S and P2 + T are closed and
convex, and the same clearly holds also for the set F , which is their intersection.

It has already been noticed that all the sets P1, P2, S, and T lay within E1;
accordingly, the sum of two elements x1 and x2 from either P1 and S, or P2 and T ,
is contained within the delimiting hyperplane L1 if and only if both elements x1 and
x2 belong to L1. In other words,

(P1 + S) ∩ L1 = (P1 ∩ L1) + (S ∩ L1),

(P2 + T ) ∩ L1 = (P2 ∩ L1) + (T ∩ L1),

and note that P1 ∩ L1 = P2 ∩ L1 = {0} to deduce that

F ∩ L1 = ((P1 + S) ∩ L1) ∩ ((P2 + T ) ∩ L1)

= (S ∩ L1) ∩ (T ∩ L1) = (S ∩ T ) ∩ L1.
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Recall that T ⊂ S, and deduce that F ∩ L1 = T ∩ L1.
This relation may be used in order to compute the value of γF (x) for elements

x ∈ L1, since it obviously holds that

γF (x) = γF∩L1
(x) = γT∩L1

(x) ∀x ∈ L1.

Use the fact that

T ∩ L1 ⊂ S ∩ L1 ⊂ M = {x ∈ X : x · b1 = 0,−1 ≤ ax · b2 ≤ 1}

to deduce that

γT∩L1
(x) ≥ γM (x) = a|x · b2| ∀x ∈ L1,

that is, relation (3.7).
In order to prove relation (3.8), note that, for every x ∈ T∩L1 we have a|x·b2| < 1.

Accordingly, relation a|x·b2| = 1 implies that x /∈ T∩L1. Let us now use [12, Corollary
9.7.1], which says that T ∩ L1 = {y : γT∩L1

(y) ≤ 1}, and deduce that γT∩L1
(x) > 1.

Finally, if λ ≥ 1, standard computation shows

√
4λ2 + 1 − 1

2λ

(

b2
a

− λb3

)

∈ T ∩ L1;

thus

γT∩L1

(

b2
a

− λb3

)

≤ 2λ√
4λ2 + 1 − 1

.(3.10)

Use relation (3.8) for x =
(

b2
a
− λb3

)

to see that

1 < γT∩L1

(

b2
a

− λb3

)

;(3.11)

relation (3.9) simply comes from relations (3.10) and (3.11).
An important step in proving that the pair of closed and convex sets (C,D) has

the strong CHIP is to determine their intersection C ∩D.
Lemma 3.4. It holds that

C ∩D = x0 + (F + Rb3)
⋆.(3.12)

Proof of Lemma 3.4. Use the fact that R+(−b3) ⊂ T ⊂ S to deduce that
R+(−b3) ⊂ F , and thus that F ⋆ ⊂ (−E3). Accordingly, D ⊂ x0 + (−E3), and
as C ⊂ x0 + E3, we obtain that

C ∩D ⊂ (x0 + E3) ∩ (x0 + (−E3)) = x0 + L3,

where by L3 we mean

L3 = {x ∈ X : x · b3 = 0}.

In other words,

x0 · b3 = x · b3 ∀x ∈ C ∩D.(3.13)
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Consequently,

C ∩D = C ∩ (D ∩ (x0 + L3)) = C ∩ (x0 + (F ⋆ ∩ L3)).(3.14)

Recall (see [2, Chapter 4, section 1, Corollary of Proposition 3]) that, for every
closed and convex sets A and B containing 0, it holds that (A ∩B)⋆ = co(A⋆ ∪B⋆),
where co(A) denotes the closed convex hull of the set A.

Thus, by using the bipolar theorem (see [2, Chapter 4, section 1, Proposition 3])
applied for the set F , and the obvious fact that L⋆

3 = Rb3, we deduce that

(F ⋆ ∩ L3)
⋆ = co(F ⋆⋆ ∪ L⋆

3) = co(F ∪Rb3).(3.15)

It is well known that for every convex set A and flat W , co (A∪W ) = co (A+W ).
Apply this relation to the convex set F and the one-dimensional flat Rb3 to prove
that co (F ∪Rb3) = co (F + Rb3); by virtue of relation (3.15) it follows that

(F ⋆ ∩ L3)
⋆ = co (F + Rb3).

Accordingly, F ⋆ ∩ L3 = (F ⋆ ∩ L3)
⋆⋆ = (co (F + Rb3))

⋆
; as the polar of any set

coincides with the polar of its closure, we have

F ⋆ ∩ L3 = (F + Rb3)
⋆.(3.16)

Let us prove that the set (F +Rb3)
⋆ lies within C. Indeed, after an easy compu-

tation it results that

(T + Rb3) = S + Rb3(3.17)

= N = {x ∈ X : x · b1 ≤ 0, −1 ≤ ax · b2 ≤ 1} ;

thus N ⊂ (F + Rb3), which means that (F + Rb3)
⋆ ⊂ N⋆.

But as

N⋆ = {x ∈ X : 0 ≤ x · b1, −a ≤ x · b2 ≤ a, 0 = x · bi ∀i ≥ 3},

we have (see Proposition 3.2) N⋆ ⊂ A, and thus

x0 + (F + Rb3)
⋆ ⊂ (x0 + N⋆) ⊂ (x0 + A) ⊂ C.(3.18)

Relation (3.12) follows now from relations (3.14), (3.16), and (3.18).
It thus becomes necessary to determine the sum between the closed and convex

set F and the line Rb3.
Lemma 3.5. It holds that

{x ∈ (P1 + S) : x · b1 < 0} + Rb3 ⊂ F + Rb3 ⊂ (P1 + S) + Rb3;(3.19)

accordingly,

C ∩D = x0 + (P1 + S + Rb3)
⋆.(3.20)

Moreover, the gauge functions γF and γP1+S+Rb3 fulfill the following property:
For every x ∈ X such that x · b1 < 0, there is θ(x) ≥ 0 such that

γP1+S+Rb3(x) = γF (x− θ(x)b3) .(3.21)
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Fig. 3.4. The sum between F and the line Rb3.

Proof of Lemma 3.5. On the basis of formula (3.17), we claim that S + Rb3 is
a closed and convex set. Moreover, there are no parallel half-lines within P1 and
−(S +Rb3), so, using again [12, Corollary 9.1.2], we deduce that the set P1 +S +Rb3
is closed and convex.

Let us prove the second inclusion in (3.19). As F ⊂ (P1 + S), it clearly follows
that

F + Rb3 ⊂ P1 + S + Rb3.(3.22)

To establish the first inclusion in relation (3.19), we prove and use the fact that, for
every x ∈ P1 + S such that x · b1 < 0, there is λ(x) ≥ 0 such that (x− λ(x)b3) ∈ F .

When −1 < ax · b2 < 1, it is easy to see that the value

λ(x) = x · b3 +
a2(x · b2)2

1 − a2(x · b2)2

does the job. Indeed, the element y = (x · b1)b1 lies within both P1 and P2, while

z = x− y − λ(x)b3 = (x · b2)b2 −
a2(x · b2)2

1 − a2(x · b2)2
b3 +

n
∑

i=4

(x · bi)bi

is obviously contained in T , and thus in S. Accordingly,

x− λ(x)b3 = y + (x− y − λ(x)b3) ∈ (P1 + S) ∩ (P2 + T ) = F.

Let x ∈ (P1 +S) such that x · b1 < 0 and a|x · b2| ≥ 1; to fix the ideas, admit that
ax · b2 ≥ 1. In order to define λ(x) in this case, use the fact that x can be expressed
as the sum x = y + z of two elements y and z such that y ∈ P1 and z ∈ S.

As y ∈ P1, it follows that

y · b1 ≤ −a(y · b2)2
4

;(3.23)
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since for every z ∈ S it holds that z · b1 ≤ 0, we deduce that thus x · b1 ≤ y · b1. We
may accordingly infer from relation (3.23) that

x · b1 ≤ −a(y · b2)2
4

.(3.24)

Use once more the fact that z ∈ S, to conclude that −1 ≤ az · b2 ≤ 1. Recall that
ax · b2 ≥ 1, and deduce that

(y · b2)2 = (x · b2 − z · b2)2 ≥
(

x · b2 −
1

a

)2

;(3.25)

from relation (3.24) and (3.25) it follows that

x · b1 ≤ −a
(

x · b2 − 1
a

)2

4
.(3.26)

Combine the fact that x · b1 �= 0 with relation (3.26) and deduce that

x · b1 < −a
(

x · b2 − 1
a

)2

8
;

accordingly, for some parameter α such that 0 < aα < 1, we have

x · b1 < −a (x · b2 − α)
2

8
.(3.27)

We can now define λ(x) as

λ(x) =
a2α2

1 − a2α2
.

Inequality (3.27) proves that the element (x−αb2−
∑n

i=4(x · bi)bi) belongs to the
set P2; as obviously

αb2 −
a2α2

1 − a2α2
b3 +

n
∑

i=4

(x · bi)bi ∈ T,

we deduce that

x − λ(x)b3(3.28)

=

(

x− αb2 −
n
∑

i=4

(x · bi)bi
)

+

(

αb2 −
a2α2

1 − a2α2
b3 +

n
∑

i=4

(x · bi)bi
)

∈ P2 + T.

Remark that the case ax · b2 ≤ −1 is similar to the case ax · b2 ≥ 1. Indeed, when
ax · b2 ≤ −1, one has

(y · b2)2 ≥
(

x · b2 +
1

a

)2

instead of relation (3.25). The parameter α now lies between − 1
a

and 0, and fulfills

x · b1 < −a (x · b2 + α)
2

8
,
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and not relation (3.26).
As in the case ax · b2 ≥ 1, x is the sum of two elements: one in P2, the other in T .

However, when ax · b2 ≤ −1, the element belonging to P2 is (x+αb2−
∑n

i=4(x · bi)bi),
and the one lying in T is −αb2 − a2α2

1−a2α2 b3 +
∑n

i=4(x · bi)bi.
Noticing that S + R+(−b3) = S, we have (P1 + S + R+b3) = (P1 + S). Thus, as

x ∈ P1 + S, we deduce that

x− λb3 ∈ P1 + S ∀λ ≥ 0;(3.29)

from (3.28) and (3.29) it follows that

(x− λ(x)b3) ∈ (P1 + S) ∩ (P2 + T ) = F,

and therefore for every x ∈ P1 + S such that x · b1 < 0, there is λ(x) ≥ 0 such that
x− λ(x)b3 ∈ F .

Use this observation to prove that

{x ∈ P1 + S : x · b1 < 0} + Rb3 ⊂ F + Rb3,

which, together with relation (3.22), yields relation (3.19).
Relation (3.19) implies that the set P1 +S+Rb3 is the closure of the set F +Rb3.

Recalling that the polar of any set coincides with the polar of its closure, we deduce
that

(F + Rb3)
⋆ = (P1 + S + Rb3)

⋆,(3.30)

and relation (3.20) follows from formulas (3.12) and (3.30).
It remains to prove relation (3.21). To begin with, notice that, from relation

(3.19) it follows that F ⊂ P1 + S + Rb3, and thus

γP1+S+Rb3 ≤ γF .(3.31)

Let us first prove that γP1+S+Rb3(x) is real-valued for every x ∈ X such that
x · b1 < 0. In this respect, note that from relation (3.17) it results that {x ∈ X :
x · b2 = x · b3 = 0} ⊂ S + Rb3, and thus that

P1 + {x ∈ X : x · b1 = x · b2 = 0} ⊂ (P1 + S + Rb3).(3.32)

On the other hand, the set P1 + {x ∈ X : x · b1 = x · b2 = 0} contains all the

elements x ∈ X such that x · b1 ≤ −a(x·b2)
2

4 . As

(

− 4x · b1
a(x · b2)2

x

)

· b1 = −4(x · b1)2
a(x · b2)2

= −
a
((

− 4x·b1
a(x·b2)2

x
)

· b2
)2

4
,

which means that

− 4x · b1
a(x · b2)2

x ∈ P1 + {x ∈ X : x · b1 = x · b2 = 0}.

Combine the previous relation with formula (3.32) to deduce that

γP1+S+Rb3(x) ≤ a(x · b2)2
|4x · b1|

.
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Consequently, for every x ∈ X such that x · b1 < 0 we have γP1+S+Rb3(x) < +∞.
Let us first consider the case when γP1+S+Rb3(x) = 0, that is, when x belongs to

a ray completely contained in P1 + S + Rb3. Taking into account the definitions of
the sets P1 and S, we have

[γP1+S+Rb3(x) = 0] ⇔ [x · b1 ≤ 0 and x · b2 = 0] ;

similarly,

[γF (x) = 0] ⇔ [x · b1 ≤ 0, x · b2 = 0 and x · b3 ≤ 0] .

In this case, θ(x) = x·b3+|x·b3|
2 obviously does the job.

Let us now turn to the case γP1+S+Rb3(x) > 0 and write that

x

γP1+S+Rb3(x)
∈ P1 + S + Rb3.

We deduce that there is a λ̃(x) ∈ R such that

x

γP1+S+Rb3(x)
− λ̃(x)b3 ∈ P1 + S.

Accordingly,
(

x

γP1+S+Rb3(x)
− λ̃(x)b3

)

− λ

(

x

γP1+S+Rb3(x)
− λ̃(x)b3

)

b3 ∈ F,

which means that

γF

(

x− γP1+S+Rb3(x)

(

λ̃(x) + λ

(

x

γP1+S+Rb3(x)
− λ̃(x)b3

))

b3

)

(3.33)

≤ γP1+S+Rb3(x).

Relations (3.31), (3.33) and the obvious fact that

γP1+S+Rb3(x) = γP1+S+Rb3(x + νb3) ∀ν ∈ R

prove relation (3.21) with

θ(x) = γP1+S+Rb3(x)

(

λ̃(x) + λ

(

x

γP1+S+Rb3(x)
− λ̃(x)b3

))

,

completing in this way the proof of Lemma 3.5.

3.2. The main result. We claim that the pair of closed and convex sets C and
D has the strong CHIP.

Proposition 3.6. The pair of closed and convex subsets C and D of the Eu-
clidean space X has the strong CHIP.

Proof of Proposition 3.6. Let x1 ∈ C ∩D and y ∈ ∂ιC∩D(x1), y �= 0. Our aim is
to express y as the sum of two elements y1 and y2 from ∂ιC(x1) and ∂ιD(x1).

Let us first remark that, since (x0 +A) ⊂ C ⊂ (x0 +E3) (see Proposition 3.2), it
follows that

R+b3 ⊂ ∂ιC(x)(3.34)



16 EMIL ERNST AND MICHEL THÉRA

for every x ∈ x0 + A, in particular for every x ∈ C ∩D (see Lemma 3.4 and relation
(3.18)). Similarly, we deduce that

R+(−b3) ⊂ ∂ιD(x)(3.35)

for every x ∈ C ∩D. The flat {x ∈ X : x · bi = 0 ∀1 ≤ i ≤ 3} obviously lies within T ,
and thus in S, hence in F . Thus D is contained within the flat x0 + {x ∈ X : x · bi =
0 ∀i ≥ 4}, and we deduce that

{x ∈ X : x · b1 = x · b2 = x · b3 = 0} ⊂ ∂ιD(x) ∀x ∈ D.(3.36)

From relations (3.34), (3.35), and (3.36) it follows that

{x ∈ X : x · b1 = x · b2 = 0} ⊂ (∂ιC(x) + ∂ιD(x)) ∀x ∈ (C ∩D).(3.37)

We address first the case when y · b1 = 0. A standard computation shows that

(P1 + S + Rb3)
⋆(3.38)

=

{

x ∈ X : x · b1 ≥ (x · b2)2
a− |x · b2|

,−a < x · b2 < a, x · bi = 0 ∀i ≥ 3

}

.

From the previous relation it follows that the set (P1 +S +Rb3)
⋆ is contained within

the plane spanned by b1 and b2. For every y ∈ X such that y · b1 = 0 it follows that

x · y = (x · b2)(y · b2) ∀x ∈ (P1 + S + Rb3)
⋆.(3.39)

The elements x1 and x0 are both in C ∩D; in view of relation (3.20) it appears
that (x1 − x0) ∈ (P1 + S + Rb3)

⋆.
From relation (3.38) it follows that |(x1 − x0) · b2| < a. Set

α =
a + |(x1 − x0) · b2|

2
, z1 =

α2

a− α
b1 − αb2, z2 =

α2

a− α
b1 + αb2;

thus z1, z2 ∈ (P1 + S + Rb3)
⋆ and z1 · b2 < (x1 − x0) · b2 < z2 · b2.

Recall that, as y ∈ ∂ιC∩D(x1), the linear functional X ∋ x → (x · y) ∈ R achieves
its maximum on C ∩D at x1. Thus, on one hand,

(x0 + z1) · y ≤ x1 · y,

that is, in view of relation (3.39),

(z1 · b2)(y · b2) ≤ ((x1 − x0) · b2) (y · b2);

combine this relation with the fact that z1 · b2 < (x1 − x0) · b2, and deduce that
y · b2 ≥ 0. On the other hand,

(x0 + z2) · y ≤ x1 · y,

that is, once more by virtue of relation (3.39),

(z2 · b2)(y · b2) ≤ ((x1 − x0) · b2) (y · b2);

in addition, as (x1 − x0) · b2 < z2 · b2, we get y · b2 ≤ 0.
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We may thus conclude that, when y · b1 = 0, it results that y · b2 = 0, and formula
(3.37) proves that y is the sum of two elements from ∂ιC(x1) and ∂ιD(x1).

Consider now the case when y · b1 �= 0, which, taking into account the fact that
the half-line (x0 + R+b1) is contained (as already remarked) within C ∩D, amounts
to saying that y · b1 < 0.

It is well known ([12, Theorem 14.5]) that, for every closed and convex set Z
containing 0 it holds σZ = γZ⋆ . Use this relation for the set (P1 +S+Rb3)

⋆ to obtain

σ(P1+S+Rb3)⋆ = γP1+S+Rb3 ;

as (see 3.20) (P1 + S + Rb3)
⋆ = (C ∩D) − x0, it follows that

σ(C∩D)−x0
= γP1+S+Rb3 .(3.40)

Similarly,

σD−x0
= γF .(3.41)

From relations (3.21), (3.40), and (3.41) it follows that there is some θ(y) ≥ 0
such that

σ(C∩D)−x0
(y) = σD−x0

(y − θ(y)b3);

thus

σC∩D(y) = σD(y − θ(y)b3) + θ(y)x0 · b3.(3.42)

As y ∈ ∂ιC∩D(x1), it results that σC∩D(y) = x1 · y; use relation (3.42) to see that

σD(y − θ(y)b3) + θ(y)x0 · b3 = x1 · y.(3.43)

Relation (3.13) reads x0 · b3 = x1 · b3. Equality (3.43) may thus be stated as

σD(y − θ(y)b3) + θ(y)x1 · b3 = x1 · y,

that is,

σD(y − θ(y)b3) = x1 · (y − θ(y)b3).

This means that (y − θ(y)b3) ∈ ∂ιD(x1).
Recall (see relation (3.34)) that λb3 ∈ ∂ιC(x1) for every λ ≥ 0, and express y as

y = θ(y)b3 + (y − θ(y)b3), that is, the sum of an element from ∂ιC(x1) and the sum
of another element from ∂ιD(x1).

We finally claim that the inf-convolution of the support functionals σC and σD is

not exact at b2
a , a fact which completes the proof of Theorem 3.1.

Proposition 3.7. It holds that

σC�σD

(

b2
a

)

=
x0 · b2

a
+ 1,(3.44)

while

σC(y) + σD(z) >
x0 · b2

a
+ 1 ∀y + z =

b2
a
.(3.45)
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Proof of Proposition 3.7. Use the fact that (x0+2ab2) and (x0−2ab2) both belong
to x0 + A, and thus to C, to deduce that

σC(x) ≥ max ((x0 + 2ab2) · x, (x0 − 2ab2) · x) = x0 · x + 2a|x · b2|.(3.46)

From relation (3.7) it follows that

γF (x) ≥ a|x · b2| ∀x ∈ L1.

Relation (3.41) reads σD−x0
= γF ; hence, it results that

σD(x) = x0 · x + γF (x).(3.47)

It follows that

σD(x) ≥ x0 · x + a|x · b2| ∀x ∈ L1.(3.48)

From relations (3.46) and (3.48) it results that

σC(x)+σD

(

b2
a

− x

)

(3.49)

≥ x0 · x + 2a|x · b2| + x0 ·
(

b2
a

− x

)

+ a

∣

∣

∣

∣

(

b2
a

− x

)

· b2
∣

∣

∣

∣

≥ x0 · b2
a

+ 1 + a|x · b2| ∀x ∈ X, x · b1 = 0.

By taking into account relations (3.6) and (3.49) we prove that

σC�σD

(

b2
a

)

≥ x0 · b2
a

+ 1.(3.50)

As x0 ∈ C ⊂ (x0 + E3), it follows that

σC(λb3) = λx0 · b3 ∀λ ≥ 0.

Use relation (3.47) to deduce that

σC(λb3) + σD

(

b2
a

− λb3

)

= λx0 · b3 +
x0 · b2

a
− λx0 · b3 + γF

(

b2
a

− λb3

)

.

From the previous equality, together with relation (3.9), it yields that

lim
λ→∞

(

σC(λb3) + σD

(

b2
a

− λb3

))

=
x0 · b2

a
+ 1,

which, combined with inequality (3.50), proves relation (3.44).
Finally, let x ∈ L1 be such that x · b2 = 0. Then (see relation (3.8))

γF

(

b2
a

− x

)

> 1,
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and, as obviously σC(x) ≥ x0 · x, it results that

σC(x) + σD

(

b2
a

− x

)

(3.51)

≥ x0 · x +
x0 · b2

a
− x0 · x + γF

(

b2
a

− x

)

>
x0 · b2

a
+ 1 ∀ x ∈ X, x · b1 = x · b2 = 0.

Use relation (3.49) to deduce that, for every x ∈ X such that x · b1 = 0 and
x · b2 �= 0, it holds that

σC(x) + σD

(

b2
a

− x

)

>
x0 · b2

a
+ 1.(3.52)

Relation (3.45) follows from relations (3.5), (3.52), and (3.51).
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