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Abstract

The scalar wave inverse source problem (ISP) is investigated for the case where the source
is embedded in a non-homogeneous medium with known index of refraction profile n(r). It is
shown that the solution to the ISP having minimum energy (so-called minimum energy source)
can be obtained via a simple method of constrained optimization. This method is applied to
the special case when the non-homogeneous background is spherically symmetric (n(r) = n(r))
and yields the minimum energy source in terms of a series of spherical harmonics and radial
wave functions that are solutions to a Sturm-Liouville problem. The special case of a source
embedded in a spherical region of constant index that differs from the background is treated in
detail and results from computer simulations are presented for this case.

1 Introduction

The inverse source problem (ISP) consists of determining a source p to the inhomogeneous Helmholtz
equation
[V? + kgn*(r)]U (r) = —p(r) (1)

that radiates a specified field U everywhere outside the support volume 7 of the source. In this
equation kg is a constant wavenumber and n(r) is an index of refraction distribution that depends
on position r and that is assumed to go to unity for sufficiently large r. We will assume throughout
this paper that the source volume 7 is a sphere, centered at the origin, and having a radius a. The
ISP then consists of computing a source p that generates a prescribed field U everywhere outside
this sphere.

There are a number of treatments of the ISP for the free space case where the index distribution
n(r) is constant (equal to unity) throughtout space [1, 2, 3, 4, 5, 6]. Most of these treatments
make use of the fact that the source’s radiation pattern (see below) determines, in principle, the
field everywhere outside the source volume [7]. Using this fact the ISP can be cast in terms of the
radiation pattern: determine a source p that generates a prescribed radiation pattern. It is also
well known [8, 9, 10] that there exist an infinity of sources that radiate fields that vanish identically
outside their support volumes so that the ISP does not possess a unique solution; i.e., an infinity of
solutions can be obtained by adding any one of these non-radiating sources to any given solution [11].
Thus, in order to obtain a unique solution to the ISP it is necessary to add constraints that the source
must satisfy in addition to yielding a specified radiation pattern. The natural choice of constraint
is source energy £ defined to be the L? norm of the source over the source volume 7:

&= [driptrP @)
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The solution to the ISP that minimizes the source energy as defined in Eq.(2) is called the minimum
energy solution (ME solution) and denoted by pprg. It can be shown that the minimum energy
solution is orthogonal to the non-radiating sources [3] and is the pseudo-inverse of the ISP [5, 6].

The source energy as defined in Eq.(2) is an important measure of the realizability of the source
to achieve a given radiation pattern. For the free space case one finds that the energy of the minimum
energy source (ME source) depends critically on the product = kga of the (free space) wavenumber
ko and the source radius a [2, 6]. For a given radiation pattern this energy &(z) is small for z > Iy
where [y is a parameter that characterizes the radiation pattern and that increases with increasing
fine detail in the pattern. However, it is found that £(z) increases exponentially with decreasing
x below the critical value lp. This exponential increase of source energy indicates that the given
radiation pattern cannot be physically realized by any source having that specific kga product: it
is necessary to either decrease the wavelength (increase ko) or increase the source radius. This
result is equivalent to the well known result in antenna theory that states that reactive energy and
the quality Q of an antenna increase exponentially with decreasing kga if one attempts to achieve
super-resolution [12].

As far as the authors of this paper know there is only one treatment of the ISP for the case where
the background index distribution n(r) in which the source is embedded is non-homogeneous [13].
In that paper it is shown that the ME solution satisfies an integral equation whose kernel is the
imaginary part of the outgoing wave Green function of the inhomogeneous Helmholtz equation (1).
Using this fact it is shown in [13] that the ME solution can be expanded into a series of eigenfunctions
of this integral equation with expansion coefficients that can be determined from the radiation
pattern. The paper shows that the formalism reduces to the known theory of the ISP when the
index n = 1 (homogeneous medium case) but does not include any examples of the general theory.

In this paper we revisit the case of a source embedded in a known non-homogeneous background
index and solve the minimum energy ISP using a simple method of constrained optimization. Besides
providing a simpler formulation of the problem than was used in [13] the method yields a solution
that is directly implemented without the need of first computing a Green function for the Helmholtz
equation (1) and then computing the eigenfunctions of the imaginary part of this quantity. The
special case of a spherically symmetric index n(r) = n(r) is treated in detail and it is shown that
the ME solution to the ISP has exactly the same mathematical form as the solution for the constant
index case but with the spherical Bessel functions employed in the constant index solution replaced
by radial wave functions that are solutions to a Sturm-Liouville problem. In particular, these radial
wave functions are the radial wave scattering functions obtained in the scattering of an incident plane
wave from the spherically symmetric index distribution n(r). This latter problem has been studied
extensively in both quantum mechanical scattering [14] and in optical [15] and electromagnetic [16]
scattering and there exists a number of index distributions for which the scattering wave functions
have been computed and that can be used to compute the ME solution to the ISP.

The motivation for the research presented in this paper is the possibility of optimally selecting
the source region index of refraction distribution n(r) to achieve some specified radiation pattern
that would otherwise not be possible for a source embedded in free space. As mentioned above
and reviewed in section 3, in the free space case the ME source energy increases exponentially with
decreasing © = kopa below a critical point that is determined by the fine detail that is desired in
the radiation pattern. The question then is whether this limitation can be removed by embedding
the source in a non-homogeneous background medium. In effect we create a new “effective source”
that consists of the actual physical source interacting with the non-homogeneous background. In
the simplest case we can consider a source embedded in a cavity with partially reflecting walls.
This cavity will, of course, have a pronounced effect on the radiated field and, possibly, can aid in
achieving desired properties of the radiation pattern.

In this paper we limit our attention, for the most part, to source regions characterized by a
spherically symmetric index of refraction distribution n(r) = n(r) although many of our results can
be generalized to sources embedded in cavities and non-spherically symmetric index distributions.

isourcepapl.tex



To be Submitted to the Journal of the Optical Society of America 3

The realizability of a given radiation pattern is investigated in some detail by examining the energy
of the ME source (as defined by Eq.(2)) on the index of refraction profile of the source region. It
is found that this energy depends critically on the (weighted) L? norm of the radial wavefunctions
taken over the source region. This fact suggests that by proper choice of the index of refraction profile
n(r) that the energy can be minimized for any given radiation pattern; i.e., an index distribution
can be selected that results in a source having minimum energy for a given prescribed radiation
pattern.

The L? norms of the radial wave functions are found to be dependent on “resonant” properties
of the source index distribution and are also related in a one-to-one fashion with the different
angular modes of the radiation pattern. These facts suggest the interesting possibility of exploiting
the “resonances” of the source index distribution to selectively control the shape and form of the
radiation pattern. This possibility is briefly considered in the computer simulation study.

The final section of the paper treats the simple example of a source embedded in a homogeneous
sphere whose constant index of refraction differs from that of the background medium. This is the
simplest example of a spherically symmetric index of refraction distribution and the scattering wave
functions are well known (the so-called MIE scattering problem [15, 16]) and easily computed. The
minimum energy source is computed for this case and results from a computer simulation study that
examines the dependence of the energy of the ME source on the index of refraction of the source
region is presented. It is found that the source energy depends in a non-linear manner on the value
of the source region index and that generally, the larger the index the lower the source energy for
any given radiation pattern. These results suggest that more efficient sources can be obtained by
simply embedding a given radiator (e.g., antenna) in a homogeneous background medium.

2 Problem Formulation
We introduce the scattering potential defined according to the equation
V(r) = k[l — n?(r)]

and rewrite Eq.(1) in a form that we will use in the development to follow. In particular we find
that
[V2+ kg = V(D0)]U(r) = —p(r), 3)

where the scattering potential V' and source p both vanish outside the source region 7.
The outgoing wave solution to Eq.(3) is the field radiated by the source and has the asymptotic
form

eik}()’r‘

U(rs) = f(s)

as kor — oo in the direction specified by the unit vector s. In the above equation f is the source’s
radiation pattern. It is well known that the radiation pattern specified for all directions s uniquely
determines the field U everywhere outside the source region 7 [7]; i.e., knowledge of the radiated
field everywhere outside 7 is equivalent to knowledge of the radiation pattern f(s) specified for all
directions s.

The inverse source problem (ISP) consists of determining a source distribution p(r) that radiates
a specifed field everywhere outside the source region 7. Because the ISP requires only that the
field radiated by the source be specified outside 7 the problem does not possess a unique solution
because of the possible presence of non-radiating sources [8, 9, 10] within 7. A non-radiating source
generates a field that vanishes identically outside 7 and, hence, can be added to any given solution
to the ISP to yield a different solution. Also, because the radiation pattern uniquely determines
the field everywhere outside 7, the ISP is equivalent to the problem of determining a source that
generates a prescribed radiation pattern f(s) for all observation directions s.

k‘o’r — 0 (4)
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Most treatments of the ISP cast the problem in terms of the radiation pattern but only require
that the source generate the radiation pattern to within a given accuracy defined by the integral
squared error

= F(s) — f(s)|?
E—LMW)ﬂN (5)

where f is the prescribed radiation pattern and f the radiation pattern actually generated by the
source. More precisely, the desired radiation pattern is approximated by a finite series of spherical
harmonics Y;™(s)

L l
FO=Fe) =D > am¥(s) (6)

=0 m=—1

and the source is required only to generate the approximate radiation pattern f . Here, we have used
the unit vector s having polar angle 6§ and azimuthal angle ¢ to denote the 6, ¢ arguments of the
spherical harmonics. Because the spherical harmonics are orthonormal and complete over the unit
sphere the approximated radiation pattern satisfies Eq.(5) with an error E given by

9] l
B= > > luwml’

l=L+1m=-1

where the expansion coefficients (multipole moments) a; ., | > L are the higher order (neglected)
expansion coefficients of the ideal radiation pattern.

Besides requiring only that the source generate the radiation pattern within a finite error most
treatments of the ISP also require that the source minimize the source energy defined by

&= [ dript)P (7)

We will show (see also [3]) that minimizing the source energy leads to a unique solution of the
ISP which we refer to as the minimum energy source and designate by pprp. This solution has
the distinct advantage of being the most efficient source that solves the ISP for a given scattering
potential (background index of refraction) V' (r). Since the minimum energy source and, hence, source
energy depend on the scattering potential, an interesting question arises as to the dependence of the
source energy on the background index distribution and, in particular, on which index distributions
lead to lowest source energies. This question provides much of the motivation for studying the ISP
in non-homogeneous backgrounds since it leads to the possibility of designing extremely efficient
sources (e.g., antennas) that are embedded in such backgrounds.

Our goal in this paper is to develop the formalism for solving the ISP as defined above and to
test and evaluate the formalism in a set of computer simulations. We will first treat the case of a
source embedded in free space and then extend the free space theory to the general case of a source
embedded in an inhomogeneous background medium. The free space case is important in that it
provides a benchmark of performance as well as a frame of reference for the general theory.

3 Free Space Case

The minimum energy ISP as defined above has been solved within both the scalar wave formulation
under consideration here [1, 2, 3, 4, 5] and for the electromagnetic wave formulation [6] in the special
case where the scattering potential V(r) vanishes; i.e., when the source is embedded in free space.
We will review the scalar wave free space case here where, however, we will employ a somewhat
different solution methodology to find the minimum energy source than has been used in earlier
work. We will use this same procedure for the general case of non-vanishing scattering potentials
later in the paper.
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The outgoing wave solution to Eq.(3) is given in terms of an outgoing wave Green function G by
the expression

mﬂ:—/fwmmanm, (®)

T

where 7 is the source volume which is a sphere of radius a centered at the origin. In the free space
case where the scattering potential V' = 0 the Green function is given by

1 eiko\r—r'\
Gr,r')=————— 9
1) = - T (9)
from which it is easy to show that
1 ) , eikor
G N o —_—_ ,—tkosT 10
(rs,v') ~ — e (10)

as 7 — oo in the direction s. Using the above result we conclude from Eq.(8) that the radiation

pattern is given by
1 . /
f(S) _ E / d37"/ p(r/)e—zkos-r . (11)

We can obtain an expansion of the radiation pattern in a series of spherical harmonics by using
the well known expansion

oo l
—'Lkosr _ Z Z jl k()'r (f./)}/lm(s) (12)
1=0 m=

where j; denotes the spherical Bessel function of the first kind of order / and Y;™ are the spher-
ical harmonics of degree | and order m and ' denotes the unit vector in the r’ direction. Upon
substituting Eq.(12) into Eq.(11) we find that

[eS) l
=3 Y wm¥i™s) (13)
=0 m=-1

where the expansion coefficients (multipole moments) a;,,, are given by
am = / Q2 f(s)Y;™"(s)
4w
= (i) [ @ o hor Y ), (14

3.1 Minimum Energy Source

The minimum energy solution to the ISP is required to satisfy Eq.(14) for some given set of multipole
moments a;,, ! = 0,1,...,L and also to minimize the source energy defined according to Eq.(7).
Computing the minimum energy source can be cast as one of constrained minimization where the
generalized Lagrangian is given by

L 1
L=E+ Z Z Cimlaj m — it / d>r p*(r)ji(kor)Y;™ (#)] + c.c.

=0 m=—1

where £ is the source energy defined in Eq.(7) and c.c. stands for the complex conjugate of the
second term on the r.h.s. of the equation and the Cj,, are a set of Lagrange multipliers to be
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determined. On expressing the source energy in terms of p and p* and taking the first variation of
the above Lagrangian we obtain

L l

5L = / d*r 8p*(r) [p(r)—z > Crmitii(kor)Y™(#) | + c.c.

=0 m=—1
which, when set equal to zero, yields the solution

{ S Cuniii(kor) Y (F) i <a
0

pup(r) = if r>a.

The Lagrange multipliers Cj ,, are determined from the condition that the source generate the
multipole moments according to Eq.(14). We find that

apm
Cim = 0_l2 (15)
where "
012 :/ r2drjl2(k0r). (16)
0

On making use of the above expression for the Lagrange multipliers we finally conclude that the
minimum energy solution to the free space ISP is given by

L l -l Qim ; k ym (i if
pME(r) _ Zl:o Zm:—l v o2 -71( ()7‘) l (I‘) 1 r<a (17)
0 if r > a.

3.2 Source Energy

The source energy € is readily computed using the minimum energy source given in Eq.(17). We

find that
. 2_ Ny~ ol
e = [ el =Y 3 2 (18)

=0 m=—1

where we have added the subscript “ME” to denote the energy of the minimum energy source. Now
it is easy to show that the quantities o7 depend critically on the product koa of the free space
wavenumber with the source radius a. In particular these quantites can be shown to be given by

a 3
ot = [ lihor) P = 0 (oo) = s (o o) (19)

and to decrease exponentially to zero for [ > kga. It then follows that the largest value L of the
index [ allowed in the approximation Eq.(6) is L = kpa if we want to maintain low source energy.
Values of L >> kga will lead to extremely high source energy and unstable source distributions.

To illustrate the remarks made above concerning the behavior of the quantities o7 on the index [
and the product koa we show in Fig. 1 semilog plots of o7 as a function the index [ for various values
of x = kga. It is seen from these plots that these quantites decay exponentially to zero for [ >> x
so that at wavenumber kq a source of radius a can only efficiently radiate a radiation pattern whose
maximum [ value is L = kga. Similar behaviour is exhibited in Fig.2 which shows semilog plots of
o?(z) as a function of z for values of I = 10,20, and 30.

We computed the energy of the minimum energy source for a model radiation pattern f(6) having
multipole coefficients a;" given by

ayt =< VIFT

L fm=0andl <L (20)
0 else

isourcepapl.tex



To be Submitted to the Journal of the Optical Society of America 7

Figure 1
L T T T T T T
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Figure 1: Behavior of o7 as a function of index [ for three different values of = koa equal to 10,
20, and 30. Plots indicate an exponetial decay of these quantities for [ >> x. The break points are
seen to occur when z =~ .

Figure 2

breakl

w7 e braakT breakT ]

Figure 2: o7 as a function of z = koa for values of Iy = 10 (.), lo = 20 (o) and Iy = 30 (x). Plots
indicate an exponetial growth of these quantities for x << ly. The break points are seen to occur
when z ~ [.
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Figure 3
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Figure 3: Plots of the model radiation pattern for L = 10 (.), L = 20 (o) and L = 30 (x).

This radiation pattern is circularly symmetric about the z axis (is independent of ¢ since m = 0,
V1), has an effective beam width inversely related to the cut-off value L and has unit energy; i.e.,

L
. 1
/ sin 0d0do |f(0)> = § I 1° 1.
am 1=0

We show plots of the model radiation pattern as a function of angle € in Fig. 3 for values of the
parameter L equal to L = 10, L = 20 and L = 30. It is clear from these plots that the larger the
value of L the narrower is the radiation pattern and, hence, higher is the directivity of the source.

Using the coefficients given in Eq.(20) we computed the source energy using Eq.(18) with the o7}
given by Eq.(19) and with three different L values of L = 10,20 and L = 30. We show in Fig. ??
plots of the source energies as a function of z = kga for the three different values of the parameter
L. Tt is seen that as expected the source energy becomes extremely large if we try to achieve an L
value that exceeds the critical value L = kga. This is, of course, due to the fact that the quantities
o7 become extremely small when koa << [ as is indicated in Fig.2.

4 Non-homogeneous Backgrounds

The solution of Eq.(3) for a non-homogeneous index distribution n(r) can be expressed in terms of
a Green function via Eq.(8) where, however, the Green function is no longer the free space Green
function defined in Eq.(9). More important for our purposes is the fact that the asymptotic behavior
of the Green function for the variable index case is also of the general free space form Eq.(10) where,
however, the plane wave exp(—ikgs-r’) is replaced by the scattering wave function ¥ (r'; —kgs). The
scattering wave functions T (r; —kos) are solutions to Eq.(3) for the special case where the source p
is a delta function located at infinity along the direction defined by the unit vector s. Equivalently,
these wave functions are solutions to the homogeneous Helmholtz equation

[VZ + kg = V()™ (r; —kos) = 0, (21)
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Source Energy
=
T

Figure 4: Source energy as a function of z = kga for values of L = 10 (.), L = 20 (o) and L = 30
(x). Plots indicate an exponetial growth of these quantities for © << L.
labelfig:4

which obey the asymptotic condition

ik()T‘

YF(re; —kos) ~ e HFOST 1 g(#; —kqs)

(22)

as kgr — oo in the r direction. In the above equation g is the so-called scattering amplitude
associated with the scattering potential V' and plays a similar role in scattering problems as does
the source radiation pattern f in radiation problems. The scattering wave functions correspond
physically to the wavefields that result when an incident plane wave propagating in the —s direction
scatters off the inhomogeneous index of refraction distribution n(r). Note that in the limit when
the scattering potential vanishes these wavefunctions simply reduce to the incident plane wave.
In terms of the scattering wave functions the radiation pattern of the source in the non-homogeneous

index case is given by (see appendix)

f(s) = — / & ()t (s —kos), (23)

am ).

which is simply the free space result Eq.(10) with the plane wave exp(—ikgs - r’) replaced by the
scattering wave function T (r'; —kgs). The ISP for non-homogeneous media then reduces to deter-
mining a source p that satisfies Eq.(23) for all observation directions s. Clearly, in the special case
when V' = 0 the scattering wave function reduces to the plane wave and Eq.(23) reduces to the free
space result Eq.(11).

4.1 Spherically Symmetric Backgrounds

In this paper we will restrict our attention to the case of spherically symmetric index distributions
n(r) = n(r). The scattering wave functions then satisfy (cf., Eq.(21))

[VZ + kg = V()] (r; —kos) = 0, (24)
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where the eigenfunctions ™ are required to satisfy the boundary condition Eq.(22). Because of the
spherical symmetry of the scattering potential V', the wavefield )" can only depend on the magnitude
r of the field point vector r and the polar angle v formed between the direction of propagation —s
of the incident plane wave and r. If we then take the incident wave direction to be the positive z
axis and express the Helmholtz operator in spherical polar coordinates Eq.(24) can then be written
in the form 18 5 ) 5 5

[r—gg(rzg) ma—v(SifWa—y) V() + kgt (r,7) =0 (25)
where «y is the polar angle formed between the positive z axis and the field point vector r and where
we have used the fact that the field must be independent of the azimuthal angle ¢. The boundary
condition Eq.(22) becomes

eik()’l"

YT (r,y) ~ €T 4 g(v)

where we have set —kgs - r = koz = kor cosy and where g(7y) is the scattering amplitude.
We can expand the scattering wave function 1™ (r,v), the incident plane wave exp(ikor cos~)
and the scattering amplitude g(7y) into series of Legendre polynomials as follows

PH(ry) = Y2+ 1)¢u(r) Pi(cos ),

l

etforeosy =N "il(20 4 1)y (kor) Pi(cos ),
l

g(y) = Y i'(2l+1)AP(cosy),
1

" (26)

where we have introduced the factors /(2] + 1) into the expansions for the scattering wave function
and the scattering amplitude for later notational convienence. In these equations j; is the spherical
Bessel function of the first kind of order [ and the A; are expansion coefficients of the scattering
amplitude that depend on the specific form of the scattering potential V(r). On substituting the
first of these equations into Eq.(25) we find that the radial dependent coefficients ;(r) satisfy the
equation

1d

od. Ul+1)

(P ) = S V) + () = 0 (27)
where we have used the fact that
1 0. 0
7 5 (675 Pileosy) = 1L+ 1) Pi(eos ).

The asymptotic behavior of the radial functions ¢;(r) is obtained by substituting the expansions for
the scattering wave function, the incident plane wave, and the scattering amplitude into Eq.(26).
We find that

eikor

Pi(r) ~ ji(kor) + Ay

Besides satisfying the bounary condition Eq.(28) we also require that the radial functions be every-
where continuous with continuous first derivatives.

Once the radial functions v;(r) are computed the scattering wave functions ¢ (r,y) correspond-
ing to an incident plane wave propagating along the z axis is given by the expansion in Legendre
polynomials above. However, the defining equation for the radiation pattern Eq.(23) requires that
we have the scattering wave functions for all directions —s of the incident plane wave. This can be
easily accomplished by using the addition theorem for spherical harmonics

(28)

r

l

Y CDYE)Y(s),

m=—

47
20+ 1

Pi(cos) =
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where now ~ is the angle formed between the arbitrary incident wave direction —s and the field
direction r. On using the addition theorem we obtain

0o l
U (ri—kos) = 4r > 3 (<) () (B)Ys), (29)

=0 m=—1
which is the generalization of Eq.(12) to spherically symmetric non-homogeneous index of refraction
distributions.

4.2 Minimum Energy Source

Upon substituting the expansion Eq.(29) into Eq.(23) we obtain Eq.(13) where, however, the mul-
tipole moments are now given by

al,m

/4 40, £(s)Y7™ (s)
— (i) / &1 p(e)(r) Y™ (&) (30)

which is the generalization of Eq.(14) to the case where the source is embedded in a non-homogeneous
but spherically symmetric index of refraction profile. The generalized Eq.(30) is seen to result from
Eq.(14) under the replacement of the spherical Bessel functions j; by the radial functions ;. The
minimum energy solution to the ISP is required to satisfy Eq.(30) for some given set of multipole
moments a;,, ! =0,1,...,L and also to minimize the source energy defined according to Eq.(7).

As in the free space case computing the minimum energy source can be cast as one of constrained
minimization where the generalized Lagrangian is now given by

L l
L=+ Y Cunlaiy i [ v (¥ @)+ ce

=0 m=-—1

where, as before, £ is the source energy defined in Eq.(7) and c.c. stands for the complex conjugate
of the second term on the r.h.s. of the equation and the Cj ., are a set of Lagrange multipliers to
be determined. On expressing the source energy in terms of p and p* and taking the first variation
of the above Lagrangian we obtain

L l

se= [ o) [pm 3 G ()Y )

=0 m=—1

+ c.c.

which, when set equal to zero, yields the solution

(v) { Sk S G ()Y (E) i <a
0

PME o if r > a.

The Lagrange multipliers C ., are determined from the condition that the source generate the
multipole moments according to Eq.(30). We find that

arm
Cim = = 31
l7 212 ( )
where "
22 = / r2dr [ ()2 (32)
0
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On making use of the above expression for the Lagrange multipliers we finally conclude that the
minimum energy solution to the ISP for spherically symmetric background index distributions is
given by

L 1 NLQLm % m/a .
oara(E) = { Do Ty SV N0 i< )

The source energy is found to be given by the free space formula Eq.(18) where, however, the
le are replaced by the Elz defined in Eq.(32). As in the free space case the source energy is seen
to depend inversely on the Elz. Although these quantities are strictly positive they can become
extremely small leading to extremely high source energy and associated instability in the minimum
energy source. Thus, it is of interest to maximize these quantities especially for large values of the
index ! which is associated with fine detail (high resolution) in the radiation pattern.

The energy of the ME source is obtained by substituting Eq.(33) into the source energy definition
given in Eq.(2). We obtain the same expression as was obtained in the free space case Eq.(18)
where, however, the o7 are replaced by the 7. It is clear that the source energy is minimized
by maximizing the X7 which, in turn, is equivalent to maximizing the weighted L? norm of the
radial functions v; over the interval [0,a]. Since the radial functions ; are solutions to a Sturm-
Liouville problem the energy minimization problem reduces to finding scattering potentials V (r)
whose corresponding Sturm-Liouville problem has solutions with maximum norm over this interval.
This problem, although simple to state, appears to be non-trivial and the authors’ offer no simple
recipe for computing optimum potentials at this time. However, in the following section we will
treat a simple class of potentials that illustrate the dependence of source energy on selection of V.

5 Piecewise Constant Backgrounds

In this section we consider the special case where the scattering potential V' (r) is constant throughout

the source region; i.e.,
[ K-k ifr<a
Vir) = { 0 ifr > a, (34)

This is certainly a spherically symmetric scattering potential so that the scattering wave functions
can be expanded in the form of Eq.(29) where the radial functions ;(r) satisfy Eq.(27) with V (r)
given in Eq.(34) above. Thus we find that
1d,,d I(1+1) 9 P
[r2dr(r dr) = +E(r) =0 if0<r<a
1d,,d I(1+1)
[7"2 dr(r dr) 2
together with the boundary condition from Eq.(28):

+Ei(r) =0 ifa<r<oo

ikor

Yi(r) ~ ji(kor) + Ay ifr > a. (35)

r
We also require that the radial functions be finite and continuous with a continuous first derivative.
The set of differential equations together with the boundary and continuity conditions allow us to
obtain a unique solution for the radial function.

5.0.1 Radial Function

The radial function has the general form

i(r) = Aji(kr) + Bhy(kr) if0<r<a
i(r) = Chi(kor) + Dhy(kor) ifa <r < oo
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where j; is the spherical Bessel function of the first kind and h; the spherical Hankel function of the
first kind. The requirement that the radial function be finite at the origin r = 0 requires that B = 0
while the boundary condition Eq.(35) requires that the constant C' = 1. The remaining constants
A and D are determined by the continuity requirements applied at the boundary r = a. These
conditions are

Aji(ka) = ji(koa) + Dhy(koa)
. ko .
Aji'(ka) = {3t (koa) + Dhi'(koa)
from which we obtain the solution

hi(koa) — ji(koa)hy' (koa)

o
o
/-:
e
o
S
S~—

A= ! ko /
k Ji (ka)hl(koa) - Jkljl(ka)hl (k()a)
b _ 3 (ka)ji(koa) — S ji(ka)i (koa)

koa) — 525, (ka)h' (koa)

The expression for the constant A can be further simplified by using the Wronskian relation for
spherical Bessel functions

i . —1
Jf(koa)hl(kﬁoa) - jl(k()a)hg(koa) = W
0

We find that »
A= Eoka : (36)
i (ka)hy(koa) — 52y (ka)hy' (koa)

5.1 Source Energy
The quantities 7 are found using Eq.(32) to be given by

2t = [P
= 142 [ rarligi)?
= Ty(k, ko)oi (k) (37)
where o2 (k) is the free space quantity defined in Eq.(19) but with ko replaced by k and
ik, ko) = A" = 1 (39)

- kZat|kjl(ka)hi(koa) — koji(ka)h](koa)|?”
In the limit when & — kg we have that

1
Ty (k. ko) — T(ko, ko) = =1
1(k, ko) = T (ko, ko) koat|ji(koa)hi(koa) — ji(koa)hi(koa)|?

where we have used the Wronskian between the spherical Bessel and spherical Hankel functions. It
then follows that X7 — 07(ko) in this limit as required.

The quantities T;(k, ko) appearing in the expression for the Elz have a simple interpretation: they
are the magnitude square of the transmission coefficients relating the amplitudes of the outgoing
multipole fields radiated by the source p evaluated on the exterior of the source region to the
amplitude of the outgoing wave multipole fields radiated by the source on the interior of the source
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region. In particular, at the interior of the boundary at » = a we can express the field radiated by the
source in the form of a superposition of outgoing and standing wave solutions to the homogeneous
Helmholtz equation with wavenumber k = nky while outside this sphere the field is a superposition
of outgoing wave solutions to the Helmholtz equation with wavenumber ko. Because the total field
and normal derivative must be continuous across the boundary we find that for each multipole mode
we require

hi(ka) + riji(ka) = tih(koa)
k
hi(ka) +riji(ka) = —tih(koa)

where r; and ¢; are reflection and transmission coefficients and the primes denote derivatives. Solving
for the transmission coefficients ¢; we find that

Ji(ka)hi(ka) — ji(ka)hj(ka)

= - -
ji(ka)hi(koa) — % ji(ka)hj(koa)

_ Tz 2
- ) ko / ( )
Ji(ka)hi(koa) — 32 ji(ka)h;(koa)

which is seen to be identical to the coefficient A obtained earlier so that |t;|? = |A|? = T} as indicated.

The interpretation of the quantities 7; as being the magnitude square of the transmission co-
efficients from the field modes in the interior of the source region to the field modes outside this
region makes perfect sense in view of the formula Eq.(37) for the quantities £?. In particular, to
minimize source energy £ (i.e., to obtain an efficient source) we wish to maximize the X7 which, in
turn, requires us to maximize the 7} or, equivalently, maximize the amount of energy transmitted
from the source interior to the source exterior. As we will find in our simulations presented below
the T;(k, ko) vary inversely with index value n so that low source energy is obtained by selecting
n to be small. On the other-hand the ¥? and, hence, the source energy also depend on the free
space quantities o7 evaluated at the source region wavenumber k and, as is easily confirmed from
the results presented in section 3, the free space quantities o7 (k) increase with k and, hence, index
n, at fixed source radius a. Thus, the two quantities entering into the expression Eq.(37) for El2
have opposite dependences on source index n and it is necessary to carefully evaluate the relative
importance of each quantity in order to select an index value that leads to small source energy.

We show in Fig. 5-7 plots of the free space quantities o7 (k), the modulus square of the transmis-
sion coefficient T} (k, ko) and, finally, the X7 = T;(k, ko)o7 (k) plotted as a function of the product
z = koa of the free space wavenumber with the source radius a = 10 and for two values of the source
region index n (n = .5, n = 1.5) and for [ values of [ = 10,20 and ! = 30. The following conclusions
can be drawn from these plots:

e For fixed a and fixed [ the free space quantities o7 (k = nko) increase with increasing index n
for any given free space wavenumber k.

e For fixed a and fixed [ the quantities T;(k = nko, ko) oscillate with ky. The oscillations indicate
the presence of resonances of the scattering functions within the source volume. The 7} are
decreasing functions of index n at any given free space wavenumber k.

e The X7 = Tj07 oscillate with respect to ko due to the resonances of the scattering states in the
source region and are also dependent on the source region index n. For kg values below the
critical point koa = 1, the growth of the free space quantity Ulz(k = nko) with respect to index n
tends to outweigh the decay of Ti(k = nko, ko) with respect to n with the result that the product
¥? is an increasing function of n.
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Figure 5
1o .

Figure 5: Plots of o7(k = nkg) (dash-dot), T;(k = nko, ko) (dotted), and £ = Ty} (solid) for I = 10
and n = .5 and n = 1.5. It is seen from the plots that the larger n value yields larger %2.

15 Figure 6

Figure 6: Plots of o7 (k = nko) (dash-dot), T}(k = nko, ko) (dotted), and X2 = T;o? (solid) for I = 20
and n = .5 and n = 1.5. It is seen from the plots that the larger n value yields larger X7.

isourcepapl.tex



To be Submitted to the Journal of the Optical Society of America

Figure 7
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Figure 7: Plots of 07 (k = nky) (dash-dot), T}(k = nko, ko) (dotted), and X2 = T;o? (solid) for I = 30
and n = .5 and n = 1.5. It is seen from the plots that the larger n value yields larger X7

A more indepth look at the behavior of the ¥? as a function of kg, n and [ can be obtained from
Figs. 8-10. These figures show composite plots of £? for n = .5,1 and n = 1.5 for three different [
values (I = 10,20, 30). It is clear from these plots that by making the source region index n > 1 it is
possible to increase the Elz beyond their free space values Ulz(ko) and thereby obtain sources which
have lower energy than those embedded in free space.

We conclude from the above results that like the free space quantities o7 (ko), the £? decay
exponentially to zero for [ >> kya. However, by proper selection of the index n of the source region
it is possible to obtain higher values of these quantites in the vicinity of the critical point kga =1
and, hence, lower source energy than can be obtained in the free space case for the same radiation
pattern. This result follows from the fact that the radiation pattern expansion coefficients a;" are
independent of the source region index distribution so that minimum source energy is obtained by
simply maximizing the 7.

We computed the source energy for the model radiation pattern employed in the free space
examples of section 3.2. Using the coefficients given in Eq.(20) we computed the source energy using
Eq.(18) with the X? given by Eq.(37). We show in Fig. 11 plots of the source energies as a function
of x = kga for three different values of the cut-off parameter L and for a source radius of a = 10 and
and index value of n = 1.5. We also show for comparison the plots of the source energy for a source
embedded in free space. It is seen that as expected the source energy becomes extremely large if we
try to achieve an L value that exceeds the critical value L = kga. This is, of course, due to the fact
that the quantities Elz become extremely small when [ > kqa.

Finally, in Fig. 12 we show plots of the “gain” defined as the ratio of source energy for a source in a
constant index sphere to that of a source embedded in free space. We show three plots corresponding
to the three case illustrated in Fig. 11.
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Figure 8
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Figure 8: Plots of X7 = Tjo? for | = 10 and n = .5 (xx), n = 1 (xx) and n = 1.5 (xx). It is seen
from the plots that the larger n value yields larger ¥? in the vicinity of the critical point koa = I.

5 Figure 9
10 T T T T T T

a 10 15 20 258 30 35 40

Figure 9: Plots of ¥? = Tjo? for | =20 and n = .5 (xx), n = 1 (xx) and n = 1.5 (xx). It is seen
from the plots that the larger n value yields larger ¥7 in the vicinity of the critical point koa = I.
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Figure 10
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Figure 10: Plots of ¥7 = Tjo7 for I = 30 and n = .5 (xx), n = 1 (xx) and n = 1.5 (xx). It is seen
from the plots that the larger n value yields larger 212 in the vicinity of the critical point kga = I.

Figure 6

Figure 11: Plots of source energy for a = 10, n = 1 (solid) and n = 1.5 (with asterisks) and for
L =10,20, and L = 30. It is seen from the plots that the larger n value yields smaller energy and,
hence, a more efficient source in the vicinity of the critical point kga = L.
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Figure 7

Figure 12: Plots of source energy “gain” defined to be the ratio of source energy when the source
is embedded in an index distribution to that of the source energy when embedded in vacumn. The
three sets of curves are for a = 10, n = 1 (solid) and n = 1.5 (with asterisks) and for L = 10, 20,
and L = 30. It is seen from the plots that the larger n value yields smaller gain and, hence, a more
efficient source in the vicinity of the critical point kga = L.

6 Summary and Conclusions

We have developed the basic theory of the inverse source problem for compactly supported sources
embedded in an inhomogeneous index profile n(r). Most of our results pertain, in particular, to
spherically symmetric index distributions n(r) = n(r) although the underlying formalism is applica-
ble to general, non-symmetric distributions. For the class of spherically symmetric index profiles
we showed how to construct the so-called minimum energy source that generates a given radiation
pattern subject to the constraint that the sources L? norm over the source region is minimum. It
was found that the energy of the minimum energy source depended on the index profile n(r) and
we examined this dependence using computer simulations for the case of piece-wise constant val-
ued profiles that are unity outside the (spherical) source volume and constant within the source
volume and for a “model” radiation pattern characterized by a “resolution parameter” L that was
inversely related to the effective angular width of the radiation pattern. The simulations showed
that, in general, the source energy increases exponentially when the wavenumber source radius prod-
uct kga >> L independent of whether or not the source is embedded in a background medium or
not. However, it was found that by embedding the source in a spherical region having constant index
n > 1 that the source energy was smaller than that obtained for a source in vacumn over moderate
ranges of the wavenumber source radius product kga in the immediate vicinity of the critical value
koa = L. This suggests that embedding sources in “designer” background distributions may lead to
significant improvement in source efficiency.
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