
LINEAR REGULARITY FOR A COLLECTION OF SUBSMOOTH
SETS IN BANACH SPACES

XI YIN ZHENG† AND KUNG FU NG‡

Abstract. Using variational analysis, we study the linear regularity for a collection of finitely

many closed sets. In particular, we extend duality characterizations of the linear regularity for a

collection of finitely many closed convex sets to the possibly nonconvex setting. Moreover the sharpest

linear regularity constant can also be dually represented under the subsmoothness assumption.
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1. Introduction. Linear regularity is a well known notion in mathematical pro-
gramming and approximation theory. In particular, it plays a key role in establishing
a linear convergence rate of iterates generated by the cyclic projection algorithm for
finding the projection from a point to the intersection of finitely many closed convex
sets (see [3] and references therein).

In this paper, we study the linear regularity of a collection {A1, · · · , An} of finitely
many closed sets in a Banach space X. Here we say that the collection is locally

linearly regular at a ∈
n⋂

i=1

Ai (resp. linearly regular) if there exists τ ∈ (0, +∞) such

that

d(x,
n⋂

i=1

Ai) ≤ τ
n∑

i=1

d(x,Ai) for all x close to a(1.1)

(
resp. d(x,

n⋂

i=1

Ai) ≤ τ

n∑

i=1

d(x,Ai) for all x ∈ X

)
.

The linear regularity has been well studied by many authors in the case when each
Ai is a closed convex set (see [2-5,12,18,25] and references therein). In 1972, Jameson
[12] proved that, for n = 2, if each Ai is a closed convex cone, then {A1, · · · , An} is
linearly regular if and only if there exists τ ∈ (0, +∞) such that

N(
n⋂

i=1

Ai, 0) ∩BX∗ ⊂ τ

n∑

i=1

N(Ai, 0) ∩BX∗ ,
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where X∗ denotes the dual space of X and BX∗ denotes the closed unit ball of
X∗. Pang [21] and Lewis and Pang [15] provided necessary conditions for the linear
regularity of a collection of finitely many closed convex sets in terms of the normal
cone. Afterwards, Bauschke, Borwein and Li [4] established some sufficient conditions
in the same line. Recently, it was proved (cf. [2,20,25]) that if {A1, · · · , An} is a
collection of closed convex sets in a Banach space X then the following statements
are equivalent:
(C1) {A1, · · · , An} is linearly regular.
(C2) There exists τ ∈ (0, +∞) such that

N(
n⋂

i=1

Ai, x) ∩BX∗ ⊂ τ
n∑

i=1

N(Ai, x) ∩BX∗ for all x ∈
n⋂

i=1

Ai.

(C3) There exists τ ∈ (0, +∞) such that for any x ∈
n⋂

i=1

Ai,

(SC) N(
n⋂

i=1

Ai, x) =
n∑

i=1

N(Ai, x)

and

inf

{
n∑

i=1

‖x∗i ‖ : x∗i ∈ N(Ai, x) and x∗ =
n∑

i=1

x∗i

}
≤ τ‖x∗‖ ∀x∗ ∈ N(

n⋂

i=1

Ai, x).

In the terminology of Deutsch, Li and Ward [11], (SC) means that the collection has
the strong conical hull intersection property (strong CHIP) at x, which is a useful no-
tion for us and has been extensively studied in variational analysis (cf. [4,5,10,11,16]).

In this paper, we will study the nonconvex case. In view of the fact that a
collection {A1, · · · , An} of closed convex sets is linearly regular with a constant τ if

and only if {A1, · · · , An} is locally linearly regular at each a ∈ bd(
n⋂

i=1

Ai) with the

same constant, it is natural to adopt the local version when one considers a collection
of closed sets. While the equivalences among (C1), (C2) and (C3) are not longer valid
if one drops the convexity assumption of some Ai, a natural substitute of convexity in
this respect is the subsmoothness, a notion recently introduced and studied by Aussel,
Daniilids and Thibault [1], which is a generalization of the well known notion of the
prox-regularity (cf. [6,7,9,23,24] and references therein).

In Section 2, we recall some notions in variational analysis and provide some prop-
erties of the subsmoothness. In Section 3, as an application of the Ekeland variational
principle, we provide a kind of approximate projection result for a closed set, which
is very useful for our analysis. In Section 4, in terms of the subsmoothness and the
approximate projection result, we establish sufficient and/or necessary conditions for
the local linear regularity of a collection of finitely many subsmooth closed sets, which
extend the equivalences among (C1), (C2) and (C3) to the nonconvex case. Moreover
the constants τ satisfying (1.1) are represented quantitatively by duality formulas.
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2. Subsmoothness of a closed set. Throughout this paper, we assume that
X is a Banach space. Let A be a closed subset of X and a ∈ A.

Let Tc(A, a) and T (A, a) denote respectively the Clarke tangent cone and the
contingent cone of A at a, which are respectively defined by

Tc(A, a) = lim inf
x

A→a,t→0+

A− x

t
and T (A, a) = lim sup

t→0+

A− a

t
,

where x
A→ a means that x → a with x ∈ A. Thus, v ∈ Tc(A, a) if and only if, for

each sequence {an} in A converging to a and each sequence {tn} in (0, ∞) decreasing
to 0, there exists a sequence {vn} in X converging to v such that an + tnvn ∈ A for
all n, while v ∈ T (A, a) if and only if there exist a sequence {vn} converging to v and
a sequence {tn} in (0, ∞) decreasing to 0 such that a + tnvn ∈ A for all n.

We denote by Nc(A, a) the Clarke normal cone of A at a, that is,

Nc(A, a) := {x∗ ∈ X∗ : 〈x∗, h〉 ≤ 0 for all h ∈ Tc(A, a)}.

For ε ≥ 0 and a ∈ A, the nonempty set

N̂ε(A, a) :=

{
x∗ ∈ X∗ : lim sup

x
A→a

〈x∗, x− a〉
‖x− a‖ ≤ ε

}

is called the set of Fréchet ε-normals of A at a. When ε = 0, N̂ε(A, a) is a convex
cone which is called the Fréchet normal cone of A at a and is denoted by N̂(A, a).

Let N(A, a) denote the limiting normal cone of A at a, that is,

N(A, a) = lim sup
x

A→a,ε→0+

N̂ε(A, x).

Thus, x∗ ∈ N(A, a) if and only if there exists a sequence {(xn, εn, x∗n)} in A×R+×X∗

such that (xn, εn) → (a, 0), x∗n
w∗→ x∗ and x∗n ∈ N̂εn

(A, xn) for each n. It is known
that

N̂(A, a) ⊂ N(A, a) ⊂ Nc(A, a)

(cf. [17] and [18]).
If A is convex, then Tc(A, a) = T (A, a) and Nc(A, a) = N̂(A, a); in this case,

Nc(A, a) = N̂(A, a) = {x∗ ∈ X∗ : 〈x∗, x〉 ≤ 〈x∗, a〉 for all x ∈ A}.

Recall that a Banach space X is called an Asplund space if every continuous
convex function on X is Fréchet differentiable at each point of a dense subset of X.
It is well known (cf. [22]) that X is an Asplund space if and only if every separable
subspace of X has a separable dual space. In particular, every reflexive Banach space
is an Asplund space. When X is an Asplund space, Mordukhovich and Shao [18]
proved that

Nc(A, a) = cl∗(co(N(A, a))) and N(A, a) = lim sup
x

A→a

N̂(A, x),(2.1)
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where cl∗(·) denotes the closure with respect to the weak∗ topology w∗.
Recall that a closed set A in X is said to be prox-regular at a ∈ A if there exist

σ, r > 0 such that

〈x∗ − u∗, x− u〉 ≥ −σ‖x− u‖2

whenever x, u ∈ A∩B(a, r), x∗ ∈ Nc(A, x)∩BX∗ and u∗ ∈ Nc(A, u)∩BX∗ . Readers
can find some interesting properties of the prox-regularity in [23] and [24].

As a generalization of the prox-regularity, Aussel, Daniilidis and Thibault [1] in-
troduced and studied the subsmoothness. A closed set A in X is said to be subsmooth
at a ∈ A if for any ε > 0 there exists r > 0 such that

〈x∗ − u∗, x− u〉 ≥ −ε‖x− u‖(2.2)

whenever x, u ∈ A ∩B(a, r), x∗ ∈ Nc(A, x) ∩BX∗ and u∗ ∈ Nc(A, u) ∩BX∗ .
Taking x∗ = 0, (2.2) reduces to 〈u∗, x−u〉 ≤ ε‖x−u‖. On the other hand, noting

that 〈x∗−u∗, x−u〉 ≥ −2ε‖x−u‖ if 〈x∗, u−x〉 ≤ ε‖x−u‖ and 〈u∗, x−u〉 ≤ ε‖x−u‖,
it follows that A is subsmooth at a ∈ A if and only if for any ε > 0 there exists r > 0
such that

〈u∗, x− u〉 ≤ ε‖x− u‖ for all x ∈ A ∩B(u, r)(2.3)

whenever u ∈ A ∩B(a, r) and u∗ ∈ Nc(A, u) ∩BX∗ . Thus, for any ε > 0 there exists
r > 0 such that

Nc(A, u) ⊂ N̂ε(A, u) for all u ∈ A ∩B(a, r)

provided that A is subsmooth at a. Hence

subsmoothness of A at a =⇒ Nc(A, a) = N̂(A, a).(2.4)

Usually, A is said to be regular at a in the Clarke sense if Nc(A, a) = N̂(A, a).
It is known (cf. [17, Corollary 1.96]) that N̂(A, u)∩BX∗ = ∂̂d(·, A)(u) for u ∈ A,

where ∂̂ denotes the Fréchet subdifferential. Hence x∗ ∈ N̂(A, u)∩BX∗ if and only if
for any ε > 0 there exists r > 0 such that

〈x∗, x− u〉 ≤ d(x,A) + ε‖x− u‖ ∀x ∈ B(u, r).(2.5)

The following proposition shows that a strengthened condition similar to (2.5)
provides a characterization of the subsmoothness. As the result will be quoted several
times we include its simple proof here.

Proposition 2.1. Let A be a closed subset of X. Then A is subsmooth at a ∈ A

if and only if for any ε > 0 there exists r > 0 such that

〈u∗, x− u〉 ≤ d(x,A) + ε‖x− u‖ for all x ∈ B(a, r)(2.6)

whenever u ∈ A ∩B(a, r) and u∗ ∈ Nc(A, u) ∩BX∗ .
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Proof. Since d(x,A) = 0 for all x ∈ A, (2.6) implies (2.3). Hence, the sufficiency
part holds. Conversely, suppose that A is subsmooth at a ∈ A. Let ε > 0 and take
r > 0 such that

〈u∗, z − u〉 ≤ ε

2
‖z − u‖ for all z ∈ A ∩B(a, 2r)(2.7)

whenever u ∈ A∩B(a, r) and u∗ ∈ Nc(A, u)∩BX∗ . Let x ∈ B(a, r), u ∈ A∩B(a, r) and
u∗ ∈ Nc(A, u)∩BX∗ . Then d(x,A) ≤ ‖x−a‖ < r. Thus, there exists a sequence {un}
in A∩B(x, r) such that ‖x−un‖ → d(x,A). Hence ‖un−a‖ ≤ ‖un−x‖+‖x−a‖ < 2r.
It follows from (2.7) that

〈u∗, x− u〉 = 〈u∗, x− un〉+ 〈u∗, un − u〉
≤ ‖x− un‖+

ε

2
‖un − u‖

≤ ‖x− un‖+
ε

2
(‖un − x‖+ ‖x− u‖).

Letting n →∞, one has

〈u∗, x− u〉 ≤ d(x,A) +
ε

2
(d(x,A) + ‖x− u‖) ≤ d(x,A) + ε‖x− u‖.

This shows that the necessity part holds. The proof is completed.

Proposition 2.2. Let X, Y be Banach spaces, Ω a closed convex subset of Y

and g : X → Y a continuously differentiable function. Let a ∈ g−1(Ω) and suppose
that g′(a) is surjective, where g′(a) denotes the derivative of g at a. Then there exists
a neighborhood U of a such that the following statements hold.
(i) Nc(g−1(Ω), u) = (g′(u))∗(N(Ω, g(u))) for any u ∈ g−1(Ω) ∩ U , where (g′(u))∗

denotes the adjoint operator of g′(u).
(ii) g−1(Ω) is subsmooth at each point of g−1(Ω) ∩ U .

Proof. Since g′(a) is surjective, there exists l > 0 such that 2lBY ⊂ g′(a)(BX).
Since x 7→ g′(x) is continuous, it follows that there exists r > 0 such that

lBY ⊂ g′(x)(BX) for all x ∈ B(a, r).(2.8)

To prove (i), it suffices to show the inclusion

Nc(g−1(Ω), u) ⊂ g′(u)∗(N(Ω, g(u))) ∀u ∈ g−1(Ω) ∩B(a, r)(2.9)

(the converse inclusion follows easily from [17, Theorem 1.17]). Suppose to the con-
trary that there exists u ∈ g−1(Ω) ∩B(a, r) such that

x∗ ∈ Nc(g−1(Ω), u) \ g′(u)∗(N(Ω, g(u))).(2.10)

Since the adjoint operator g′(u)∗ is weak∗-weak∗ continuous and g′(u) is surjective
(by (2.8)) , g′(u)∗(N(Ω, g(u))) ∩ BX∗ is weak∗ closed. This and the Krein-Smulian
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theorem imply that g′(u)∗(N(Ω, g(u))) is weak∗ closed. By (2.10) and the separation
theorem, there exists h0 ∈ X such that

〈x∗, h0〉 > sup{〈g′(u)∗(y∗), h0〉 : y∗ ∈ N(Ω, g(u))}
= sup{〈y∗, g′(u)(h0)〉 : y∗ ∈ N(Ω, g(u))}.

It follows from the convexity of Ω that 〈x∗, h0〉 > 0 and g′(u)(h0) ∈ Tc(Ω, g(u)).
Take an arbitrary sequence {xn} in g−1(Ω) converging to u and an arbitrary sequence
{tn} in (0, +∞) decreasing to 0. Then g(xn) Ω→ g(u) and hence there exists a
sequence yn → g′(u)(h0) such that g(xn)+ tnyn ∈ Ω for all n. Since g is continuously
differentiable, (2.8) and the Lyusternik-Graves theorem (cf. [17, Theorem 1.57]) imply
that

d(xn + tnh0, g
−1(g(xn) + tnyn)) ≤ L‖g(xn + tnh0)− g(xn)− tnyn‖(2.11)

for some L ∈ (0, +∞) and all n large enough. Noting that

g(xn + tnh0)− g(xn) = g′(u)(tnh0) + o(tn),

it follows that for each n large enough there exists x̃n ∈ X such that

x̃n ∈ g−1(g(xn) + tnyn) ⊂ g−1(Ω)

and

‖xn + tnh0 − x̃n‖ ≤ 2L(tn‖g′(u)(h0)− yn‖+ ‖o(tn)‖).

This and yn → g′(u)(h0) imply that hn := x̃n−xn

tn
→ h0 and xn+tnhn = x̃n ∈ g−1(Ω).

This shows that h0 ∈ Tc(g−1(Ω), u), which is not possible because x∗ ∈ Nc(g−1(Ω), u)
and 〈x∗, h0〉 > 0. Hence, (2.9) holds and hence (i) is shown.

Next we show that (ii) holds. Let z ∈ g−1(Ω) ∩ B(a, r
2 ) and ε > 0. Then there

exists δ ∈ (0, r
2 ) such that

‖g′(u1)− g′(u2)‖ <
lε

2
for any u1, u2 ∈ B(z, 2δ).(2.12)

Let u ∈ g−1(Ω) ∩ B(z, δ) and u∗ ∈ Nc(g−1(Ω), u) ∩ BX∗ . Then, by (i), there exists
y∗ ∈ N(Ω, g(u)) such that u∗ = (g′(u))∗(y∗). Take y ∈ BY such that ‖y∗‖ ≤ 2〈y∗, y〉.
By (2.8), there exists v ∈ BX such that ly = g′(u)(v). Hence,

l‖y∗‖ ≤ 2〈y∗, g′(u)(v)〉 = 2〈u∗, v〉 ≤ 2.

By the convexity of Ω, one has

〈y∗, g(x)− g(u)〉 ≤ 0 for all x ∈ g−1(Ω).

Noting that

〈u∗, x− u〉 = 〈(g′(u))∗(y∗), x− u〉 = 〈y∗, g′(u)(x− u)〉,
6



it follows that for any x ∈ g−1(Ω) ∩B(u, δ),

〈u∗, x− u〉 ≤ 〈y∗, g′(u)(x− u)− (g(x)− g(u))〉
≤ 2

l
‖g(x)− g(u)− g′(u)(x− u)‖

≤ 2
l
‖g′(u + θ(x− u))− g′(u)‖‖x− u‖

where θ ∈ (0, 1). Since ‖u + θ(x− u)− z‖ ≤ ‖u− z‖+ θ‖x− u‖ < 2δ, it follows from
(2.12) that

〈u∗, x− u〉 ≤ ε‖x− u‖ for any x ∈ g−1(Ω) ∩B(z, δ).

Therefore, g−1(Ω) is subsmooth at z. This shows that (ii) holds.

Remark. It is known (see [17, Theorem 1.17]) that if g is strictly differentiable
at a ∈ g−1(Ω) such that g′(a) is surjective then

N(g−1(Ω), a) = (g′(a))∗(N(Ω, g(a)));

noting that (g′(a))∗(N(Ω, g(a))) is weak∗ closed and convex, it follows from (2.1) that

Nc(g−1(Ω), a) = (g′(a))∗(N(Ω, g(a)))

when X is an Asplund space. Hence (i) of Proposition 2.2 is a consequence of [17,
Theorem 1.17] when X is an Asplund space.

It is also known (cf. [8, P.108, Corollary 1]) that if g is strictly differentiable at
a with g′(a)(X) ∩ int(T (Ω, g(a)) 6= ∅ and if Ω admits a hypertangent vector at g(a),
namely there exist v ∈ Y and r > 0 such that

Ω ∩B(g(a), r) + tB(v, r) ⊂ Ω for all t ∈ (0, r),

then Nc(g−1(Ω), a) = (g′(a))∗(N(Ω, g(a))). In contrast, Proposition 2.2 does not re-
quire that Ω admits a hypertangent vector at g(a).

The following Proposition 2.3 demonstrates an interesting fact that, in an Asplund
space, the subsmoothness on an open subset of A can be described in terms of the
Fréchet normal cone (rather than the Clarke normal cone). To do this, we need the
following lemma, which is also used in Section 4.

Lemma 2.1. Let A be a closed subset of X and a ∈ A. Suppose that for any
ε > 0 there exists r > 0 such that

〈u∗, x− a〉 ≤ ε‖x− a‖ ∀x ∈ A ∩B(a, r) and ∀u∗ ∈ N̂(A, a) ∩BX∗ .(2.13)

Then N̂(A, a) is weak∗ closed.
Proof. Let ε be an arbitrary number in (0, +∞) and take r > 0 such that

(2.13) holds. Since N̂(A, a) is convex, by the Krein-Smulian theorem it suffices to
7



show that N̂(A, a) ∩ BX∗ is weak∗ closed. Let {u∗j} be a net in N̂(A, a) ∩ BX∗ con-
vergent to x∗ ∈ X∗ with respect to the weak∗ topology. Then, x∗ ∈ BX∗ (because
BX∗ is weak∗ closed) and 〈u∗j , x〉 → 〈x∗, x〉 for all x ∈ X. It follows from (2.13) that
〈x∗, x − a〉 ≤ ε‖x − a‖ for all x ∈ A ∩ B(a, r). This and the arbitrariness of ε imply
that x∗ ∈ N̂(A, a). Hence x∗ ∈ N̂(A, a) ∩ BX∗ . This shows that N̂(A, a) ∩ BX∗ is
weak∗ closed. The proof is completed.

Proposition 2.3. Let A be a closed subset of X and U is an open subset of X.
Suppose that X is an Asplund space. Then A is subsmooth at each point of A ∩ U

if and only if for any z ∈ A ∩ U and ε > 0 there exists r > 0 such that (2.3) holds
whenever u ∈ bd(A) ∩B(z, r) and u∗ ∈ N̂(A, u) ∩BX∗ .

Proof. Since N̂(A, x) ⊂ Nc(A, x) for all x ∈ A, the necessity part is clear. For
the sufficiency part, we need only show that Nc(A, z) = N̂(A, z) for any z ∈ A ∩ U .
Let z ∈ A∩U and ε > 0. Take r > 0 such that (2.3) holds for any u ∈ B(z, r)∩bd(A)
and u∗ ∈ N̂(A, u)∩BX∗ . Let z∗ ∈ N(A, z). Since X is an Asplund space, there exists
a sequence {(un, u∗n)} in X ×X∗ such that

un
A→ z, u∗n

w∗→ z∗ and u∗n ∈ N̂(A, un).

Hence, there exists M ∈ (0, +∞) such that each ‖u∗n‖ < M . Without loss of
generality, we can assume that un ∈ B(z, r). It follows from (2.3) that

〈u
∗
n

M
,x− un〉 ≤ ε‖x− un‖ for all x ∈ B(un, r) ∩A.

Letting n →∞, one has

〈 z
∗

M
,x− z〉 ≤ ε‖x− z‖ for all x ∈ B(z, r) ∩A.

It follows that z∗ ∈ N̂(A, z). Hence, N(A, z) ⊂ N̂(A, z). Since the converse in-
clusion automatically holds, N(A, z) = N̂(A, z). Since X is an Asplund space, it
follows from (2.1) that Nc(A, z) = cl∗(co(N̂(A, z))). Noting that N̂(A, z) is a con-
vex cone, this means that Nc(A, z) = cl∗(N̂(A, z)). It follows from Lemma 2.1 that
Nc(A, z) = N̂(A, z). The proof is completed.

A natural question is : Can the open set U in Proposition 2.3 be replaced by a
singleton {a} with a ∈ A? That is, is A subsmooth at a given point a of A if for
any ε > 0 there exists r > 0 such that (2.3) holds whenever u ∈ bd(A) ∩B(a, r) and
u∗ ∈ N̂(A, u) ∩BX∗?

While we don’t have an answer for this question, we have the following result:
Proposition 2.4. Let X be an Asplund space, A a closed subset of X and a ∈ A.

Then the following two statements are equivalent.
(i) For any ε > 0 there exists r > 0 such that (2.3) holds whenever u ∈ A ∩ B(a, r)
and u∗ ∈ N(A, u) ∩BX∗ .
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(ii) same as (i) but the limiting normal cone N(A, ·) being replaced by the Fréchet
normal cone N̂(A, ·).

Proof. (i)⇒(ii) is trivial. To prove (ii)⇒(i), let ε > 0 and take r > 0 such that
(2.3) holds whenever u ∈ bd(A)∩B(a, r)) and u∗ ∈ N̂(A, u)∩BX∗ . Let u ∈ A∩B(a, r)
and x∗ ∈ N(A, u)∩BX∗ . Since X is an Asplund space, (2.1) implies that there exists
a sequence {(uk, u∗k)} ⊂ (bd(A) ∩B(a, r))×X∗ such that

uk → u, u∗k
w∗→ u∗ and u∗k ∈ N̂(A, uk).

It follows from (2.3) that 〈u∗k, x− uk〉 ≤ ε‖x− uk‖ for all x ∈ A ∩B(uk, r) and all k.
Letting k → ∞, one has 〈u∗, x − u〉 ≤ ε‖x − u‖ for all x ∈ A ∩ B(u, r). This shows
that (i) holds. The proof is completed.

Corollary 2.1. Let X be an Asplund space, A a closed subset of X and a ∈
A. Suppose that for any ε > 0 there exists r > 0 such that (2.3) holds whenever
u ∈ bd(A) ∩B(a, r) and u∗ ∈ N̂(A, u) ∩BX∗ . Then A is regular at a in the sense of
Clarke.

Proof. By Proposition 2.4, N(A, a) = N̂(A, a). It follows from (2.1) that
Nc(A, a) = cl∗(co(N̂(A, a))) = cl∗(N̂(A, a)). This and Lemma 2.1 show that A is
regular at a in the sense of Clarke. The proof is completed.

3. Approximate projection theorem in Banach spaces. Using Bronstead-
Rockafellar theorem, it was proved in [19] that if A is a closed convex nonempty subset
of a Banach space X and x ∈ X \ A then for any γ ∈ (0, 1) there exist a ∈ bd(A)
and a∗ ∈ N(A, a) with ‖a∗‖ = 1 such that

γ‖x− a‖ < min{d(x,A), 〈a∗, x− a〉}.(3.1)

By virtue of the well known Ekeland variational principle, we provide below a
nonconvex generalization of the above projection result which will play as a key tool
in the proofs of our main results in Section 4.

In order to present our results in a unified manner, we use the notion of a prenor-
mal structure in this section. We say that Ñ is a prenormal structure on X if for any
nonempty closed subset A of X, Ñ(A, ·) : A ⇒ X∗ is a multifunction of cone values
such that the following properties hold:
(P1) If a continuous convex function f on X attains its global minimum over A at
x̄ ∈ A then for any ε > 0 there exist x1, x2 ∈ B(x̄, ε) such that

x2 ∈ A and 0 ∈ ∂f(x1) + Ñ(A, x2) + εBX∗ ,

where ∂f(x1) is the subdifferential of f at x1 in the convex analysis sense.
(P2) Ñ(A, a) = {0} for any a ∈ int(A).

It is known that the Clarke normal structure is a prenormal structure on every
Banach space and the Fréchet normal structure is also a prenormal structure on
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every Asplund space. Various abstract prenormal structures, with generally different
properties, have been used by many authors (for the details see Mordukhovich’s recent
book [17, Sections 2.5.1 and 2.6.9] and references therein).

Theorem 3.1. Let X be a Banach space and Ñ be a prenormal structure on X.
Let A be a closed nonempty subset of X. Let γ ∈ (0, 1). Then for any x 6∈ A there
exist a ∈ bd(A) and a∗ ∈ Ñ(A, a) with ‖a∗‖ = 1 such that (3.1) holds.

Proof. Let x ∈ X \ A. Then d(x,A) > 0. Let ε ∈ (0, 1) be small enough such
that

ε < min

{
(1− γ

1
2 )d(x,A)
2γ

1
2

,
(1− γ

1
2 )d(x,A)

4 + (2 + 2γ
1
2 )d(x,A)

}
(3.2)

and take z0 ∈ A such that ‖z0 − z‖ < d(x,A) + ε. Let φ(z) := ‖z − x‖+ δA(z) for all
z ∈ X. Then φ is a proper lower semicontinuous function and φ(z0) < infz∈X φ(z)+ε.
By the Ekeland variational principle, there exists z̄ ∈ A such that φ(z̄) ≤ φ(z0) and
φ(z̄) ≤ φ(z) + ε‖z − z̄‖ for all z ∈ X. Hence

‖z̄ − x‖ < d(x,A) + ε(3.3)

and the continuous convex function f(z) := ‖z − x‖ + ε‖z − z̄‖ attains its global
minimum over A at z̄. It follows from (P1) that there exist z1, a ∈ B(z̄, ε) such that

a ∈ A and 0 ∈ ∂f(z1) + Ñ(A, a) + εBX∗ .

Since z1 6= x (by x 6∈ A, z̄ ∈ A and ε < d(x,A)), there exist z∗1 , z∗2 ∈ X∗ such that

‖z∗1‖ = 1, ‖z∗2‖ < 2ε, 〈z∗1 , z1 − x〉 = ‖z1 − x‖ and − z∗1 + z∗2 ∈ Ñ(A, a).

It follows from (3.3) that ‖x− a‖ < d(x,A) + 2ε. This and (3.2) imply that

γ
1
2 ‖x− a‖ < d(x,A).(3.4)

Let a∗ := −z∗1+z∗2
‖−z∗1+z∗2‖ . Then, a∗ ∈ Ñ(A, a) and so a ∈ bd(A) (by (P2)). Note that

〈a∗, x− a〉 =
〈z∗1 , z1 − x〉+ 〈z∗1 , a− z1〉+ 〈z∗2 , x− a〉

‖ − z∗1 + z∗2‖
≥ ‖z1 − x‖ − 2ε− 2ε‖x− a‖

1 + 2ε

≥ (1− 2ε)‖x− a‖ − 4ε

1 + 2ε

≥ (1− 2ε)d(x,A)− 4ε

1 + 2ε
.

This and (3.2) imply that γ
1
2 d(x,A) < 〈a∗, x−a〉. It follows from (3.4) and γ ∈ (0, 1)

that (3.1) holds. The proof is completed.
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When A is a closed convex nonempty set, the property N(A, a) 6= {0} means that
a is a support point of A; thus the following corollary of Theorem 3.1 may be viewed
as a nonconvex generalization of the Bishop-Phelps density theorem (cf. [22]).

Corollary 3.1. Let A be a closed nonempty subset of a Banach space X and
Ñ be a prenormal structure on X. Let D := {a ∈ bd(A) : Ñ(A, a) 6= {0}}. Then D

is a dense subset of bd(A).

Proof. Let x̄ ∈ bd(A) and ε > 0. Then there exists x 6∈ A such that ‖x− x̄‖ < ε
4 .

By Theorem 3.1 there exists a ∈ D such that 1
2‖x − a‖ < d(x,A) < ε

4 , and so
‖x− a‖ < ε

2 . Therefore, ‖x̄− a‖ < ε. The proof is completed.

When X is an Asplund space and Ñ is the Fréchet normal structure, Corollary
3.1 was proved by Mordukhivich and Shao [18].

Remark. In general, in Theorem 3.1 one cannot take γ = 1 even when Ñ is
the Clarke normal structure and A is a closed convex set. For example, let X be a
nonreflexive Banach space. Then, by the James theorem there exists x∗ ∈ X∗ with
‖x∗‖ = 1 such that

〈x∗, z〉 < 1 ∀z ∈ BX .(3.5)

Let A := {x ∈ X : 〈x∗, x〉 ≤ 1}. We claim that 〈a∗, x−a〉 < ‖x−a‖ for any x ∈ X\A,
any a ∈ A and any a∗ ∈ N(A, a) with ‖a∗‖ = 1. Indeed, suppose to the contrary
that there exist x0 ∈ X \ A, a0 ∈ A and a∗0 ∈ N(A, a0) with ‖a∗0‖ = 1 such that
〈a∗0, x0 − a0〉 = ‖x0 − a0‖. Then a0 ∈ bd(A), that is, 〈x∗, a0〉 = 1. By the definition
of A, it is clear that N(A, a0) = R+x∗ and so a∗0 = x∗. Hence 〈x∗, x0−a0

‖x0−a0‖ 〉 = 1,
contradicting (3.5).

In the next section, we will apply Theorem 3.1 to the following two cases:
(BC) X is a general Banach space and Ñ(A, a) = Nc(A, a) for any closed subset A of
X and a ∈ A.
(AF) X is an Asplund space and Ñ(A, a) = N̂(A, a) for any closed subset A of X and
a ∈ A.

4. Main results. In this section, we establish some relationships concerning
the local linear regularity of a collection of closed sets in a Banach space. First we
provide a relationship between the local linear regularity and the linear regularity for
a collection of finitely many closed convex sets.

Proposition 4.1. Let X be a Banach space and C1, · · · , Cn be closed convex

subsets of X such that
n⋂

i=1

Ci 6= ∅. Then {C1, · · · , Cn} is linearly regular if and only

if there exists τ ∈ (0, +∞) such that {C1, · · · , Cn} is locally linearly regular at each

point of bd(
n⋂

i=1

Ci) with the same constant τ .
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Proof. The necessity is trivial. To prove the sufficiency, let x ∈ X \
n⋂

i=1

Ci and

γ ∈ (0, 1). Then, by Theorem 3.1 (applied to case (BC)) there exist a ∈ bd(
n⋂

i=1

Ci)

and a∗ ∈ N(
n⋂

i=1

Ci, a) with ‖a∗‖ = 1 such that

γ‖x− a‖ ≤ 〈a∗, x− a〉.(4.1)

Letting La := {z ∈ X : 〈a∗, z〉 ≤ 〈a∗, a〉}, it follows from the convexity of each Ci

that
n⋂

i=1

Ci ⊂ La. Hence

d(z, La) ≤ d(z,
n⋂

i=1

Ci) for all z ∈ X.(4.2)

From ‖a∗‖ = 1, it is easy to verify that d(z, La) = 〈a∗, z − a〉 for all z ∈ X \ La.
Applying this to z := a + t(x− a), it follows from (4.1) and (4.2) that

γt‖x− a‖ ≤ d(a + t(x− a),
n⋂

i=1

Ci) for all t > 0.(4.3)

Since {C1, · · · , Cn} is locally linearly regular at a with the constant τ , there exists
t ∈ (0, 1) small enough such that

d(a + t(x− a),
n⋂

i=1

Ci) ≤ τ
n∑

i=1

d(a + t(x− a), Ci).(4.4)

By the convexity of Ci and a ∈ Ci, one has

d(a + t(x− a), Ci) ≤ td(x,Ci).

It follows from (4.3) and (4.4) that

γd(x,
n⋂

i=1

Ci) ≤ γ‖x− a‖ ≤ τ
n∑

i=1

d(x,Ci).

Letting γ → 1, one has d(x,
n⋂

i=1

Ci) ≤ τ
n∑

i=1

d(x,Ci). This completes the proof.

In view of Proposition 4.1, we see that it is pertinent to study the local linear
regularity for a collection of nonconvex closed sets. In the remainder of this sec-
tion, we always assume that X is a Banach space (unless otherwise stated) and that
{A1, · · · , An} is a collection of closed sets in X with intersection A containing a:

a ∈ A :=
n⋂

i=1

Ai.

The modulus of the linear regularity of the collection {A1, · · · , An} at a ∈ A is denoted
by η(A1, · · · , An; a) and defined by

η(A1, · · · , An; a) := inf{τ > 0 : (1.1) holds}.
12



Thus, η(A1, · · · , An; a) < +∞ if and only if {A1, · · · , An} is locally linearly regular at
a.

We will provide necessary and/or sufficient conditions for the local linear regular-
ity and establish formulas for the modulus η(A1, · · · , An; a). Let τ, δ ∈ (0, +∞). For
convenience of presenting our results, we list the following inclusions.

N̂(A, u) ∩BX∗ ⊂ τ
n∑

i=1

N(Ai, u) ∩BX∗ ∀u ∈ A ∩B(a, δ),(4.5)

N̂(A, u) ∩BX∗ ⊂ τ
n∑

i=1

Nc(Ai, u) ∩BX∗ ∀u ∈ A ∩B(a, δ),(4.6)

N̂(A, u) ∩BX∗ ⊂ τ
n∑

i=1

N̂(Ai, u) ∩BX∗ ∀u ∈ A ∩B(a, δ),(4.7)

N(A, u) ∩BX∗ ⊂ τ
n∑

i=1

N(Ai, u) ∩BX∗ ∀u ∈ A ∩B(a, δ),(4.8)

Nc(A, u) ∩BX∗ ⊂ τ
n∑

i=1

Nc(Ai, u) ∩BX∗ ∀u ∈ A ∩B(a, δ).(4.9)

In terms of these inclusions, we define the following quantities (here f , l and c indicate
the Fréchet, limiting and Clarke normal cones respectively):

βf
l (δ) := inf{τ > 0; (4.5) holds}, βf

c (δ) := inf{τ > 0 : (4.6) holds},

βf (δ) := inf{τ > 0; (4.7) holds}, βl(δ) := inf{τ > 0 : (4.8) holds},

and βc(δ) := inf{τ > 0 : (4.9) holds}.
Then

βf
l (δ) ≤ βl(δ) and βf

c (δ) ≤ βc(δ) ∀δ ∈ (0, +∞).(4.10)

First we consider the case when X is an Asplund space.
Theorem 4.1. Let X be an Asplund space. Then

lim
δ→0+

βf
l (δ) ≤ η(A1, · · · , An; a).(4.11)

Consequently, if {A1, · · · , An} is locally linearly regular at a then there exist τ, δ ∈
(0, +∞) such that (4.5) holds.

Proof. If η(A1, · · · , An; a) = +∞, then (4.11) trivially holds. Next assume that
η(A1, · · · , An; a) < ∞. Let τ ∈ (η(A1, · · · , An; a), +∞). Then there exists δ0 > 0
such that

d(x,A) ≤ τ
n∑

i=1

d(x,Ai) ∀x ∈ B(a, δ0).(4.12)
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Let u ∈ A∩B(a, δ0
2 ) and x∗ ∈ N̂(A, u)∩BX∗ . Let k be an arbitrary natural number.

Then there exists r ∈ (0, δ0
2 ) such that (2.5) holds with ε = 1

k . Noting that B(u, r) ⊂
B(a, δ0), it follows from (4.12) that

〈x∗, x− u〉 ≤ τ
n∑

i=1

d(x,Ai) +
1
k
‖x− u‖ ∀x ∈ B(u, r).

This and [17, Theorem 2.33] imply that there exist uk,i ∈ Ai, u∗k,i ∈ X∗ and x∗k,i ∈
1
kBX∗ (i = 1, · · · , n) such that

‖uk,i − u‖ <
1
k

, u∗k,i ∈ ∂̂d(·, Ai)(uk,i) ⊂ N̂(Ai, uk,i) ∩BX∗ and

∥∥∥∥∥x∗ − τ
n∑

i=1

u∗k,i − x∗k,i

∥∥∥∥∥ <
1
k

.

Hence τ
n∑

i=1

u∗k,i
w∗−→ x∗ as k →∞. Since BX∗ is sequentially compact with respect to

the weak∗ topology, without loss of generality we assume u∗k,i
w∗−→ u∗i ∈ N(Ai, u)∩BX∗

as k →∞ (passing to a subsequence if necessary). Hence

x∗ = τ
n∑

i=1

u∗i ∈ τ
n∑

i=1

N(Ai, u) ∩BX∗ .

This shows that (4.5) holds for any δ ∈ (0, δ0
2 ), and so lim

δ→0+
βf

l (δ) ≤ τ . Letting

τ → η(A1, · · · , An; a), it follows that (4.12) holds. The proof is completed.

Under the subsmoothness assumption of each Ai at a, the following theorem shows
that the equality in Theorem 4.1 holds and the necessary condition is also sufficient.

Theorem 4.2. Let X be an Asplund space and suppose that each Ai is subsmooth
at a ∈ A. Then

lim
δ→0+

βf
l (δ) = η(A1, · · · , An; a).

Consequently, {A1, · · · , An} is locally linearly regular at a if and only if there exist
τ, δ ∈ (0, +∞) such that (4.5) holds.

Proof. By Theorem 4.1, we need only show that

lim
δ→0+

βf
l (δ) ≥ η(A1, · · · , An; a).(4.13)

Since (4.13) trivially holds if lim
δ→0+

βf
l (δ) = +∞, next we assume that lim

δ→0+
βf

l (δ) <

+∞. Take an arbitrary τ ∈ ( lim
δ→0+

βf
l (δ), +∞) and δ > 0 such that (4.5) holds.

Consider any ε ∈ (0, 1
2 ). Since each Ai is subsmooth at a, Proposition 2.1 implies

there exists δ1 ∈ (0, δ) such that

〈x∗i , xi − ai〉 ≤ d(xi, Ai) +
ε

n
‖xi − ai‖ for all xi ∈ B(a, δ1)(4.14)
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whenever ai ∈ Ai ∩ B(a, δ1), x∗i ∈ Nc(Ai, ai) ∩ BX∗ and i = 1, · · · , n. Let r := δ1
2

and x ∈ B(a, r) \ A. Then d(x,A) ≤ ‖x − a‖ < r. Let γ ∈
(
max

{
d(x,A)

r , τε
}

, 1
)
.

By Theorem 3.1 (applied to case (AF)), there exist z ∈ bd(A) and x∗ ∈ N̂(A, z) with
‖x∗‖ = 1 such that

〈x∗, x− z〉 ≥ γ‖x− z‖(4.15)

and γ‖x− z‖ ≤ d(x,A). Thus, ‖x− z‖ ≤ d(x,A)
γ < r. Hence

‖z − a‖ ≤ ‖z − x‖+ ‖x− a‖ < 2r = δ1 < δ.

It follows from (4.5) that there exists x∗i ∈ N(Ai, z) ∩ BX∗ such that x∗ = τ
n∑

i=1

x∗i .

By (4.14), one has

〈x∗, x− z〉 = τ
n∑

i=1

〈x∗i , x− z〉 ≤ τ
n∑

i=1

(d(x,Ai) +
ε

n
‖x− z‖).

This and (4.15) imply that (γ − τε)‖x− z‖ ≤ τ
n∑

i=1

d(x,Ai) and hence

d(x,A) ≤ τ

(γ − τε)

n∑

i=1

d(x,Ai)

(because z ∈ A). Therefore, η(A1, · · · , An; a) ≤ τ
(γ−τε) . It follows that (4.13) holds

by letting γ → 1−, ε → 0+ and τ → lim
δ→0+

βf
l (δ). This completes the proof.

The following proposition and Theorem 4.1 explain that under the local linear
regularity assumption, the subsmoothness and Clarke regularity of each Ai imply,
in some sense, the subsmoothness and the Clarke regularity of the intersection A,
respectively.

Proposition 4.2. Let X be an Asplund space and lim
δ→0+

βf
c (δ) < +∞. Suppose

that each Ai is regular in the Clarke sense at all points of A close to a. Then A is
regular in the Clarke sense at all points of A close to a. If, in addition, each Ai is
subsmooth at a, then A is subsmooth at a.

Proof. Take δ > 0 such that each Ai is is regular in the Clarke sense (resp.
subsmooth) at each point of A ∩B(a, δ). Then

Nc(Ai, u) = N̂(Ai, u) ∀u ∈ A ∩B(a, δ).(4.16)

Considering smaller δ if necessary, one can find τ ∈ ( lim
δ→0+

βf
c (δ), +∞) such that

that (4.5) holds. When each Ai is subsmooth at a, it is easy to verify that for any
ε > 0 there exists r ∈ (0, δ) such that (2.3) holds whenever u ∈ A ∩ B(z, r) and
u∗ ∈ N̂(A, u) ∩BX∗ . Thus, we need only show that

Nc(A, u) = N̂(A, u) ∀u ∈ A ∩B(a, δ).(4.17)
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Let u ∈ A ∩ B(a, δ) and u∗ ∈ N(A, u). By (2.1), there exists a sequence {(uk, u∗k)}
in (A ∩ B(a, δ)) × X∗ such that uk → u and u∗k

w∗→ u∗ with u∗k ∈ N̂(A, uk) for all
k. It follows that {u∗k} is bounded. Without loss of generality, we assume that each
u∗k ∈ BX∗ . By (4.5) and (4.16), there exist u∗k(i) ∈ N̂(Ai, uk) ∩ BX∗ such that

u∗k = τ
n∑

i=1

u∗k(i). Without loss of generality, we can assume that u∗k(i) w∗→ u∗(i) ∈
N(Ai, u) ∩ BX∗ , i = 1, · · · , n (passing to subsequences if necessary). Hence, u∗ =

τ
n∑

i=1

u∗(i). On the other hand, by the definition of the Fréchet normal cone it is easy

to verify that
n∑

i=1

N̂(Ai, u) ⊂ N̂(A, u) ∀u ∈ A.

It follows from (4.16) that u∗ ∈ N̂(A, u). Therefore, N(A, u) ⊂ N̂(A, u), and so
N(A, u) = N̂(A, u). Since N̂(A, u) is a convex cone, it follows from (2.1) that
Nc(A, u) = cl∗(N̂(A, u)). This and Lemma 2.1 imply that (4.17) holds. The proof is
completed.

Theorem 4.3. Let X be an Asplund space. Suppose that each Ai is subsmooth
at a and that each Ai is regular in the Clarke sense at each point of A close to a.
Then,

η(A1, · · · , An; a) = lim
δ→0+

βc(δ) = lim
δ→0+

βl(δ) = lim
δ→0+

βf (δ) = lim
δ→0+

βf
c (δ).(4.18)

Proof. Since each Ai is regular in the Clarke sense at each point of A close to a,
there exists δ > 0 such that (4.16) holds. Hence

lim
δ→0+

βc(δ) ≥ lim
δ→0+

βl(δ) ≥ lim
δ→0+

βf (δ) = lim
δ→0+

βf
l (δ) = lim

δ→0+
βf

c (δ).

It follows that (4.18) holds if lim
δ→0+

βf
l (δ) = +∞. Next assume that lim

δ→0+
βf

l (δ) < +∞.

By Proposition 4.2, Nc(A, u) = N(A, u) = N̂(A, u) for all u ∈ A close to a. It follows
from (4.16) and Theorem 4.2 that (4.18) holds. The proof is completed.

The following corollary is immediate from Theorem 4.3.
Corollary 4.1. Let X be an Asplund space. Suppose that each Ai is subsmooth

at a and that each Ai is regular in the Clarke sense at each point of A close to a.
Then the following statements are equivalent.
(i) {A1, · · · , An} is locally linearly regular at a.
(ii) There exist τ, δ ∈ (0, +∞) such that any one of (4.5)—(4.9) holds.
(iii) There exist τ, δ ∈ (0, +∞) such that (4.5) holds.
(iv) There exist τ, δ ∈ (0, +∞) such that such that

Ñ(A, u) =
n∑

i=1

Ñ(A, u) ∀u ∈ A ∩B(a, δ)
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and

inf

{
n∑

i=1

‖x∗i ‖ :
n∑

i=1

x∗i = x∗ and x∗i ∈ Ñ(Ai, u)

}
≤ τ‖x∗‖

for any u ∈ A∩B(a, δ) and x∗ ∈ Ñ(A, u), where Ñ is any one of the Fréchet, limiting
or Clarke normal cones.

The following corollary is immediate from Proposition 2.2 and Theorem 4.3
Corollary 4.2. Let X be an Asplund space, Y a Banach space and fi : X → Y

a continuously differentiable function (i = 1, · · · , n). Let Ci be a closed convex subset
of Y and Ai := f−1

i (Ci) (i = 1, · · · , n). Let a ∈ A and suppose that each f ′i(a) is
surjective. Then (4.18) holds and (i)—(iv) in Corollary 4.1 are equivalent.

Next we consider the case when X is a general Banach space.
Similar to the proof of Theorem 4.1 but with [8, Proposition 2.3.3] replacing [17,

Theorem 2.33], one can prove the following result (indeed it is simpler because every
Clarke normal cone is weak∗ closed and [8, Proposition 2.3.3], different from [17,
Theorem 2.33], is an exact sum rule).

Proposition 4.3. Let X be a Banach space. Then

lim
δ→0+

βf
c (δ) ≤ η(A1, · · · , An; a).

Consequently, if {A1, · · · , An} is locally linearly regular at a then there exist τ, δ ∈
(0, +∞) such that (4.6) holds.

Similar to the proof of Theorem 4.2 but applying Theorem 3.1 to case (BC), we
can prove the following proposition.

Proposition 4.4. Let X be a Banach space and suppose that each Ai be sub-
smooth at a. Suppose that there exist τ, δ ∈ (0, +∞) such that (4.9) holds. Then
{A1, · · · , An} is locally linearly regular at a and

η(A1, · · · , An; a) ≤ lim
δ→0+

βc(δ).

The following example explains that if the subsmoothness assumption is dropped
then Proposition 4.4 is not true even when X is finite dimensional.

Example. Let X = R2, A1 = {(s, t) ∈ R2 : st ≤ 0} and

A2 = {(s, t) ∈ R2
+ : (s− 1)2 + t2 ≤ 1 and s2 + (t− 1)2 ≤ 1}.

By the definition of the Clarke tangent cone, it is easy to verify that Tc(A1, (0, 0)) =
{(0, 0)}. This means that Nc(A1, (0, 0)) = X∗. Hence

Nc(A1 ∩A2, (0, 0)) ∩BX∗ ⊂ Nc(A1, (0, 0)) ∩BX∗ + Nc(A2, (0, 0)) ∩BX∗ .
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On the other hand, for every natural number k, let xk = ( 1
k , ( 2

k − 1
k2 )

1
2 ). Noting that

A1 ∩A2 = {(0, 0)}, it is easy to verify that

d(xk, A1 ∩A2) =
(

2
k

) 1
2

, d(xk, A1) =
1
k

and d(xk, A2) = 0.

Hence, d(xk,A1∩A2)
d(xk,A1)+d(xk,A2)

= (2k)
1
2 → +∞. This shows that {A1, A2} is not locally

linearly regular at (0, 0).

Noting that (4.9) and (4.16) imply Nc(A, u) = N̂(A, u) for all u ∈ A ∩ B(a, δ),
similar to the proof of Theorem 4.3 we have the following result.

Proposition 4.5. Let X be a Banach space. Suppose that each Ai be subsmooth
at a and that each Ai is regular in the Clarke sense at all points of A close to a.
Further suppose that there exist τ, δ ∈ (0, +∞) such that (4.9) holds. Then (4.18)
holds.

Recently, Kruger [13, 14] studied a different kind of regularity of {A1, · · · , An} at

a defined by 0 < lim
ρ→0+

1
ρ sup{r ≥ 0 :

n⋂
i=1

(Ai − ai) ∩ (a + ρBX) 6= ∅, ∀ai ∈ rBX}.
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