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AN ALGEBRAIC MULTIGRID PRECONDITIONER FOR A CLASS
OF SINGULAR M-MATRICES∗

ELENA VIRNIK†

Abstract. We apply algebraic multigrid (AMG) as a preconditioner for solving large singular
linear systems of the type (I − TT )x = 0 with GMRES. Here, T is assumed to be the transition
matrix of a Markov process. Although AMG and GMRES were originally designed for the solution
of regular systems, with adequate adaptation their applicability can be extended to problems as
described above.
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1. Introduction. This paper treats the application of an algebraic multigrid
(AMG) method [12] as a preconditioner for solving large singular linear systems of
the type

(1) Ax := (I − TT )x = 0

using the generalized minimal residual (GMRES) method [13]. Here, T is the tran-
sition matrix of a Markov process. The applicability of GMRES to singular systems
was examined, e.g., in [1, 4]. Our AMG strategy is based on the classical theory
in [12] originally designed for systems involving regular, symmetric, positive definite
M-matrices. The approach in [12] was generalized to symmetric positive definite and
semidefinite matrices without the M-matrix property, e.g., in [3, 5, 6, 11]. A multigrid-
like algorithm based on aggregation and disaggregation of Markov chains can be found
in [9]. The main result of this paper is the extension of the AMG approach to a class
of singular nonsymmetric M-matrices.

The theory of Markov chains [2, 14] represents an extremely important tool that
has a broad variety of applications not only in the sciences, such as biology, physics,
and chemistry, but also in business and economics. As an example, we consider a
Markov chain model for blood circulation in the human body.

Example 1. Let us imagine the organs within a human body as states of a blood
particle. Within one time step, it can advance from one organ to another with a certain
probability. It is also possible that it stays within the organ and only continues its
journey a few time steps later. On the other hand, an organ can also be considered
as a set of substates, since the blood does not simply pass an organ but can also
recirculate within it in some chaotic way. Hence, if we define a set of (sub)organs as
states of the Markov chain and the corresponding transition probabilities, we get a
large sparse (row) stochastic matrix. We are interested in the stationary distribution
of the Markov chain, which would, e.g., represent the concentration of a dissolved
substance after injection into an organ. For a more detailed description, see [16].
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2. Preliminaries. We call a vector v ∈ R
n positive, and we write v > 0 if all

entries vi are positive. A matrix T ∈ R
n×n, T = (tij)i,j=1,...,n, is called positive

(nonnegative), and we write T > 0 (T ≥ 0) if all entries tij are positive (nonnegative).
A matrix T ∈ R

n×n is called reducible if there exists a permutation matrix P ∈ R
n×n,

such that PTPT =
[
T11 0
T21 T22

]
. Otherwise it is called irreducible.

A scalar λ ∈ R is called an eigenvalue of the matrix T ∈ R
n×n if a vector

v ∈ R
n, v �= 0 exists, such that Tv = λv. The vector v is called a (right) eigenvector

of T associated with λ. Accordingly, a vector w ∈ R
n, w �= 0, with wTT = λwT is

called a (left) eigenvector of T . Let T ∈ R
n×n have the eigenvalues λi, i = 1, . . . , n.

Then we call ρ(T ) = max1≤i≤n |λi| the spectral radius of T .

A process is called a finite homogeneous Markov chain if it has n states s1, . . . , sn
and the transition probability P [si � sj ] =: tij is time-independent. The matrix
T = [tij ]i,j=1,...,n satisfies tij ≥ 0 and

∑n
j=1 tij = 1 for i, j = 1, . . . , n, i.e., it is

(row) stochastic and is called the transition matrix of a Markov chain. We denote
by xk = (xk

i ) the probability distribution vector, where xk
i is the probability that the

system is in state si after k steps. We have xk
i ≥ 0 and

∑n
i=1 x

k
i = 1 for each k. A

distribution vector x is said to be stationary if xTT = xT .

The well-known Perron–Frobenius theorem guarantees the existence and unique-
ness of a stationary distribution.

Theorem 1 (Perron–Frobenius theorem [2, p. 27]). Let T ≥ 0 be irreducible with
spectral radius ρ(T ). Then ρ(T ) is a simple eigenvalue and T has a positive left and
right eigenvector corresponding to ρ(T ).

Corollary 2 (see [2, p. 28]). A positive eigenvector x of a nonnegative matrix
T corresponds to ρ(T ).

Corollary 3. Every finite homogeneous Markov chain has a stationary proba-
bility distribution vector. If the transition matrix T of the process is also irreducible,
then the stationary probability distribution vector is unique.

We define by Zn×n = {A = [aij ] ∈ R
n×n : aij ≤ 0, i �= j} the set of all real

matrices with nonpositive off-diagonal entries. Let B ≥ 0 with spectral radius ρ(B).
A matrix A of the form A = sI −B, with s > 0 and s ≥ ρ(B), is called an M-matrix.
If s > ρ(B), then A is a nonsingular M-matrix, and if s = ρ(B), then A is a singular
M-matrix. Hence, in our case A = (I − TT ) is a singular M-matrix.

3. AMG preconditioning. The GMRES method we use was introduced in
[13]. Algorithm 1 shows a version with left preconditioning.

As we will see in the following, the application of AMG in our case requires the
property that the matrix A have row sums zero. Since A = (I − TT ) has column
sums zero instead, for the construction of the preconditioner we use the matrix AT

and then use MT for the iteration process.

3.1. Basic framework of AMG. The AMG method that is presented here fol-
lows the concept introduced in [12], which is motivated by geometric multigrid, where
a sequence of grids is constructed from the underlying geometry with corresponding
transfer operators between the grids. The main idea of geometric multigrid is to re-
move the smooth error, which cannot be eliminated by relaxation on the fine grid, by
coarse grid correction. The solution process then as usual consists of presmoothing,
transfer of residuals from fine to coarse grids, interpolation of corrections from coarse
to fine levels, and optional postsmoothing. In contrast to geometric multigrid, the
idea of AMG is to define an artificial sequence of systems of equations decreasing in
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Algorithm 1: Preconditioned MGS-GMRES.

Input: A ∈ R
n×n, b ∈ R

n, starting vector x0 ∈ R
n, preconditioner M

Output: xm ∈ R
n solution approximate in the mth step

Compute r0 = M−1(b−Ax0), β := ‖r0‖2 and v1 := r0/β1

Define the (m + 1) ×m matrix H̄m = {hij}1≤i≤m+1,1≤j≤m. Set H̄m = 0.2

for j = 1, 2, . . . ,m do3

Compute wj := M−1Avj4

for i = 1, . . . , j do5

hij := (wj , vi)6

wj := wj − hijvi7

hj+1,j = ‖wj‖2. If hj+1,j = 0, set m := j and go to 128

vj+1 = wj/hj+1,j9

Compute ym the minimizer of ‖βe1 − H̄my‖210

Set xm = x0 + Vmym.11

size,

(2) Amum = bm,

where the superscript m denotes the mth iterate, directly from the underlying ma-
trix. We have A1 = A, and for m = 1 the system (2) is identical to (1). We call
these equations “coarse grid” equations. The interpolation operator P and the re-
striction operator R define the transfer from finer to coarser grids and vice versa.
More precisely, let Am ∈ R

nm×nm ; then

Rm : R
nm → R

nm+1 ,

Pm : R
nm+1 → R

nm ,

and the operator on the coarser grid is defined by

(3) Am+1 = RmAmPm ∈ R
nm+1×nm+1 .

Thus, we do not need a geometry behind the problem.
The AMG method consists of two main parts: the setup phase and the solution

phase. During the setup phase, the coarse grids and the corresponding operators are
defined. We describe this in section 3.2. The solution phase consists of a multilevel
iteration. Here, as an example, we illustrate a two-level iteration, which involves the
combination of a smoothing process (e.g., Gauss–Seidel; see [7]), with a correction on
a coarser grid:

x(k+1) = x(k) + B−1(bm −Amx(k)),(4a)

x(k+2) = x(k+1) + Pm(Am+1)−1Rm(bm −Amx(k+1)).(4b)

Here, the matrix (Ak+1)−1 is replaced by the recursive application of (4) to the
solution of the coarse grid system. The number of recursive calls, which is the number
of levels m, depends on the size and structure of the matrix. For our method, we use
the V-cycle pattern (see, e.g., [8]), as shown in Figure 1. Other recursive patterns,
e.g., the W-cycle that involves two recursive calls per cycle, are presented in [8].
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Fig. 1. V-cycle pattern.

3.2. Coarsening. The first main step of the coarsening process as introduced
in [12] can be read as a permutation of the matrix A ∈ R

n×n such that the fine grid
nodes come first:

A � πTAπ =

[
AFF AFC

ACF ACC

]
.

We choose the fine grid nodes such that the block AFF is close to a diagonal matrix. A
further sparsification step is applied in which “small” off-diagonal entries in AFF are
added to the diagonal and the remaining off-diagonal entries in AFF are redistributed
onto the AFC block:

A � Ã =

[
ÃFF ÃFC

ACF ACC

]
.(5)

It is shown in [12] that the “sparsification” process leaves the row sums of the matrix
A unchanged.

To obtain the restriction and interpolation operators, we consider the incomplete
block LU decomposition of the matrix Ã:

Ã =

[
ÃFF ÃFC

ACF ACC

]
=

[
I 0

ACF Ã
−1
FF I

] [
ÃFF ÃFC

0 S

]
,(6)

where S = ACC − ACF Ã
−1
FF ÃFC is the Schur complement with respect to ÃFF .

We take S to be the new coarse grid operator. This is the main difference from
the classical approach in [12]. For the coarse grid operator we compute the exact
Schur complement of an approximated matrix Ã, whereas in the classical approach an
approximation to the Schur complement of the exact matrix A is computed. For other
choices of restriction, interpolation, and coarse grid operators see, e.g., [5, 6, 12, 15].
Neither of these choices works here, since they do not preserve in our case important
properties such as the singular M-matrix property and the row sums zero property;
see section 3.3 for details.

The following lemma summarizes the main results for the coarsening process.
Lemma 4. Let A be sparsified and partitioned as in (6) and let N be the number

of coarse grid nodes. Let S as in (6) be chosen as the new coarse grid operator. Then
the following properties hold:

1. With the restriction and interpolation operators defined by

R =
[
−ACF Ã

−1
FF I

]
∈ R

N×n and P =

[
−Ã−1

FF ÃFC

I

]
∈ R

n×N ,
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the new coarse grid operator S can be calculated from

S = RÃP ∈ R
N×N .(7)

2. The interpolation operator P has all row sums equal to one.
3. The new coarse grid operator S has row sums equal to zero.

Proof.
1. By straightforward calculation we get

RÃP =
[
−ACF Ã

−1
FF I

] [ÃFF ÃFC

ACF ACC

] [
−Ã−1

FF ÃFC

I

]

=
[
−ACF Ã

−1
FF I

] [ −ÃFC + ÃFC

−ACF Ã
−1
FF ÃFC + ACC

]

= ACC −ACF Ã
−1
FF ÃFC = S ∈ R

N×N .

2. Let 1l = [1, . . . , 1]T represent the vector containing all entries equal to one.
Hence, for all i ∈ {1, . . . , N} we have

0 = eTi Ã1l =
∑
k∈Ci

ãik + ãii,

and thus, as all ãik ≤ 0 for i �= k, we get∑
k∈Ci

|ãik|
ãii

= 1,

where Ci is the set of interpolatory connections of i, i.e., we sum up the entries
in the ith row of the ÃFC block. Hence, all row sums of the interpolation
operator P are equal to one.

3. From 2. we conclude that

eTi S1l = eTi RÃP1l = eTi RÃ1l = 0 for all i,

i.e., the zero row sums property is preserved for the new coarse grid operator
S.

3.3. Multilevel setup. For the setup of a recursive multilevel cycle, it is es-
sential to ensure that the important properties of the finest grid operator carry over
to all coarser grids. In our case it is on the one hand the row sums zero property
and on the other hand the singular M-matrix property. These are important for an
adequate interpolation of the smooth error that needs to be reduced by the coarse
grid correction and can be written as

ei ≈
∑
j �=i

|aij |
aii

ej , where
∑
j �=i

|aij |
aii

= 1.

Here, we can use only significant weights |aij |/aii to interpolate ei. Also the singular
M-matrix property is important for the direct solution on the coarsest level; see section
3.5. In Lemma 4 we have shown that the coarsening process leaves the row sums zero.
The following theorem states that the singular M-matrix property is preserved after
the performance of one coarsening step.

Theorem 5. Let A =
[
AFF AFC

ACF ACC

]
be a singular M-matrix with zero row sums.

Then Ã =
[
ÃFF ÃFC

ACF ACC

]
as in (5) and the corresponding new coarse grid operator S =

ACC −ACF Ã
−1
FF ÃFC as in (7) are also singular M-matrices.
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Proof.
1. Show that Ã is a singular M-matrix:

A is a singular M-matrix. Therefore, it can be expressed in the form

A = sI − T, where T is the transition matrix of a Markov process

ρ(T ) = 1 = s.

In [12] it was shown that the coarsening process leaves the row sums invariant,
i.e., in our case equal to zero. Hence, we can write Ã = I − T̃ , where T̃ has
row sums one. Furthermore, we have Ã ∈ Zn×n, i.e., the off-diagonal entries
in Ã are nonpositive and the diagonal is nonnegative (as otherwise the row
sums could not be zero). The diagonal entries are also at most one. One
can see this by considering the following sparsification steps (see [12] for a
detailed description of the “sparsification” process):

• The initial matrix A has a sign and block structure, as illustrated in
Figure 2(a). The sign “−” indicates that all entries in the corresponding
section are nonpositive. Accordingly, “+” signifies that the entries in
the corresponding section are nonnegative.

• In the first step, “small” off-diagonal entries in each row are added to
the diagonal (see Figure 2(b)). The diagonal entries become smaller but
stay nonnegative.

• Then the remaining off-diagonal entries of the AFF -block are distributed
onto the AFC-block (see Figure 2(c)). The entries of the AFC-block
become smaller, but remain greater than −1, as otherwise the row sums
could not stay zero.

Thus, T̃ is in addition nonnegative and all entries are at most one. From this
we conclude that T̃ is stochastic and thus ρ(T̃ ) = 1 = s. Consequently, Ã is
a singular M-matrix.

2. Show that S as in (7) is a singular M-matrix:
In Lemma 4 we have shown that S1l = 0, i.e., S has zero row sums. From
this and from ACC ∈ ZN×N and ACF Ã

−1
FF ÃFC ≥ 0, we can conclude that

S = ACC −ACF Ã
−1
FF ÃFC ∈ ZN×N . Let S now have the representation

S = sI − T̂ , T̂ ≥ 0, s > 0.

Then we get

S1l = (sI − T̂ )1l = s1l − T̂1l = 0

⇒ T̂1l = s1l.
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As 1l > 0 is a positive eigenvector of T̂ , it follows from Corollary 2 that
s = ρ(T̂ ). Hence, S is a singular M-matrix.

From Theorem 5 we conclude that the singular M-matrix property is preserved
on all coarser levels.

3.4. Integration of the side constraint into the solution process. For a
badly chosen starting vector x0 the GMRES method in Algorithm 1 may converge to
the trivial solution, instead of the stationary distribution. In fact, for some problems
we cannot choose the starting vector randomly but need to employ a specifically fixed
starting vector as, e.g., in the case of the blood circulation model. Here, the initial
distribution might represent an injection into a certain organ. Therefore, it makes
sense to set x0 = [0, . . . , 1, . . . , 0]T , where the only nonzero entry [x0]i = 1 is positioned
to represent the injection into the organ i. In this case the naive application of the
preconditioned GMRES algorithm leads to a convergence to the trivial solution.

Hence, we have the side constraint 1lTx = 1 that we have to include into the
solution process. The idea now is to shift the system such that the trivial solution
is excluded as a possible solution. Consider the orthogonal projection matrix Q :=
I − 1

n1l1lT with respect to 1l, that is, 1lTQ = 0. Any vector x can be decomposed into

x := Qy + z

such that z = α1l for some constant α ∈ R. In particular, for a vector x̃ that fulfills
1lT x̃ = 1, we obtain z := 1

n1l.
Now we transform the initial problem as follows:

Ax = 0(8)

⇔ A(Qy + z) = 0

⇔ AQy = − 1

n
A1l.

By setting Â := AQ and b := − 1
nA1l, we get a formulation of the linear system where

the side constraint is embedded:

(9) Ây = b.

Now, we can solve this system instead of (8) using AMG preconditioned GMRES.
The system is still consistent since b ∈ im(A). As Q is orthogonal with respect to z,
we have x̃ = Qy + z �= 0 for all y.

Note that in the implementation we do not compute the product Â := AQ ex-
plicitly as Q is not sparse and matrix-matrix products are expensive, but rather
successively calculate the corresponding matrix-vector products.

3.5. Direct solution on the coarsest level. On the coarsest level we solve
the singular system

Amxm = bm(10)

directly using LU decomposition. From section 3.3 we know that the operator Am on
the coarsest level is still a singular M-matrix. In theory, the coarsening process does
not necessarily guarantee irreducibility of Am, although in our practical examples
this is the case. Since the treatment of this problem is beyond the scope of this



AMG FOR SINGULAR M-MATRICES 1989

paper, in the following discussion we will assume that Am is irreducible. Then an LU
decomposition of Am with L nonsingular exists [10] and appears as follows:

Am = LU =

⎡
⎢⎣�

�
��

1

1

�
�

�

⎤
⎥⎦
⎡
⎢⎣

�
�

��
0

⎤
⎥⎦ .

To solve the system (10), we need only prove that it is consistent. That is, we need
to ensure that L−1 applied to the right-hand side produces a zero in the last entry of
the resulting vector. Since the entry in the lower right corner of U is zero, we have
a consistent singular system. From the following lemma we conclude that whenever
the right-hand side bm is a zero vector the last entry of L−1bm will be zero, and thus
our system is consistent.

Lemma 6. Let A be a singular M-matrix with column sums zero and let A = LU
be an LU decomposition of A with L nonsingular. Then

eTnL
−1 = 1lT .

Proof. A = LU ⇔ L−1A = U . If we apply the nth unit vector from the left, we
get

eTnL
−1A = eTnU = [0, . . . , 0].

Thus, it must hold that eTnL
−1 = α1lT for some scalar α. Yet, as L−1 has ones on the

diagonal, we get α = 1 and hence eTnL
−1 = 1lT .

By construction, the AMG ensures that on any level j, the system (10) satisfies
1lT bj = 0 since this holds for the initial right-hand side in (9), and the new right-hand
sides on coarser grids are obtained via restriction of the residual, i.e.,

bj+1 = Rj(bj −Ajxk).

Note that Lemma 4 is applied to AT . Thus, Rj corresponds to (P j)T in Lemma 4.

3.6. Numerical tests. For numerical tests, we used MATLAB Version 7.1 run
on a PC with an Intel Pentium 4 CPU 3.20GHz processor. The relative machine
precision was eps = 2.2204×10−16. As convergence criterion for GMRES we used the
tolerance t = ‖r0‖

√
eps, where r0 is the initial residual, i.e., GMRES has converged

when the residual norm falls under the tolerance t. For the AMG iteration we used
the V-cycle with one presmoothing and one postsmoothing sweep; see section 3.1.
The time measurement was conducted via the commands tic and toc and represents
an upper bound for the required time. It can be further reduced by a more efficient
implementation of the AMG algorithm.

In section 1, we have discussed the Markov chain model of blood circulation in
the human body. Table 1 presents some results of the AMG preconditioned GMRES
algorithm applied to transition matrices of Markov chains that arise from the blood
circulation problem; see Example 1. Here, we consider the case where the blood
particles can recirculate in the neighboring organs before passing on. Hence, the
considered matrices have about five nonzero entries per row.

In the first column of Table 1 we have the size n of the problem. The second
column states the number nnz of nonzero elements in the matrix. The column la-
beled Grid shows the time required by AMG for the grid construction. In #level the
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Table 1

Performance of AMG preconditioned GMRES.

AMG+GMRES
∑

AMG

n nnz Grid #level Time Iters. Time

1125 5571 1.94 7 0.2 12 2.14

2598 12936 4.28 8 0.39 13 4.67

4952 24706 8.27 9 0.85 13 9.12

9544 47666 16.97 10 2.69 12 19.66

Table 2

Comparison with other methods.

AMGsa
∑

AMGsa GS GS+GMRES

n nnz Time Iters. Time Time Iters. Time Iters.

1125 5571 0.20 23 2.14 0.97 1061 0.75 144

2598 12936 0.68 27 5.96 8.49 4214 5.25 297

4952 24706 1.73 27 10.0 26.25 5547 18.01 428

9544 47666 4.08 20 21.05 – – 162.60 955

number of constructed grids is given. The following Time and Iters. columns repre-
sent the computation time of AMG preconditioned GMRES and the corresponding
number of iterations. The last column summarizes the total time required by AMG
preconditioned GMRES.

In Table 2 we give the results of alternative methods for the same problems as
in Table 1. The first two columns as in Table 1 contain the sizes and the numbers of
nonzeros of the problems. The following three columns contain the results for AMG
as a stand-alone function, where the total required time is given in the third column.
The next two columns labeled GS display the time and number of iterations required
by Gauss–Seidel iteration. The last two columns present the results for GMRES with
Gauss–Seidel as preconditioner. The top times are marked in bold.

As we can see, although for the smallest problem the Gauss–Seidel iteration and
the Gauss–Seidel preconditioned GMRES outperform the AMG method, for larger
problems AMG preconditioning becomes very effective. The computational effort
of AMG preconditioned GMRES grows linearly with the problem size, whereas the
number of iterations stays constant. The number of iterations for the Gauss–Seidel
preconditioned GMRES, in contrast, grows linearly with the problem size. The ef-
fectiveness of AMG preconditioning is due to the fact that the overall computation
time of the AMG preconditioned GMRES is dominated by the time required to con-
struct the “algebraic grid.” The computational effort required for grid construction,
although it also grows linearly, grows much slower with the matrix size than the
computational effort for Gauss–Seidel preconditioned GMRES. The AMG algorithm
as a stand-alone function also works quite well, although the computational effort is
slightly smaller in the AMG preconditioned GMRES due to fewer iterations. This
also supports the suitability of the AMG method as a preconditioner for this type of
problem.

4. Conclusions. In this paper, the application of the AMG method as a pre-
conditioner for solving large singular linear systems of the type (I − TT )x = 0 with
GMRES was examined. In doing so, we concentrated on the case in which T is the
transition matrix of a Markov process. The AMG method [12] was originally devel-
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oped for regular, symmetric, positive definite M-matrices. In our case, although the
matrix (I − TT ) is singular and nonsymmetric, it is a singular M-matrix that pos-
sesses a number of useful properties. It turns out that with the adaptation discussed
in sections 3.3–3.5, the method becomes applicable to singular matrices such as those
in the blood circulation model. Numerical experiments illustrate that preconditioning
with the AMG method leads to significant acceleration of the convergence speed.
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