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Abstract. As long as a square nonnegative matrix A contains sufficient nonzero elements, then the

Sinkhorn-Knopp algorithm can be used to balance the matrix, that is, to find a diagonal scaling of A that

is doubly stochastic. It is known that the convergence is linear and an upper bound has been given for

the rate of convergence for positive matrices. In this paper we give an explicit expression for the rate of

convergence for fully indecomposable matrices.

We describe how balancing algorithms can be used to give a measure of web page significance. We

compare the measure with some well known alternatives, including PageRank. We show that with an ap-

propriate modification, the Sinkhorn-Knopp algorithm is a natural candidate for computing the measure

on enormous data sets.
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1. Introduction. If a graph has the appropriate structure, we can generate a ran-

dom walk on it by taking its connectivity matrix and applying a suitable scaling to

transform it into a stochastic matrix. This simple idea has a wide range of applica-

tions. In particular, we can rank pages on the internet by generating the appropriate

connectivity matrix, G, and applying a scaling induced by a diagonal matrix, D, of

column sums so that Pc = GD−1 is column stochastic.1 Ordering pages according

to the size of the components in the stationary distribution of Pc gives us a ranking.

Roughly speaking, this is how Google’s PageRank is derived.

An alternative method of generating a random walk on G is to apply a diagonal

scaling to both sides of G to form a doubly stochastic matrix P = DGE. Of course, if

we use this approach then the stationary distribution is absolutely useless for rank-

ing purposes. However, in §5 we argue that the entries of D and E can be used as

alternative measures. We will also see that if we apply the Sinkhorn-Knopp (SK) al-

gorithm on an appropriate matrix to find D and E, we can compute our new ranking

with a cost comparable to that of finding the PageRank. In order to justify this con-

clusion, we need to establish the rate of convergence of the SK algorithm, which we
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do in §4. Before that, in §2 we review pertinent details about the SK algorithm and in

§3 we look at the symmetric case. Our numerical results are collected in §6.

2. The Sinkhorn-Knopp algorithm. The SK algorithm is perhaps the simplest

method for finding a doubly stochastic scaling of a nonnegative matrix, A. It does

this by generating a sequence of matrices whose rows and columns are normalised

alternately. The algorithm can be thought of in terms of matrices

A0 = A, A1, A2, . . .

whose limit is the doubly stochastic matrix we are after, or in terms of pairs of diag-

onal matrices

(D0, E0), (D1, E1), (D2, E2), . . .

whose limit gives the desired scaling of A. We will predominantly use the second

interpretation in this paper.

To describe the algorithm more formally, we introduce the operator D : Rn →
Rn×n where D(x) = diag(x). Starting with D0 = E0 = I, we let

rk = Dk−1 AEk−1e(2.1)

where e is a vector of ones, and Dk = D(rk)−1. Now let

cT
k = eT Dk AEk−1,(2.2)

and Ek = D(ck)−1.

Not surprisingly, the simplicity of the method has led to its repeated discov-

ery. It is claimed to have first been used in the 1930’s for calculating traffic flow [5]

and appeared in 1937 as a method for predicting telephone traffic distribution [15]2.

In the numerical analysis community it is most usually named after Sinkhorn and

Knopp, who proved convergence results for the method in the 1960’s [22], but it is

also known by many other names, such as the RAS method [1] and Bregman’s bal-

ancing method [16].

Perhaps the simplest representation of the method is given in [13]. Suppose that

P = D(r)AD(c) is doubly stochastic. Manipulation of the identities Pe = e and

PTe = e gives

c = D(ATr)−1e, r = D(Ac)−1e,(2.3)

which suggests the fixed point iteration

ck+1 = D(ATrk)−1e, rk+1 = D(Ack+1)−1e.(2.4)

2A more detailed history of the method can be found in [7]
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It is straightforward to show that this iteration is precisely the SK algorithm when

r0 = e. Note that this can be achieved by repeatedly issuing the commands

c = 1./(A′ ∗ r), r = 1./(A ∗ c)

in MATLAB.

Convergence of the SK algorithm depends on the nonzero structure of A. Recall

that a nonnegative matrix A has total support if A 6= 0 and all its nonzero elements

lie on a positive diagonal. This rather terse definition is standard in the literature

[19, 22] but can be usefully interpreted in terms of graphs. If a graph has an adjacency

matrix with the same nonzero pattern as a matrix with total support then every edge

in the graph is part of a circuit. A matrix is fully indecomposable if it is impossible

to find permutation matrices P and Q such that

PAQ =

[
A1 0

A2 A3

]
with A1 square. This property is also known as the strong Hall property. Sinkhorn

and Knopp proved the following result [22].

THEOREM 2.1. (Sinkhorn-Knopp) If A ∈ Rn×n is nonnegative then a necessary and

sufficient condition that there exists a doubly stochastic matrix P of the form DAE where D

and E are diagonal matrices with positive main diagonals is that A has total support. If P

exists then it is unique. D and E are also unique up to a scalar multiple if and only if A is

fully indecomposable.

A necessary and sufficient condition that the SK algorithm converges is that A has total

support.

Note that we are not claiming that D and E are unique, rather that if D1 AE1 =
D2 AE2 = P then there exists α > 0 such that D1 = αD2 and E2 = αE1.

By thinking of the iteration in terms of the approximate doubly stochastic matri-

ces

A0, A1, A2, . . . ,

Sinkhorn and Knopp also showed that the algorithm converges whenever A has at

least one positive diagonal. For example, if we were to scale the matrix[
a b

0 c

]
repeatedly we would converge to the identity matrix, however the diagonal matrices

in the identity Ak = Dk AEk would diverge.

The rate of convergence of the SK algorithm has also been studied by a number

of authors. Soules [23] has shown that the algorithm is linearly convergent whenever
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the original matrix has total support. However he gives no explicit value for the rate

of convergence. Soules establishes his result by treating the algorithm as a fixed point

iteration on matrices and looking at the Jacobian matrix. Our interpretation of the

method as an iteration on vectors enables us to improve this result.

Franklin and Lorenz [11] give a bound on the rate of convergence when A > 0.

They use Hilbert’s projective metric for vectors x, y ∈ Rn
+, namely

d(x, y) = log max
i,j

xiyj

xjyi
.

For A ∈ Rm×n
+ , we can define

θ(A) = sup{d(Ax, Ay)|x, y ∈ Rn
+} = max

i,j,k,l

aikajl

ajkail
.(2.5)

Franklin and Lorenz show that θ(A) = θ(Am) is constant for the sequence of matri-

ces {Am} generated by the SK algorithm with initial matrix A. They are also able to

show that the rate of convergence of the method is bounded above by

C =

(√
θ(A)− 1√
θ(A) + 1

)2

.(2.6)

This is an a priori bound on the rate of convergence, but it can be very weak in

practice. Furthermore, the result only holds for positive matrices. As the smallest

element of A approaches zero, it can be seen that C approaches 1. The result we

establish in §4 is sharp and applies whenever A is fully indecomposable.

It is worth noting that we can generate a stopping criterion for the SK algo-

rithm that can be computed very efficiently. We want to stop when D(rk)Ack and

D(ck)ATrk are both close to e. After each SK step the first of these criteria is satis-

fied (up to round-off error) as we will have just balanced the rows of A. To get an

estimate of the error in the column sums we note that ATrk = D(ck+1)−1e, so in the

middle of the step we can estimate our error by computing

errk = ‖ck ◦ dk+1 − e‖1,(2.7)

where dk+1 = D(ck+1)−1e and ◦ represents the Hadamard product.

Matrix balancing can be used as a simple technique for preconditioning a matrix.

Given a fully indecomposable matrix A ∈ Rn×n we can find two n × n diagonal

matrices, D and E, such that the p-norms of the rows and columns of DAE are all

equal. This idea was explored in [2, 10] as a method for finding a diagonal scaling

such that κ(DAE) � κ(A). By applying the SK algorithm to the matrix whose (i, j)th

element is |ap
ij|, it is easily seen that the problem is essentially identical for 1 < p < ∞.

The case p = ∞ is studied in [8, 20].
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3. Balancing symmetric matrices. If A is symmetric then it it is natural to look

for a diagonal matrix D such that DAD is doubly stochastic. We can do this using the

SK algorithm: if D(r)AD(c) is doubly stochastic then so is its transpose D(c)AD(r)
and since, up to a scalar factor, the balancing is unique (by Theorem 2.1), r = αc. If

α 6= 1 we can scale our limiting vectors to regain symmetry.

During the iteration, though, symmetry is lost and an alternative approach is to

generate a sequence of symmetric iterates. The symmetric analogues of (2.3) and (2.4)

are

x = D(Ax)−1e.(3.1)

and

xk = D(Axk−1)−1e.(3.2)

We note that this iteration can be coded in MATLAB by repeated application of the

single instruction x = 1./(A*x), which must make it one of the most compact algo-

rithms in numerical analysis!

While the iteration superficially retains symmetry it is in fact no different from

the SK algorithm. Comparing (3.2) with (2.4) we see that for k ≥ 0, x2k = rk and

x2k+1 = ck+1.

Conversely, we can use the iteration given by (3.2) on nonsymmetric matrices:

simply apply it to

S =

[
0 A

AT 0

]
.(3.3)

This is more than an academic exercise. To establish the rate of convergence of the

SK algorithm we first find the convergence rate of (3.2). This will be sufficient as, in

exact arithmetic the iterates coincide.

To see this, let

xk =

[
yk

zk

]
,

and (3.2) becomes

yk+1 =D(Azk)−1e,(3.4)

zk+1 =D(ATyk)−1e.(3.5)

Hence

yk+1 =D(AD(ATyk−1)−1e)−1e,

zk+1 =D(ATD(Azk−1)−1e)−1e.
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However, from (2.4), we have

ck =D(AD(ATck−1)−1e)−1e,

rk =D(ATD(Ark−1)−1e)−1e,

and we conclude that one step of the SK algorithm is equivalent to two steps of (3.2)

applied to S.

Symmetric balancing is also considered in [18], where the equation D(Ax)x = e

is solved using a Gauss-Seidel-Newton method.

4. The rate of convergence of the Sinkhorn-Knopp algorithm. We now con-

sider the convergence of the symmetric SK algorithm in (3.2) adapting as necessary

the standard tools for analysis of a fixed point iteration. At this stage, we restrict

ourselves to fully indecomposable matrices as in this case (3.2) has a unique posi-

tive fixed point, but we will comment on the more general case (matrices with total

support) at the end of the section.

There are two complications we have to consider when trying to establish con-

vergence. The first is that in general the iteration does not converge as when the SK

algorithm is used on a symmetric matrix the sequences {rk} and {ck} will almost

surely converge to different limits. Eventually we oscillate between a pair of vectors

that are scalar multiples of the fixed point. However, our ultimate goal is to establish

a sharp convergence result for the general SK algorithm and it will suffice to consider

the alternating subsequences.

The second complication is that around the fixed point, the Jacobian matrix has

spectral radius one and so we cannot make direct use of the contraction mapping

theorem. However, the nature of the subspace associated with the principal eigen-

vector means that this, too, can be dealt with. Soules makes similar observations

regarding the SK algorithm in [23] and proves linear convergence. As we are trying

to put a number to this rate, we cannot use Soules’ result. Instead, using our compact

representation of the iteration, we present a simple analysis that leads to an explicit

value for the rate of convergence.

We first prove a couple of lemmas to confirm some of the statements made in the

preceding discussion.

LEMMA 4.1. Suppose that A is a symmetric nonnnegative fully indecomposable matrix.

Then there is a unique positive vector, x∗, such that D(x∗)AD(x∗) = P where P is doubly

stochastic.

Proof. This is a trivial consequence of Theorem 2.1. For existence, suppose

D(r)AD(c) = P and let x∗ =
√
D(r)D(c)e (by symmetry r and c are collinear).

If D(x)AD(x) = D(y)AD(y) then, for some α > 0, x = αy and y = αx. Hence x = y.
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LEMMA 4.2. Suppose that A is a symmetric nonnnegative fully indecomposable matrix

and that x∗ is the unique positive vector such that D(x∗)AD(x∗) = P where P is doubly

stochastic. Let f (x) = D(Ax)−1e. The Jacobian matrix of f (x) satisfies the following

properties.

1. For all x ∈ Rn
+, J(x) = −D(Ax)−2 A.

2. For all α ∈ R+,

J(αx∗) = − 1
α2D(x∗)PD(x∗)−1.

Proof.

1. This can be confirmed by a straightforward componentwise calculation, or

by tensor calculus. We restrict ourselves to positive vectors to ensure that Ax > 0

and hence that D(Ax) is invertible.

2. At the fixed point, D(Ax∗) = D(x∗)−1, hence D(A(αx∗)) = αD(x∗)−1 and

J(αx∗) = − 1
α

2
D(x∗)2 A = D(x∗)(D(x∗)AD(x∗))D(x)−1 = − 1

α

2
D(x∗)PD(x∗)−1.

We now consider the behaviour of f (x) when x is in the neighbourhood of αx∗.

Because of the alternating behaviour, we consider the effects of two iterations at a

time.

LEMMA 4.3. Suppose that A is a symmetric nonnnegative fully indecomposable matrix

and that x∗ is the unique positive vector such that D(x∗)AD(x∗) = P where P is doubly

stochastic. Let f (x) = D(Ax)−1e. Let α > 0. If x̂ is in an ε-neighbourhood of αx∗ then in

an appropriate norm,

min
v∈V

‖ f 2(x̂)− v‖ ≤ |λ2|2ε + o(ε),(4.1)

where V is the vector space spanned by x∗.

Proof. Suppose that for some ε > 0, x̂ = αx∗ + d with ‖d‖ < ε. Let D = D(x∗)
and note that f (αx∗) = x∗/α and f 2(αx∗) = αx∗. We can write

f 2(x̂) = f ( f (αx∗) + J(αx∗)d + o(ε))

= f 2(αx∗) + J(x∗/α)J(αx∗)d + o(ε)

= αx∗ + (−α2DPD−1)(−α−2DPD−1)d + o(ε)

= αx∗ + DP2D−1d + o(ε) = αx∗ + J2d + o(ε),

where J = DPD−1. As ρ(P) = 1, we cannot use the contraction mapping theorem

to show that ‖ f 2(x̂)− αx∗‖ < ‖x̂− αx∗‖. However, observe that A is fully indecom-

posable hence P is, too, and since doubly stochastic matrices with this property are
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primitive [3], P has a single simple eigenvalue of modulus one. The corresponding

eigenvector of J is x∗. Using Wielandt deflation [26], we can write

J = −(x∗yT + J0),

where

σ(J0) = σ(P)− {1} ∪ {0} = {λ2, . . . , λn, 0}

by choosing, for example, y = x∗/x∗Tx∗. Since J0x∗ = 0,

f 2(x̂)=αx∗ + (x∗yT + J0)2d + o(ε)

= J2
0 d + (1 + yT(J0 + I)d)x∗ + o(ε).

Choosing our norm so that ‖J0‖ ≤ |λ2| + ε and letting v = (1 + yT(J0 + I)d)x∗
establishes (4.1).

We can conclude that as our iterates approach the subspace spanned by x∗, the

contribution to our iterates from other directions diminishes linearly at a rate gov-

erned by the second eigenvalue of P. The fact that we are heading for a fixed line

rather than a fixed point is sufficient for us to find the scaling we crave. Since we

already know that the SK algorithm converges, we can be sure that we eventually lie

in a neighbourhood that satisfies the conditions of Lemma 4.3.

THEOREM 4.4. Suppose that A is a symmetric nonnnegative fully indecomposable

matrix and that x∗ is the unique positive vector such that D(x∗)AD(x∗) = P where P is

doubly stochastic and let {xk} be the sequence of vectors generated by the iteration (3.2) with

x0 = e. Then for all ε > 0 there exists K1 ∈ Z such that if k ≥ K1, xk = αkx∗ + dk where

‖dk‖ < ε and αk is bounded. Furthermore, there exists K2 ∈ Z such that if k ≥ K2,

‖dk+2‖ ≤ |λ2|2‖dk‖,

where λ2 is the subdominant eigenvalue of P.

Proof. The existence of K1 is guaranteed by Theorem 2.1 and our observation

on the equivalence of the SK algorithm and (3.2). The existence of K2 follows from

Lemma 4.3.

The result does not immediately extend to the nonsymmetric case as when we

form S using (3.3) we lose indecomposability. This isn’t a problem though.

THEOREM 4.5. If A is fully indecomposable then the SK algorithm will converge lin-

early to vectors r∗ and c∗ such that D(r∗)AD(c∗) = P where P is doubly stochastic. Fur-

thermore, there exists K ∈ Z such that if k ≥ K,∥∥∥∥∥
[

rk+1

ck+1

]
−
[

r∗
c∗

]∥∥∥∥∥ ≤ σ2
2

∥∥∥∥∥
[

rk

ck

]
−
[

r∗
c∗

]∥∥∥∥∥ ,
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where σ2 is the second singular value of P.

Proof. The convergence of the algorithm is guaranteed by Theorem 2.1. To deter-

mine the rate of convergence we need to adapt Lemma 4.3. Consider the spectrum of

J(x∗) when we form the matrix S using (3.3). This will be the same as the spectrum

of

Q =

[
0 P

PT 0

]
.

The conditions imposed on A ensure that P is primitive and hence so is PT P. Since

the spectrum of Q is the set of positive and negative square roots of the eigenvalues3

of PT P we have an additional eigenvalue of modulus one. We need to consider how

the iteration behaves in the neighbourhood of the associated subspace, V .

The two eigenvectors of J(x∗) corresponding to the maximal eigenvalues take

the form

v1 =

[
r∗
c∗

]
and v2 =

[
r∗
−c∗

]
,

Assuming x̂ is in an ε-neighbourhood of V we can again show that

min
v∈V

‖ f 2(x̂)− v‖ ≤ |λ2(Q)|2ε + o(ε),

and |λ2(Q)| = σ2(P).

We have essentially proved the theorem, we just have to identify the iterates

from the symmetric algorithm that appear as iterates in the SK algorithm. Following

the discussion at the end of § 3 we can identify rk as the top half of x2k and ck as the

bottom half of x2k−1. This explains why the rate of convergence of the SK algorithm

is σ2
2 . SK algorithm avoids the oscillations in the symmetric algorithm as rk and ck

are formed from convergent subsequences of {xk}.

Theorem 2.1 states that the SK algorithm is convergent if A has total support

while Theorem 4.5 only applies if A is fully indecomposable. This gap is easily rec-

onciled: if A has total support but is not fully indecomposable then it must be a

direct sum of fully indecomposable matrices. Such a matrix can be permuted into

block diagonal form 
A1

A2
. . .

Ak

 ,

3Or singular values of P.
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where each diagonal block is fully indecomposable. The behaviour of the SK algo-

rithm is unaffected by permutations (unlike the symmetric variant). If we apply the

SK algorithm to the block diagonal form then clearly the convergence in each block

will be independent of all others and the doubly stochastic matrix we converge to-

wards can be written 
P1

P2
. . .

Pk

 ,

where each Pi is itself doubly stochastic and fully indecomposable. The asymptotic

rate of convergence to Pi is σ2
2 (Pi). If we want to talk about an overall asymptotic

convergence then it will be bounded above by

max
1≤i≤k

σ2
2 (Pi).

However, we may not see this upper bound reached, for example, in the case that

some of the Ai are already doubly stochastic.

5. Ranking web pages. The PageRank algorithm, introduced by Brin et al. [6],

has proved to be an incredibly successful technique for ordering large sets of con-

nected data. In essence, the method takes a matrix, G, representing the connectivity

of a network and scales the columns so that the matrix is column stochastic.4 The

stationary distribution of this scaled matrix is then calculated, typically by using the

power method, and the size of the probabilities is used to order the nodes in the

network. A thorough description of the method and associated theory can be found

in [17]. We note that the column scaling is trivial to achieve (requiring half a step of

the SK algorithm) and the main work is in computing the stationary distribution. In

this section we use the SK algorithm to compute an alternative method for ordering

data which has a similar cost to PageRank but which has two principal advantages.

First, for each node in our network we get two measures rather than one which we

claim are analogous to the authorities and hubs of Kleinberg’s HITS algorithm [14].

Second, there is no need to treat dangling nodes differently to any other whereas

in the PageRank algorithm, it is necessary to preprocess the connectivity matrix in

some way otherwise the column scaling fails [21].

The guiding heuristic behind the PageRank model is simple to state, namely that

the random walk will visit significant web pages more frequently than insignificant

ones, and the success of this graph interpretation in mimicking the subjective prop-

erty of significance is one of the main reasons behind its current ubiquity.

4In our connectivity matrix the (i,j)th entry is one if there is a link from the jth node to the ith node.
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We offer a simple heuristic to justify our application of the SK algorithm to the

problem. Clearly the probabilities in the associated distribution tell us nothing as the

distribution is uniform.5 If we think in terms of the traffic flowing around the net-

work represented by G then, our aim is to balance the flow through each node. That

is, we want to scale G so that its stationary distribution is uniform, or equivalently

so that it is doubly stochastic. Suppose then that D(r)GD(c) is doubly stochastic.

If node i in the unweighted graph draws traffic in disproportionately then this will

have to be compensated for by ri being relatively small. Similarly, if a node has a

tendency to emit traffic then ci will need to be relatively small. We associate the ten-

dency of a node to emit traffic with it being a hub, a node which points to several

sources of information on a topic. The tendency to draw in traffic is associated with

authoritativeness, a node that contains definitive information on a particular topic.

We can order the nodes with respect to each of these properties by reversing the

order of the entries of r and c. This heuristic is very similar to that behind the ordi-

nary gravity model in transport planning [1, 16], where the SK algorithm has been

successfully employed.

While we believe the use of the SK algorithm in web applications is new, it is

related to a technique proposed by Tomlin in [24]. Here one looks to find a vector

d such that similarity transformation induced by D(d) on the connectivity matrix,

P = D−1GD, fixes the sum of the entries of P and, for 1 ≤ i ≤ n,

n

∑
j=1

(pij − pji) = 0.(5.1)

Tomlin argues that the authoritativeness of the jth node is proportional to the size of

dj while the jth row/column sum can be used as a hub measure. Tomlin’s suggests

an iterative algorithm for computing d, the iterative step for which can be written in

MATLAB as

d = sqrt((G ∗ d)./(G′ ∗ (1./d)));

but no conditions for convergence are given although it is claimed to work in prac-

tice. A criticism of Tomlin’s technique is that if G is symmetric (5.1) is satisfied with

D = I and the method fails to identify authorities. While G will not be symmetric in

web applications, there seems to be no justification for this phenomenon.

5.1. Practicalities. On any large set of web data it is unreasonable to expect the

nodes to form a single strongly connected component and our matrix is highly un-

likely to be fully indecomposable. Hence it is necessary to make a perturbation to

G for the SK algorithm to converge. In PageRank a damping factor is used: if P

5We can claim categorically that this is the worst possible method for ranking web pages!
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is the column stochastic scaling of the web graph then we compute the stationary

distribution of

Pα = αP + (1− α)eeT/n.(5.2)

Inspired by this idea, we simply make a rank one perturbation to G by adding a con-

stant γ to each element. Our justification for doing this is similar to that in PageRank:

if we wish to model a random crawl on the web we have to allow a mechanism for

moving between any pair of nodes. Clearly we do not want to make the perturbation

explicitly as we want to take advantage of the sparsity in G, and indeed it is easily

avoided. Using (2.4), and the fact that all the iterates are positive, we can write

ck+1 = D((G + γeeT)Trk)−1e = D(GTrk + γ‖rk‖1e)−1e

and similarly

rk+1 = D(GTck+1 + γ‖ck+1‖1e)−1e.

A MATLAB program for carrying out balancing of G + αeeT using the stopping cri-

terion for the SK algorithm (2.7) is given in Figure 5.1. All the user needs to supply is

function [c, r] = sk(G, tol, g)

[n, n] = size(G);

r = ones(n,1); c = r;

d = G’*r + g*sum(r);

while norm(c.*d - 1,1) > tol

c = 1./d;

r = 1./(G*c+ g*sum(c));

d = G’*r + g*sum(r);

end

FIG. 5.1. A balancing algorithm for web ranking.

the connectivity graph and a choice of tolerance and the parameter γ. The cost of the

algorithm is dominated by the two matrix-vector multiplies at each step. For very

large values of n, the cost of the transpose is likely to be significant and the algorithm

should be adapted to work with G and GT efficiently.

The damping factor in PageRank controls the rate of convergence of the power

method by fixing the size of the second eigenvalue of Pα. This is a consequence of the

following theorem, due to Brauer [4], a simple proof of which can be found in [9].

THEOREM 5.1. Let P be a column-stochastic matrix with eigenvalues

1, λ2, . . . , λn.
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Then if 0 ≤ α ≤ 1, the eigenvalues of Pα, as defined in (5.2), are {1, αλ2, . . . , αλn}.

The result is also true for a more general set of rank one perturbations but if we

restrict ourselves to this particular one we can extend the result to determine the

singular values in the doubly stochastic case.

COROLLARY 5.2. Let P be a doubly stochastic matrix with singular values

1, σ2, . . . , σn.

Then if 0 ≤ α ≤ 1, the singular values of Pα are {1, ασ2, . . . , ασn}.

Proof. Since

PT
α Pα = α2PT P +

α(1− α)
n

(eeT P + PeeT) +
(1− α)2

n2 eeTeeT

= α2PT P +
2α(1− α)

n
eeT +

(1− α)2

n
eeT

= α2PT P +
1− α2

n
eeT ,

the result follows by applying Theorem 5.1 to PT P.

In many applications, α is given the value 0.85, but care must be taken to ensure

that Pα sufficiently resembles P [12]. For the balancing algorithm we are unable to

prove a result as strong as Theorem 5.1. However, using our convergence result

for the SK algorithm, we argue that the criteria for making a good choice for the

parameter γ are similar to those used in PageRank.

We can apply the Franklin-Lorenz bound (2.6) in the perturbed case to get an

idea of the effect of varying γ. Since G contains only zeros and ones we have,

from (2.5),

θ(G + γeeT) = max
i,j,k,l

(gik + γ)(gjl + γ)
(gjk + γ)(gil + γ)

≤ (1 + γ)2

γ2 ,

hence the rate of convergence can be bounded above by 1/(1 + 2g). While this shows

that we can expect the convergence of the algorithm to improve by increasing γ, ex-

perimental evidence shows that this severely underestimates the effect of the param-

eter, and a more realistic upper bound would be of the form 1/p(n, γ) for some low

degree polynomial in n and γ. Such a bound is simple to prove in certain important

special cases.

For example, suppose that P is doubly stochastic and we use the SK algorithm

on P′ = P + γeeT . Then D(rk)P′D(ck) converges to Q = (1 + nγ)−1P′, since this is

clearly a doubly stochastic diagonal scaling of P′ and, by Theorem 2.1, such a scaling

is unique. Notice that Q = Pα where α = (1 + nγ)−1 and so by Corollary 5.2 and

Theorem 4.5, the SK algorithm will converge asymptotically with rate (1 + nγ)−2.

For example, choosing γ = 0.1/n gives a convergence rate of around 0.83.
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6. Results. In § 4 we showed that if the SK algorithm is used on a fully inde-

composable nonnegative matrix and it converges to the doubly stochastic matrix P

then the rate of convergence is asymptotically equal to the square of the second sin-

gular value of P. Generally, we have found that this asymptotic convergence rate is

approached fairly quickly. This is illustrated in Figure 6.1 for three matrices. A is

the 10 × 10 upper Hessenberg matrix whose nonzero entries are all 1, B and C are

random 50 × 50 matrices whose nonzero entries are uniformly distributed in [0, 1].
They are generated so that approximately 30 percent of B’s elements and 15 percent

of C’s elements are nonzero. The solid lines in all our graphs measure the error as

the iteration progresses using (2.7), the dashed lines represent the asymptotic rates

predicted by Theorem 4.5.

FIG. 6.1. Rate of convergence of the Sinkhorn-Knopp algorithm.

In § 5.1 we claimed that the rate of convergence of the SK algorithm was signif-

icantly faster when we made a uniform rank one perturbation to the original graph.

In Figures 6.2 and 6.3 we provide evidence for our claim that the rate of convergence

of the SK algorithm on the n × n matrix A + γeeT can be bounded by 1/p(n, γ) for

some low degree polynomial in n and γ.

In Figure 6.2 we show the results of varying γ on a sparse random symmetric

1000 × 1000 matrix with positive diagonal (which ensures that the matrix is fully

indecomposable).

In Figure 6.3 we show the results of varying γ on the connectivity graph for a

2002 web crawl of Stanford University websites.6 There are 281093 nodes and the

matrix has roughly 2 million nonzero entries. While this particular matrix has been

criticized [25] for not having a representative web structure, it usefully illustrates the

6Available from http://www.stanford.edu/∼sdkamvar/data/stanford-web.tar.gz.
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FIG. 6.2. Varying γ for a random sparse matrix.

effects of varying γ. In this case, if γ = 0 the matrix is not fully indecomposable.

The lines show how convergence speeds up as we vary γ through the values 0.01/n,

0.1/n, 0.5/n, 1/n, 2/n and 4/n.

FIG. 6.3. Varying γ for the Stanford matrix.

We now investigate how our new measure compares with PageRank. In our first

example, we look at the toy example of a graph of six webpages used in [17], whose

connectivity is illustrated in Figure 6.4.

Using PageRank with α = .9 the nodes are ordered (from most significant to

least) 4, 6, 5, 2, 3, 1. Using the HITS algorithm, the order of authoritativeness is 5, 2, 6,

1, 4, 3, while the hub ordering is 3, 4, 1, 5, 6, 2. Using the algorithm in Figure 5.1 (and

with γ = 1/60) we find that our ordering of authoritativeness matches the PageRank
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FIG. 6.4. A miniature web graph.

exactly. Our ordering of the hubs differs from HITS only in that nodes 1 and 4 are

transposed. We should not expect the exact correspondence between PageRank and

our new measure to extend to larger systems as we are trying to measure something

different.

We have carried out a number of experiments on the graph of all the links be-

tween articles in the Wikipedia online database, collated in 2005. The resulting graph

has just over 1.1 million nodes and there are roughly 18.3 million nonzeros in the con-

nectivity matrix. Figure 6.5 shows a comparison of PageRank (α = .85) against the

authorities computed by the SK algorithm (γ = .1/n). The graph shows the propor-

tion of nodes that are amongst the top N authorities and are in the top N for high

PageRank for 1 ≤ N ≤ 1000. We note the strong correlation between the two.

FIG. 6.5. Comparison of web measures on Wikipedia data.

Finally, we investigate how well the SK algorithm allows us to distinguish be-

tween hubs and authorities. Table 6.1 shows the top 10 or so nodes7 in the Wikipedia

7We have grouped certain linked terms that appeared consecutively.
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dataset according to a variety of measures. The first column is ordered according to

PageRank (α = .85), the second according to the authorities as measured with the

SK algorithm. In the third column we have filtered out authorities whose hub rating

is particularly low. Our rationale for doing this is that if an authoritative page has

a high hub rating it will be linked to many other subjects and is therefore likely to

be of more general interest. This is precisely what we see here, where we have only

listed authorities that are also in the top 2% of hubs. The fourth column lists the top

hubs, this time filtered to include only those amongst the top 25% of authorities. We

note that all of the top hubs are either tables or lists.

PageRank Authorities Filtered Auth. Filtered Hubs

United States 2000 2000 Political parties

Race (US Census) Pop. density Marriage Environment topics

United Kingdom km2 US State leaders

France Census 2003, 2004, 2005 Airlines

2005,2004,2000 Square mile UK/England 2 letter combinations

Canada Marriage Canada Masts

England Per capita income Japan Mathematicians

Cat. by country US Census Australia Peerage of the UK

2003 Poverty line 2001, 2002 Record labels

Cat.:Culture Race (US Census) Germany Biblical names
TABLE 6.1

Highest ranked subjects in Wikipedia.

7. Concluding Remarks. The SK algorithm can be viewed (for symmetric ma-

trices) as a power method-like technique for solving the matrix problem Ax = 1/x.

This connection can be seen in the similar convergence properties and costs of the

two algorithms. The results of our experiments back our claim that the SK algorithm

can be used to distinguish between hubs and authorities in web-type graphs at a cost

similar to that of PageRank. The notion of quality of an ordering is fairly subjective,

but we feel the results in Table 6.1 demonstrate that we can obtain useful information

with this approach.

In order to balance speed and quality in ordering web data with the algorithm

given in Figure 5.1 we suggest choosing the parameter γ to lie in the range .01 ≤
γn ≤ 1. Evidence that a choice in this range can be used to compute a measure in a

comparable time to PageRank is supplied by our experiments and the partial results

in § 5.1.
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