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Abstract.

Type 1 diabetes (T1D) is an autoimmune disease in which immune cells, notably T-lymphocytes target and kill the
insulin-secreting pancreatic beta cells. Elevated blood sugar levels and full blown diabetes result once a large enough
fraction of these beta cells have been destroyed. Recent investigation of T1D in animals, the non-obese diabetic (NOD)
mice, has revealed large cyclic fluctuations in the levels of T cells circulating in the blood, weeks before the onset of diabetes
[23], but the mechanism for these oscillations is unclear. We here describe a mathematical model for the immune response
that suggests a possible explanation for the cyclic pattern of behaviour. We show that cycles similar to those observed
experimentally can occur when activation of T cells is an increasing function of self-antigen level, whereas the production
of memory cells declines with that level. Our model extends previous theoretical work on T cell dynamics in T1D [14],
and leads to interesting nonlinear dynamics, including Hopf and homoclinic bifurcations in biologically reasonable regimes
of parameters. The model leads to the following explanation for cycles: High rates of beta cell death, and corresponding
elevation of self-antigen, shut off memory cell production, leading to a gap in the population of activated T cells. Once
peptide has been cleared by nonspecific mechanisms, the memory pool is renewed, and the cyclic behaviour results.
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1. Introduction. Type 1 Diabetes (T1D) is an autoimmune disease in which pancreatic beta cells
are killed by the immune system, shutting off insulin secretion, and resulting in elevated blood glucose.
The disease affects young people, severely impacting their health, and requiring perpetual insulin injec-
tion. Finding cures and/or treatment to replace the beta cells (e.g., by transplanting islets from organ
donors) remains problematic, mainly because the damage is caused by the body’s own immune system,
which also attacks the transplant.

Studying autoimmune diabetes in humans presents ethical and clinical challenges. Therefore, animals
with diabetic tendency, including non-obese diabetic (NOD) mice are used to gain a basic scientific
understanding of the disease. In NOD mice, Type 1 diabetes arises when populations of immune cells
called T cells become primed to specifically target and kill beta-cells. Such cytotoxic T cells belong to a
class of lymphocytes displaying a surface marker called CD8. (Hence, denoted CD8+ T cells). We first
briefly describe the background immunology, and then present the detailed aspects specific to diabetes,
the data on circulating T cells, and our model.

1.1. Immunology Primer. For an excellent survey of immunology, see [9]. T cells mature in the
thymus, where those that cross-react with self-proteins are normally eliminated to prevent autoimmunity.
After this period of development, they are released, circulate, and migrate to lymph nodes. In the lymph
nodes, T cells interact with antigen presenting cells (APC’s) that display stimuli, consisting of a small
fragment of antigen protein (i.e., a peptide of about 9 amino acids in length) held inside a cleft of a larger
protein (named major histocompatibility complex, or MHC for historical reasons) [4]. The peptide-
MHC complex (p-MHC for short) interacts with specific receptors on the surface of the T cells (“T cell
receptors”, abbreviated TCR’s). The strength, duration, and number of such interactions experienced
by a given T cell determines its subsequent fate [24, 26, 15, 27, 21]. Within the right range of affinity to
and quantity of p-MHC encountered, T cells with the appropriate specificity undergo activation, and the
immune response is initiated.

Under normal conditions, antigen presenting cells display antigens that are derived from foreign
proteins, such as viral or bacterial coat proteins. Then, appropriately specific T cells are primed to
form a large battalion of effector cells to combat the infection. Activated T cells proliferate, undergoing
about 6 cell divisions. Their daughters are mostly effector cells (also called cytotoxic T-lymphocytes, or
CTL’s), efficient and specific killers that seek out and destroy target cells. These effector cells, though
deadly, are relatively short-lived [5]. A few daughters of activated T cells are memory cells that retain
the same specificity but have no immediate effect [8, 25]. However, when the stimulus (e.g., the same
foreign antigen) is encountered for a second time, memory cells can be activated rapidly to mount a faster
immune response.

In autoimmune diseases such as type 1 diabetes, the antigen peptide derives from normal proteins in
the host. Infection or other injury can expose such proteins and initiate the disease, but once in progress,
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successive killing of targeted cells, and consequent release and exposure of more self-antigen can sustain
the inappropriate immune response. As the immune system is a complex web of nonlinear interactions
between cells, chemicals, and tissues, rich dynamical behaviour can be expected, and indeed does occur.
Our first goal in this paper is to point out interesting immunological dynamics to an audience of applied
mathematicians. Our second goal is to present a plausible explanation of the cycles in autoimmune
diabetes observed by [23], based on an established set of known and hypothesized interactions.

1.2. Autoimmunity in type 1 diabetes. It has been shown that normal development of NOD
mice includes a wave of programmed cell death (apoptosis) of pancreatic beta cells shortly after birth
[18, 19]. In these same experiments, it was also determined that clearance of the apoptotic cells (by
macrophages, nonspecific cells of the innate immune system) is reduced in NOD mice, leading to the
conjecture that material from these dead beta cells forms self-antigen that triggers the autoimmune
response. Previous modelling efforts have focused on such early initiation events [12, 13], but here we are
mainly concerned with later stages in which the adaptive immune system is involved.

A number of proteins, including insulin, have been implicated as self-antigens in type 1 diabetes.
Most recently, experimental collaborators in Calgary (in the laboratory of P. Santamaria) have identified
a new dominant self-antigen: IGRP (glucose-6-phosphatase catalytic subunit-related protein), a protein
of beta-cells whose normal function is yet to be determined. A fragment of this protein (consisting of
amino acids 206-214) is the “peptide” to which most CD8+ T cells in T1D react [10]. The discovery
of this specific self-antigen in NOD mice followed years of experiments in which libraries of artificially
synthesized peptides were used to identify and label T cells [2, 1, 6]. Use of tetramer probes (constructed
of four copies of peptide-MHC with a fluorescent tag) allowed careful investigation of the levels and
dynamics of these cells, by enhancing the ability to label cells that were previously undetectable.

Fig. 1.1. Periodic waves of circulating T cells occur in mice prone to diabetes (NOD mice) in the weeks before the
onset of the disease. Data reprinted with permission from authors of [23]. Dark line, circles: T cell level. Grey line,
squares: percentage of the animals that became diabetic. Our model accounts for the cyclic waves, but not for the period
of initialization in weeks 0-5, when other processes prime the adaptive immune system.

Using such tetramer staining experiments, it was shown by Trudeau et al. [23] that the level of
auto-reactive CD8+ T cells is detectable in the pancreatic islets in 4-5 week old NOD mice, and at
elevated levels by weeks 11-14. Correlated with this rise, populations of T cells circulating in the blood
are also noticeably elevated over weeks 4-16 of age, before the high blood-sugar symptoms of diabetes
occur. Surprisingly, the levels of these cells do not simply rise monotonically as the disease progresses,
but rather, undergo dramatic fluctuations over this time frame, as shown above in Fig 1.1.

Not all NOD mice develop diabetes, but presence of these cyclic T cell waves in a given animal predicts
that it will become diabetic. Data for each one of the mice were aligned at the time of onset of high-blood
sugar symptoms, so that the time axis could be “normalized” before combining and averaging. These
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pooled data show three peaks in the level of T cells starting at about 8 weeks of age, and declining from
about 16 weeks. The amplitude of the cycles increases over this time, and a slight increase in the period
is also visible. The fact that Fig 1.1 was produced experimentally as an average of data for many mice
suggests that there is some robustness in the cycling (as well as in its period) in NOD mice. These mice
are all genetically identical, which means that parameters typical of their physiological and immunological
processes are likely very similar (with some possible exceptions due to environmental effects). Trudeau
et al. speculated that each of these cycles represent “a round of proliferation of autoreactive T cells
undergoing avidity maturation” [23], but the details of the underlying mechanism were not explored.
This exploration is the subject of our paper.
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Fig. 2.1. Scheme of the model. Programmed cell death (apoptosis) of pancreatic (insulin producing) beta-cells generates
self-antigen peptide (p). In the pancreatic lymph nodes, this peptide is presented as part of cell-surface complexes (peptide-
MHC, or p-MHC) on antigen presenting cells called dendritic cells. The amount of p-MHC presented affects the activation
and the differentiation of naive T cells into memory cells (for self-renewal) and into effector cells (cytotoxic T cells, or
CTL’s) that seek and kill beta cells. This leads to more peptide exposure and results in positive feedback that eventually
culminates in autoimmunity and type 1 diabetes.

2. Background for the model. Our main hypotheses stem from a recent model by Marée et al.

[14] that addressed the dynamics of T cells and peptide. In the latter paper, the focus was on artificial
peptide used to treat the disease in a therapy similar to vaccination. It was shown that the competition
of T cell clones during peptide treatment could explain some of the puzzling dose-response behaviour of
the treatment, and predict its success or failure. In their discussion, Marée et al. [14] speculated that the
increase in level of peptide antigen that results from beta cell killing could be a feedback that explains
the periodic waves of T cells observed by [23]. However, this idea has not yet been tested rigorously in
a mathematical setting. We use some of the formalism and lessons learned in that model to investigate
cyclic dynamics seen in [23]. We will show that an explanation for such dynamics is already inherent in
the framework of the model of [14], or slight variations thereof.

Figure 2.1 summarises the essential ingredients of our model. As shown, the process might be initiated
by some injury or infection of beta cells, or by the normal wave of programmed cell death (apoptosis),
not shown. Fragments of apoptotic cells are processed and presented as p-MHC on dendritic cells in
the lymph nodes, and naive T cells interact with these complexes. It is known that the level of peptide
presentation (i.e., amount of p-MHC) and the affinity of the T cell receptors for the peptide determines
whether a T cell encountering the antigen presenting cell will become activated to proliferate [4, 6, 16].
When naive T cells are activated, they proliferate to produce about 60 effector cells and about 1-4 memory
cells [8]. Memory cells have a low turnover rate. They are able to undergo reactivation in response to
antigen and to proliferate again, replenishing the pool of T cells. By killing beta cells, the effector T
cells lead to a positive feedback on the amount of peptide produced, and hence on further activation of
T cells. The life-time of the effector T cells is about 3 days [5, 7, 22] versus about 100 days for memory
cells.

The level of peptide influences two important aspects of the process described above. First, the rate
of activation of T cells depends on peptide level. Second, the fraction of daughter cells that are memory
cells versus those that are effector cells is also peptide dependent. Experimental evidence [11, 17] points
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to the fact that, at high peptide doses, too few memory cells are produced. (This is termed “clonal
exhaustion”). Following [14], we assume that the fraction of of naive and memory T cells activated is
given by a sigmoidal increasing function, f1(p), whereas the fraction, f2, of daughter cells of activated T
cells that become memory cells decreases sigmoidally as peptide increases. We also chose f1 and f2 to be
Hill functions, i.e., rational functions with powers of degree > 1 (the degree is called the Hill coefficient,
see Section 3.2.)

In Figure 2.2, we show a simplified scheme, outlining our basic assumptions for the model: A fraction
f1 of incoming naive T cells become activated (A); a fraction, f2, of their offspring are memory cells (M),
and the rest, 1 − f2, are effector cells, (E). Memory cells can be reactivated (same peptide-dependent
fraction, f1, as incoming naive T cells). The effector cells cause death of beta cells, (B), which, in turn,
creates the peptide (p). The peptide level affects both f1 and f2.

p
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f1

f1

f

1−f
2

2

B

Fig. 2.2. Simplified model scheme, showing the main variables considered: A, E,M are the number of activated,
effector, and memory T cells. B denotes beta cells, and p is peptide. The two peptide-dependent functions are the fraction
of T cells activated, f1, and the fraction of memory cells produced, f2. (The feedback from peptide to these has been omitted
in the diagram for clarity). The † represents killing of beta cells by effector T cells.

3. The Model.

3.1. Assumptions. The following assumptions enter the model
1. We do not at this stage consider the distinct compartments of blood, pancreas, and lymph nodes.

Since the dynamics of interest take place over many weeks, whereas the trafficking between these
compartments takes place on the time scale of hours, we approximate all variables as densities
or concentrations in a single, well-mixed compartment.

2. We do not model the pathogenesis of the disease over the first 4-5 weeks. At this early stage, it is
likely that the innate immune system (e.g., macrophages) may set up conditions that eventually
give rise to priming of T cells. See [13] for an analysis of that stage.

3. We assume that effector cells are terminal. (Some controversy exists about whether they give
rise to some memory cells.) We also investigated a model in which memory cells are progeny of
effector cells and found essentially similar results.

4. We do not discuss the competition of many distinct “clones” of T cells for sites on antigen-
presenting cells or for p-MHC [14]. We model only the development of one dominant clone.

5. We assume that material from dead beta cells produces self-antigen peptide at a linear rate,
and that this peptide is presented proportionally as p-MHC on the dendritic cells. In [14], this
p-MHC level was denoted mt and modeled as a quantity in quasi-steady state (QSS) with peptide
and MHC molecules. Here we simplify such details.

6. We assume that once beta cells are gone, the production of the autoantigen ceases, and the
immune response stops, since T cell activation does not occur in the absence of peptide.

3.2. Model equations. Our full model consists of the following set of ordinary differential equations
(ODE’s):

dA

dt
= (σ + αM)f1(p)− (β + δA)A− εA2,(3.1)

dM

dt
= β2m1f2(p)A− f1(p)αM − δMM,(3.2)

dE

dt
= β2m2(1− f2(p))A− δEE,(3.3)
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dp

dt
= REB − δpp,(3.4)

dB

dt
= −κEB,(3.5)

where A(t), M(t), E(t) are the population levels of activated, memory, and effector T cells at time t,
p(t) is the peptide level, and B(t) is the population of remaining beta cells. For the peptide-dependent
functions we take Hill functions,

f1(p) =
pn

kn
1 + pn

,(3.6)

f2(p) =
ak2

m

km
2 + pm

.(3.7)

with m, n > 1. The parameters k1 > 0 and k2 > 0 in Eqns. (3.6) and (3.7) denote typical levels of peptide
at which the response of these functions is half-maximal, and 0 < a < 1 is the maximal value of f2(p).
Note that f1(p) is monotonic increasing whereas f2(p) is monotonic decreasing with p. In Eqs. (3.1)-(3.3),
all T cells represent members of clones whose specificity to beta-cell peptide is high. In Eqn. (3.1), σ is
the rate that naive T cells enter the circulation from the thymus. The fraction of incoming naive and
memory cells that become activated is governed by the peptide-dependent sigmoidal function f1(p), (α is
a factor that represents the higher rate of activation of memory cells relative to naive cells). The rate of
decay of A, δA is augmented by a term for competition, εA2, as discussed in [14]. Activated cells progress
to a differentiated stage at rate β. They then proliferate by a series of cell-doublings to produce 2m2 ≈ 60
effector cells, and 2m1 ≈ 3 − 4 memory cells. The commitment to development into these two types of
daughter cells depends on peptide according to the decreasing sigmoidal function f2(p). Effector cells are
terminal, and have a shorter half-life than memory cells (δM < δE).

Equation (3.4) depicts our simple assumption about production and clearance of peptide: the level of
“peptide,” p, is produced with mass-action kinetics when effector cells kill beta cells (at rate R per effector
per beta cell) and cleared with linear kinetics at rate δp. Recall that clearance of dead beta-cells and
their fragments by macrophages is defective in NOD mice [12, 18, 19], and this defect can theoretically
lead to the early chronic inflammation that initiates the priming of T cells [13]. Therefore, it is of interest
to ask whether this same defect can also account partly for the dynamics of T cells at this later stage of
the disease. We investigate this further on.

We use the simplest possible model for decay of beta cells due to killing by effector T cells in
Equation (3.5). The parameter κ denotes the rate of killing per effector cell. We ignore the (limited)
ability of beta cells to regenerate, and the very slow aging and turnover rate of beta cells in the healthy
individual. Currently, the extent to which beta cells can self-renew after immune attack is still under
investigation, and this process is likely to occur on a slow timescale. For this reason, we did not explicitly
include this in the model at this stage.

3.3. Model equations for a reduced QSS system. Our analysis begins with a reduction of the
full system of equations (3.1-3.5) to a simpler model using separation of time scales. First, we argue that
the timescale of peptide dynamics - hours - is faster than any of the timescales of cell dynamics - days
and weeks - justifying a quasi-steady state assumption (QSS) on the peptide. Hence, we set dp/dt = 0
in the model, so that p = (RB/δp)E.

The model then consists of Eqns. (3.1), (3.2), (3.3) and (3.5). The functions f1, f2 now depend on E
and B via the QSS peptide expression. We refer to this as the reduced QSS model. Our first step was to
explore this model computationally. To do so, we had to estimate parameters and consider appropriate
scaling. Our steps and results are described below.

3.4. Parameter estimates, scaling arguments, and computations. Based on nonlinearities
(in the functions f1, f2), the model consisting of Eqns. (3.1-3.5) can have a range of interesting behaviours.
As we are interested in the possible biological and medical applications of this model, it is essential to
study its behaviour within a biologically reasonable range of parameter values. Almost all parameters
in the model were based on experimental information previously compiled by Marée et al. [14]. Some
exceptions include parameters associated with beta-cell killing and peptide production, as these were
not considered in the previous treatment. To avoid lengthy diversion into the details, we concentrate all
details of the parameter estimates in the Appendix. The meanings, units, and values of the parameters
are presented in Table B.1. The level of cells of type A, E, M vary on a range of several orders of
magnitude. As we wanted to present these all on the same plot, we scaled these population densities
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by the appropriate powers of ten. Scaling arguments are also given in the Appendix. We left the time
variable in units of days, to emphasize the period and timing of the cycles that we obtained.

Simulations of the dynamics were carried out in Matlab. Initial conditions were chosen to depict
some (preexisting) stimulus to the immune system stemming from earlier stages of the disease (e.g., as
speculated in [13]). Bifurcation diagrams were composed with the auto feature of XPP, freely available
software written by G Bard Ermentrout1. Unless otherwise indicated, all simulations use the basic core
set of parameter values, as shown in Table B.1.

4. Results. Starting any simulation with the healthy state as initial condition, i.e., A = M = E = 0,
B = 1, (and thus also p = 0) clearly results in continued health, since this point is a steady state
of the system. Moreover, the stability of this equilibrium implies that even some (sufficiently small)
perturbation rapidly returns to this state. Hence to get any immune dynamics of interest in our model,
the system should be initiated with some T cells already “primed”. Typically, we start simulations
with A = 0.5, M = 0, and E = 1. This state ensures that effector cells are present to lead to peptide
production, and that activated T cells are available to renew that pool of effectors. Other initiation
values are possible, depending on parameter settings (discussed later). This prototypical set of values
represents the outcome of earlier events that our model is not describing (but see, e.g., [13] for possible
description.)

Not all NOD mice develop diabetes. Therefore, any model for this disease also has to account for
the fact that some initial stimuli will be resolved without full-blown autoimmunity. We first discuss
this baseline control for the model. Running the reduced QSS model from an initially “primed” state,
with default parameter values gives rise to the behaviour shown in Figure 4.1; that is, an initial elevated
level of effector and memory T cells is resolved, after some time, and the immune response ceases.
This corresponds to resolution of the immune attack with no autoimmunity even though the immune
system has been provoked to respond. The beta cell population decreases by 40% during the immune
attack. Since our model does not address replenishment of the beta cells by reproduction or stem cell
differentiation, the beta cell mass remains constant after this isolated immune response.

When the initial conditions include more elevated levels of activated T cells (with all other parameters
left as is), oscillations can appear, as shown in Figure 4.2. As in Trudeau et al. [23], three peaks with
increasing amplitude of effector T cells occur over days 30-80, with period approximately 3-4 weeks as
in the experimental data. This run is in close agreement with the data for mice that develop full-blown
diabetes, as shown in Fig. 1.1.

We can understand intuitively how such cycles occur by reasoning as follows: In our model, Equa-
tion (3.5) leads to decay of beta cells whenever effector cells are present. Due to the assault on beta cells
by the T cells (specified by our choice of initial conditions), peptide level increases, T cells are activated,
and effector cells are formed. However, once peptide rises to a high level, memory cell production is
turned off (as f2 decreases with p). Thus, replenishment of activated T cells, drops and subsequently
also E therefore declines and is not renewed. Once the effector cells decline, new peptide is hardly pro-
duced. It is gradually cleared and eventually reaches a low level that is then consistent with memory
cell production. This then stimulates production of new activated T cells, and the cycle repeats. Peri-
odic peaks and troughs continue until beta cells are depleted, and then no more peptide is formed, and
T cell activation stops altogether. At this stage, since beta cells are gone, full blown diabetes sets in,
and the immune response decays to its trivial equilibrium. This reasoning is plausible, but relies on an
appropriate combination of parameters governing rates of depletion and renewal of the various cell types.

It is noteworthy that merely by increasing the rate of clearance of the peptide, δp, we end the tendency
of the system to cycle. We ran simulations with elevated values of δp, and found behaviour similar to
that of Fig 4.1 for much broader ranges of initial conditions (results not shown). These results can be
taken as indications that in “control” mice whose peptide clearance rate is normal, immune response is
less likely to lead to prolonged cycling attack. These results are discussed in more detail later on.

5. Analysis of a reduced model with B as a parameter. To gain a clearer understanding of
the behaviour described above, we reduce the four dimensional model simulated above yet further by
considering the level of beta cells, B, to be a parameter. The onset of diabetes in NOD mice requires
about 16 weeks at which time there are very few remaining beta-cells in the pancreas. This indicates
that the variable B in the full model acts more like a slowly varying parameter compared to the other
variables in the model. We therefore consider a reduction to three variables (A, M, E), and analyse the
model behaviour. We then discuss how the gradual decrease of B influences the dynamics of the whole
system. The model to be analyzed now consists of the three equations:

1XPP is freely available at www.math.pitt.edu/~bard/xpp/xpp.html
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Fig. 4.1. Simulation of the model for NOD mice that do not become diabetic. Number of circulating cells (scaled)
vs time (days). Dark blue: A (×103 cells), Green: M (×104 cells), Red: E (×106 cells), light blue: B (fraction of beta
cell mass remaining). Simulation uses default (“NOD”) parameter values given in Tables B.2 and B.1. For the initial
conditions A = 0, M = 0.5, E = 1, B = 1, the immune response is resolved without chronic disease or cyclic waves.

dA

dt
= (σ + αM)f1(p)− (β + δA)A− εA2,(5.1)

dM

dt
= β2m1f2(p)A− f1(p)αM − δMM,(5.2)

dE

dt
= β2m2(1− f2(p))A− δEE,(5.3)

together with Eqns. (3.6) and (3.7), and the QSS peptide expression

p ≈ (RB/δp)E.(5.4)

This three dimensional system of differential equations permits a more complete analysis.

5.1. Steady states and stability properties. The 3D system of differential equations given by
Equations (5.1-5.3) has several types of feedback. Peptide level (and therefore effector cell level) leads
to positive feedback on T cell activation via f1. Simultaneously, these levels produce negative feedback
on the memory cell production via f2. When combined, these nonlinear feedbacks lead to the possibility
of multiple steady-states, depending on the parameters. Numerical experiments suggest that this mixed
feedback system can have from one up to five equilibria.

In the biologically relevant regime of parameters (discussed in the Appendix), we find that there are
three equilibria. One of these is clearly the trivial equilibrium A = M = E = 0. This follows immediately
from the fact that f1(0) = 0. This equilibrium corresponds to a disease free state and is easily shown to
be a stable node. The fact that the origin is an attractor means that a small disturbance that provokes
the immune system should be resolved, provided it is sufficiently weak.

There also exists a positive equilibrium that corresponds to a state of elevated immune cell levels.
In that state, effector T cells are continuously killing beta cells and this corresponds to an autoimmune
attack that eventually leads to diabetes. This equilibrium has various stability properties that depend
on the parameters. We discuss this in more detail below. A third equilibrium is a saddle with a two-
dimensional stable manifold, which for some parameters separates the “healthy” and diseased equilibria.
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Fig. 4.2. Simulation of the model for NOD mice that do become diabetic (by 80-90 days of age). Default (”NOD”)
parameter values, and scaling as in Figure 4.1, but with initial conditions A = 0.5, M = 0, E = 1, B = 1 that evoke the
elevated periodic immune response. Dark blue: A, Green: M , Red: E, light blue: B. The disease progresses with cycles of
T cells that cause waves of beta cell killing, as predicted by the model.

For these parameters, stimuli that fall on the wrong side of this separatrix will be attracted to the
diseased equilibrium. For other parameter values, the unstable manifold of the diseased state connects to
the stable manifold of the saddle point. In this case, almost all positive initial conditions asymptotically,
approach the “healthy” state.

As a specific example of the local analysis, we considered the system of equations (5.1-5.3) with the
parameters given in Table B.1 and B = 1. Due to the nonlinearities in the functions f1 and f2, it is not
possible to solve explicitly for equilibria. Therefore, we determined steady states, eigenvalues, and eigen-
vectors numerically, using the software program Maple. We found the following results: The disease-free
equilibrium, (Ā0, M̄0, Ē0) = (0, 0, 0), is a stable node with the three eigenvalues λ = −1,−0.3,−0.01. A
saddle node at (Ās, M̄s, Ēs) = (0.0116, 0.696, 0.00116) has a two-dimensional stable manifold (eigenvalues
λ1 = −1.52, λ2 = −0.0188 and associated eigenvectors v1 = [1, 0.495, 0.0245], v2 = [1,−68.5, 0.107]) and
an unstable manifold (eigenvalue λ3 = 0.210 with eigenvector v3 = [1, 2.62, 0.0589]). Finally, the diseased
equilibrium, (Ād, M̄d, Ēd) = (0.119, 0.0141, 0.0356) has a stable manifold (with eigenvalue λ1 = −2.37
and associated eigenvector v1 = [1,−0.108,−0.0414]). It also has a two-dimensional unstable manifold
(eigenvalues λ = 0.0129 ± 0.553i) that spirals outward toward a limit cycle. From this local analysis,
we could see that at each equilibrium, one eigenvalue is significantly more negative than the others.
This suggests that there is a globally attracting two-dimensional manifold containing the three equilibria,
where the interesting dynamic behavior occurs.

5.2. Bifurcations. We first discuss bifurcations with respect to a relevant parameter, and later
assemble the sequence of dynamical behaviours in Fig. 6.2. In the model given by Eqns. (5.1-5.3) we have
assumed that the destruction of beta cells occurs on a slow time scale. Thus, the level of beta cells, B,
makes a natural bifurcation parameter to consider. At the beginning of our simulations, we normalize
B = 1 and set δp = 1. By the QSS assumption for peptide, a gradual loss of beta cells in this model
variant is dynamically equivalent to a gradual increase in the peptide clearance rate δp. (Both parameter
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variations essentially describe the decreasing QSS value, p = (RB/δp)E.) We explored this parameter
variation using the AUTO option of the software XPP. Figure 5.1 shows the result obtained thereby.
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Fig. 5.1. Bifurcation diagram for the peptide decay rate, a15 = δp with all other parameters set at their default values,
as in Tables B.2 and B.1. The vertical axis is A in units of 103 cells. (a) A portion of the diagram, enlarged, shows
the typical bifurcation: A Hopf bifurcation occurs at a15 = 0.5707 spawning a stable limit cycle. A homoclinic bifurcation
occurs at a15 = 2.268. (b) Further bifurcations on an expanded scale: another Hopf bifurcation (to an unstable limit cycle)
occurs at a15 = 4.063. This limit cycle vanishes at a15 = 20.28.

The diagram given in Figure 5.1(a) shows the basic bifurcation behaviour of the model (and uses
the default parameters values given in Tables B.2 and B.1. Moving across this diagram from left to
right along the horizontal axis represents increasing values of the peptide decay rate δp, or equivalently,
a decreasing level of beta cells, B. Close to the leftmost edge, (high B, or low peptide clearance rate),
we find a stable diseased state (solid line with shallow slope). The “healthy” state, also stable, and
the saddle node are not indicated on the diagram. Moving towards the right, leads to a supercritical
Hopf bifurcation at a15 = δp = 0.571, spawning a stable limit cycle. Here we enter the regime of cyclic
behaviour evidenced in Figure 4.2. The diseased equilibrium is then an unstable spiral, as predicted by
the local analysis described above. The limit cycle persists, and its amplitude increases as the parameter
increases (respectively, as the beta cell level decreases) up to a homoclinic bifurcation at δp = 2.268
(equivalently at B = 0.441, i.e., when only about 44% of beta cell mass remains). As seen in our runs,
and in the upper branch of this bifurcation line on the zoomed out diagram of Fig 5.1(b), AUTO has
difficulty resolving this global bifurcation. We discuss the nature of this dynamical shift further on.

Following the homoclinic bifurcation, the diseased state remains unstable, and the origin is the only
global attractor for some range of the bifurcation parameter. Interpreting this bifurcation diagram in
terms of normal and reduced levels of (peptide) clearance rates (by control vs NOD macrophages) suggests
why the clearance defect itself could make the difference between healthy (control) mice versus diabetes-
prone (NOD) mice: for example, as seen in Fig 5.1(a), a “control” peptide clearance rate of δp = 3 per
day leads to dynamics that always resolve any initial stimulus (returning to baseline where no immune
cells persist, since the limit cycle does not occur, and the disease state is unstable) whereas a factor of
two decrease to δp = 1.5 per day (representing reduced clearance in NOD mice) puts the same system
into the regime of cyclic T cell waves and autoimmunity.

Reinterpreting this diagram in terms of the gradual decrease of beta-cell mass (from left to right
starting from B = 1) explains the following features shared by the data of Fig. 1.1 and the simulation
of Fig. 4.2: (1) the increase in the amplitude of the cycles, (2) the fact that the cyclic behaviour stops
abruptly (e.g., around days 80-90 in the simulation of Fig 4.2) when the homoclinic bifurcation occurs,
and (3) the slight lengthening of the period just before this transition. It also explains why (4) the
immune cells then decay to the baseline state A = M = E = 0. Thus, the bifurcation diagram can help
to provide a plausible scenario for a mechanism underlying these dynamics.

As previously noted, immunological systems present a menagerie of curious dynamical behaviours
that can be an enticing invitation to the applied mathematician. As our model is nonlinear, other
interesting behaviour is to be anticipated. In Fig 5.1(b) we show an expanded scale, with much higher
values of the peptide turnover parameter. As seen here, at δp = 4.063 per day, a second subcritical Hopf
bifurcation takes place. Thus, for a range of values of 4.063 < δp < 20.28 per day, the diseased state
becomes (locally) stable once more, with a domain of attraction bounded by an unstable limit cycle.
All solutions inside this domain will evolve towards the diseased state, whereas outside this domain of
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Fig. 6.1. Two stereograms showing (a,b) the limit cycle and location of the saddle point (marked ◦) and (b,c) the
limit cycle and its unstable diseased equilibrium (denoted by ∗). Both diagrams were made for the basic model with default
parameter values, but with beta cell mass treated as a (constant) parameter.

attraction, solutions eventually lead to the origin. Aside from purely mathematical interest, this diagram
suggests that there are as yet other unexplored behaviours in this and other immunological models. On
one hand, biologically, this result could be interpreted to mean that increased removal of peptide is not
always advantageous (since it can reinstate the stability of the diseased state). On the other hand, the
dynamics shown in this expanded parameter regime might be more of a mathematical curiosity than a
result that is directly relevant to diabetes in NOD mice.

We investigated a number of other parameter variations and bifurcations (diagrams omitted), starting
from the default parameter set. For example, we varied the parameter a = a4 < 1 of the function f2.
This parameter specifies the maximal fraction of memory cells produced (when p = 0). We found that
decreasing a from 1 leads to the homoclinic bifurcation at a = 0.45. Similarly, for the T cell competition
parameter, the range 0 ≤ ε ≤ 2.17 lies within the stable limit cycle regime. A Hopf bifurcation occurs at
ε = 2.173, leading to stability of the diseased state. No homoclinic bifurcation was obtained by varying
this parameter. Finally, changing k2, the peptide level that corresponds to the half-maximal value of f2,
gave a stable diseased state when k2 = 2, a Hopf bifurcation at k2 = 1.112, and a homoclinic bifurcation
when k2 = 0.825. Due to space constraints, these bifurcation diagrams are not shown.

6. Geometry of the solutions. Figure 6.1 shows two stereograms of the three-dimensional AME
system in the regime of parameters consistent with stability of the limit cycle oscillations. In (a,b), we
show the position of the saddle node (close to the M axis) with unstable manifolds in green and red.
One branch of the unstable manifold (in red) flows towards the stable disease free state, while the other
branch (in green) spirals towards the limit cycle about the disease state. (The 2D stable manifold is not
indicated in this figure.) The limit cycle, and two trajectories attracted to it are also shown. In (c,d),
a zoomed-in view of the limit cycle is shown. The location of the (unstable spiral equilibrium) diseased
state is indicated by a small star.

Figure 6.2(a-d) shows a sequence of diagrams that illustrate the bifurcations and dynamics described
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Fig. 6.2. This sequence of four sketches illustrate the essential geometry of the dynamics and bifurcations. H: “healthy”
state in which there are no circulating immune cells, D: diseased equilibrium; S: saddle node, L: stable limit cycle. Heavy
dots indicate stable equilibria, and open dots indicate unstable ones. In (a) an unstable manifold of S winds into the
stable spiral at D. In (b), just past a Hopf bifurcation, there is a stable limit cycle to which this manifold is attracted. (c)
represents the homoclinic bifurcation. In (d) the unstable manifold of S makes a detour past the unstable D, ending at H.
The state H is always stable. However, the boundary of its basin of attraction is formed by the stable manifold of S. In (d)
every initial condition will eventually evolve towards the origin.

in the previous section. We show 2D “cartoons” that give the overall picture (although our AME system
is three dimensional) since it is difficult to numerically simulate the precise parameter set that leads to
the homoclinic connection, and equally challenging to represent all stable and unstable manifolds in a 3D
plot. As shown in this figure, the origin (heavy dot labeled H for “healthy”) retains its stability and is a
local attractor in all cases, but its basin of attraction can vary greatly. In (a) and (b), a separatrix (one
branch of the stable manifold of the saddle node S) defines the boundary between those states attracted
to H and others that remain in the positive orthant. In (a), these other points are attracted to the stable
diseased state (heavy dot at D), whereas in (b), past a Hopf bifurcation, the limit cycle is attracting. A
homoclinic connection (which exists for one specific set of values of the parameters) is illustrated in (c).
In (d), states close to the unstable point D may take an “excursion” towards S, but eventually arrive
at H. In this case, all solutions of Equations (5.1-5.3), except for a set of measure zero (on the stable
manifold of the saddle node), would eventually converge to the disease free state (Ā, M̄ , Ē) = (0, 0, 0).

7. Parameter sensitivity. The hallmarks of autoimmune diabetes in NOD mice is that many
small perturbations and treatments can “cure” the disease, delay its onset or prevent it from occurring.
Thus, the actual (biological) system is sensitive to relatively small changes in essential parameters of the
system. In order to explore the sensitivity of the model, we tested how increases and decreases in each
of the parameters in Equations (3.1-3.5) affect the dynamics. We used the values of parameters that
generated Figure 4.2 as a basic set, and varied each in turn by 10% up and down. The results are shown
in Table B.2.

Recall that the original parameter set is consistent with a stable limit cycle for B = 1. In Table B.2 we
note whether the dynamics obtained by a given parameter change has moved the system in the direction
of the homoclinic (→) or the Hopf bifurcation (←), or, in some cases, beyond those bifurcations. (Arrows
are indications of shifts along the type of bifurcation shown in Figure 5.1 (a).) We also indicate the
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number of peaks observed between t = 0 and the time at which the homoclinic bifurcation occurs. It can
be seen that changing some parameters, (e.g., n, m, k2, k1 of the peptide-dependent response functions
f1, f2) has a large effect on the number of cycles that occur, increasing the number of peaks up to 9-
10. These parameters control the location of the “activation switch” and the switch in commitment to
memory versus effector cells with respect to peptide level. The parameter β and the number of memory
cells produced, 2m1 , also has a dramatic effect on the behaviour. Other variations, e.g., δM , a, ε have a
very minor effect.

It is interesting to note that certain slight parameter shifts place the system beyond the homoclinic
bifurcation, leading to global stability of the origin (as in Fig 6.2d). This includes a 10% decrease in
the rate of memory cell reactivation, α, or memory cell production, a, or a 10% increase in the peptide
clearance rate, δp, or the effector T cell death rate, δE (entries in Table B.2 marked with S, →). Making
these adjustments takes the system out of the cyclic regime and restores global stability of the “healthy”
state at the origin.

Here we venture to speculate on implications to the disease itself, and possible treatments. One can
envision medical interventions that are designed to affect one or another of the parameters mentioned
above in patients with known genetic tendency to autoimmunity. If any of these parameter change(s)
could be made before beta cell mass is destroyed, the immune attack could be resolved or prevented.
Alternately, if cycles of circulating T cells are observed, treatments could be applied to knock the system
out of its destructive cyclic regime, back to the baseline state. The most effective treatment would
be one that targets any of the more sensitive parameters in our model. Because our model is fairly
simplistic, it is premature to draw firm conclusions about optimal therapeutic strategies. However,
studying parameter sensitivity and bifurcations of more detailed and more realistic models for this disease
(or other autoimmune disorders) could possibly lead to new therapeutic strategies. Clearly, in the context
of a mathematical model, one can also identify and possibly avoid unforseen complications (e.g., the
unstable limit cycle regime in Fig 5.1b) where the disease state regains stability in another range of the
parameter(s).

8. Other variants of the model. We considered several variants of the model that incorporated
other features or relaxed certain assumptions. First, we considered a model in which memory cells
are offspring (rather than sisters) of effector cells. (In that model, a function like f2 represented the
probability that an effector cell differentiates into a memory cell.) Similar behaviour was obtained in a
narrower range of parameters. As this scheme of differentiation is less widely accepted, we here omit the
details.

The immune response has several inherent delays. After beta cells die, it takes around 8 hrs to one day
for their fragments to be collected, transported to the pancreatic lymph node, processed, and presented
by antigen presenting cells. Once T cells are activated, it take a further 2-3 days for proliferation and
production of effector cells. This means that an immune response can take 4-6 days from time of stimulus.
We explored some of the effects of delay in the system, by investigating variants of the model that had
one or two delays. We found similar dynamics, within a slightly shifted set of parameter regimes. Results
were similar to figures previously displayed and are here omitted.

We briefly explored competition of various T cell clones, to determine how competition between
different peptide-dependent cells could affect the dynamics. We found that similar clones tend to cycle
together, and that competition was not a major force in the cyclic dynamics. The details are omitted.

9. Experimental tests of the model. This model has been informed by previous theory [13, 14],
supplemented by experimental observations. In turn, it suggests new experiments that can be used to
verify or refute its conclusions.

First, the model predicts a specific sequence of events, with peaks in memory cells preceding peaks
in activated T cells, preceding peaks in effector cells (as shown in Fig. 4.2). Further, the model predicts
that during these cycles, one should be able to observe cycles of apoptotic beta cells in the pancreas
(since killing by effector cells occurs via apoptosis). If the presence or sequence of cell types follows some
other trend, our model would have to be revised.

Second, the model predicts outcomes of specific interventions. For example, once NOD T cell cy-
cles are observed, poisoning some fraction of their macrophages by administering silica, a known poison
for such cells (i.e., reducing the innate ability to clear dead beta cell material and hence reducing δp)
should decrease the amplitude of the cycles as well as the period of the cycles (see parameter sensitiv-
ity, Table B.2). A dose response of this “macrophage poison” versus dynamical behaviour would show
successively decreased cycle amplitude (see also bifurcation diagram 5.1a) for the dependence of cycle
amplitude on a15 = δp). Alternately, treatments that enhance macrophage clearance of apoptotic ma-
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terial (if possible) could, at sufficient dose, stop the cycles, and retard the development of the disease.
A number of similar interventions are predicted by parameter sensitivity. While we cannot expect that
we have captured all NOD parameters accurately in this preliminary model, general trends “towards”
or “away from” the Hopf or homoclinic bifurcation predicted by the various changes in basic parameters
should be indicative of the accuracy or fallibility of the assumptions on which the model is based. Some
(but not all of these) are experimentally feasible. Future work with experimental colleagues will address
such issues in an experimental setting.

10. Discussion. Our main conclusion in this paper is that cyclic dynamics can arise spontaneously
in the immune response leading up to type 1 diabetes, at least under conditions typical of the susceptible
(NOD) mice. This fact was conjectured in [14] as a possible outcome of the interplay between the effector
T cells killing the insulin-producing beta-cells, and the feedback from self-antigen produced when those
cells are killed. We confirmed this conclusion, by extending the model in [14] to include the death of beta
cells, and the accumulation of the antigen that results. Our cyclic dynamics (Figure 4.2) is similar to
the experimentally observed cycles (Fig 1.1) in three important ways: (1) It shows cycles of increasing
amplitudes, (2) The interpeak time length increases slightly and (3) the cycles stop, and the levels of T
cells drop around 16-18 weeks. (At this point, the mouse becomes diabetic in the experimental system.)
This behaviour was obtained in a regime of parameters that is based mainly on values assembled from
the experimental literature in [14].

We showed that one explanation for these oscillations, illustrated by our model is as follows: beta cell
killing produces large quantities of self-antigen peptide, expanding the population of effector cells at the
expense of memory cells. This creates a gap in self-renewal of the T cells that leads to a pause in their
reproduction, and reduced effector levels for killing. After a suitable interval, when peptide is cleared, the
memory cell production is reinstated and the cycle begins once more. The gradual loss of beta cell mass
limits the number of cycles that can occur (to three, in the case of NOD mice). The cyclic dynamics are
found for a wide range of parameter values, provided the peptide-dependent functions that control T cell
activation, f1, and memory cell production, f2, ramp up (respectively down) as peptide level increases.
Since the immune system is highly complex, with many feedbacks between cells, chemicals, and tissues,
it is possible that other explanations for cycles can be equally compelling. For example, recent work by
an experimental collaborator (P Santamaria, U Calgary) has focused on the role of regulatory T cells and
their cytokine IL-2. Positive and negative feedback that is emerging in these experimental investigations
will provide future opportunities for modeling and analysis using the tools of nonlinear dynamics.

The main contribution of our study is to explain the mechanism underlying the observed cycles by
studying the nonlinear dynamics of the extended model and uncovering its bifurcations. This aspect of
our work is particularly apt for readers of SIAM, some of whom may not yet be aware of rich dynamics in
immunology. We showed that all three of the observations listed above can be explained as gradual shift
of a parameter (the mass of beta-cells remaining) during the course of the immune attack by effector T
cells. This gradual shift moves the system from a regime in which there is a stable limit cycle towards a
homoclinic bifurcation. The amplitude of the limit cycle expands very quickly just before this bifurcation,
and its period increases (theoretically up to infinity) at the homoclinic connection itself. Beyond that,
all points are attracted towards the origin, i.e., the levels of T cells drop.

We found that the number of peaks that occur in the model shifts when certain parameters are
changed (by 10%). The most sensitive parameters are those appearing in the functions f1 and f2, but
it is unlikely that these are easy to manipulate in an experimental system. As our model is the simplest
possible variant of [14] that produces cycles, this sensitivity to parameters may be a price paid for omitting
other regulatory features of the immune system. On the other hand, the sensitivity to parameters also
suggests numerous experimental tests of our predictions that could, in principle validate or falsify the
model. Such tests will be under consideration in future work on this problem. In the original model of
[14], competition between various clones of T cells for sites on antigen presenting cells was considered
as an important determinant of dynamics. Here, in preliminary investigations of competition of two
clones, we found that clones tended to cycle synchronously. Future work will also address the effect of
competition in greater detail.

Our model did not address any of the spatial or compartmental aspects of the immune response. For
example, we also did not consider the details of trafficking of T cells between blood, lymph nodes, and
tissue. Some of the detailed movement and interactions of T cell with dendritic cells in lymph nodes
is currently being modeled in conjunction with experimental observations by the group of de Boer and
Marée (Utrecht, The Netherlands). These insights will inform future models in immunology, including
extended models of autoimmune diabetes.

Finally, our model suggests that there are two distinct outcomes in an autoimmune attack typical of
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type 1 diabetes: (1) The immune attack clearly subsides once the beta cells have been depleted, but here
the outcome is full-blown diabetes. This explains observations in NOD mice, but therapeutically, it is an
outcome to be prevented. (2) More intriguing, any parameter change that shifts the system beyond its
homoclinic bifurcation would also end the immune attack. This can happen through the process of “clonal
exhaustion”: i.e, so much peptide is presented that memory cell production is turned off completely. It
could also happen through arrest of activation, where so little peptide is presented that T cells no longer
become activated. In either case, if this happens before a significant fraction of the beta cells have been
killed, it could provide a “cure” that resolves the autoimmunity without diabetes. Here we have hinted
at several parameters that could have precisely this type of effect. This suggests that studying more
detailed and hence more realistic variants of this model could indicate possible therapeutic strategies, by
highlighting which parameters give promising leads for medical targets.
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Appendix A. Estimation of parameter values.

We explain our procedure for estimating parameters below, and summarize the values we used in
Table B.1.

A.1. Cell turnover rates. The death rate of memory cells is estimated as δM = 0.01 day−1 versus
δE = 0.3 day−1 for effector cells. We here assumed that activated cells have a relatively low death rate,
as most are converted into differentiated cells. Consequently, we assumed that δA ≈ 0.02 day−1.

A.2. Cell division rates and numbers. We approximated an 8 hr cell cycle for the immune cells,
and thereby obtained β ≈ 1− 6 day−1. The number of memory and effector cells produced per activated
T cell is 0-8 versus 60, respectively, according to [14], leading to values for the factors 2mi .

A.3. Circulating cell levels. According to [14], around 1-10 naive T cells produced by the thymus
per day will have the correct specificity. Consequently, σ ≈ 1 − 10 cells day−1. To then determine the
competition parameter, ε, we first considered the possibility of a QSS for activated T cells of the form
σ − δAA − εA2 = 0. We found that this cannot be a correct approximation, because the reactivation of
memory cells plays a much greater role in sustaining the level of A than the (limited) entry of new naive
T cells from the thymus.

In our subsequent approach, we approximated M ≈ (β2m1f2/δM )A ≈ 104 circulating memory cells
and E ≈ (β2m2(1 − f2)/δE)A ≈ 106 circulating effector cells. The first of these implies that βf2A ≈ 10
whereas the second that β(1 − f2)A ≈ 5 × 103. These approximations lead to f2 ≈ 0.002, and A ≈
1− 3× 103.

Now considering the situation at a high peptide level, near the peak of activated T cell levels, we
have dA/dt ≈ 0, i.e., σ +αMf1− (β + δA)A− εA2 ≈ 0. The relative magnitudes of terms in this equation
are as follows: σ is very small, and can be neglected in the high-peptide scenario. If α ≈ 1 − 5 day−1

(which means that on average, a memory cell takes a few hours to be reactivated), and f1 ≈ 1 at high
peptide, then αMf1 ≈ 1 − 5 × 104. From above estimates, (β + δA)A ≈ βA ≈ 5 × 103 is of lower order,
and A2 ≈ 1−4×106. The balance is mainly between the terms αMf1 and εA2. We can use these figures
to estimate the size of the competition parameter, ε, from

ε ≈
αMf1

A2
≈

1− 5× 104

1− 4× 106
≈ 1− 5× 10−2.

The units of ε are day−1cell−1.

A.4. Peptide and beta cell levels. Because peptide level is not directly observed experimentally,
its level in the model is on a relative, rather than absolute scale. The important relation is the relative
magnitude of k1, k2 the parameters that represent the level of peptide at which memory cell production
falls off, and T cell activation turns on, respectively. We arbitrarily chose k2 = 1 and k1 = 2. This means
that a reasonable scale of peptide level is 0-10 “peptide units”. Since peptide timescale is fast, and the
peptide variable assumed to be on QSS, only the ratio of the turnover rate δp and the production rate,
R of the peptide influence the dynamics. Based on the estimated levels of circulating effector T cells, we
used R ≈ 10−5 per cell per day, and δp = 1 per day to give QSS value of peptide in the range of 0-10.
We also use a relative scale for the level of remaining beta cells: i.e., B represents the fraction of beta
cells still remaining, so 0 ≤ B ≤ 1.

The removal of peptide by macrophages, by diffusion, and other influences is assumed to be in the
range of δp ≈ 1day−1. When effector cell levels are high, E ≈ 106 cells, leads to the approximation
p ≈ 10 ≈ RBE/δ4 ≈ R× 106. This leads to an estimate R ≈ 10−5 peptide units day−1cell−1.
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A.5. Typical values of variables. The results of above ball-park estimates lead to the following
ranges of the variables concerned:

A ≈ 1− 2× 103, M ≈ 1− 5× 104, E ≈ 1− 6× 106, p ≈ 1− 10, B ≈ 1.

The populations of the three types of T cells differ by many orders of magnitude. We therefore scaled each
variable in terms of some power of ten for convenient graphics. The scaling considerations are discussed
in the next section.

Appendix B. Scaling the equations.

Let A = A∗Ā, M = M∗M̄, E = E∗Ē, etc, where stars denote numerical values and overbars denote
quantities carrying units. We keep time in units of days, i.e., time is not scaled. Then Equations (3.1)-
(3.7) can be rewritten as follows:

dA∗

dt
=

(

σ

Ā
+

(

αM̄

Ā

)

M∗

)

f1(p)− (β + δA)A∗

− (εĀ)(A∗)2,(B.1)

dM∗

dt
=

(

β2m1
Ā

M̄

)

f2(p)A∗

− f1(p)αM∗

− δMM∗,(B.2)

dE∗

dt
=

(

β2m2
Ā

Ē

)

(1− f2(p))A∗

− δEE∗,(B.3)

dB∗

dt
= −(κĒ)E∗B∗,(B.4)

QSS : p =

(

RĒB̄

δp

)

E∗B∗,(B.5)

Since peptide is already in arbitrary units, we did not rescale the peptide or the functions f1, f2.
Dropping the *’s we thus obtained a new system of (scaled) equations

dA

dt
= (a6 + a7M) f1(p)− a8A− a9A

2,(B.6)

dM

dt
= a10f2(p)A− f1(p)a7a16M − a11M,(B.7)

dE

dt
= a12(1− f2(p))A− a13E,(B.8)

dB

dt
= −a17EB,(B.9)

QSS : p = (a14/a15)EB,(B.10)

where the new parameters so defined are as follows:

a6 =
σ

Ā
, a7 =

αM̄

Ā
, a8 = β + δA, a9 = εĀ

a10 = β2m1
Ā

M̄
, a11 = δM , a16 =

Ā

M̄

a12 = β2m2
Ā

Ē
, a13 = δE , a17 = κĒ, a14 = RĒB̄, a15 = δp

The original variables, A, M, E differ by 6 orders of magnitude. We therefore selected a scaling of
the main variables in various powers of ten, so as to display all results on a common coordinate system
within the range of 1-10 units. To do so, we scaled variables by selecting the following reference scales:

Ā = 103, M̄ = 104, Ē = 106, p̄ = 10, B̄ = 1.
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par. meaning default value units ref.

σ influx naive T cells from thymus 1-10 cell day−1 [3, 14]
α rate of production of A per M 1-5 day−1 estimated
β rate of cell division 1-6 day−1 typical
δA death rate, activated T cells ≈0.01 day−1 [22, 7]
δM death rate, memory T cells ≈0.01 day−1 [22, 7, 14]
δE death rate, effector T cells 0.3 day−1 [5, 14]
δp peptide turnover rate 0-1 day−1 estimated
ε T cell competition parameter 1− 5× 10−2 (cell day)−1 estimated

k1 peptide level for 1

2
max activation 2 peptide units arbitrary

k2 peptide level for 1

2
max memory cells 1 peptide units arbitrary

m Hill coeff. for memory cell production 2 - [14]
n Hill coeff. for T cell activation 3 - [14]

2m1 maximum number of memory cells pro-
duced per proliferating T cell

8 - [27, 20, 25]

2m2 number of effector cells produced per pro-
liferating T cell

60 - [20, 25]

a maximal fraction of memory cells pro-
duced

< 1 - fitted

R peptide accumulation rate 10−5 day−1cell−1 estimated
κ beta cell killing per effector T cell 0.14×10−6 day−1cell−1 fitted

Table B.1

Default “NOD mouse” parameter values used to simulate the model. See Appendix A for a description of how these
values were estimated.

Scaled original default increase decrease
parameter parameter value +10% -10%

a1 n 2 S,→ 10P, ←
a2 k1 2 S, → 10P, ←
a3 m 3 S, → 9P, ←
a4 a 0.7 NC, 3P S, →
a5 k2 1 9P← S, →
a6 σ 0.02 4P← S, →
a7 α 20 7P← S, →
a8 β + δA 1 S→ 9P, ←
a9 ε 1 NC, 3P NC, 3P
a10 β2m1 1 8P← S, →
a11 δM 0.01 NC, 3P NC,3P
a12 β2m2 0.1 4P← S, →
a13 δE 0.3 S→ 7P, ←
a14 R 50 4P← S, →
a15 δp 1 S, → 4P, ←
a16 scale 0.1 S, → 5P, ←
a17 κ 0.14 1P, → 4P, ←

Table B.2

Parameter sensitivity. The default value of each (scaled) parameter is shown, and the effect of a 10% increase and
decrease recorded. (See Appendix C for the definition of scaled parameters.) Original parameter values produce a stable
limit cycle (i.e., dynamics between the Hopf and the homoclinic bifurcations). → denotes a shift towards the homoclinic
bifurcation, ← denotes a shift towards the Hopf bifurcation, or even beyond it, to the stable steady state. S denotes return
to healthy state, P signifies how many peaks (cycles) are are seen before the homoclinic bifurcation occurs. NC means little
or no change.
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Appendix C. XPP code. A typical XPP file used to produce figures in this paper is given below.

#XPP file for simulating AME system

#y1=A, y2=M, y3=E, y4=p, y5=B

y4 = a14*y3*y5/a15

f1 = y4^a1/(a2^a1+y4^a1)

f2 = a4*a5^a3/(a5^a3+y4^a3)

y1’ = f1*(a6+a7*y2)-a8*y1-a9*y1^2

y2’= a10*f2*y1-f1*a16*a7*y2-a11*y2

y3’ = a12*(1-f2)*y1-a13*y3

# If beta cell mass is a variable:

# y5’ = -a17*y3*y5

# init y1=0.5,y2=0,y3=1,y5=1

#otherwise, for constant beta cells we use this:

init y1=0.5,y2=0,y3=1

par y5=1

par a1=2,a2=2,a3=3,a4=0.7,a5=1,a6=0.02

par a7=20,a8=1.0,a9=1.0,a10=1,a11=0.01,a12=0.1

par a13=0.3,a14=50,a15=1,a16=0.1,a17=0.14

@ dt=0.05, total=200

@ xlo=0,xhi=200,ylo=0,yhi=4

@ NPLOT=4, XP=t, YP=y1, XP2=t, YP2=y2, XP3=t, YP3=y3

done

Appendix D. List of abbreviations.

We used the following abbreviations.
APC: antigen presenting cell
CTL: cytotoxic T lymphocyte
DC: dendritic cell
IGRP: islet-specific glucose 6 phosphatase catalytic subunit related protein
MHC: Major Histocompatibility Complex
NOD: non-obese diabetic mouse
ODE: ordinary differential equation model
T1D: type 1 diabetes
TCR: T cell receptor
QSS: quasi-steady state


