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A note on GMRES preconditioned by a

perturbed LDL
T decomposition with static

pivoting



c© Council for the Central Laboratory of the Research Councils

Enquires about copyright, reproduction and requests for additional copies of this report should
be addressed to:

Library and Information Services
CCLRC Rutherford Appleton Laboratory
Chilton Didcot
Oxfordshire OX11 0QX
UK
Tel: +44 (0)1235 445384
Fax: +44(0)1235 446403
Email: library@rl.ac.uk

CCLRC reports are available online at:
http://www.clrc.ac.uk/Activity/ACTIVITY=Publications;SECTION=225;

ISSN 1358-6254

Neither the Council nor the Laboratory accept any responsibility for loss or damage arising from
the use of information contained in any of their reports or in any communication about their
tests or investigations.



RAL-TR-2006-007

(Revised)

A note on GMRES preconditioned by a perturbed LDL
T

decomposition with static pivoting

M. Arioli1, I. S. Duff1,2, S. Gratton2, and S. Pralet3

ABSTRACT
A strict adherence to threshold pivoting in the direct solution of symmetric indefinite
problems can result in substantially more work and storage than forecast by an sparse
analysis of the symmetric problem. One way of avoiding this is to use static pivoting
where the data structures and pivoting sequence generated by the analysis are respected
and pivots that would otherwise be very small are replaced by a user defined quantity.
This can give a stable factorization but of a perturbed matrix.
The conventional way of solving the sparse linear system is then to use iterative refinement
(IR) but there are cases where this fails to converge. In this paper, we discuss the use of
more robust iterative methods, namely GMRES and FGMRES.
We show both theoretically and experimentally that both these approaches are more robust
than IR and furthermore that FGMRES is far more robust than GMRES and that, under
reasonable hypotheses, FGMRES is backward stable. We also show how restarted variants
can be beneficial although again the GMRES variant is not as robust as FGMRES.
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1 Introduction

This paper is concerned with solving the set of linear equations

Ax = b. (1.1)

where the coefficient matrix A ∈ IRn×n is a symmetric indefinite sparse matrix. Our hope is to
solve this system using a direct method but sometimes the cost of doing this is too high in terms
of time or memory. We have therefore looked at the possibility of using static pivoting to avoid
these problems which are particularly acute if the matrix is highly indefinite as for example can
happen for saddle-point problems.

We will use a multifrontal approach for our direct method. In this approach, we first determine
an order for choosing pivots based on the sparsity structure of A, and we then accommodate fur-
ther pivoting for numerical stability during the subsequent numerical factorization phase. When
the matrix is highly indefinite, the resulting pivot sequence used in the numerical factorization
can differ substantially from that predicted by the analysis step. A simple way to avoid this
problem is to force the elimination through static pivoting.

We assume that the matrix A has been factorized using the HSL MA57 package (Duff 2004)
with the option of using static pivoting (Duff and Pralet 2005). Static pivoting will add a factor
τ to a diagonal entry when it is impossible to find a suitable pivot in the fully summed blocks.
It is common to choose τ ≈ √

ε ||A|| (ε machine precision).
Therefore, the computed factors L̂ and D̂ are, in exact arithmetic, the exact factorization of

the perturbed problem

A + E = L̂D̂L̂T , (1.2)

where E is a diagonal matrix of rank equal to the number of static pivots used during the
factorization and |E| ≤ τI. Hereafter, given the matrix B, we denote by |B| the matrix having
entries equal to the absolute values of the entries of B. The nonzero diagonal entries in E
correspond to the positions at which static pivoting was performed and they are all equal to τ .
Note that if τ is chosen too small then the factorization could be very unstable whereas if it is
chosen too large, the factorization will be stable but will not be an accurate factorization of the
original matrix (that is, |E| will be large). In Section 2, we give a brief description of the static
pivoting strategy used in MA57 .

Equation (1.2) gives a splitting of A in terms of M = L̂D̂L̂T and E

A = M − E, (1.3)

and the solution of (1.1) can be expressed as the solution of the equivalent systems





(I − EM−1)Mx = b

(I − M−1E)x = M−1b.
(1.4)

Owing to the symmetry of all the matrices in (1.4), I − EM−1 = (I − M−1E)T . Moreover, the
first system corresponds to a right preconditioning of (1.1), while the second corresponds to a
left preconditioning.

If the spectral radius of the matrix I−M−1E (or I−EM−1) is less than one, the system (1.4)
can be solved using iterative refinement. This has been used by many authors (Demmel, Hida,
Kahan, Li, Mukherjee and Riedy 2005, Duff and Pralet 2005, Higham 2002, Skeel 1980) and is
successful over a wide range of matrices although it is sensitive to the value of τ . If, however,
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the spectral radius is greater than or equal to one (or even close to one), it may be necessary to
switch to a more powerful method like GMRES (Saad and Schultz 1986). Although the matrix
is symmetric, we choose GMRES since it gives us much more freedom to work with a wide range
of preprocessors and preconditionings.

We have found experimentally that using the factorization (1.2) as a right preconditioning for
GMRES works in most cases and is, as expected, much more robust than iterative refinement.
However, there are cases where we do not get convergence of a scaled residual to machine precision.
Moreover, we have found that restarted GMRES performs better and that using FGMRES (Saad
1993), even though our preconditioner remains constant, does even better.

We illustrate this through numerical experiment (see Section 6) and show theoretically that,
under reasonable assumptions, FGMRES preconditioned by our static pivoting factorization is
backward stable so that a small scaled residual can be achieved (see Section 5). Our analysis also
holds for the case of restarted FGMRES that we advocate for controlling the memory requirement
while still achieving the desired robustness and accuracy. Indeed we give theoretical arguments
why restarting often greatly improves the convergence.

In the following, we use the MATLAB notation [A,B] to mean the matrix that consists of
the columns of matrix A followed by the columns of matrix B. We denote by ε the machine
precision of a finite-precision arithmetic satisfying the IEEE standard, and by fl(·) the result
of a sequence of floating-point operations. The computed matrices, vectors, and scalars will be
identified by a bar over the symbol. Finally, we will denote by || · || the usual Euclidean 2-norm
for vector and the corresponding induced norm for matrices.

2 L
T
DL with static pivoting

In the multifrontal context, the factorization can be represented by a tree at each node of which
elimination operations are performed on a partially summed frontal matrix


 F11 F12

F T
12 F22


 , (2.5)

and pivots at that stage can only be chosen from within the fully summed block F11. The problem
occurs when it is impossible or numerically suicidal to eliminate all of F11 resulting in more work
and storage (sometimes dramatically more) than forecast.

Our mixed pivoting approach is based on two phases. In the first phase, we perform numerical
pivoting in the block F11 of fully summed variables until no remaining variables satisfy the
numerical criterion. In the second phase, we eliminate the remaining fully summed variables,
adding 1×1 perturbations defined using a threshold µ > 0. Let us denote by aii the generic 1×1
pivot and by

P =


 aii aij

aji ajj




the generic 2×2 pivot.

Then, our pivoting strategy is defined as follows. We define:

g1(i) =
maxk 6=i |aki|

|aii|
, (2.6)
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and

g2(i, j) =

∣∣∣∣∣∣

∣∣∣∣∣∣
|P−1|


 maxk 6=i,j |aki|

maxk 6=i,j |akj |




∣∣∣∣∣∣

∣∣∣∣∣∣
∞

. (2.7)

During the first phase of our algorithm, we perform the usual Duff-Reid algorithm. In this
approach, a 1×1 pivot aii is considered to be stable if and only if

g1(i) ≤ 1/u, (2.8)

and a 2×2 pivot is considered to be stable if and only if

g2(i, j) ≤ 1/u. (2.9)

During the second phase we preselect a 1×1 and a 2×2 pivot and decide which will be
eliminated. The choice between a 1×1 and a 2×2 pivot is done in three stages. Firstly, if we
can eliminate a pivot and ensure a growth factor lower than 1 + 1/µ, where µ =

√
ε, i.e., if

g1(i) ≤ 1/µ or g2(i, j) ≤ 1/µ, then we select the one with the lower growth factor. Secondly,
if g1(i) ≥ 1/µ and g2(i, j) ≥ 1/µ , (we cannot ensure a growth factor lower than 1 + 1/µ)
then we compare the quantities 1/|aii| and ||P−1||∞ and we select the pivot associated with the
smallest quantity. This second comparison is guided by the growth factor that would appear if
we suppose that the largest off-diagonal entry is bounded by maxij |aij |. Finally, if no pivot can
be chosen, we add some perturbation to make the factorization more stable. More precisely, a
1×1 pivot aii is selected and perturbed using δ = s(aii)(τ − |aii|) where s is the sign function
and τ = µ maxij |aij |.

3 GMRES

The convergence of the GMRES method can be quite problematic for the general case even when
we have a favourable distribution of the eigenvalues as in our case of the matrix I − M −1E (or
I − M−1E) (Arioli, Pták and Strakoš 1998).

However, because of the symmetry of A, the spectrum of I − M−1E (or I − M−1E) has
additional properties that make the behaviour more regular. Let us denote by Ĩm and Ĩn−m

the n × m and n × (n − m) matrices corresponding to the first m columns and the last n − m
columns of the n × n identity matrix, respectively. We assume that the matrices E, M , and A
are symmetrically permuted so that the nonzero entries of E are the first m diagonal entries of
the matrix E.

We observe that Ĩn−m is a basis for Ker(E).

Theorem 3.1. Using the previous notation, if E is non-negative definite the spectrum of I −
M−1E and I − EM−1 are real.

Proof. M−1Ex = λx if and only if Ex = λMx. Since M is symmetric and nonsingular and E is
positive semidefinite, λ is either zero or real, and (M,E) is an Hermitian definite pencil (see Z.
Bai and J. Demmel and J. Dongarra and A. Ruhe and H. van der Vorst (2000), page 110).

We can introduce the right preconditioned version of GMRES where we note that, although
the vector zk is computed, it is not stored.
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Algorithm 3.1.

procedure [x] = right Prec gmres(A,M,b,maxit)
x0 = M−1b, r0 = b − Ax0 and β = ||r0||
v1 = r0/β; k = 0; r = r0

while ||r|| > ε (||b|| + ||A|| ||xk||) & k < maxit
k = k + 1;
zk = M−1vk; w = Azk;
for i = 1, . . . , k do

hi,k = vT
i w ;

w = w − hi,kvi;
end for;
hk+1,k = ||w||;
vk+1 = w/hk+1,k;
Vk = [v1, . . . , vk];
Hk = {hi,j}1≤i≤j+1;1≤j≤k;
yk = arg miny ||βe1 − Hky||;
if ||βe1 − Hkyk|| ≤ ε (||b|| + ||A|| ||xk||) do

xk = x0 + M−1Vkyk and r = b − Axk;
end if

end while ;
end procedure.

4 Flexible GMRES

4.1 FGMRES vs GMRES

First, we introduce the right-preconditioned version of Flexible GMRES in Algorithm 4.1.
When Mk = M ∀k, the two algorithms 3.1 and 4.1 differ only in the computation of xk where
in Algorithm 4.1 the vectors zk are stored in Zk. Since Algorithm 4.1 needs both Vk and Zk, it
requires additional storage with respect to Algorithm 3.1. In Saad (2003) and Giraud, Gratton
and Langou (2004), the convergence of FGMRES is analysed: if each matrix Hk is full rank, the
algorithm converges to the solution.

Both algorithms are based on the following relations

C(k) = [r0, AZk] = Vk+1


 Rk

0


 ; V T

j Vj = Ij ∀j. (4.10)

This corresponds to computing the orthogonal factorization of C (k) where each column C
(k)
i is

computed after the (i− 1)-th step of the Gram-Schmidt orthogonalization process. Furthermore,
we have

Rk =
[

βe1 Hk

]
(4.11)

and AZk = Vk+1Hk. (4.12)

The vector yk (in both Algorithms 3.1 and 4.1) is computed by a QR algorithm based on Givens
rotations using the upper Hessenberg structure of Hk.
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Algorithm 4.1.

procedure [x] =FGMRES(A,Mi,b,maxit)

x0 = M−1
0 b, r0 = b − Ax0 and β = ||r0||

v1 = r0/β; k = 0; r = r0

while ||r|| > ε (||b|| + ||A|| ||xk||) & k < maxit
k = k + 1;

zk = M−1
k vk; w = Azk;

for i = 1, . . . , k do
hi,k = vT

i w ;
w = w − hi,kvi;

end for;
hk+1,k = ||w||;
vk+1 = w/hk+1,k;
Zk = [z1, . . . , zk]; Vk = [v1, . . . , vk];
Hk = {hi,j}1≤i≤j+1;1≤j≤k;
yk = arg miny ||βe1 − Hky||;
if ||βe1 − Hkyk|| ≤ ε (||b|| + ||A|| ||xk||) do

xk = x0 + Zkyk and r = b − Axk;
end if

end while ;
end procedure.

5 Roundoff error analysis

In the following, we will denote by cp(n, j) functions that depend only on the dimension n and
the integer j. We will avoid a precise formulation of these dependences, but we assume that each
cp(n, j) grows moderately with n and j. Finally, if B ∈ IRn×m, n ≥ m is a full rank matrix, we
denote by κ(B) = ||B|| ||B+|| its spectral condition number where B+ = (BTB)−1B.

The roundoff error analysis of both FGMRES and GMRES can be made in four stages:

1. Error analysis of the Arnoldi-Krylov process. We will analyse in detail the MGS approach,
but similar results can be achieved using a Householder-based approach as presented by
Walker (1988), Drkosova, Geenbaum, Rozložńık and Strakoš (1995), and Arioli and Fassino
(1996).

2. Error analysis of the Givens process used on the upper Hessenberg matrix Hk in order to
reduce it to upper triangular form.

3. Error analysis of the computation of xk in FGMRES and GMRES.

4. Use of the static pivoting properties and of (1.3) in order to have simpler expressions.

The first two stages of the roundoff error analysis are the same for both FGMRES and GMRES
and the last two stages are specific to each algorithm.

5.1 FGMRES roundoff error analysis

In this section, we state the theorem presenting the main result that covers stages 1 to 3. The
proofs are given in the appendices.
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Theorem 5.1. Applying Algorithm 4.1 to solve (1.1), using finite-precision arithmetic conform-
ing to IEEE standard with relative precision ε and under the following four hypotheses:

σmin(H̄k) > c1(k, 1)ε ||H̄k || + O(ε 2) ∀k, (5.13)

|s̄k| < 1 − ε , ∀k, (5.14)

where s̄k are the sines computed during the Givens algorithm applied to H̄k in order to compute
ȳk, and

2.12(n + 1)ε < 0.01 and 18.53ε n
3

2 κ(C(k)) < 0.1 ∀k (5.15)

then there exists k̂, k̂ ≤ n such that, ∀k ≥ k̂, we have

||b − Ax̄k|| ≤ c2(n, k)ε
(
||b|| + ||A|| ||x̄0|| + ||A|| ||Z̄k|| ||ȳk||

)
+ O(ε 2). (5.16)

Moreover, if Mi = M,∀i, denoting by Ŵk = [Mz̄1 − v̄1, . . . ,Mz̄k − v̄k] , and under the hypothesis

ρ = 1.3 ||Ŵk|| + c3(k, 1)ε ||M || ||Z̄k || < 1 ∀k < k̂, (5.17)

we have:

||b − Ax̄k|| ≤ c4(n, k)γε
(
||b|| + ||A|| ||x̄0||+

||A|| ||Z̄k||
(
||M(x̄k − x̄0)|| + ε ||x̄0||

))
+ O(ε 2)

γ =
1.3

1 − ρ
.

(5.18)

Proof. See Appendix A

Remark 1. We point out that if x̄0 = 0 and M = I, FGMRES is numerically equivalent to
classical GMRES. Moreover, formula (5.18) implies that GMRES is normwise backward stable
and we obtain the result of Paige, Rozložńık and Strakoš (2006).

5.1.1 Stage 4. Static pivoting case

We remark that the computation of the matrices L̂ and D̂ by MA57 with static pivoting in floating-
point arithmetic gives the following relations





A + δA + τ∆ = M

||δA|| ≤ c5(n)ε || |L̂| |D̂| |L̂T | ||
||∆|| ≤ 1.

(5.19)

Moreover, we take into account that




(M + δM)x̄0 = b where

||δM || ≤ c6(n)ε || |L̂| |D̂| |L̂T | ||.
(5.20)

Relations (5.19) and (5.20) follow by the use of standard techniques similar to those for the
roundoff error analysis of Gaussian elimination (Wilkinson 1965, Golub and Van Loan 1989,
Higham 2002) . We point out that, from (5.19), the perturbation δA must have a norm smaller
than τ in order not to dominate the global error that would make the diagonal perturbation
ineffective. Therefore, it is reasonable to assume that

max (c5(n), c6(n))ε || |L̂| |D̂| |L̂T | || < τ (5.21)
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Theorem 5.2. Under the hypotheses of Theorem 5.1, hypothesis (5.21) and under the hypotheses

c7(n, k)γε ||A|| ||Z̄k || < 1 ∀k < k̂ (5.22)

and

max{||M−1||, ||Z̄k||} ≤ c̃

τ
(5.23)

where c̃ is a constant, we have

||b − Ax̄k|| ≤ 2µε (||b|| + ||A|| (||x̄0|| + ||x̄k||)) + O(ε 2). (5.24)

µ =
c7(n, k)γ

1 − c7(n, k)ε γ||A|| ||Z̄k ||
.

Proof. See Appendix B

Remark 2. We point out that hypothesis (5.23), as we will see in Section 6, is satisfied for a
moderate value of c̃ by our static pivoting strategy on all our test problems. However, the upper
bound (5.18) is more general and also gives a good estimate of the error when τ <<

√
ε. In all

our experiments, we have ||Z̄k|| ||M(x̄k − x̄0)|| < 104.

5.2 GMRES roundoff error analysis

For the sake of simplicity, we make the assumption that the solution of the linear system

Mq = fl(V̄kȳk),

is followed by a few steps of iterative refinement in order to guarantee a good local backward
stability. Under this assumption, we have

Theorem 5.3. Applying Algorithm 3.1 to solve (1.1), using finite-precision arithmetic conform-
ing to IEEE standard with relative precision ε and under the hypotheses (5.13), (5.14), and (5.15)
of Theorem 5.1 and if

c8(n, 1)ε κ(M) < 1 (5.25)

then there exists k̂, k̂ ≤ n such that, ∀k ≥ k̂, we have

||b − Ax̄k|| ≤ c9(n, k)χε
{
||b|| + ||A|| ||x̄0|| + ||AM−1|| ||M || ||x̄k − x̄0||+[

||A|| ||Z̄k || + ||AM−1|| || |L̂| |D̂| |L̂T | ||
]
×

[
||M(x̄k − x̄0)|| + nε ||M || (||x̄k − x̄0|| + ||x̄0||)

]}
+ O(ε 2)

(5.26)

χ =
1.3

1 − 1.3kε
.

Proof. See Appendix C

Remark 3. Both (5.18) and (5.26) do not depend on the special initial choice x̄0 = M−1b. They
will be true for any choice of x̄0. In both FGMRES and GMRES, a restart with a new x̄0 = x̄k

can improve the situation reducing the upper bounds significantly.

Remark 4. Finally, we point out that substituting the values of c4(n, k)γ and c9(n, k)χ in (5.18)
and (5.26) with ĉ = max (c4(n, k)γ, c9(n, k)χ), (5.26) becomes an upper bound for (5.18). The
numerical experiments in Section 6 support this observation.
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5.2.1 Stage 4. Static pivoting case

From (5.19) and (5.21), taking into account that τ = ε σ||A|| with 0 < σ ≤ 1, we have

||M || ≤ ||A|| + τ + c10(n) ε || |L̂| |D̂| |L̂T | || ≤ ||A|| + 2 τ ≤ 3 ||A||. (5.27)

From (5.26), we have

||b − Ax̄k|| ≤ c11(n, k)χ ε
[
||b|| + ||A|| ||x̄0|| + ||AM−1|| ||A|| ||x̄k − x̄0||+

||A|| ||Z̄k || ||M(x̄k − x̄0)||+
||AM−1|| || |L̂| |D̂| |L̂T | || ||A|| ||x̄k − x̄0||

]
+ O(ε 2).

(5.28)

Moreover, we have
AM−1 = I − τ∆M−1 − c5(n) ε || |L̂| |D̂| |L̂T | ||

and, from (5.23) and assuming (5.21) is satisfied ,

||AM−1|| ≤ 1 + c̃.

Thus we have from (5.28)

||b − Ax̄k|| ≤ c12(n, k)χ ε
[
||b|| + ||A|| ||x̄0|| + ||A|| ||Z̄k || ||M(x̄k − x̄0)||+[

1 + || |L̂| |D̂| |L̂T | ||
]
||A|| ||x̄k − x̄0||

]
+ O(ε 2).

(5.29)

χ =
1.3

1 − 1.3kε

Remark 5. Formula (5.29) suggests that we might expect GMRES to have a final residual larger
than the final residual in FGMRES. In particular, we could expect that a factor proportional to
ε ||A|| || |L̂| |D̂| |L̂T | || ||x̄k − x̄0|| will appear.

6 Numerical experiments

6.1 Test problems

We have run FGMRES and GMRES on several test problems. For the sake of simplicity, we only
present the results obtained on particularly tough problems where iterative refinement fails for
several different static pivoting strategies and values of τ (Duff and Pralet 2005). We decided
to omit the other results either because they are very similar to our results or because iterative
refinement produced a scaled residual that is at rounding error level.

The dimension, the number of nonzero entries and the origin of the three test problems that
we use to illustrate the theory presented in Section 5 are shown in Table 6.1.

6.2 Numerical results

The smallest example TUMA1 presents some interesting features and illustrates the behaviour
of test examples where iterative refinement converges for the range of τ we are interested in. In
Figure 6.1, we summarise the behaviour of || |L| |D| |LT | || vs 1/τ for all our test examples. We
point out that || |L| |D| |LT | || can grow much more than 1/τ because of the threshold pivoting
strategy, and this growth is the reason for the poor behaviour of GMRES.
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n nnz ||A||∞ ||A|| Description

CONT201 80595 239596 8.2 8.1 KKT matrix Convex QP (M2)

CONT300 180895 562496 8.2 8.1 KKT matrix Convex QP (M2)

TUMA1 22967 76199 7.8 4.9 Mixed-Hybrid finite-element

Table 6.1: Test problems
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6
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14

10
0

10
5

10
10

10
15

10
20

1 / τ

|| 
|L

| |
D

| |
LT

|| 
|| ∞

|| |L| |D| |LT|| ||∞ vs 1/τ

 

 

TUMA1
CONT201
CONT300
y = 1/τ

Figure 6.1: || |L| |D| |LT | || vs 1/τ

In Tables 6.2, 6.3, and 6.4, we present the parameters and the scaled residual

||b − Ax̄k||
||b|| + ||A||∞ ||x̄k||

(6.30)

for right-preconditioned GMRES (GMRES column) and Flexible GMRES (FGMRES column),
for the test problems TUMA1, CONT201, and CONT300 respectively. We also show the values
of ||Z̄k|| and ||M(x̄k − x̄0)|| at convergence, as they are crucial quantities for the residual bounds
in Theorems 5.1 and 5.3.

In all test examples, the values of ||Z̄k|| and ||M(x̄k − x̄0)|| for FGMRES show that

||Z̄k|| ||M(x̄k − x̄0)|| < 104

9



||b − Ax̄k ||
||b|| + ||A||||x̄k ||

||M(x̄k − x̄0)||

τ GMRES (#It) FGMRES (#It) ||Zk|| FGMRES GMRES |||L||D||LT |||∞
1.0e-03 1.0e-14 (26) 7.2e-17 (9) 1.2e+02 3.5e-03 3.5e-03 4.4e+04

1.0e-04 1.8e-16 (6) 3.1e-17 (6) 4.7e+01 4.4e-04 4.4e-04 1.8e+05

1.0e-05 1.3e-16 (5) 1.9e-17 (5) 4.4e+01 4.5e-05 4.5e-05 1.8e+06

1.0e-06 1.3e-16 (4) 1.9e-17 (4) 4.4e+01 4.5e-06 4.5e-06 1.8e+07

1.0e-07 1.2e-16 (3) 2.0e-17 (3) 4.3e+01 4.5e-07 4.5e-07 1.8e+08

1.0e-08 1.3e-16 (3) 1.8e-17 (3) 4.3e+01 4.5e-08 4.5e-08 1.8e+09

1.0e-09 2.8e-15 (31) 1.8e-17 (3) 2.6e+01 4.0e-08 4.0e-08 1.8e+10

1.0e-10 4.2e-13 (31) 1.8e-17 (3) 8.8e+00 4.0e-07 4.0e-07 1.8e+11

1.0e-11 1.0e-10 (31) 6.2e-17 (3) 6.8e+00 4.0e-06 4.0e-06 1.8e+12

1.0e-12 1.0e-08 (31) 2.2e-17 (4) 3.2e+01 4.3e-05 4.3e-05 1.8e+13

1.0e-13 2.4e-07 (31) 1.9e-17 (6) 1.3e+02 3.9e-04 3.9e-04 1.8e+14

1.0e-14 8.6e-06 (31) 2.1e-17 (10) 1.8e+02 4.3e-03 4.3e-03 1.8e+15

Table 6.2: TUMA 1 results

when τ = 10−9 (see Table 6.4). However, for the remaining values of τ the latter product is less
than 2 × 102.

In Figures 6.2 and 6.3, we show the convergence histories of the scaled residual (6.30) for
FGMRES and the right-preconditioned version of GMRES for the CONT201 and CONT300 test
problems.

Firstly, we point out that right-preconditioned GMRES is not backward stable. The FGMRES
dependence on τ shows that the best tradeoff is obtained for the recommended choice of τ = 10−8

where both iterative refinement and right-preconditioned GMRES are not able to obtain a scaled
residual close to ε .

Both FGMRES and right-preconditioned GMRES can benefit from a restarting process. In
particular, the restarted right-preconditioned GMRES converges with a scaled residual at machine
precision for a small value of the restart parameter. In Figures 6.4 and 6.5, we compare the
restarted right-preconditioned GMRES with FGMRES for τ = 10−8 for the CONT201 and
CONT300 test examples respectively. In the same figures, we show the behaviour of classical
iterative refinement which is unable to obtain a scaled residual close to rounding. Furthermore,
we show in Figure 6.6 that, even with restarting, the preconditioned GMRES approach is not
robust.

7 Conclusions

We have shown by experiment and analysis that FGMRES is a powerful method for obtaining
the solution of sets of sparse linear equations when a direct method using static pivoting has been
used to factorize the matrix. This factorization is then used as a preconditioner for an iterative
method. In particular, we show that GMRES converges when Richardson’s method (iterative
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||b − Ax̄k ||
||b|| + ||A||||x̄k ||

||M(x̄k − x̄0)||

τ GMRES (#It) FGMRES (#It) ||Zk|| FGMRES GMRES |||L||D||LT |||∞
1.0e-03 1.8e-05 (31) 9.8e-06 (31) * 1.5e-04 7.1e-04 8.3e+07

1.0e-04 2.0e-07 (31) 2.0e-07 (31) * 1.9e-05 1.5e-05 1.8e+08

1.0e-05 1.8e-12 (31) 1.1e-16 (30) 4.1e+05 1.3e-05 5.9e-06 4.4e+09

1.0e-06 1.1e-11 (31) 2.1e-16 (15) 2.7e+06 7.8e-07 7.8e-07 1.8e+10

1.0e-07 4.8e-11 (31) 1.8e-16 (9) 1.4e+08 8.7e-08 8.7e-08 1.9e+12

1.0e-08 2.7e-10 (31) 5.8e-17 (6) 2.1e+07 1.3e-06 1.3e-06 1.8e+13

1.0e-09 1.8e-09 (31) 4.5e-17 (5) 1.1e+07 1.3e-06 1.3e-06 1.5e+13

1.0e-10 3.2e-09 (31) 7.2e-17 (4) 3.4e+05 9.2e-06 9.2e-06 1.5e+14

1.0e-11 2.1e-09 (31) 4.5e-17 (4) 1.9e+03 2.8e-04 2.8e-04 2.6e+15

1.0e-12 4.5e-07 (31) 3.8e-17 (5) 2.0e+02 9.5e-04 9.5e-04 1.6e+16

1.0e-13 1.3e-04 (31) 2.6e-16 (8) 1.6e+02 1.1e-02 1.1e-02 4.1e+17

1.0e-14 2.3e-01 (31) 2.5e-14 (12) 4.3e+02 1.0e-02 1.9e-02 9.2e+18

Table 6.3: CONT 201 results
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CONT201 Test example:  τ = 10−6, 10−8, 10−10
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Figure 6.2: GMRES vs FGMRES on CONT201 test example: τ = 10−6, 10−8, 10−10

refinement) does not, that restarted GMRES performs better, and that FMGRES succeeds when
these other methods fail. We also see that the convergence of FGMRES is much less sensitive to
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||b − Ax̄k ||
||b|| + ||A||||x̄k ||

||M(x̄k − x̄0)||

τ GMRES (#It) FGMRES (#It) ||Zk|| FGMRES GMRES |||L||D||LT |||∞
1.0e-03 3.6e-05 (31) 2.5e-05 (31) * 1.3e-04 8.7e-04 2.5e+08

1.0e-04 5.5e-07 (31) 5.5e-07 (31) * 2.8e-05 6.5e-05 4.3e+09

1.0e-05 8.7e-09 (31) 8.7e-09 (31) * 6.1e-06 3.7e-06 1.4e+11

1.0e-06 6.9e-11 (31) 1.4e-16 (23) 3.0e+06 9.8e-07 5.7e-07 6.2e+11

1.0e-07 2.1e-10 (31) 8.2e-17 (12) 7.6e+06 2.3e-07 2.3e-07 2.0e+12

1.0e-08 1.4e-08 (31) 1.2e-16 (8) 7.5e+07 1.8e-06 1.8e-06 4.1e+13

1.0e-09 1.6e-05 (31) 8.8e-17 (8) 3.7e+07 2.8e-04 2.8e-04 3.7e+15

1.0e-10 6.8e-07 (31) 4.1e-17 (6) 3.8e+05 3.6e-04 3.6e-04 9.6e+15

1.0e-11 1.6e-06 (31) 8.7e-17 (5) 1.4e+03 5.3e-03 5.3e-03 1.0e+17

1.0e-12 1.1e-06 (31) 2.7e-16 (5) 1.5e+02 1.0e-02 1.0e-02 1.9e+17

1.0e-13 3.4e-03 (31) 9.2e-16 (7) 1.3e+02 1.9e-01 1.9e-01 1.3e+19

1.0e-14 1.4e-01 (31) 1.8e-14 (12) 2.1e+02 4.7e-02 4.7e-02 6.6e+19

Table 6.4: CONT 300 results
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Figure 6.3: GMRES vs FGMRES on CONT300 test example: τ = 10−6, 10−8, 10−10

the choice of the static pivoting parameter.

Our analysis gives sufficient conditions for convergence and we observe that often FGMRES
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Figure 6.4: Restarted GMRES vs FGMRES on CONT201 test example: τ = 10−8
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Figure 6.5: Restarted GMRES vs FGMRES on CONT300 test example: τ = 10−8

converges even when our hypotheses are not satisfied. The main reason for this is that the bound
|| |L| |D| |LT | || on the norm of the solution of the preconditioned system is rather crude. Indeed,
taking into account that ||M || ≈ ||A||, we see that there is severe cancellation in the product and
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Figure 6.6: Restarted GMRES on CONT201 test example: τ = 10−6

that small entries in D are usually balanced by large entries in L.

However, we see clearly that the analysis showing that stronger hypotheses are required for
the convergence of preconditioned GMRES is reflected in the poorer convergence of this method,
even when restarting is used.

A great benefit of our analysis and experiments is that the FGMRES iterative method can be
used with confidence to solve systems preconditioned with a static pivoting factorization and that
the method is far less sensitive to the choice of static pivoting parameter than either GMRES or
iterative refinement.
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A : Proof of Theorem 5.1

Stage 1
By standard techniques (Higham 2002), the computed matrix by vector products satisfy the

relations

fl(r0) = r0 + f1 ||f1|| ≤ c13(n, 1)ε (||b|| + ||A|| ||x̄0||) + O(ε 2), (A.31)

fl(AZ̄k) = AZ̄k + Fk, ||Fk|| ≤ c14(n, k)ε ||A|| ||Z̄k || + O(ε 2), (A.32)

where x̄0 = fl(x0).
Following Björck and Paige (1992) and Giraud and Langou (2002), the Gram-Schmidt or-

thogonalization process applied to fl(C (k)) computes an upper triangular matrix Rk for which
there exists an orthonormal matrix V̂k+1 that satisfies the relations:





[fl(r0); fl(AZ̄)] + [f2;Ek] = V̂k+1Rk, V̂ T
k+1V̂k+1 = Ik+1

||f2|| ≤ c15(n, 1)ε ||r0|| + O(ε 2) ||Ek|| ≤ c16(n, k)ε ||AZ̄k || + O(ε 2)
(A.33)

under the hypothesis (5.15).
By combining (A.31), (A.32), and (A.33), we have





[r0;AZ̄k] + [f1 + f2;Fk + Ek] = V̂k+1Rk,

||f1 + f2|| ≤ c17(n, 1)ε (||b|| + ||A|| ||x̄0||) + O(ε 2) and

||Fk + Ek|| ≤ c18(n, k)ε (||AZ̄k || + ||A|| ||Z̄k ||) + O(ε 2).

(A.34)

Stage 2
The second part of FGMRES computes the vector ȳk = fl(yk) by Givens or Householder

algorithms (Golub 1965, Golub and Van Loan 1989). The vector ȳk satisfies the following relations




ȳk = arg miny ||β̄e1 + g[k] − (H̄k + ∆H̄k)y||,
||∆H̄k|| ≤ c19(k, 1)ε ||H̄k || + O(ε 2) and ||g[k]|| ≤ c20(k, 1)ε β̄ + O(ε 2),

(A.35)

where β̄ = (Rk)11 = ||r0 + f1 + f2|| and the columns of H̄k are columns 2, . . . , k + 1 of Rk. Note
that β̄ is independent of k because at step k we only compute the kth column of Rk, leaving the
earlier columns unchanged. The computation of ȳk is performed in two stages and contributions
to the matrix ∆H̄k come from two sources.

First, a sequence of Givens (or Householder) rotations G(i) is computed in order to reduce
the matrix H̄ to the upper triangular form Uk. The floating-point computation of the matrices
G(i) gives

fl(G(i)) = Ḡ(i) =




Ii−1

c̄i −s̄i

s̄i c̄i

In−i−1




i = 1, . . . , k

c̄i = fl(
(H̄k)i,i√

(H̄k)
2
i,i + (H̄k)

2
i+1,i

) and s̄i = fl(
(H̄k)i+1,i√

(H̄k)
2
i,i + (H̄k)

2
i+1,i

)
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The Ḡ(i) matrices are also applied to the vector β̄e1 and, from the error analysis presented by
Wilkinson (1965), the floating-point arithmetic will produce an exact orthogonal matrix G [k] such
that

fl(Ḡ(k) · · · Ḡ(1)β̄e1) = G[k](β̄e1 + g[k])

fl(Ḡ(k) · · · Ḡ(1)H̄k) = G[k](H̄k + ∆H̄
(1)
k ),

||∆H̄
(1)
k

|| ≤ c21(k, 1)ε ||H̄k || + O(ε 2).

Second, the ȳk vector is computed by solving the upper triangular system. The standard

backward substitution algorithm will introduce an additional perturbation ∆H̄
(2)
k

of H̄k but will

leave the perturbation g[k] untouched. The perturbation ∆H̄
(2)
k will also have the same upper

Hessenberg structure of H̄k and

||∆H̄
(2)
k || ≤ c22(k, 1)ε ||H̄k || + O(ε 2).

This follows from the upper triangular structure of the perturbation to Uk induced by the back-
ward substitution algorithm, and from the structure and orthogonality of G[k]. Finally, we point
out that in the relations (A.35) we have see (5.13)





∆H̄k = ∆H̄
(1)
k

+ ∆H̄
(2)
k

, and

c1(k, 1) = c21(k, 1) + c22(k, 1).

where c1(k, 1) is the constant of (5.13) Moreover, because of the special structure of β̄e1 and the
orthogonality of G[k] we have

g
[k]
j = 0 j = k + 1, . . . , n,

and, denoting by h̄[k] = fl(Ḡ(k) · · · Ḡ(1)β̄e1), we have

αk = ||G[k](β̄e1 + g[k] − (H̄k + ∆H̄k)ȳk)||
= ||(G[k](β̄e1 + g[k]))k+1|| = |h̄[k]

k+1|.
(A.36)

A direct analysis of h̄[k] shows that




h̄
[1]
1 = β̄c̄1(1 + µ1) |µ1| ≤ ε

h̄
[1]
2 = β̄s̄1(1 + ρ1) |ρ1| ≤ ε

h̄
[k]
j = h̄

[k−1]
j j = 1, . . . , k − 1, k ≥ 2,

h̄
[k]
k = h̄

[k−1]
k c̄k(1 + µk) |µk| ≤ ε

h̄
[k]
k+1 = h̄

[k−1]
k

s̄k(1 + ρk) |ρk| ≤ ε .

Therefore, from using (A.33), (A.34), (A.35), (A.36), and the orthogonality of

Ṽk+1 = V̂k+1G
[k]T ,

we have

αk = ||Ṽk+1G
[k](β̄e1 + g[k] − (H̄k + ∆H̄k)ȳk)||

= ||r0 + f1 + f2 + V̂k+1g
[k] − A(Z̄k + A−1(Fk + Ek + V̂k+1∆H̄k))ȳk||

= ||r0 + δr0 − A
(
Z̄k + Ẑk

)
ȳk||,
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where δr0 = f1 + f2 + f3 and Ẑk = A−1(Fk + Ek + V̂k∆H̄k). Then

αk = αk−1|s̄k|(1 + ρk), |ρk| ≤ ε . (A.37)

Thus, under the hypotheses (5.14), (5.13), and (5.15) and from (A.35), the matrices
(
Z̄k + Ẑk

)

have full rank for all k, i.e.

H̄k + ∆H̄k

is full rank ∀k, and the values of αk converge monotonically to zero for a finite value of k = k̂.
In the worst case this will happen for k̂ = n.

Stage 3

The last part of FGMRES is the computation of x̄k = fl(x0 + Z̄ȳk). The value x̄k satisfies
the relations





x̄k = x̄0 + Z̄kȳk + δxk,

||δxk|| ≤ c3(k, 1)ε ||Z̄k || ||ȳk|| + ε ||x̄0|| + O(ε 2).
(A.38)

Therefore, we have

αk = ||r0 + δr0 + Aδxk − Aδxk − AZ̄kȳk − AẐkȳk||. (A.39)

From (A.38), we have





αk = ||b − Ax̄k + w||
w = δr0 + Aδxk − AẐkȳk

(A.40)

and then

||b − Ax̄k|| ≤ ||w|| + αk. (A.41)

From (A.34), (A.35), (A.38 ), (A.40), and (A.41), we have





||δr0|| ≤ c24(n, 1)ε (||b|| + ||A|| ||x̄0||) + O(ε 2)

||Aδxk || ≤ c25(n, 1)ε ||A||
[
||Z̄k|| ||ȳk|| + ||x̄0||

]
+ O(ε 2)

(A.42)

and, finally,

||w|| ≤ c26(n, k)ε
(
||b|| + ||A|| ||x̄0|| + ||H̄k|| ||ȳk||+

||A|| ||Z̄k || ||ȳk||
)

+ O(ε 2).
(A.43)

Therefore, under hypothesis (5.13) and from (A.41), we have

||b − Ax̄k|| ≤ αk + c2(n, k)ε
(
||b|| + ||A|| ||x̄0|| + ||H̄k|| ||ȳk||+

||A|| ||Z̄k|| ||ȳk||
)

+ O(ε 2)
(A.44)

and, then, taking into account that, from (A.34),

||H̄k|| ≤ ||AZ̄k|| + O(ε ) ∀k < k̂, (A.45)
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we have 5.16.
From the analysis of Björck and Paige (1992) and Giraud and Langou (2002), the Gram-

Schmidt orthogonalization process applied to fl(C (k)) computes matrices V̄k = fl(Vk) that lose
orthogonality quickly. Nevertheless, under the mild hypothesis (5.15) on the matrix C (k) the
spectral condition number of each V̄k is close to one and

1 ≤ ||V̄k|| ≤ k

κ(V̄k) ≤ 1.3

so that

||V̄ +
k || ≤ 1.3/||V̄k || ≤ 1.3

where V̄ +
k = (V̄ T V̄k)

−1V̄ T
k , (Giraud and Langou, 2002, Thm 3.1 and Paige et al., 2006, Thm 5.2).

Taking into account the previous relations, it is possible to express ȳk as a function of x̄k−x0.
For each column z̄i of Z̄k a matrix Gi exists and satisfies

(M + Gi)z̄i = v̄i, ||Gi|| ≤ c27(n, 1) ε || |L̂| |D̂| |L̂T | || + O(ε 2),

where v̄i is the i−th column of V̄k. Then, we have the relation

MZ̄k = V̄k + Ŵk + O(ε 2), (A.46)

From the relations (A.38) and (A.46), it follows that

x̄k − x̄0 − δxk = Z̄kȳk

V̄ +
k M(x̄k − x̄0 − δxk) = V̄ +

k MZ̄kȳk

V̄ +
k (M(x̄k − x̄0) − Mδxk) = (V̄ +

k V̄kȳk + V̄ +
k Ŵkȳk) + O(ε 2)

V̄ +
k (M(x̄k − x̄0) − Mδxk) − V̄ +

k Ŵkȳk + O(ε 2) = ȳk.

Then, we have

||ȳk|| ≤ 1.3||M(x̄k − x̄0)|| + 1.3||Ŵk|| ||ȳk|| + ||M || ||δxk || + O(ε 2)

and

||ȳk|| ≤ 1.3||M(x̄k − x̄0)|| + 1.3||Ŵk|| ||ȳk||
+ c3(k, 1)ε ||M || ||Z̄k || ||ȳk|| + ε ||x̄0|| + O(ε 2).

From hypothesis (5.17), we can state the inequality

||ȳk|| ≤ γ||M(x̄k − x̄0)|| + γε ||x̄0|| + O(ε 2), where γ =
1.3

1 − ρ
. (A.47)

Finally, by substituting (A.47) in (A.44) and taking into account (A.45), we have the following
upper bound for the residual

||b − Ax̄k|| ≤ αk + c4(n, k)γε
[
||b|| + ||A|| ||x̄0||+(

||AZ̄k|| + ||A|| ||Z̄k||
) (

||M(x̄k − x̄0)|| + ε ||x̄0||
)]

+ O(ε 2).

Furthermore, hypothesis (5.13) implies that there exists a value k̂ (possibly equal to n in the
worst case) for which αk = 0. Then, we can conclude that for k ≥ k̂ we have (5.18).
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B : Proof of Theorem 5.2

We can bound ||M(x̄k − x̄0)|| using (5.19) and (5.20). Under hypothesis (5.21), we have

||M(x̄k − x̄0)|| ≤ ||Ax̄k − b|| + τ ||x̄k|| + ||δA|| ||x̄k || + ||δM || ||x̄0||
≤ ||Ax̄k − b|| + 2τ

(
||x̄k|| + ||x̄0||

)
.

(B.48)

From the relations (B.48) and (5.18), we have

||b − Ax̄k|| ≤ c4(n, k)γε (||b|| + ||A|| ||x̄0||+
||A|| ||Z̄k ||

(
||Ax̄k − b|| + τ ( ||x̄k|| + ||x̄0|| )

)
+ O(ε 2).

Under the hypotheses (5.21) and (5.22), we have





||b − Ax̄k|| ≤ 2µε
(
||b|| + ||A|| ||x̄0||+

τ ||A|| ||Z̄k|| (||x̄k || + ||x̄0||)
)

+ O(ε 2)

µ =
c7(n, k)γ

1 − c7(n, k)ε γ||A|| ||Z̄k ||
.

(B.49)

Under this final hypothesis (5.23), we obtain (5.24), i.e. the normwise backward stability for
FGMRES using as preconditioner the M computed by MA57 with static pivoting.

C : Proof of Theorem 5.3

The first two stages of GMRES roundoff error analysis are the same as the first two stages in the
proof of Theorem 5.1. Under the assumption of performing few steps of iterative refinement in
solving the final linear system

Mq = fl(V̄kȳk),

we have the following relations:





(M + δM)
(
I + Γ

)−1
(x̄k − (I + Γ) x̄0) = V̄k ȳk + f̃

|Γ| ≤ ε I,

||f̃ || ≤ kε ||V̄k|| ||ȳk|| + O(ε 2) ≤ 1.3kε ||ȳk|| + O(ε 2),

||δM || ≤ nε ||M || + O(ε 2).

(C.50)

Taking into account that

(M + δM) (I + Γ)−1 = M +
(
δM − M Γ

)(
I + Γ

)−1
= M + δ̃M

with

||δ̃M || ≤ (n + 1)
ε

1 − ε
||M || = c28(n, 1)ε ||M ||,

we have, from (C.50), that

(M + δ̃M )(x̄k − x̄0) = V̄k ȳk + f̃ + (M + δ̃M ) Γ x̄0. (C.51)
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Therefore, we have from (5.25) and (C.51) that (A.38) can be replaced by

x̄k = x̄0 + (M + δ̃M )−1(V̄k ȳk + f̃) + Γ x̄0 (C.52)

= x̄0 + M−1 V̄k ȳk + δx̄k (C.53)

with

δx̄k = Γ x̄0 + M−1 f̃ − M−1 δ̃M M−1 V̄k ȳk + O(ε 2)

= Γ x̄0 + M−1 f̃ − M−1 δ̃M (x̄k − x̄0 − δx̄k) + O(ε 2)

and

δx̄k =
(
I − M−1 δ̃M

)−1(
Γ x̄0 + M−1 f̃ − M−1 δ̃M (x̄k − x̄0)

)
+ O(ε 2)

= Γ x̄0 + M−1 f̃ − M−1 δ̃M (x̄k − x̄0) + O(ε 2).
(C.54)

Under hypotheses (5.15) and (5.25), we obtain from (C.52), (C.53), (C.54), and (A.46)





αk = ||b − Ax̄k + wg|| where

wg = δr0 + Aδxk − AẐkȳk + A(M−1 V̄k ȳk − Z̄k ȳk)

= δr0 + Aδxk − AẐkȳk + AM−1 Ŵk ȳk + O(ε 2),

(C.55)

and, then

||b − Ax̄k|| ≤ αk + ||wg||. (C.56)

From (A.34), (A.35), (A.37), (C.52), (C.54), (C.55), and (C.56), we have





||δr0|| ≤ c29(n, 1)ε (||b|| + ||A|| ||x̄0||) + O(ε 2)

||Aδxk|| ≤ c30(n, 1)ε
[
||AM−1||

(
||M || ||x̄k − x̄0|| + ||ȳk||

)
+

||A|| ||x̄0||
]

+ O(ε 2)

(C.57)

and, finally,

||wg|| ≤ c31(n, k)ε
[
||b|| + ||A|| ||x̄0|| + ||H̄k|| ||ȳk|| + ||A|| ||Z̄k|| ||ȳk||+

||AM−1||
(
||M || ||x̄k − x̄0|| + ||ȳk||+

|| |L̂| |D̂| |L̂T | || ||ȳk||
) ]

+ O(ε 2).

(C.58)

From (C.51), we can compute an upper bound for ||ȳk|| by multiplying the equation by V̄ +
k :

ȳk = V̄ +
k (M + δ̃M )(x̄k − x̄0) − V̄ +

k (f̃ + (M + δ̃M ) Γ x̄0) (C.59)

= V̄ +
k

M(x̄k − x̄0) − V̄ +
k

(f̃ − δ̃M (x̄k − x̄0) + (M + δ̃M ) Γ x̄0), (C.60)

and , then,

||ȳk|| ≤ 1.3||M(x̄k − x̄0)|| + 1.3kε ||ȳk ||+
1.3nε ||M || (||x̄k − x̄0|| + ||x̄0||) + O(ε 2).

(C.61)
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From hypothesis (5.15), we can assume that 1.3 kε < 1, and thus we have





||ȳk|| ≤ χ||M(x̄k − x̄0)|| + χnε ||M || (||x̄k − x̄0|| + ||x̄0||) + O(ε 2)

χ =
1.3

1 − 1.3kε
.

(C.62)

Furthermore, as in the proof of Theorem 5.1, hypothesis (5.13) implies that there exists a value
k̂ (possibly equal to n in the worst case) for which αk = 0. Then, under hypotheses (5.13), (5.15),
and from (C.62), (C.56), and (C.58), we can conclude that for k ≥ k̂ we have (5.26).
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