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Abstract
We describe a new class of surface flows, diffeomorphic surface flows, induced by restricting
diffeomorphic flows of the ambient Euclidean space to a surface. Different from classical surface
PDE flows such as mean curvature flow, diffeomorphic surface flows are solutions of integro-
differential equations in a group of diffeomorphisms. They have the potential advantage of being
both topology-invariant and singularity free, which can be useful in computational anatomy and
computer graphics. We first derive the Euler–Lagrange equation of the elastic energy for general
diffeomorphic surface flows, which can be regarded as a smoothed version of the corresponding
classical surface flows. Then we focus on diffeomorphic mean curvature flow. We prove the short-
time existence and uniqueness of the flow, and study the long-time existence of the flow for surfaces
of revolution. We present numerical experiments on synthetic and cortical surfaces from
neuroimaging studies in schizophrenia and auditory disorders. Finally we discuss unresolved issues
and potential applications.
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1. Introduction
Surface evolution is both an important tool and an intriguing focus of mathematical research
in geometric analysis, e.g., [5], and geometric PDEs, e.g., [37]. It also has been extensively
applied in image processing, e.g., [3], and computer vision and interface modeling, e.g., [38].
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In this paper, we develop and study a novel method of surface evolution under the action of
the diffeomorphisms of the ambient Euclidean space.

We are interested in flows that can minimize surface area or mean curvature of a surface without
inducing changes in topology or creating singularities. Therefore, it is natural to consider
surface flows that are described by diffeomorphisms of the ambient Euclidean space. Motivated
by the general framework of deformable template theory [17], we study transformations acting
on objects, rather than the objects themselves. More specifically, we analyze flows on a group
of diffeomorphisms of Euclidean space, rather than studying flows on the surfaces themselves.
The foundations of this general framework have been rigorously established and have enabled
comparisons to be made between deformable objects; see [11,32] and the references therein.
The theory has been successfully applied to image matching problems in which landmarks
[24], curves [14], or surface patches [41] evolve under diffeomorphisms of Euclidean space.
Here we use this framework in a variational setting, in an approach that is reminiscent of shape
optimization methods [10].

In this paper, we transform variational formulations of classical surface flows (that minimize
geometrical properties such as area, elastic energy, or total curvature) into optimization
problems on a group of diffeomorphisms. This approach leads to solving the corresponding
Euler–Lagrange equations as evolutions in the group that induce, via the group action, stable
evolutions of surfaces. We call such flows diffeomorphic surface flows.

In the last decade, there have been studies on geometric flows such as the celebrated mean
curvature flow, e.g., [12] and references therein, surface diffusion flow, e.g., [13], and the
Willmore flow, e.g., [27,26]. The equations for these surface flows are second or fourth order
parabolic PDEs which require sophisticated numerical methods, e.g., [9]. Moreover, these
flows can change surface topology and introduce singularities, e.g., [12,29,30].

We show that diffeomorphic surface flows can be regarded as smooth versions of the
corresponding classical surface flows. They flow to minimize the energy while preserving
surface topology and do not break down due to finite-time singularities since they are induced
from the evolution of diffeomorphisms. Moreover, these flows are solutions of integro-
differential equations on the diffeomorphism group, which are somewhat easier to discretize
than the PDEs that govern the classical surface flows.

A major motivation for this work came from a desire to smooth triangulated cortical surfaces
that are generated by marching cubes or tetrahedra isosurface algorithms [28,18] based on a
threshold derived from the segmentation of volumetric images of the brain, e.g., [35,36]. In
addition, topological defects generated by isosurface algorithms can be corrected by multiscale
and morphological operations, e.g., [20,21]. The end result is a triangulated surface that may
contain several anomalous protrusions which may distort the true curvature of the surface and
thus confound the interpretation of possible biological processes in disease such as neuronal
migration of tissues, e.g., [1,4]. Smoothing flows could be used to minimize these distortions.
However, it is important that the topological properties of the surfaces be preserved to reflect
the inherent biology at the scale of the voxel resolution of 0.5mm3 or 1mm3 and to not generate
additional artifacts.

Algorithms for smoothing “noisy” surfaces have been the focus of intense efforts in the
computer vision field, e.g., [23,45]. Unfortunately little effort has been made to apply these
sophisticated algorithms to cortical surfaces without losing accuracy and simplification.
Among the earliest such algorithms, Joshi et al. [25] used the approach of Hamann [19] for
generating local quadratic approximations to a discrete surface in order to locally smooth
triangulated meshes and thus curvature. More sophisticated algorithms have since been
developed. Among the most recent such methods are PDE algorithms based on the powerful
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level set method, e.g., [39,43,7], which, however, may lead to topological changes or
singularities that may confound biological inference.

In this paper, we will present some encouraging preliminary results in which cortical surfaces
are smoothed using diffeomorphic surface flows. In future work we will further develop the
method and apply it in statistical analysis of cortical surfaces.

The organization of the paper is as follows. In section 2 we describe the mathematical
background on flows of diffeomorphisms, classical surface energies, and the variational
formulation for the surface flow. In section 2.3 we derive the Euler–Lagrange equations for
diffeomorphic surface flows for a general elastic energy before focusing our attention on
diffeomorphic mean curvature flow. In section 3 we prove the short-time existence of the
solution of the diffeomorphic mean curvature flow equation and discuss the long-time existence
for surfaces of revolution. In section 4 we describe a numerical implementation of the method,
and in section 5 we present the results of our numerical simulations. Finally, unresolved issues
and future directions are discussed in section 6.

2. Mathematical background
2.1. Flows of diffeomorphisms

The set of diffeomorphisms, φ, of ℝ3 forms a group under the operation of composition of
mappings. Following the theory of flows of diffeomorphisms [11,40], we introduce a Hilbert
space V of smooth vector fields on ℝ3, which is assumed to be continuously included in

, the set of all C1 vector fields that converge to zero (with their first derivatives) at
infinity, equipped with the supremum norm. Any time-dependent vector field, νt : ℝ → V,
generates a trajectory, φt, in the group of diffeomorphisms by

(2.1)

with initial condition φ0 = Id. We let  denote the group generated by all solutions φt of (2.1)
with νs ∈ V for all s ≤ t and maxs≤t∥νs∥V < ∞. (The fact that this set forms a group is proved,
for example, in [40].) We shall also use the notation V to make explicit the dependence of
this group on the Hilbert space V.

We want to implement gradient descent algorithms in the group of diffeomorphisms, which is
an issue often referred to as shape optimization [10]. A basic notion in this context is the one
of shape differential. Given a scalar function F defined on V and an element φ ∈; V, the
shape differential of F at φ, denoted ∂F(φ), is (if it exists) the linear form on V (∂F(φ) ∈ V*)
defined by

Assume that, for each φ, a dot product 〈.〉φ is defined on V*. The gradient of F at φ with respect
to this dot product, denoted ∇F(φ), is then defined by the following identity: for all m ∈ V*,

The associated gradient descent algorithm is the flow defined by
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(2.2)

By the chain rule, we can write

(2.3)

which shows that the algorithm does indeed minimize F. If ∇F(φ) is a smooth vector field over
a time interval [0, T], then φ in (2.2) is the flow associated to an ODE and therefore a
diffeomorphism.

We denote by K the duality operator between V* and V, defined by m.υ = 〈Km, υ〉V for m ∈
V* and υ ∈ V. The assumption that V is continuously included in  implies that K is a
kernel operator, making V a reproducing kernel Hilbert space [2,42]. Indeed, for a ∈ ℝ3, the
linear form m = a ⊗ δx defined by m.υ = aTυ(x) is continuous on V, so that K (a ⊗ x) ∈ V is
well defined and obviously linear in a. This defines a mapping (also denoted K) from ℝ3 ×
ℝ3 to GL3(ℝ) by

(2.4)

A key point here is that V can be specified by the definition of its kernel. In our case, K will
be chosen as a scalar Gaussian kernel (or more precisely by a Gaussian kernel multiplied by
the identity matrix). The corresponding Hilbert space (at scale σ) is defined by

(2.5)

where the inner product on Vσ is defined by 〈K1/2u, K1/2u′〉V = 〈u,u′〉L2. The associated kernel
is K = (K1/2)2, which is proportional to exp(−∥x − y∥2/(2σ2)).

The dual dot product on V* comes straightforwardly from the fact that K is a duality operator,
yielding

The φ-dependent dot product 〈. , .〉φ used in this paper will be weighted versions of this dual
product, taking the form

where ρφ is a nonnegative scalar function and (ρφm).υ := m(ρφυ). The associated gradient
descent algorithm becomes

(2.6)
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We now describe how this is implemented, with a suitable choice for ρφ, for surface evolution.

2.2. Surface energy
We consider the general surface energy functional [34,22]

(2.7)

where H and G are the mean and Gauss curvature of Σ, respectively. This elastic energy
functional is a linear combination of three basic energy functionals:

• area: U(Σ) = ∫Σ dσ,

• Willmore energy: U (Σ) = ∫Σ 4H2 dσ, and

• total curvature: , where k1, k2 are principal
curvatures.

These energy functionals can be locally minimized using the classical surface flows known as
mean curvature (area-minimizing), Willmore, and total curvature flow, respectively.

We generate diffeomorphic surface flows as follows. If Σ0 is the initial surface, we can define
F(φ) = E(φ(Σ0)). We then let Σt= φt(Σ0), where φt is given by (2.6).

2.3. Euler–Lagrange equation
In this section, we derive the gradient flow equation for the diffeomorphic surface flow
minimizing the elastic energy. From section 2.2, we first compute the variation of the energy.
The following lemma is due to Nitsche [34]. For simplicity, we suppose that all surfaces are
oriented and closed. Let the surface be Σ(p) and its variation be Σε(p) = Σ(p) + εν (p).

LEMMA 2.1 (variation of elastic energy)—For surface elastic energy, E(Σ) = ∫Σ (α +
βH2 − γG)dσ, the energy variation is

(2.8)

where ν⊥ = 〈ν, N〉 is the normal component of the vector field ν, ΔΣ is the intrinsic Laplace
operator, and N is the surface normal.

A proof may be found in Willmore [44, pp. 279–282].

Remark 1: For a closed surface, the term with γ is absent since by the Gauss– Bonnet theorem,
the integral of the Gauss curvature is a constant.

This lemma directly provides the expression of the shape derivative of F at φ, since, for Σ = φ
(Σ0), ((id + ευ) ∘ φ) (Σ0) = Σ + ευ(Σ), yielding

Now, from (2.6), we obtain the diffeomorphic evolution equations, in which we assume that
ρφ depends on φ only via the deformed surface Σ, hence employing the notation ρφ = ρΣ and
Σt = φt ∘ Σ0:
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(2.9)

We define ρΣ as an area normalization factor as follows. Define, for a surface Σ, the local area
function

(2.10)

We then set

(2.11)

Choosing this normalization ensures that the right-hand sides in the diffeomorphic flows have
the same dimensions as the corresponding classical flows (e.g., 1/length for the mean curvature
flow). Doing so, the large-scale behavior (relative to the width of the kernel) is expected to be
similar for both flows.

Although all quantities introduced so far are defined on the whole space, we are primarily
interested in the evolution of the surface Σt = φt ∘ Σ0. Hence, for the area and Willmore energy
functionals, the equations that govern the flow of each point p = φt(y) on the closed surface
Σt are given by the following integro-differential equations:

• diffeomorphic mean curvature flow (α = 1 and β = 0):

(2.12)

• diffeomorphic Willmore flow (α = 0 and β = 1):

(2.13)

We will use these formulae in the numerical implementation in section 4. Notice that they are
similar to the corresponding equations for the classical mean curvature and Willmore flows.
The diffeomorphic surface flows have the same energy minimizing property as their classical
counterparts, but since they are diffeomorphisms, they preserve the topology of the surface. In
the next section, we focus only on diffeomorphic mean curvature flow.

3. Diffeomorphic mean curvature flow
From now on, we use the Gaussian kernel function

(3.1)

Here σ is the kernel size, which corresponds (up to a change in the normalization factor) to the
reproducing kernel of Vσ given by (2.5).
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The flow equation is therefore given by

(3.2)

with the initial condition φ0 = id. As indicated by (2.3), this is an area-minimizing flow for the
surface Σt, with the explicit formula

3.1. Short-time existence of solution
The classical flows are local flows and by PDE theory, there are short-time solutions for smooth
initial data. Because of the integro-differential form of diffeomorphic surface flows, short-time
existence follows from standard ODE arguments on Banach spaces.

THEOREM 1 (short-time existence and uniqueness)—For any initial compact smooth
surface, there exists a unique solution for the flow equation (3.2) in a small time interval [0,
t0].

Proof: Consider the space A = ℝ3 × GL3(ℝ) × Bil(ℝ3, ℝ3), where the last factor is the set of
bilinear functions from ℝ3 × ℝ3 to ℝ3. A generic element of A will be denoted Q = (ε, F, S),
and we will consider the Banach space B of continuous functions Q(·) : ℝ3 → A, with the
supremum norm

(3.3)

Here ε(y) is a C2 vector field that converges to zero (with its first and second derivatives) at
infinity, and F(y) and S(y) are first and second derivatives of ε(y).

Letting φ(y) = y + ε(y), we first embed (3.2) in an ODE on B. We rewrite the right-hand side
of (3.2) using integrals over Σ0. Covering Σ0 with local charts f : U → Σ0, we have that Σt(y)
= φt ∘ f (y). Suppose that {fu, fu, N0} is an orthonormal basis at the point y. Then, using N(t, φ
(y)) = dφ−T N0/∥dφ−T N0∥ [6] and the expression for the mean curvature in coordinates
(omitting the subscript t), we have

Defining the quadratic forms on TΣ = dφTΣ0,

(3.4)

and
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(3.5)

and using the fact that ∥dφfu × dφfυ∥ = |det Dφ| ∥dφ−T N0∥, we can rewrite

(3.6)

So, the evolution equation can be written as

(3.7)

with

Introducing dφ = Id + dε = Id + F and d2φ = d2ε = S, (3.7) takes the form

(3.8)

The time evolution of F is obtained by computing the differential of this equation with respect
to the space variable. Since in (3.7), the variable y appears only in evaluations of φ (not its
derivatives), it is clear that the evolution of F will also take the form dF/dt = J1 (ε, F, S). Since
the same argument can be made for S, we obtain the fact that (ε, F, S) follows an ODE in B of
the form

(3.9)

It is clear now that J0, J1, J2 are integrals of rational functions of ε, F, S which are well defined
in a neighborhood of (ε, F, S) = (0, 0, 0). This ensures short-term existence of solutions of the
system in B.

It remains to show that, if (ε, F, S) is a solution of this system, the first component, ε, is in fact
a solution of (3.8) with initial condition ε0 = 0. For this it suffices to prove that ε is twice
differentiable, with its first and second differentials given by F and S. This follows from
standard arguments for ODEs, and we omit the details here. Finally, it is easy to see that we
have a unique solution φ(y) = y + ε(y) for the original flow equation (3.2).

Remark 2: The result in Theorem 1 also holds for the more general diffeomorphic surface
evolution
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where f has continuous derivatives for each variable, Σ0 is a smooth surface, m is an integer,
and N is the surface normal. The proof follows along the same general lines as the proof we
gave above. We rewrite the integral as an integral on the original surface and the function f as
a function G(φ, dφ, d2φ, … , dm+1φ). Then the equations of the derivatives of dφ, d2φ, … ,
dm+1φ involve only the derivatives of the kernel and G.

We can show that the solution φ is in fact a diffeomorphism by standard arguments using
Gronwall’s lemma [46, Chap. 10].

THEOREM 2 (diffeomorphism): If φt is the solution of the flow equation (3.2) on the
interval [0, T], then φt is a diffeomorphism for all t ∈ [0, T].

We have the following important consequence.

COROLLARY 1 (topology invariance and singularity free): The solution of the flow
equation (3.2)  at each time t gives a smooth surface with the same topology as the initial
surface as long as the solution exists.

We are obviously interested in the long-time existence of the flow. Numerical evidence and
analysis for simple surfaces so far suggest that the flow has a longtime solution. However, the
interactions between remote parts of a surface make the long-time behavior difficult to analyze
(see, for example, Figure 1). Analyzing the proof of Theorem 1, we see that being able to extend
a solution beyond a given time t < t0 depends only on the regularity of the surface at time t.
More precisely, a standard lower-bound of how far a current solution of an ODE in a Banach
space can be extended beyond t is directly related to the Lipschitz constant of the ODE. In our
proof, the Lipschitz properties of the system rely on the surface only via upper-bounds on the
second derivative of the normal in (3.6) and via lower-bounds on the local area aΣ. So solutions
of (3.9) can be extended in time as long as the surface does not develop singularities.

A consequence of this analysis is that, if we can exhibit an evolution starting at some Σ0 on
some interval [0, T] on which the total curvature of the evolving surface remains bounded from
above and the local area remains bounded from below, then this evolution is the only solution
of (3.2) starting at Σ0.1 This property will be used in the next section when we provide simplified
equations for surfaces of revolution.

3.2. Surfaces of revolution
In this subsection we analyze the diffeomorphic mean curvature flow for a surface of
revolution, Σ. Because of the uniqueness of solutions, the solution of (3.2) must preserve
rotational symmetry. Consequently, it suffices to evolve the profile curve of Σ. Therefore, here
we derive an equation for the evolution of the profile curve for the diffeomorphic mean
curvature flow equation (3.2). It is much more computationally efficient to solve the equation
for the profile curve than it is to solve the full flow equation (3.2) for a triangulated surface.

We parameterize a surface of revolution by

1Total curvature plays a role in the analysis of the classical mean curvature flow [12, Thm. 3.4].
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(3.10)

Here u ∈ [−1, 1], υ ∈ [0, 2π], and the profile curve γ(u) = (α(u), β(u)) satisfies suitable
conditions. For a closed curve, we need α > 0, while for an open curve, we require that α ≥ 0
with α = 0 only at the end points, and also β′ = 0 at the end points. Here and below α′, β′ denote
the derivatives of the functions α, β. The orientation of the curve is taken to be
counterclockwise.

We now derive the induced flow equation for the profile curve. First, we have

(3.11)

(3.12)

where κ is the curvature of the profile curve and the normal vector N is outward pointing.

Using these expressions, we can characterize the evolution of the profile curve x(u, 0) = (α
(u), 0, β(u)) as follows:

(3.13)

where

For a discrete profile curve consisting of finite line segments, (3.13) is a system of ODEs which
has a short-time solution and can be solved numerically using MATLAB. In section 5 we use
this system of ODEs to study the long-time behavior of the solution for surfaces of revolution.

For the classical mean curvature flow of a surface of revolution the only possible singularities
are on the axis of revolution [12]. We conjecture that for a closed profile curve if the curvature
is bounded, then α > 0 for all time. In fact, numerical results suggest that an even stronger result
is true.

CONJECTURE 1 (long-time solution for surfaces of revolution)—There exists a
unique solution for the flow equation (3.13) for all t ≥ 0.
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3.3. Sphere evolution
When the surface is the sphere, we have an explicit solution for the diffeomorphic mean
curvature flow equation.

PROPOSITION 1 (sphere evolution)—If the initial surface Σ0 is a sphere of radius R0,
then the solution of the diffeomorphic mean curvature flow (3.2) exists for all time, and at each
time t the surface Σt is a sphere of radius Rt, where Rt satisfies the equation

(3.14)

Proof: By symmetry and from the uniqueness of solutions, the evolving surface remains a
sphere at all times. Equation (3.14) is a direct application of the general formulae with α(ut) =
Rtcos(πut/2), β(ut) = Rtsin(πut/2) at u0 = 1. For example,

Similar computations can be done for the other integral, leading to (3.14). One can check that
the function f(r),

is well defined and differentiable over ℝ (including 0), vanishes at 0, and is negative for r >
0. This implies that solutions starting at R0 > 0 decrease without reaching 0, and can be extended
to infinite time.

A Taylor expansion of the equation at Rt = 0 yields dRt/dt ≃ −(2/3σ2)Rt at t = 0, yielding an
exponential decay of the radius.

By a similar argument, we can show that the following proposition holds.

PROPOSITION 2 (cylinder evolution)—The evolution of a circular (infinite) cylinder
exists and is unique for all t ≥ 0.

We leave the proof to the reader. In this case, the first order expansion for the evolution of the
radius is dRt/dt ≃ −(1/2σ2)Rt, yielding here also an exponential decay, at a rate slower than for
the sphere.

Recall that for the classical mean curvature flow, a sphere vanishes into a point and the circular
cylinder into the y axis at finite time [12]. However, the diffeomorphic mean curvature flow
preserves surface topology for all times.

In the left panel of Figure 2 we compare the classical mean curvature flow for a sphere to the
diffeomorphic mean curvature flow for a range of kernel sizes, σ. Notice that for the mean
curvature flow the surface collapses to a point at time t = 0.5, whereas for all kernel sizes the
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solution of the diffeomorphic mean curvature flow exists for all times. Moreover, from the
evolution equation (3.14), it is not hard to prove that for the unit sphere, as the kernel size
converges to zero, the solution of the diffeomorphic mean curvature flow converges to that of
the mean curvature flow over the interval 0 ≤ t ≤ 0.5. This suggests the following conjecture.

CONJECTURE 2 (mean curvature flow limit): Suppose, for an initial compact smooth
surface, that the mean curvature flow exists for all times t ∈ [0, T]. Then for any time T1 < T,
on the time interval [0, T1] the diffeomorphic mean curvature flow converges uniformly to the
mean curvature flow as the kernel size goes to zero.

4. Numerical implementation
In this section we give the details of the numerical implementation of diffeomorphic surface
flows via the Runge–Kutta method. We focus on two aspects: the estimation of geometric
quantities such as the normal and curvature on discrete surfaces, and the ODE solver for
diffeomorphic surface flows.

4.1. Discrete differential geometry of surfaces
Surfaces are discretized as triangulated meshes. Consequently, to numerically solve the
diffeomorphic surface flow equations, we need to define discrete geometry quantities that
approximate the normal and curvature functions on a smooth surface. Several such
discretization methods have been described in the literature but none is universally used [19,
15,31,8]. We will use the discrete differential operators method of Meyer et al. [31], which is
easy to implement and suitable for our examples.

Given a triangulated mesh with vertices υi and faces fj, the vertex one-ring R1(i) of a vertex
υi is the set of all adjacent vertices, and the face one-ring F1(i) of υi is the set of all faces
containing υi. We determine the geometry at each vertex from the vertex one-ring of that vertex.
If none of the triangles in F1(i) is obtuse, we define the area A(υi) at the vertex υi to be the
Voronoi area of that vertex:

(4.1)

where αij and βij are the two angles opposite the edge υiυj in the two triangles sharing that edge.
However, if some of the triangles in F1(i) are obtuse, we define the area A(υi) to be the mixed
area Amixed described in [31].

Then the mean curvature normal vector  at υi is given by

(4.2)

We can also obtain the normal, mean curvature, and Gauss curvature formulae [31], which are
not used in this paper.

4.2. ODE solution
We evolve a triangulated surface via its vertices; i.e., the surface vertices are used to discretize
the flow equation (3.2). The resulting ODE system is solved numerically using a Runge–Kutta
method.

Zhang et al. Page 12

SIAM J Appl Math. Author manuscript; available in PMC 2009 December 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



The algorithm is as follows.
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ALGORITHM 1. ODE solver for diffeomorphic surface flow.

1: Initialize the flow time T and kernel size σ

2: Initialize surface with υi and Fj

3: Generate the one-ring neighborhood structure R1(i) and F1(i) for each vertex

4: while t < T do

5:     Compute the geometry of the surface H N ī = HN̄ (υi) and Ai= Amixed(υi)

6:     Compute the Gaussian kernel weights Kij = K (υi, υj)

7:     Compute the local area weights loci= (∑j=allKijAj)−0.5

8:     Compute the flow speed term ui = −loci ∑j=all Kij locj HN̄ jAj

9:     Obtain the new vertices from a Runge–Kutta solver υi = RK (υi, ui)

10: end while

11: Output the surface

Remark 3—We did not attempt to determine an automatic stopping condition. We simply
stopped after time T.

Remark 4—It is possible to use implicit ODE solvers.

Remark 5—In step 8, for each i it is possible to sum only over those indices j for which the
Gaussian kernel Kij exceeds a small threshold. Alternatively, for large kernel size one could
use the fast Gauss transform [16].

Remark 6—For mean curvature flows of surfaces of revolution, we used a public-domain
MATLAB toolbox for level set methods [33]. For mean curvature flows of triangulated meshes
we used Algorithm 1 but with .

5. Results
We used MATLAB to implement the algorithm on a Pentium IV 3.2 GHz machine with 2 GB
of RAM. In general for a synthetic surface with 7200 faces and 3600 vertices, one loop takes
about 10 seconds. However, for cortical surface applications we used a C++ implementation
that takes about 1 second per loop for a surface with 5000 vertices.

Sphere
In the right panel of Figure 2 we show the diffeomorphic mean curvature flow of a sphere for
a kernel size of σ = 0.3 computed using Algorithm 1 (circles) and using the ODE (3.14) for the
radius of the sphere (dashed curve). The agreement between the two methods is excellent. For
comparison, we show the result for the classical mean curvature flow with a solid curve. For
the algorithm, we generated an initial sphere with 642 vertices and 1280 faces using recursive
subdivision of a cube. The solution of the ODE (3.14) was obtained using the MATLAB
function ode45. As shown in Figure 1, three disconnected spheres can influence one another.
It would be very interesting but difficult to analyze the long-time behavior of such interactions.

Circular torus
The circular torus was generated by rotating a circle about the y axis. The triangulated mesh
had 3600 vertices and 7200 faces. We chose a “fat” torus with inner radius 0.2 and outer radius
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1.2, as shown in Figure 3. In the right panel of Figure 3 we examined the solutions of the
diffeomorphic mean curvature flow, obtained both by solving the surface of revolution flow
equation (3.13) using the MATLAB function ode45 and by flowing the triangulated surface
using Algorithm 1 indicated by dashed curves and plus symbols. The initial surface is
represented by the two largest circles. The close agreement between the two sets of curves
provides a mutual validation of both algorithms. For the surface flow we obtain the profile
curves from the discrete surface by projecting the evolving base curves onto the plane.

Figure 4 provides a comparison between diffeomorphic flow with small σ (left) and classical
mean curvature flow (right). For the latter, the profile curve reaches the y axis, changes
topology, and eventually becomes a sphere. On the other hand, for the diffeomorphic mean
curvature flow, part of the curve very closely approaches the y axis but slows down as time
increases to infinity and does not actually reach the y axis. In fact, the profile curve flows
towards a semicircular shape. This experiment also illustrates the scale-dependent aspect for
diffeomorphic flows. In Figures 3 (right) and 4 (left), diffeomorphic flows starting from the
same surfaces have very different evolutions. The large value of σ in the first figure prevents
the torus from collapsing on itself as it does in the second case, which is much closer to mean
curvature evolution.

Dumbbell
Figure 5 and Figure 6 show results for a dumbbell generated by a curve with neck shape y =
x2+c and c = 0.3. In the right-hand panel of Figure 6 we see that for the classical mean curvature
flow, the thin neck breaks down and the dumbbell becomes two spheres. However, the
diffeomorphic mean curvature flow does not break down even though, as we see in the right-
hand panel of Figure 5, it flows towards two spheres connected by a very thin tube. One likely
explanation for this shape is that the cylindrical part flows faster than the spherical part where
the width of the neck is smaller than the kernel size.

Dumbbell with asymmetric ends
To illustrate typical problems encountered in real applications, we constructed a dumbbell
shape with asymmetric ends. Figure 7 shows promising results. For classical mean curvature
flow, the smaller end vanished quickly unlike in the diffeomorphic mean curvature flow.

Cortical surfaces
Figure 8 illustrates the application of diffeomorphic and classical mean curvature flows to a
superior temporal gyrus cortical surface [35]. The voxel resolution of the image volume from
which this surface was generated was 1 mm3. For the diffeomorphic flows we used a kernel
size of σ = 0.3. For surfaces with boundary, we simply flow the boundary vertex along with
the closest interior vertex. The top row indicates the smoothing effect of both flows. Magnified
views of a crest region of the surface indicate that mean curvature flow results in singular folds
unlike diffeomorphic flows. Furthermore, the left-hand panel of Figure 9 shows that Hausdorff
distances between the original surface and the final surfaces are within one voxel. The
smoothing effect of the flows is also reflected in the mean curvature histograms in the right-
hand panel of Figure 9.

6. Discussion
In this study, we proposed diffeomorphic surface flows as an alternative to classical mean
curvature and Willmore flows. We obtained the flow equation for the elastic energy of a closed
surface and proved the short-time existence and uniqueness of the flow. Then we examined
the diffeomorphic mean curvature flow both by analyzing the case of a surface of revolution
and by numerical experiments on arbitrary discrete surfaces. Our conjecture is that the solution
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continues to be well behaved for long times while preserving some of the characteristics of
classical mean curvature flows (such as smoothing and decreasing area).

Furthermore, in computational anatomy applications, diffeomorphic surface flows can be used
to evolve submanifolds of the brain such as planum temporale, superior temporal gyrus (STG),
and cingulate cortical surfaces in neuroimaging studies of schizophrenia and auditory
disorders. They can also be used for smoothing where the speed is controlled by changing the
kernel size without changing the topology.

Diffeomorphic flows, while they clearly avoid topological changes, cannot, however, be
considered as smoothing flows. Since they generate a diffeomorphic evolution, they cannot
make a surface smoother (in terms of the number of derivatives) than it was initially. In
particular, they cannot deal with surfaces corrupted by white noise. They can, however, have
some smoothing effect, in the sense that they reduce the curvature of the surfaces on which
they operate. There is an important scale factor in this regard, related to the scale of the kernel.
Bumps larger than the kernel size will in general be removed in a way similar to classical flows,
whereas small bumps are likely to survive after long time intervals. The choice of the kernel
size therefore needs to be adapted to the roughness of the surface.

Several open problems remain. Among the numerical issues, there is a need to improve the
discretization methods, especially in the case of the Willmore flow for which the computation
of higher derivatives is a potential source of instability.

We have already mentioned the issue of long-term existence of the flow. As discussed in this
paper, this requires controlling the smoothness of the surface during the evolution, which is
made difficult by nonlocal interactions. The limit behavior of the evolution as the kernel size
tends to zero is another open problem. It seems reasonable to expect that it should somewhat
resemble the classical flows, but the nature of the convergence (and proof) needs to be
investigated.

Another interesting issue, related to long-term evolution, is to characterize the limit shapes of
the shrinking surfaces for the diffeomorphic mean curvature flow. Our experiments seem to
indicate that such limit shapes exist and are not restricted to spheres.

It would be interesting also, for theoretical and practical purposes, to consider numerical
schemes in which the kernel size is allowed to evolve with time, starting with a rigid evolution
and progressively decreasing spatial smoothing to get closer to the mean curvature flow. The
question here is to define sufficient conditions for such an annealed scheme that ensure a
diffeomorphic evolution while providing a smoothing effect similar to that of the standard
mean curvature flow.

While these topics provide interesting sources of future work, diffeomorphic surface flows
already represent a promising family of surface evolutions. Initial experiments in this paper
demonstrate several important features, regarding, in particular, the absence of topological
change, that make them appropriate for a large range of practical situations.

Acknowledgments
We thank the reviewers for their extensive comments, and Dr. M. I. Miller, Dr. Y. Cao, and Dr. J. Glaunès for helpful
discussions.

Zhang et al. Page 16

SIAM J Appl Math. Author manuscript; available in PMC 2009 December 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



REFERENCES
1. Akbarian S, Bunney WE Jr, Potkin SG, Wigal SB, Hagman JO, Sandman CA, Jones EG. Altered

distribution of nicotinamide-adenine dinucleotide phosphate-diaphorase cells in frontal lobe of
schizophrenics implies disturbances of cortical development. Arch. Gen. Psychiatry 1993;50:169–177.
[PubMed: 7679891]

2. Aronszajn N. Theory of reproducing kernels. Trans. Amer. Math. Soc 1950;68:337–404.
3. Aubert, G.; Kornprobst, P. Mathematical Problems in Image Processing. New York: Springer-Verlag;

2002.
4. Benes FM, Berretta S. GABAergic interneurons: Implications for understanding schizophrenia and

bipolar disorder. Neuropsychopharmacology 2001;25:1–27. [PubMed: 11377916]
5. Brakke, KA. The Motion of a Surface by Its Mean Curvature. Princeton NJ: Princeton University Press;

1978.
6. Cao Y, Miller IM, Winslow R, Younes L. Large deformation diffeomorphic metric mapping of vector

fields. IEEE Trans. Med. Imaging 2005;24:1216–1230. [PubMed: 16156359]
7. Clarenz U, Diewald U, Dziuk G, Rumpf M, Rusu R. A finite element method for surface restoration

with smooth boundary conditions. Comput. Aided Geom. Design 2004;21:427–445.
8. Cohen-Steiner, D.; Morvan, JM. Restricted Delaunay triangulations and normal cycle. In: Fortune, S.,

editor. Proceedings of the 19th Annual Symposium on Computational Geometry (SCG ’03); New
York: ACM Press; 2003. p. 312-321.

9. Deckelnick K, Zuik G, Elliott CM. Computation of geometric partial differential equations and mean
curvature flow. Acta Numer 2005;14:139–232.

10. Delfour, MC.; ZolÉsio, JP. Shape Optimization and Optimal Design (Cambridge, 1999), Lecture
Notes in Pure and Appl. Math. 216. New York: Dekker; 2001. Tangential calculus and shape
derivatives; p. 37-60.

11. Dupuis P, Grenander U, Miller MI. Variational problems on flows of diffeomorphisms for image
matching. Quart. Appl. Math 1998;56:587–600.

12. Ecker, K. Regularity Theory for Mean Curvature Flow. Boston: Birkhäuser Boston; 2004.
13. Escher J, Mayer UF, Simonett G. The surface diffusion flow for immersed hyper-surfaces. SIAM J.

Math. Anal 1998;29:1419–1433.
14. Glaunès, J.; Trouvé, A.; Younes, L. Modeling planar shape variation via Hamiltonian flows of curves.

Krim, H.; Yezzi, A., Jr, editors. Boston: Birkhäuser Boston; 2006. p. 335-363.
15. Goldfeather J, Interrante V. A novel cubic-order algorithm for approximating principal direction

vectors. ACM Trans. Graph 2004;23:45–63.
16. Greengard L, Strain J. The fast Gauss transform. SIAM J. Sci. Statist. Comput 1991;12:79–94.
17. Grenander U, Miller MI. Computational anatomy: An emerging discipline. Quart. Appl. Math

1998;56:617–694.
18. Gueziec A, Hummel R. Exploiting triangulated surface extraction using tetrahedral decomposition.

IEEE Trans. Vis. Comput. Graph 1995;1:328–342.
19. Hamann, B. Geometric Modelling, Comput. Vienna: Springer-Verlag; 1993. Curvature

approximation for triangulated surfaces; p. 139-153.
20. Han X, Xu C, Braga-Neto U, Prince JL. Topology correction in brain cortex segmentation using a

multiscale, graph-based algorithm. IEEE Trans. Med. Imaging 2002;21:109–121. [PubMed:
11929099]

21. Han, X.; Xu, C.; Prince, JL. A topology preserving deformable model using level sets. Proceedings
of the IEEE Computer Science Society Conference on Computer Vision and Pattern Recognition
(CVPR 2001); 2001. p. 765-770.

22. Helfrich W. Elastic properties of lipid bilayers: Theory and possible experiments. Z. Natur-forsch.,
28C 1973;28C:693–703.

23. Hildebrandt K, Polthier K. Anisotropic filtering of non-linear surface features. Comput. Graph. Forum
2004;23:391–400.

24. Joshi SC, Miller MI. Landmark matching via large deformation diffeomorphisms. IEEE Trans. Image
Process 2000;9:1357–1370. [PubMed: 18262973]

Zhang et al. Page 17

SIAM J Appl Math. Author manuscript; available in PMC 2009 December 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



25. Joshi, SC.; Wang, J.; Miller, MI.; VanEssen, DC.; Grenander, U. Differential geometry of the cortical
surface. In: Melter, RA.; Wu, AY.; Bookstein, FL.; Green, WD., editors. Vision Geometry IV; Proc.
SPIE 2573, SPIE; Bellingham, WA. 1995. p. 304-311.

26. Kuwert E, Schätzle R. The Willmore flow with small initial energy. J. Differential Geom
2001;57:409–441.

27. Kuwert E, Schätzle R. Gradient flow for the Willmore functional. Comm. Anal. Geom 2002;10:307–
339.

28. Lorensen, WE.; Cline, HE. Marching cubes: A high resolution 3D surface reconstruction algorithm;
Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques; New
York: ACM Press; 1987. p. 163-169.

29. Mayer UF, Simonett G. Self-intersections for the surface diffusion and the volume-preserving mean
curvature flow. Differential Integral Equations 2000;13:1189–1199.

30. Mayer UF, Simonett G. A numerical scheme for axisymmetric solutions of curvature-driven free
boundary problems, with applications to the Willmore flow. Interfaces Free Bound 2002;4:89–109.

31. Meyer, M.; Desbrun, M.; Schröder, P.; Barr, AH. Discrete differential-geometry operators for
triangulated 2-manifolds. In: Hege, H-C.; Polthier, K., editors. Visualization and Mathematics III.
Berlin: Springer-Verlag; 2003. p. 35-57.

32. Miller MI, Trouvé A, Younes L. On the metrics and Euler-Lagrange equations of computational
anatomy. Annu. Rev. Biomed. Eng 2002;4:375–405. [PubMed: 12117763]

33. Mitchell, IM.; Templeton, JA. Hybrid Systems: Computation and Control, Lecture Notes in Comput.
Sci. 3414. Berlin: Springer-Verlag; 2005. A toolbox of Hamilton–Jacobi solvers for analysis of
nondeterministic continuous and hybrid systems; p. 480-494.

34. Nitsche JCC. Boundary value problems for variational integrals involving surface curvatures. Quart.
Appl. Math 1993;51:363–387.

35. Ratnanather JT, Barta PE, Honeycutt NA, Lee NG, Morris HM, Dziorny AC, Hurdal MK, Pearlson
GD, Miller MI. Dynamic programming generation of boundaries of local coordinatized submanifolds
in the neocortex: Application to the planum temporale. NeuroImage 2003;20:359–377. [PubMed:
14527596]

36. Ratnanather JT, Wang L, Nebel MB, Hosakere M, Han X, Csernansky JG, Miller MI. Validation of
semiautomated methods for quantifying cingulate cortical metrics in schizophrenia. Psych. Res.:
Neuroimaging 2004;132:53–68.

37. Sapiro, G. Geometric Partial Differential Equations and Image Analysis. Cambridge, UK: Cambridge
University Press; 2001.

38. Sethian, JA. Level Set Methods and Fast Marching Methods. Cambridge, UK: Cambridge University
Press; 1999.

39. Tasdizen T, Whitaker R, Burchard P, Osher S. Geometric surface processing via normal maps. ACM
Trans. Graph 2003;22:1012–1033.

40. Trouvé A, Younes L. Local geometry of deformable templates. SIAM J. Math. Anal 2005;37:17–59.
41. Vaillant, M.; Glaunès, J. Information Processing in Medical Imaging, Lecture Notes in Comput. Sci.

3565. Springer-Verlag; Berlin: 2005. Surface matching via currents; p. 381-392.
42. Wahba, G. Spline Models for Observational Data. CBMS-NSF Regional Conf. Ser. in Appl. Math.

59, SIAM; Philadelphia: SIAM; 1990.
43. Whitaker R. Modeling deformable surfaces with level sets. IEEE Comput. Graph. Appl 2004;24:6–

9. [PubMed: 15628093]
44. Willmore, TJ. Oxford Sci. Publ. New York: The Clarendon Press, Oxford University Press; 1993.

Riemannian Geometry.
45. Wood Z, Hoppe H, Desbrun M, Schröder P. Removing excess topology from isosur-faces. ACM

Trans. Graph 2004;23:190–208.
46. Younes, L. Invariance, déformations et reconnaissance de formes. Berlin: Springer-Verlag; 2004.

Zhang et al. Page 18

SIAM J Appl Math. Author manuscript; available in PMC 2009 December 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



FIG. 1.
Interaction of three nearby spheres during the diffeomorphic mean curvature flow. The initial
radius of all spheres is 0.5, and the minimum distance among them is 0.1. The kernel size is
σ = 0.3, and the stopping time is T = 1.
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FIG. 2.
Diffeomorphic mean curvature flow of a sphere. Left: Flows with different kernel sizes, σ
(dotted curves). The classical mean curvature flow is indicated by the solid curve with stars.
Right: Validation of the numerical algorithm in section 4 (circles) by comparison with the
analytical solution from Theorem 1 (dashed curves) with σ = 0.5. The classical mean curvature
flow is indicated by the solid curve.
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FIG. 3.
Flow of a fat torus. Left: The fat torus with mean curvature indicated by the grayscale. Right:
Comparison between the profile curves obtained using the ODE solution of (3.13) for surfaces
of revolution and those obtained using the numerical algorithm in section 4.2, respectively,
indicated by dashed curves and plus symbols. The initial profile curve is shown with the two
largest solid circles. Here T = 0.5, and σ = 0.3.
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FIG. 4.
Comparison of flows for the fat torus. Left: Diffeomorphic mean curvature flow with σ = 0.1
and T = 0.25 obtained using the ODE algorithm for surfaces of revolution. Right: Classical
mean curvature flow with T = 0.2.
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FIG. 5.
The flow of a dumbbell. Left: The dumbbell with mean curvature coloring. Right: The
diffeomorphic mean curvature flow with σ = 0.3 and T = 1.
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FIG. 6.
Comparison of flows for the dumbbell in Figure 5. Left: Diffeomorphic mean curvature flow
with σ = 0.1 and T = 0.25. Right: Mean curvature flow with T = 0.25.
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FIG. 7.
Comparison of flows for a dumbbell with asymmetric ends. Left: The dumbbell with
asymmetric ends. Middle: Mean curvature flow for T = 0.025. Right: Diffeomorphic mean
curvature flow with kernel size σ = 0.1 and T = 0.025.
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FIG. 8.
The top row shows STG cortical surfaces at T = 0 (left), T = 1 with mean curvature flow
(middle), and T = 1 with diffeomorphic mean curvature flow using σ = 0.3 (right). Mean
curvature is indicated by the vertical color bar. The bottom row shows the corresponding
magnified view of the crest on the STG which is a subset of the region within the black borders
indicated in the top row. The irregular color pattern in the magnified view of the mean curvature
flow indicates that singularities occurred during the evolution with triangles crossing over.
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FIG. 9.
Left: Cumulative density function profiles of the oriented distances between the original
surface and final surfaces. Right: Mean curvature histograms of the original and final surfaces
at T = 1.
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