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Stability Results for Scattered Data

Interpolation by Trigonometric Polynomials

Stefan Kunis and Daniel Potts
∗

A fast and reliable algorithm for the optimal interpolation of scattered
data on the torus T

d by multivariate trigonometric polynomials is presented.
The algorithm is based on a variant of the conjugate gradient method in
combination with the fast Fourier transforms for nonequispaced nodes. The
main result is that under mild assumptions the total complexity for solving
the interpolation problem at M arbitrary nodes is of order O(M log M).
This result is obtained by the use of localised trigonometric kernels where
the localisation is chosen in accordance to the spatial dimension d. Numerical
examples show the efficiency of the new algorithm.
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1 Introduction

We discuss the approximation of scattered data by d-variate periodic functions f : T
d →

C, where T := [−1
2 , 1

2) denotes the torus. In practical applications we are often con-
fronted with the situation that experimental data or measured values of a function are
only known at a finite sampling set X := {xj ∈ T

d : j = 0, . . . ,M − 1}. Especially,
nonuniform sampling sets appear in more and more applications in recent years. Given a
notion of the distance of two points by dist (x,x0) := minj∈Zd ‖(x + j) − x0‖∞, we mea-
sure the “nonuniformity” of X by the mesh norm and the separation distance, defined
by

δ := 2 max
x∈Td

min
j=0,...,M−1

dist(xj,x), q := min
j,l=0,...,M−1;j 6=l

dist (xj ,xl) ,

respectively. Obviously, the relation q ≤ M−1/d ≤ δ is fulfilled.

∗Department of Mathematics, Chemnitz University of Technology, 09107 Chemnitz, Germany
({kunis,potts}@mathematik.tu-chemnitz.de)

1

http://arXiv.org/abs/math/0702019v1


For given samples (xj, yj) ∈ T
d × C, j = 0, . . . ,M − 1, a polynomial degree N ∈ 2N,

and the index set IN :=
{

−N
2 , . . . , N

2 − 1
}d

of frequencies, we construct a d-variate
trigonometric polynomial

f (x) :=
∑

k∈IN

f̂ke2πikx

such that f(xj) ≈ yj, j = 0, . . . ,M − 1. Turning this into matrix vector notation, we
aim to solve the system of linear equations

Af̂ ≈ y (1.1)

for the unknown vector of Fourier coefficients f̂ := (f̂k)k∈IN
∈ C

Nd

. Throughout the
paper, we denote the vector of the given sample values by y := (yj)j=0,...,M−1 ∈ C

M and
the nonequispaced Fourier matrix by

A = AX :=
(

e2πikxj

)

j=0,...,M−1;k∈IN

∈ C
M×Nd

.

In contrast to the widely used nonequispaced FFT for the fast matrix vector mul-
tiplication with A, see [16] and its references, the efficient solution of (1.1) is still a
challenging goal. Besides recently developed sparse reconstruction techniques, see e.g.
[5, 13] and their references, a standard method to determine f̂ is to solve the general
linear least squares problem ‖f̂‖2 → min subject to ‖y − Af̂‖2 = min, see, e.g., [3,
p. 15]. This can be done by means of the singular value decomposition which is not
practical in the present situation for large problems due to its time and memory require-
ments. Direct solvers for the univariate case d = 1 in [6, 18] obtain a solution in O(NM)
floating point operations.

For Nd < M , the linear system (1.1) is over-determined, so that in general the given
data y will be only approximated up to a residual r := y −Af̂ . In order to compensate
for clusters in the sampling set X , it is useful to incorporate weights wj > 0 and to
consider the weighted approximation problem

‖y − Af̂‖2
W =

M−1
∑

j=0

wj |yj − f(xj)|2 f̂→ min, (1.2)

where W := diag(wj)j=0,...,M−1. In [10] it has been proven that this problem has a
unique solution if N < ( π

log 2 d δ)−1. Its solution is computed iteratively by means of
the conjugate gradient method in [7, 2, 9], where the multilevel Toeplitz structure of
A⊢⊣WA is used for fast matrix vector multiplications. Slightly more stable with respect
to rounding errors is the CGNR method, cf. [3, pp. 288], which iterates the original
residual rl = y − Af̂ l instead of the residual A⊢⊣Wrl of the normal equations. Note
furthermore, that it has been suggested in [17] to incorporate some “knowledge on the
decay of the Fourier coefficients” Ŵ := diag(ŵk)k∈IN

, ŵk > 0. Their approach is based
on the weighted least squares problem

∥

∥

∥
A⊢⊣W

(

y − Af̂
)
∥

∥

∥

Ŵ
−1

f̂→ min .
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In contrast, we focus on the under-determined and consistent linear system Af̂ = y,
i.e., we expect to interpolate the given data yj ∈ C, j = 0, . . . ,M − 1, exactly. We
show that the nonequispaced Fourier matrix A has full rank M for every polynomial
degree N > 2 d q−1. In particular, we incorporate damping factors ŵk > 0, k ∈ IN , and
consider the optimal interpolation problem

‖f̂‖2
Ŵ−1 =

∑

k∈IN

|f̂k|2
ŵk

f̂→ min subject to Af̂ = y, (1.3)

where Ŵ := diag(ŵk)k∈IN
. We prove that for a large class of “smooth” damping factors

ŵk problem (1.3) is well-conditioned, where the “smoothness” has to be chosen with
respect to the spatial dimension d. We propose to solve problem (1.3) by a version of
the conjugate gradient method in combination with the nonequispaced FFT [19, 16, 12]
to efficiently perform each iteration step.

The outline of this paper is as follows: In Section 2 we set up the basic notation
and relate the optimal interpolation problem (1.3) to a particular trigonometric kernel.
Furthermore, we propose Algorithm 1 for computing the solution of the interpolation
problem efficiently. For the sake of analysing the convergence of this algorithm, we then
present our theory on localised trigonometric kernels in Section 3. Our first result in
Theorem 3.3 is a version of the typical smoothness-decay principle in Fourier analysis
and relates the “smoothness” of the weights in (1.3) to the localisation of the correspond-
ing trigonometric kernel. We use this decay in Section 4 to prove that well separated
sampling nodes yield a stable interpolation problem (1.3). The eigenvalue estimates
are given for the univariate setting in Theorem 4.1 and for the multivariate setting in
Theorem 4.6. Subsequently, Corollary 4.7 applies the general result to a particular class
of damping factors and concludes with conditions sufficient for the full rank of A. As
the equidistant case in Theorem 4.10 and Corollary 4.11 reveals, the assumption on the
separation distance is of optimal order. We provide numerical examples in Section 5 and
draw our conclusion in Section 6. The software and all numerical examples are available
from our NFFT-homepage [12].

2 Optimal interpolation and its iterative solution

After setting up our notation in Definition 2.1, we prove in Lemma 2.2 that the optimal
interpolation problem (1.3) can be stated as normal equations and the matrix in these
equations obeys special structure. Furthermore, we propose Algorithm 1 for the iterative
solution of the interpolation problem and state a basic convergence result for this scheme.

Definition 2.1. Let d ∈ N, N ∈ 2N, and IN = {−N
2 , . . . , N

2 − 1}d be given. We define
for positive weights ŵk > 0, k ∈ IN , with normalisation

∑

k∈IN
ŵk = 1 and for x ∈ T

d

the trigonometric kernel

KN (x) :=
∑

k∈IN

ŵke2πikx.

3



The particular class of tensor product kernels is given by

KN (x) =

d−1
∏

t=0

K̃N (xt)

where K̃N denotes a univariate kernel and x = (x0, . . . , xd−1)
⊤.

Furthermore, given a sampling set X ⊂ T
d, we define the kernel matrix

KN := (KN (xj − xl))j,l=0,...,M−1 ∈ C
M×M . (2.1)

We denote by Λ = Λ (KN ) and λ = λ (KN ) the largest and smallest eigenvalue of
the kernel matrix KN , respectively. Their ratio is denoted by the condition number
cond(KN ) = Λ

λ .

Note, that from the definition immediately follows KN (0) = maxx∈Td |KN (x)| = 1
and (KN )j,j = 1, j = 0, . . . ,M − 1. The following theorem collects some basic facts.

Lemma 2.2. Let the number of nodes M ∈ N, the sampling set X ⊂ T
d, the polynomial

degree N ∈ 2N, and the damping factors ŵk > 0, k ∈ IN , be given. The optimal

interpolation problem (1.3) is equivalent to the damped normal equations of second
kind

KN f̃ = y, f̂ = ŴA⊢⊣f̃ , (2.2)

where the kernel matrix KN ∈ C
M×M obeys the factorisation

KN = AŴA⊢⊣, (2.3)

hence is positive semidefinite.

Proof. The second assertion follows from (AŴA⊢⊣)j,l =
∑

k∈IN
e2πikxj ŵke−2πikxl and

Definition 2.1. Furthermore, a solution f̂ of Af̂ = y has minimal weighted norm if
and only if it is perpendicular with respect to the weights to the null-space of A, i.e.,

Ŵ
−1/2

f̂ ⊥ N (AŴ
1/2

). We conclude (2.2) by the fact that the orthogonal complement
of the null-space of a matrix is just the range of its adjoint.

Denoted in Algorithm 1 by CGNE, cf. [3, pp. 288], we solve the Normal equations
(2.2) by the Conjugate Gradient method, minimising in each iteration the Error.

The proposed method finds approximations from a Krylov space closely related to the
one of the CGNR method for (1.2), but with minimal error instead of minimal residual.
Note that we exploit the factorisation in (2.3) to iterate the original vector f̂ instead of
the vector f̃ , cf. equation (2.2). Hence, we use fast matrix vector multiplications for A

and A⊢⊣ by means of the fast Fourier transforms at nonequispaced nodes (NFFT) having
an arithmetical complexity of O(Nd log(Nd) + M | log ǫ|d) in each iteration, where ǫ is
the prescribed accuracy. Details concerning NFFT algorithms can be found for example
in [19, 16] and a corresponding software package in [12]. Applying the standard estimate
for the convergence of the conjugate gradient method we obtain the following lemma.
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Algorithm 1 CGNE

Input: dimension d ∈ N, number of samples M ∈ N, polynomial degree N ∈ 2N;

sampling set X ⊂ T
d, samples y ∈ C

M , and initial vector f̂0 ∈ C
Nd

r0 = y − Af̂0

p̂0 = A⊢⊣r0

for l = 0, . . . do

αl = r⊢⊣
l rl / p̂⊢⊣

l Ŵ p̂l

f̂ l+1 = f̂ l + αlŴ p̂l

rl+1 = rl − αlAŴp̂l

βl = r⊢⊣
l+1rl+1 / r⊢⊣

l rl

p̂l+1 = βlp̂l + A⊢⊣rl+1

end for

Output: the l-th iterate f̂ l

Lemma 2.3. Let the kernel matrix KN in (2.1) be regular and let êl := f̂ l−ŴA⊢⊣K−1
N y

denote the error of the l-th iterate within Algorithm 1. Then the a-priori error bound

‖êl‖Ŵ
−1 ≤ 2

(√
Λ −

√
λ√

Λ +
√

λ

)l

‖ê0‖Ŵ
−1

holds true.

Proof. We note that ‖êl‖Ŵ
−1 = ‖f̃ l − K−1

N y‖KN
, where f̃ l denotes the l-th iterate

of the conjugate gradient method applied to equation KN f̃ = y, cf. Lemma 2.2, and
apply the standard estimate for the conjugate gradient method, see also [3, pp. 288].

This result includes the special case of M = Nd equispaced nodes and no damping,
i.e. ŵk = 1, k ∈ IN , where the first iterate of our algorithm is already the solution to
equation (2.2). We present estimates for the extremal eigenvalues λ,Λ dependent only
on the quantities N, q, and the damping factors ŵk, k ∈ IN . Analogous results for
the stability of the interpolation by radial and zonal functions are obtained in [15, 20].
Section 3 prepares our estimates by constructing localised kernels.

Remark 2.4. Before that, we would like to comment on the following:

The weighted norm in (1.3) is induced by the inner product ĝ⊢⊣Ŵ
−1

f̂ . In particular,

the definition 〈f, g〉
Ŵ

−1 := ĝ⊢⊣Ŵ
−1

f̂ makes the space of trigonometric polynomials
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TN := span
{

e2πik· : k ∈ IN

}

to a reproducing kernel Hilbert space. Its reproducing
kernel is given by KN , i.e., the point evaluations obey f(x) = 〈f,KN (· − x)〉

Ŵ
−1 .

Moreover, the solution f(x) =
∑

k∈IN
f̂ke2πikx of the normal equations (2.2) has

comparable norm to the given samples, i.e.,

Λ−1 ‖y‖2
2 ≤ 〈f, g〉

Ŵ
−1 ≤ λ−1 ‖y‖2

2 .

This norm equivalence is due to fact, that the field of values of the matrix K−1
N is

bounded by its extremal eigenvalues and y⊢⊣K−1
N y = f̃

⊢⊣
KN f̃ = f̂

⊢⊣
Ŵ

−1
f̂ .

3 Localised kernels

Starting from a class of admissible weight functions in Definition 3.1, we construct lo-
calised trigonometric kernels in Theorem 3.3, where Lemma 3.2 serves as an interme-
diate step. Following the smoothness-decay principle in Fourier analysis, we relate the
smoothness of the weight function to the decay of the kernel KN built upon the sampled
weights. A related approach is taken in [14, Thm. 2.2] for the detection of singularities.
The particular class of B-Spline kernels, cf. Definition 3.4, is considered in Corollary 3.5.
While we present our results on the connection between smooth weight functions and
localised kernels for the univariate case, we give its generalisation to the class of tensor
product kernels in Corollary 3.7.

Definition 3.1. For β ∈ N, β ≥ 2, a continuous function g : R → R is an admissible

weight function of order β if it is nonnegative, possesses a (β − 1)-fold derivative g(β−1)

of bounded variation, i.e.,

∣

∣

∣
g(β−1)

∣

∣

∣

V
:=

∫

R

∣

∣

∣
dg(β−1) (z)

∣

∣

∣
= sup

n−1
∑

j=0

∣

∣

∣
g(β−1) (zj+1) − g(β−1) (zj)

∣

∣

∣
< ∞,

where the supremum is taken over all strictly increasing real sequences {zj}j∈N0
, and

satisfies the additional properties supp g = [−1
2 , 1

2 ], g(γ)(±1
2 ) = 0 for γ = 0, . . . , β − 1,

g(z) > 0, |z| < 1
2 , and the normalisation ‖g‖L1 = 1. We denote by BV β−1

0 the set of
admissible weight functions of order β.

Furthermore, we define for notational convenience the zeta function ζ(β) :=
∑∞

r=1 r−β,

β > 1, and for g ∈ BV β−1
0 the norm of the samples

‖g‖1,N :=

N
2
∑

k=−N
2

g

(

k

N

)

.

The following lemma prepares Theorem 3.3.
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Lemma 3.2. For β ∈ N, β ≥ 2, let a function g ∈ BV β−1
0 be given. Then for N ∈ 2N,

N ≥ 2β, and x ∈
[

−1
2 , 1

2

]

\ {0} the following estimates hold true
∣

∣

∣

∣

∣

∣

∣

N
2
∑

k=−N
2

g

(

k

N

)

e2πikx

∣

∣

∣

∣

∣

∣

∣

≤
(

2β − 1
)

ζ (β)
∣

∣g(β−1)
∣

∣

V

(2N)β−1 |2πx|β
,

‖g‖1,N ≥ N
(

1 − 2ζ (β) (4πβ)−β
∣

∣

∣
g(β−1)

∣

∣

∣

V

)

.

Proof. First, we define for x, z ∈
[

−1
2 , 1

2

]

the function hx (z) := g (z) e2πiNxz. Thus,
the Poisson summation formula yields

1

N

N
2
∑

k=−N
2

g

(

k

N

)

e2πikx =
1

N

N
2
∑

k=−N
2

hx

(

k

N

)

=
∑

r∈Z

1

2
∫

− 1

2

hx (z) e−2πiNrzdz

and by applying integration by parts and the fact that g(γ)
(

±1
2

)

= 0 for γ = 0, . . . , β−2
further
∣

∣

∣

∣

∣

∣

∣

N
2
∑

k=−N
2

hx

(

k

N

)

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

N
∑

r∈Z

(2πiN (r − x))−(β−1)

1

2
∫

− 1

2

g(β−1) (z) e2πiNz(x−r)dz

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

N

(2πiN)β

∑

r∈Z

(r − x)−β

1

2
∫

− 1

2

g(β−1) (z)

(

d

dz
e2πiNz(x−r)

)

dz

∣

∣

∣

∣

∣

∣

∣

≤
1 + |x|β ∑

r∈Z\{0}

|r − x|−β

(2π)β Nβ−1|x|β
sup
r0∈Z

∣

∣

∣

∣

∣

∣

∣

1

2
∫

− 1

2

g(β−1) (z)

(

d

dz
e2πiNz(x−r0)

)

dz

∣

∣

∣

∣

∣

∣

∣

.

Using 1 + |x|β∑r∈Z\{0} |r − x|−β ≤ (2β − 1)21−βζ(β) for |x| ≤ 1
2 and

∣

∣

∣

∣

∣

∣

∣

1

2
∫

− 1

2

g(β−1) (z)

(

d

dz
e2πiNz(x−r0)

)

dz

∣

∣

∣

∣

∣

∣

∣

≤
∣

∣

∣
g(β−1)

∣

∣

∣

V

yields the assertion.
By the Poisson summation formula, we note furthermore that

1

N
‖g‖1,N ≥ 1 −

∣

∣

∣

∣

∣

∣

∣

∑

r∈Z\{0}

1

2
∫

− 1

2

g (z) e−2πiNrzdz

∣

∣

∣

∣

∣

∣

∣

and proceed analogously in order to prove the second assertion where we use N ≥ 2β to
obtain an estimate independent of N .
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Theorem 3.3. For β ∈ N, β ≥ 2, let a function g ∈ BV β−1
0 be given. Furthermore, let

N ∈ 2N, N ≥ 2β, and the damping factors

ŵk =
g
(

k
N

)

+ g
(

k+1
N

)

2 ‖g‖1,N

, k = −N

2
, . . . ,

N

2
− 1,

be given. Then the kernel KN , cf. Definition 2.1, fulfils

|KN (x)| ≤
(

2β − 1
)

ζ (β)
∣

∣g(β−1)
∣

∣

V

2β−1 (2π)β − ζ (β) β−β
∣

∣g(β−1)
∣

∣

V

1

Nβ|x|β

for x ∈
[

−1
2 , 1

2

]

\ {0}.
Proof. Note first, that

KN (x) =
1 + e−2πix

2 ‖g‖1,N

N
2
∑

k=−N
2

g

(

k

N

)

e2πikx.

Thus, we obtain KN (0) = 1 and by applying Lemma 3.2 also the decay property.

We apply Theorem 3.3 in the following to the particular class of B-Spline kernels.

Definition 3.4. Let β ∈ N be given. The normalised B-Spline is defined by

gβ (z) := βNβ

(

βz +
β

2

)

,

where Nβ denotes the cardinal B-Spline of order β. The cardinal B-Splines are given by
N1(z) = 1 for z ∈ (0, 1), N1(z) = 0 elsewhere, and Nβ+1(z) =

∫ z
z−1 Nβ(τ)dτ , see e.g. [4].

Furthermore, we define for β ∈ N and N ∈ 2N the B-Spline kernel by

Bβ,N (x) :=
1 + e−2πix

2 ‖gβ‖1,N

N
2
∑

k=−N
2

gβ

(

k

N

)

e2πikx .

Corollary 3.5. Let β ∈ N, β ≥ 2, and N ∈ 2N, N ≥ 2β, be given. Then the B-Spline
kernel Bβ,N (x), cf. Definition 3.4, fulfils

|Bβ,N (x)| ≤
(

2β − 1
)

ζ (β) ββ

2β−1πβ − ζ (β)
|Nx|−β

for x ∈
[

−1
2 , 1

2

]

\ {0} and Bβ,N (0) = 1.

Proof. Note that gβ ∈ BV β−1
0 . Using N ′

β(z) = Nβ−1(z) − Nβ−1(z − 1), we conclude

∣

∣

∣
g
(β−1)
β

∣

∣

∣

V
= ββ

∣

∣

∣
N

(β−1)
β

∣

∣

∣

V
= ββ

∣

∣

∣

∣

∣

β−1
∑

τ=0

(−1)τ

(

β − 1

τ

)

N1 (· − τ)

∣

∣

∣

∣

∣

V

= (2β)β

and apply Theorem 3.3.
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Note, that in contrast to [15] the order β of the B-Spline and the degree N ∈ 2N of
the kernel Bβ,N are independent of each other. The special case β = 1, i.e. the “top-
hat function” g1(z) = 1 for |z| < 1

2 and g1(z) = 0 elsewhere, leads to the well known
Dirichlet kernel B1,N (x) = 1

N

∑

k∈IN
e2πikx. Analogously, β = 2, i.e. the “hat function”

g2(z) = 2 − 4|z| for |z| ≤ 1
2 and g2(z) = 0 elsewhere, leads to the Fejér kernel. The

increasing localisation of the B-Spline kernels is illustrated in Figure 3.1.

−0.5 0 0.5

0

0.5

1

−0.5 0 0.5

0

0.5

1

−0.5 0 0.5

0

0.5

1

Figure 3.1: From left to right: Real part of the Dirichlet kernel B1,20, the Fejér kernel
B2,20, and the B-Spline kernel B4,20.

Remark 3.6. If we assume in Corollary 3.5 furthermore, that N = βσ, σ ∈ N, then the
stronger estimate |Bβ,N (x)| ≤ 2ζ(β)(1− 2−β)(β

π )β |Nx|−β holds true. This improvement
is due to ‖gβ‖1,N = N in Lemma 3.2 and follows from the partition of unity of the

cardinal B-Spline Nβ and the refinement equation Nβ(z) =
∑

τ∈Z
a

(β,σ)
τ Nβ(σz − τ) for

some finitely supported coefficients a
(β,σ)
τ > 0, see e.g. [4, pp. 8].

In particular, the Fejér kernel fulfils |B2,N (x)| ≤ |Nx|−2, N ∈ 2N, which also follows
from the estimate | sin(πx)| ≥ 2|x| for |x| ≤ 1/2 and the representation

B2,N (x) =
2
(

1 + e−2πix
)

N2

(

sin
(

N
2 πx

)

sin (πx)

)2

.

Along the same line follows the localisation property B1,N (x) ≤ |Nx|−1 and B1,N (0) =
1 for the Dirichlet kernel.

We complete this section by an extension of our result to the multivariate case d > 1.
Indeed, tensor products of the kernels constructed in Theorem 3.3 yield also localised
multivariate kernels as shown in the following corollary.

Corollary 3.7. Let the univariate kernel K̃N , cf. Definition 2.1, fulfil for some β ∈ N,
some constant Cβ > 1, and x ∈

[

−1
2 , 1

2

]

\ {0} the decay condition |K̃N (x)| ≤ Cβ|Nx|−β,

then its tensor product kernel KN (x) =
∏d−1

t=0 K̃N (xt) fulfils for x ∈
[

−1
2 , 1

2

]d \ {0} the
estimate

|KN (x)| ≤ Cβ

Nβ‖x‖β
∞

.

Proof. The assertion follows simply from the estimate |KN (x)| ≤ |K̃N (‖x‖∞)|.
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4 Stability of the interpolation problem

The nonequispaced Fourier matrix A has full rank M for d = 1 and N ≥ M . Unfor-
tunately and due to the famous result of Mairhuber-Curtis, see e.g. [20, Thm. 2.3], we

cannot expect full rank of the matrix A for N ≥ M
1

d in the multivariate case d > 1.
However, we prove stability results for the trigonometric interpolation problem at q-

separated nodes in the univariate case, cf. Theorem 4.1 and the multivariate case, cf.
Theorem 4.6. Basically, a localised kernel KN yields a diagonal dominated kernel matrix
KN and thus full rank of the nonequispaced Fourier matrix A for q-separated nodes.
Furthermore, we prove stability results for a slightly generalised interpolation problem
at equispaced nodes and subsets of equispaced nodes in Theorem 4.10. These results are
applied to the B-Spline kernels from Section 3 in Corollary 4.7 and Corollary 4.11.

The univariate setting

The following Theorem 4.1 gives estimates for the extremal eigenvalues of the matrix
KN under reasonable assumptions on the kernel KN .

Theorem 4.1. Let N ∈ 2N be given and let the kernel KN , cf. Definition 2.1, fulfil for

some β > 1 and x ∈
[

−1
2 , 1

2

]

\ {0} the localisation property

|KN (x)| ≤ Cβ

Nβ|x|β .

Furthermore, let a sampling set X contain arbitrary nodes with separation distance

q > 0. Then, the extremal eigenvalues of the matrix KN are bounded by

1 − 2 ζ (β)Cβ

Nβqβ
≤ λ ≤ 1 ≤ Λ ≤ 1 +

2 ζ (β) Cβ

Nβqβ
.

Proof. As usual, let M denote the number of nodes in X . Due to KN (0) = 1, cf.
Definition 2.1, we obtain trace(KN ) :=

∑M−1
j=0 KN (0) = M . Since the trace is invariant

under similarity transforms, all eigenvalues sum up to M and thus, the inequality λ ≤
1 ≤ Λ is fulfilled.

Now, let λ⋆ be an arbitrary eigenvalue of KN , then for some index j ∈ {0, . . . ,M − 1}
Gershgorin’s circle theorem yields

|λ⋆ − 1| ≤
M−1
∑

l=0;l 6=j

|KN (xj − xl)| .

By using that the separation distance of the sampling set is q and by the localisation of
the kernel KN , we obtain

|λ⋆ − 1| ≤ Cβ

Nβ

M−1
∑

l=0;l 6=j

1

|xj − xl|β
≤ 2Cβ

Nβqβ

⌊M/2⌋
∑

l=1

l−β <
2 ζ(β)Cβ

Nβqβ
.

10



Indeed, the kernels constructed in Theorem 3.3 yield well conditioned matrices KN .
We also note that the decay of the Dirichlet kernel only allows for a weaker result.

Remark 4.2. Let a sampling set X ∈ T with separation distance q > 0 be given.
Then the application of Theorem 4.1, where the last step of its proof is replaced by the

estimate
∑⌊M/2⌋

l=1 l−1 ≤ 1+ ln 1
2q , yields: The matrix (B1,N (xj −xl)j,l=0,...,M−1 = 1

N AA⊢⊣

is nonsingular for N > (1 + |log (2q)|) q−1. The logarithmic term in this condition is
clearly suboptimal.

As an immediate consequence of Theorem 4.1 we state a stability result for an equis-
paced grid disturbed by jitter.

Corollary 4.3. Let the assumptions of Theorem 4.1 hold true. Furthermore, let the
sampling nodes be of the form xj = −1

2 +
j−εj

M , j = 0, . . . ,M − 1, where 0 ≤ εj ≤ ε < 1.
Then the eigenvalues of the matrix KN are bounded by

1 − 2 ζ (β) CβMβ

Nβ (1 − ε)β
≤ λ ≤ 1 ≤ Λ ≤ 1 +

2 ζ (β) CβMβ

Nβ (1 − ε)β
.

Proof. Since the separation distance is bounded by q ≥ M−1(1− ε) the result follows
by Theorem 4.1.

The multivariate setting

First, we borrow a packing argument on the sphere from [15] and refine it in Lemma
4.5 for the present setting, i.e., we show how many q-separated nodes can be placed in
a certain distance to a reference node, see also Figure 4.1.

Definition 4.4. For d ∈ N and a separation distance q, 0 < q ≤ 1
2 , we define the

partitioning

Rq,m :=
{

x ∈ T
d : mq ≤ dist (x,0) < (m + 1) q

}

for m = 0, . . . ,
⌊

q−1/2
⌋

− 1 and

Rq,⌊q−1/2⌋ :=
{

x ∈ T
d :
⌊

q−1/2
⌋

q ≤ dist (x,0) ≤ 1/2
}

.

Its restriction to the sampling set X will be denoted by RX ,q,m := Rq,m ∩ X .

Lemma 4.5. Let d ∈ N and an q-separated sampling set X with 0 < q ≤ 1
2 be given.

Then, each of the sets RX ,q,m has bounded cardinality

|RX ,q,m| ≤ 2d
(

2d − 1
)

md−1, m = 1, . . . ,
⌊

q−1/2
⌋

.

11



Rq,⌊q−1/2⌋

Rq,⌊q−1/2⌋−1

. . . . . .

Rq,1

Rq,0

x0

- ?- ?-
6

-

. . . . . .x0

Figure 4.1: Partitioning of the torus T
2 into the rings Rq,m, m = 0, . . . ⌊q−1/2⌋ (left).

Further subdivision into shifted and rotated versions of the cube [0, q)d, where
arrows indicate the “ownership” of the faces to a particular cube (right).

Proof. We use a packing argument for the partition {Rq,m, m = 0, . . . , ⌊q−1/2⌋} of
the torus T

d. Each ring Rq,m is subdivided into shifted and rotated versions of the cube
[0, q)d, cf. Figure 4.1 (right). This is done such that each point in Rq,m is contained in
at least one of these boxes and the boxes share no interior points with each other. Every
box contains at most one node of the sampling set and hence, the estimate

|RX ,q,m| ≤ 1

qd

∫

Rq,m

dx ≤ 2d
(

(m + 1)d − md
)

= 2d
d
∑

t=1

(

d

t

)

md−t ≤ 2dmd−1
d
∑

t=1

(

d

t

)

.

is valid.

Using localised kernels in conjunction with a separated sampling set and Lemma 4.5,
we state the following theorem on the stability of the interpolation problem.

Theorem 4.6. Let d ∈ N, N ∈ 2N be given and let the kernel KN , cf. Definition 2.1,

fulfil for some β > d and x ∈
[

−1
2 , 1

2

]d \ {0} the localisation property

|KN (x)| ≤ Cβ

Nβ‖x‖β
∞

.

Furthermore, let a sampling set X contain arbitrary nodes with separation distance

0 < q ≤ 1
2 . Then, the extremal eigenvalues of the matrix KN are bounded by

1 − 2d
(

2d − 1
)

ζ (β − d + 1) Cβ

Nβqβ
≤ λ ≤ 1 ≤ Λ ≤ 1 +

2d
(

2d − 1
)

ζ (β − d + 1) Cβ

Nβqβ
.

Proof. Let λ⋆ be an arbitrary eigenvalue of KN . Without loss of generality, let the
diagonal element of the matrix KN used in Gershgorin’s circle theorem correspond to

12



x0 = 0. Then we conclude by KN (0) = 1, cf. Definition 2.1, that

|λ⋆ − 1| ≤
M−1
∑

l=1

|KN (0 − xl)| .

Using the partition from Definition 4.4, Lemma 4.5, and the localisation of the kernel
KN , we get

|λ⋆ − 1| ≤
⌊q−1/2⌋
∑

m=1

∑

xl∈RX ,q,m

|KN (−xl)|

≤ 2d
(

2d − 1
)

Cβ

Nβ

⌊q−1/2⌋
∑

m=1

md−1 max
x∈Rq,m

‖x‖−β
∞

≤ 2d
(

2d − 1
)

ζ (β − d + 1) Cβ

Nβqβ
.

Particularly, this result includes Theorem 4.1 if we set d = 1.

Corollary 4.7. Let the dimension d ∈ N, an arbitrary sampling set X ∈ T
d with

separation distance 0 < q ≤ 1
2 , and a polynomial degree N ∈ 2N, N > 2dq−1, be given.

Then the nonequispaced Fourier matrix A has full rank. Moreover, the eigenvalues of
the kernel matrix KN = AŴA⊢⊣ obtained from the B-Spline kernel of order β = d + 1
are bounded by

0 < 1 −
(

2d

Nq

)d+1

≤ λ ≤ 1 ≤ Λ ≤ 1 +

(

2d

Nq

)d+1

.

Proof. Note first that N ≥ 2β. We apply Theorem 4.6 where we use the estimates for
Cβ given in Corollary 3.5 and simplify the involved constant. Hence, the full rank of A

follows.

Thus, we have shown that the optimal trigonometric interpolation problem at q-
separated nodes in d dimensions obeys a uniformly bounded condition number for a
polynomial degree N > 2dq−1 and appropriate damping factors. The dependence on
q−1 is optimal as the subsequent analysis of the equispaced case shows. However, the
constant 2d is not optimal for high spatial dimensions. As pointed out in [2] for the
related approximation problem (1.2), it is an open problem to improve on this.

In summary, Lemma 2.3 and Corollary 4.7 assure in our situation a prescribed reduc-
tion of the error ‖êl‖Ŵ

−1 in a constant number of iterations. Hence, if we assume an

additional uniformity condition q = cM− 1

d for the sampling set X , the total arithmeti-
cal complexity of Algorithm 1 for solving (1.3) up to a prescribed error is bounded by
O(M log M).
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Remark 4.8. Other frequently applied kernels also possess specific localisation proper-
ties and thus, yield stable interpolation at q-separated nodes by means of Theorem 4.6
as follows:

We define for β ∈ 2N, σ ∈ N, and N = β(σ − 1) + 2 the Jackson kernel by

Jβ,N (x) :=
1 + e−2πix

2σβ

(

sin (σπx)

sin (πx)

)β

.

Being a normalised power of the Fejér kernel B2,2σ, the coefficients ŵk of the Jackson
kernel can be obtained by an iterated discrete convolution of the coefficients of the
Fejér kernel, see [1] for details. In contrast, the B-Spline kernel relies on a continuous
convolution. The Jackson kernel is localised as |Jβ,N (x)| ≤ (β

2 )β|Nx|−β for x ∈
[

−1
2 , 1

2

]

\
{0} and fulfils Jβ,N (0) = 1. Hence, the tensor product Jackson kernel of appropriate
order yields for N ∈ 2N, N > 2.1dq−1, the nonsingular kernel matrix

(

J2⌈ d+1

2
⌉,N (xj − xl)

)

j,l=0,...,M−1
.

Secondly, it is well known that the weight 1 + (2πk)2α is associated to the squared
Sobolev norm ‖f‖2

2 + ‖f (α)‖2
2. For β ∈ N and α, γ > 0, a regularised and slightly

generalised weight is given by

gα,β,γ (z) := cα,β,γ

(

1
4 − z2

)β

γ + |z|2α

for |z| ≤ 1
2 and gα,β,γ(z) = 0 elsewhere, where the constant cα,β,γ is chosen such that

‖gα,β,γ‖L1
= 1. Here, the denominator generalises the weight 1 + (2πk)2α and the

nominator ensures gα,β,γ ∈ BV β−1
0 . We define for N ∈ 2N the Sobolev kernel by

Sα,β,γ,N (x) :=
1 + e−2πix

2 ‖gα,β,γ‖1,N

N
2
∑

k=−N
2

gα,β,γ

(

k

N

)

e2πikx .

The kernel is localised as |Sα,β,γ,N (x)| ≤ c̃α,β,γ |Nx|−β for x ∈
[

−1
2 , 1

2

]

\ {0} and some
constant c̃α,β,γ > 0 and fulfils Sα,β,γ,N (0) = 1.

Results for equispaced nodes

In the case of equispaced nodes we employ the fact that the matrix KN is circulant. We
present a slightly generalised result in the following Theorem 4.10.

Definition 4.9. We define for d, n ∈ N and weights ŵk ∈ R, k ∈ Z
d with

∑

k∈Zd |ŵk| <
∞, the kernel

K (x) :=
∑

k∈Zd

ŵke2πikx

14



and by evaluating at the equispaced sampling nodes j = (j0, . . . , jd−1)
⊤ ∈ In, the matrix

K :=

(

K

(

j − l

n

))

j,l∈In

∈ C
nd×nd

.

Theorem 4.10. The matrix K in Definition 4.9 possesses the following properties. Its

eigenvalues are given by

λs (K) = nd
∑

r∈Zd

ŵs+nr

for s ∈ In. For tensor product weights ŵk =
∏d−1

t=0 ŵkt
,
∑

k∈Z
|ŵk| < ∞, this simplifies

to

λs (K) = nd
d−1
∏

t=0

∑

rt∈Z

ŵst+nrt

for s ∈ In. Moreover, the extremal eigenvalues of

KΓ :=

(

K

(

j − l

n

))

j,l∈Γ

are bounded by the extremal eigenvalues of K for any Γ ⊂ In.

Proof. The matrix K is multilevel circulant and thus diagonalised by the Fourier
matrix F n = (e2πikj/n)j,k∈In

. We calculate

(

F ⊢⊣
nKF n

)

s,t
=

∑

j,l∈In

e−2πisj/nK

(

j − l

n

)

e2πitl/n

=
∑

k∈Zd

ŵk

∑

j∈In

e−2πij(s−k)/n
∑

l∈In

e2πil(t−k)/n

for s, t ∈ In and use

∑

j∈In

e2πij(s−k)/n =

{

nd if s−k
n ∈ Z

d,

0 otherwise.

See also [15, Cor. 3.10, Thm. 3.11] for the univariate case.
The second assertion is due to the Kronecker product structure of the matrix K in the

case of tensor product kernels. The last assertion follows from the fact that removing
a node is nothing else than removing its corresponding row and column in K and from
the interlacing property for eigenvalues, see [11, pp. 185].

Now, let d, n ∈ N, N ∈ 2N, and the equispaced sampling set X = 1
nIn ⊂ T

d be given.

A simple consequence of Theorem 4.10 is the fact that the kernel matrix KN = 1
N AA⊢⊣

is singular whenever N < q−1 = n. Hence, the condition N > 2dq−1 for the full rank
of A is optimal with respect to q. Nevertheless, we also apply Theorem 4.10 to obtain
positive results in the equispaced setting for the Dirichlet and the Fejér kernel.
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Corollary 4.11. Let the dimension d ∈ N, a sampling set X with M ≥ 2 equispaced
nodes, and a polynomial degree N ∈ 2N with N > q−1 = M

1

d be given. Then, for the
Dirichlet kernel B1,N and its tensor product version for d > 1, the extremal eigenvalues
of the kernel matrix KN obey

(⌊Nq⌋
Nq

)d

= λ ≤ 1 ≤ Λ =

(⌈Nq⌉
Nq

)d

.

Furthermore, the Fejér kernel B2,N yields
(

1 − 1

N2q2

)d

≤ λ ≤ 1 ≤ Λ ≤
(

1 +
1

N2q2

)d

where equality holds for the outmost inequalities if N = (2σ + 1) q−1, σ ∈ N. In partic-
ular, the kernel matrix KN is nonsingular.

Proof. Throughout this proof, let n = q−1 and the damping factors be extended
by ŵk = 0 for k /∈ IN . We apply for d = 1 the first statement of Theorem 4.10 to
the weights ŵk = 1

N , k ∈ IN , of the Dirichlet kernel for N ∈ 2N and to the weights

ŵk = 2
N (1− |2k+1|

N ), k ∈ IN , of the Fejér kernel, if N = (2σ + 1) q−1, σ ∈ N, respectively.
The assertion is little more delicate for the univariate Fejér kernel and N 6= (2σ + 1) q−1.

We use the representation

|B2,N (x)| =
4

N2

N
2
−1
∑

r=0

r
∑

k=−r

e2πikx.

Now, let λ⋆ be an arbitrary eigenvalue of the kernel matrix KN , then Gershgorin’s circle
theorem yields

|λ⋆ − 1| ≤
n−1
∑

l=1

∣

∣

∣

∣

B2,N

(

l

n

)
∣

∣

∣

∣

=
4n

N2

N
2
−1
∑

r=0

(

2
⌊ r

n

⌋

+ 1
)

− 1.

Since for Q :=
⌊

N−2
2n

⌋

and R := N
2 − 1 − nQ the identity

N
2
−1
∑

r=0

⌊ r

n

⌋

=

Q−1
∑

s=0

(s+1)n−1
∑

r=sn

s +

nQ+R
∑

r=nQ

Q =
(N − n)2 − (2 (R + 1) − n)2

8n

holds, we proceed

4n

N2

N
2
−1
∑

r=0

(

2
⌊ r

n

⌋

+ 1
)

− 1 =
4n

N2

(

2
(n − N)2 − (2 (R + 1) − n)2

8n
+

N

2

)

− 1

=
n2

N2
−
(

2 (R + 1) − n

N

)2

≤ n2

N2
.

The case d > 1 is due to the second statement in Theorem.
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5 Numerical results

In this section, we exemplify our findings on the stability of the optimal interpolation
problem (1.3) and its iterative solution by Algorithm 1.

The estimates for the condition number of the kernel matrix KN for equispaced nodes,
cf. Corollary 4.11, are shown in Figure 5.1 (left). For Nq ∈ N and the Dirichlet kernel
B1,N the matrix KN is just the identity. However, using the better localised Fejér kernel
B2,N improves the condition number already for N >

√
3q−1 when Nq 6∈ N.

We present the effect on the stability of the interpolation problem when the equispaced
nodes are perturbed by jitter error, cf. Corollary 4.3, in Figure 5.1 (right). We choose
different sampling sets of size M = 1, . . . , 100 with equispaced nodes disturbed by 10%
jitter error and evaluate the maximum condition number over 100 reruns for the Dirichlet
kernel B1,6M and the Fejér kernel B2,6M , respectively. The Fejér kernel produces a lower
condition number which is also validated by the shown upper bound. These results
confirm the theoretical results of Corollary 4.11 and Corollary 4.3.

100 200 600
1

2

10

0 20 40 60 80 100
1

1.1

1.2

1.3

1.4

Figure 5.1: Condition number of the kernel matrix KN . Left: Condition number with
respect to polynomial degree N = 100, . . . , 600, no weights, i.e., Dirichlet
kernel (dash-dot); weight function g2, i.e., Fejér kernel (solid), and the es-
timate of Corollary 4.11 (dashed); here, the number of equispaced nodes is
M = 100. Right: Condition number with respect to the number of nodes
M = 1, . . . , 100, the nodes are equispaced perturbed by εrel. = 0.1 jitter er-
ror, the polynomial degree is N = 6M ; no weights, i.e., Dirichlet kernel (+ );
weight function g2, i.e., Fejér kernel ( × ), and its estimate by Corollary 4.3
(dashed).

Furthermore, we apply Algorithm 1 using the NFFT software package [12] to recon-
struct a univariate signal from randomly scattered data in Figure 5.2 and show in Figure
5.3 the reconstruction of a bivariate signal from a glacier data set [8]. The main tool
in our iterative algorithms is the NFFT, i.e., the fast matrix times vector multiplication
with A and A⊢⊣, respectively. Details concerning NFFT algorithms can be found for
example in [16] and a software package can be found in [12].
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The reconstruction of the randomly sampled univariate signal shows the decay rates
of our iterative scheme. The sampling set consists of M = 100 nodes separated by
q = 4× 10−3 and we reconstruct with a polynomial degree N = 1000 and the Dirichlet-,
Fejér-, B-Spline-, and Sobolev kernel. All schemes converge within 15 iteration where
this is justified only for the Fejér- and the B-Spline kernel.

0 5 10 15
10

−16

10
−8

10
0

0 5 10 15
10

−16

10
−8

10
0

0 5 10 15
10

−16

10
−8

10
0

0 5 10 15
10

−16

10
−8

10
0

Figure 5.2: Native error ‖f̂ l−ŴA⊢⊣K−1
N y‖

Ŵ
−1 for the univariate interpolation problem

with respect to the current iteration l. The number of samples is M = 100,
the number of computed Fourier coefficients is N = 1000, and the separation
distance of the nodes is q = 4 × 10−3. Top left: no weights, i.e., Dirichlet
kernel; Top right: weight function g2, i.e., Fejér kernel, predicted decay rate
(dashed); Bottom left: weight function g4, i.e., B-Spline kernel, predicted
decay rate (dashed); Bottom right: weight function g1,2,10−2 , i.e., Sobolev
kernel.

The last example shows a typical test case known in radial basis function methods.
We reconstruct from a data set of M = 8345 samples on level curves of a glacier a total
number of 28 × 28 ≈ 8M Fourier coefficients. Note however, that the sampling set is
highly nonuniform in the sense that the separation distance is very small compared to
the mesh norm. The assumptions of Theorem 4.6 are not fulfilled. Nevertheless, the
proposed method yields a very good approximation to the given data after 40 iterations,
which is also supported by the cross validation test in Table 5.1. Here, we exclude
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M̃ randomly chosen samples X̃ ⊂ X , yX̃ ∈ C
M̃ from the reconstruction process and

compare our approximations at these left out nodes. The comparison is done by means
of the relative data residual and the relative validation residual after 40 iterations

r :=
‖yX\X̃ − AX\X̃ f̂40‖2

‖y‖2
, r̃ :=

‖yX̃ − AX̃ f̂40‖2

‖y‖2
.

As can be readily seen, the CGNE scheme achieves both a small data residual r and a
small validation residual r̃. The proposed CGNE method combines the good data fit
of the CGNR scheme (N = 256) with the smooth approximation of the CGNR scheme
(N = 64).

Figure 5.3: Reconstruction of the glacier data set vol87.dat from [8], M = 8345 nodes,
N = 256, 40 iterations, tensor product damping factors ŵk to the weight
function g 1

2
,3,10−3; see glacier in [12]. Left: surface plot, Right: contour

plot and sampling set (·).

CGNE CGNR (N = 256) CGNR (N = 64)

M̃ r r̃ r r̃ r r̃

200 6.9e − 04 1.7e − 02 5.0e − 04 1.4e − 01 8.3e − 03 1.7e − 02
400 4.7e − 04 2.3e − 02 5.0e − 04 2.0e − 01 8.3e − 03 2.3e − 02
600 5.7e − 04 2.9e − 02 5.1e − 04 2.5e − 01 8.1e − 03 2.9e − 02
800 4.7e − 04 3.4e − 02 5.0e − 04 2.8e − 01 8.0e − 03 3.4e − 02
1000 4.6e − 04 3.8e − 02 4.7e − 04 3.2e − 01 8.0e − 03 3.8e − 02

Table 5.1: Cross validation of the reconstructions. The parameters of the CGNE scheme
are as before. Moreover, we show the residuals of the CGNR scheme for the
least squares problem (1.2) with N = 256 (underdetermined) and N = 64
(overdetermined).
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6 Conclusion

We have shown that the optimal trigonometric interpolation problem at q-separated
nodes in d dimensions is well conditioned for a polynomial degree N > 2dq−1. However,
in our further extensive numerical examples we observe that for N ∼ M1/d one can expect
fast convergence of Algorithm 1. If we assume furthermore a uniformity condition q =
cM− 1

d for the sampling set X of cardinality M , then the total arithmetical complexity for
solving the interpolation problem (1.3) up to a prescribed error is of order O (M log M).

We remark that dependent on the application, one solves the weighted approximation
problem (1.2) or the optimal interpolation problem (1.3). Under some further mild
conditions on the sampling set, both problems are solved efficiently by means of the
conjugate gradient method in conjunction with the nonequispaced FFT.
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