
DELFT UNIVERSITY OF TECHNOLOGY

REPORT 06-09

Multigrid for High Dimensional Elliptic Partial
Differential Equations on Non-equidistant Grids

H. bin Zubair, C.W. Oosterlee, R. Wienands

ISSN 1389-6520

Reports of the Department of Applied Mathematical Analysis

Delft 2006



Copyright c©2006 Deptt. of Applied Mathematical Analysis, Delft, The Netherlands.

No part of the Journal may be reproduced, stored in a retrieval system, or transmit-
ted, in any form or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior written permission from Department of Applied
Mathematical Analysis, Delft University of Technology, The Netherlands.



MULTIGRID FOR HIGH DIMENSIONAL ELLIPTIC PARTIAL

DIFFERENTIAL EQUATIONS ON NON-EQUIDISTANT GRIDS

H. BIN ZUBAIR ∗, C.W.OOSTERLEE †AND R. WIENANDS ‡
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dimensional setting. The main focus is the multigrid convergence for high-dimensional partial dif-
ferential equations (PDEs). As a model problem we have chosen the anisotropic diffusion equation,
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1. Introduction. Multidimensional partial differential equations have a di-
verse application in different fields of applied sciences, including financial engineer-
ing [5], molecular biology [3], and quantum dynamics [1, 18]. There are quite a
few fast and efficient solution techniques for partial differential equations (hence-
forth PDEs) -of which- multigrid ranks among the best. Multigrid is a well known
iterative procedure for the solution of large and sparse linear systems that arise
from various kinds of PDE discretizations. The existing literature on the multi-
grid treatment of various problems, however, rarely explores issues that arise out
of growth in the dimensionality of the problem. The implications of dimensionality
growth include deterioration of the multigrid convergence rate, impractical storage
requirements and huge amounts of the cpu-time for single grid solution methods.
Our main emphasis in this paper lies on the first challenge. We abbreviate multigrid
for d-dimensional PDEs as d-multigrid.

A multigrid treatment of high dimensional PDEs based on hyperplane relaxation has
been proposed by Reisinger in [5]. We present a multigrid treatment based on point
relaxation and partial coarsening schemes. We demonstrate how the multigrid con-
vergence factor can be brought down for higher d by the suggested grid-coarsening
strategies and a proper choice of the relaxation parameters in the smoothing process.

The strategy that we suggest in this paper for a good multigrid convergence is that
keeping the point smoothing method, we coarsen the grid simultaneously along all
the dimensions that have the largest number of grid points. We call this strat-
egy simultaneous partial coarsening. Thus we first bring the grid recursively to an
equidistant condition, from which point onwards we coarsen along all dimensions,
to the coarsest possible level, where we solve exactly. We show that for the partial
coarsening part of this scheme, a transfer based on multidimensional quadrupling
also works stable if appropriate relaxation parameters are used in the point smooth-
ing process. This technique has so far proved optimal in our numerical tests and in
this work we present the same.

The major hinderance in the numerical solution of multidimensional PDEs is the
so-called curse of dimensionality, which implies that with the growth in dimensions
we have an exponential growth in the number of grid points. This increases the
computational complexity of many good algorithms. Although we do not address
this issue in particular, we would like to stress that a way to handle this, is through
sparse grid techniques [6, 18]. One of the characteristics of sparse grids is that these
grids are essentially non-equidistant and therefore efficient solution methods for this
type of grid are quite important.

Foremost (in Section 2) we point out that the Black-Scholes pricing problem PDE
can be reduced to a standard d -dimensional heat equation, indicating the need for
fast solution methods for high dimensional PDEs of Poisson type. The discretization
and subsequent implementation of a d-dimensional PDE is somewhat involved and
in Section 3 we show how this can be done with Kronecker products. Section 4
deals with d-multigrid, point smoothing, coarsening strategies and concludes with
a computational complexity analysis. Next we provide Local Fourier smoothing
Analysis (LFA) for the ω-RB Jacobi method and show how it can be extended to
d dimensions. This is Section 5. We also point out here as to how we incorporate
partial doubling and quadrupling in this analysis. This section concludes with a
tabular presentation (upto 6d) of some optimal relaxation parameters for some
equidistant and some non-equidistant grids. Finally in the last section we present
quite a few versatile numerical experiments and demonstrate the excellent multigrid
convergence that we get.

2. Multi-d equations in finance. The application that we focus in this
section is the pricing of multi-asset options through a Black-Scholes model which is
a high dimensional parabolic PDE, reducible to the heat equation.
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A generalized d-asset Black-Scholes equation reads

∂V

∂t
+

1

2

d∑

i=1

d∑

j=1

ρijσiσjSiSj
∂2V

∂Si∂Sj
+ r

d∑

i=1

Si
∂V

∂Si
− rV = 0, (2.1)

(0 < S1, ..., Sd < ∞, 0 6 t < T ).

V stands for the option price; Si are the d underlying asset prices; t is the current
time; ρij are the correlation coefficients between the Wiener processes modelling
the movement of the price of the ith and the jth asset; σi is the volatility of the ith

asset-price; r is the risk free interest-rate. For pricing options on a basket of d assets,
it has been shown [4, 17] that (2.1) can be transformed into the d -dimensional heat
equation as follows.

Consider the following transformation for the asset-price Si:

yi =
1

σi

(
r −

σi
2

2

)
τ +

1

σi
lnSi, i = 1, 2, ..., d; (2.2)

τ = T − t.

T is a constant and represents the maturity time of the option. Substitution of
(2.2) into (2.1) renders the model in the new coordinates as

∂V

∂τ
=

1

2

d∑

i=1

d∑

i=1

ρij
∂2V

∂yi∂yj
, −∞ < yi < ∞, 0 < τ 6 T. (2.3)

With a symmetric positive definite (SPD) matrix of correlation coefficients B de-
fined by:

B =

{
1 if i = j

ρij if i 6= j

it follows from linear algebra that there exists an orthonormal matrix Q, so that

QTBQ = Λ

where Λ is a diagonal matrix consisting of the eigenvalues of B. For I denoting the
identity matrix this gives:

Q̂BQ̂T = Λ− 1
2 QT

︸ ︷︷ ︸
bQ

BQΛ− 1
2

︸ ︷︷ ︸
bQT

= I

i.e.

d∑

i=1

d∑

j=1

q̂liρij q̂kj = δlk, l, k = 1, 2, ...d. (2.4)

Therefore, under the following transformation




x1

x2

...
xd


 =




q̂11 q̂12 . q̂1d

q̂21 q̂22 . q̂2d

...
...

...
...

...
q̂d1 q̂d2 . q̂dd







y1

y2

...
yd


 (2.5)

(2.3) yields the following model:
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∂V

∂τ
=

1

2

d∑

i=1

∂2V

∂xi
2
, −∞ < xi < ∞, 0 < τ 6 T, (2.6)

which we identify as the heat-conduction equation in d-dimensions. When dis-
cretized by the implicit Crank Nicolson Scheme, we get a discrete SPD operator. It
is worthwhile to mention that the time discretization adds to the positivity of the
main diagonal of the discrete operator -and so- the stationary diffusion equation
serves well as a limiting worst case, in the study of convergence behaviour.

3. The Discretization. We first recall that discrete operators can be imple-
mented in two different ways. One of them is the stencil method and the other is
the matrix method. The stencil method saves storage but is inherently difficult to
implement due to the visual constraints -imposed by high-dimensionality- on the
problem. Therefore, to circumvent the complicated implementation issues we use
matrices (in sparse storage formats) and here we present some matrix generation
formulae based on Kronecker-tensor-products.

3.1. The continuous problem and it’s discretization scheme. For anal-
ysis and experimentation we choose the d -dimensional stationary diffusion equation,
with Dirichlet boundary conditions, to serve as our model problem. In what follows
x is a d -tuple x = (x1, x2, · · · , xd). The continuous problem reads

−Lu(x) = −

(
∂2

∂x2
1

+
∂2

∂x2
2

+ · · · +
∂2

∂x2
d

)
u(x) = fΩ(x), x ∈ Ω = (0, 1)d ⊂ R

d,

(3.1)

u(x) = fΓ(x), x ∈ Γ = ∂Ω (xi ∈ {0, 1}).

Subsequently, the discrete counterpart reads

−Lhuh(x) = fΩ
h (x), x ∈ Ωh = (0, 1)d ⊂ Z

+d
, (3.2)

uh(x) = fΓ
h (x) for x ∈ Γh = ∂Ωh (xi ∈ {0, 1}).

The discretization of the Laplacian Lh is chosen to be either O(h2) accurate, giving
a (2d + 1)-point stencil, or else O(h4) accurate, with a (4d + 1)-point long stencil
for all interior points. The number of cells in the discretization grid along the ith

dimension -represented by Ni- need not be equal to the number of cells along (say)
the jth dimension. So with hi -the mesh size along the ith dimension- the 1d variant
of these multidimensional stencils are

(
∂2

∂x2
i

)

h

,
1

h2
i

[1 − 2 1] + O(h2), (3.3)

(
∂2

∂x2
i

)

h

,
1

12h2
i

[−1 16 − 30 16 − 1] + O(h4). (3.4)

It has to be noted that the O(h4) long stencil gives the so-called ghost-points (points
outside the discretization grid) when applied to points near the boundary. To al-
leviate this problem we have the option of employing a different stencil, having
shorter connections at the boundary. Thus we can either employ the simple O(h2)
operator at the boundaries, or else use a different scheme with backward differenc-
ing. In this work, we use the second order stencil, for points near the boundaries.
The discretization given by (3.2) leads to the following matrix equation:

Ahuh = bh. (3.5)
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3.2. The discretization matrix Ah and implementation in arbitrary

higher dimensions. As we have Dirichlet boundary conditions, we eliminate
boundary points from the matrix Ah. This scheme results in a total of M un-
knowns, -(M × M) being the order of the discretization matrix Ah- with

M =

d∏

i=1

(Ni − 1).

We represent the discretization grid G by

G = [N1, N2, · · · , Nd]. (3.6)

The discrete matrix Ah in (3.5) can be built by the following tensor product formula:

Ah =

d∑

i=1

{
d−1⊗

j=i

I(d+i−j) ⊗ Li ⊗

i−1⊗

j=1

I(i−j)

}
. (3.7)

⊗ is the Kronecker-tensor-product of matrices. Likewise
⊗

is the cummulative
Kronecker-tensor-product. For example:

3⊗

i=1

Pi = P1 ⊗ P2 ⊗ P3.

Kronecker-tensor-products are non-commutative and associative operations (see
[7]). The order is determined by the subscripts here and the associative hierar-
chy does not matter.

In (3.7) Ik (k ∈ {1, 2, · · · , d}) is the identity matrix of order (Nk − 1) and Li is
the one dimensional discrete-Laplacian matrix, constructed through (3.3), (3.4) as
illustrated by the following example. Suppose that G = [8, 6] (see (3.6)) is the grid
that we have for a certain 2d problem, then we construct Li by writing down the
discrete stencil in (3.4) for each point, including the boundaries. Then we isolate
the left and the right boundary vectors (as shown below) and incorporate them in
the right hand side bh. For example L1 is the following matrix (without the left
and the right boundary vectors) according to the choice O(h4) of the computational
accuracy:

1

12h2
1




12

−1

0

0

0

0

0

2

6
6
6
6
6
6
6
6
4

−24 12 0 0 0 0 0

16 −30 16 −1 0 0 0

−1 16 −30 16 −1 0 0

0 −1 16 −30 16 −1 0

0 0 −1 16 −30 16 −1

0 0 0 −1 16 −30 16

0 0 0 0 0 12 −24

3

7
7
7
7
7
7
7
7
5

| {z }

L1

0

0

0

0

0

−1

12




.

1d discrete Laplacian matrices constructed in this way for each grid dimension are
to be substituted in (3.7) for building up the discrete d-dimensional operator matrix
Ah. (The O(h2)-discretization is handled similarly.)

3.3. The right-hand-side bh. The right hand side bh of (3.5) consists of the
source function fΩ

h and the boundary function fΓ
h .
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It is important to define a consistent grid-point-enumeration in high dimensions. In
our enumeration scheme we represent the entire set of indices by an index matrix I,
where each row (a d-tuple), represents the index of a grid point, and counts in the
descending order i.e. from right to left, for the ascending order of the dimensions.
This formulation of the index set is the natural extension of the so-called lexico-
graphic order in 2d. As an illustration of this lexicographic order, we have grid
coordinates as a pair (i2, i1) in 2d, as a triple (i3, i2, i1) in 3d and thus generally
in d-dimensions, we have the index of a grid point as (id, i(d−1), · · · , i1), and piling
them up in the lexicographic order we get the entire set as

I = [ιd ι(d−1) · · · ιi · · · ι2 ι1], (3.8)

where each ιk is a column vector of length M . Also consider the following definitions
which we require to build the index-set for the interior and the boundary points

ηi; ∋ ηi = [1, 2, · · · , (Ni − 1)]
T
, (i = 1, 2, · · · , d) (see (3.6)), (3.9)

1i; ∋ 1i = [1, 1, · · · , 1]︸ ︷︷ ︸
Total Ni

T .

We now formulate the columns of I as follows:

ιi =

d−1⊗

j=i

1(d+i−j) ⊗ ηi ⊗

i−1⊗

j=1

1(i−j). (3.10)

At this stage the vector of source function values can be computed as the develop-
ment of the index-set I is complete. Thus, computing the source function for each
row of I and denoting it by S, we have S = fΩ

I
.

Now for computing the contribution of boundaries in bh, recall that we isolated two
column vectors, namely the left and the right boundary-coefficient vectors from the
1d Laplacian operators in each dimension. Considering the case of the ith dimension
if we denote these by li and ri respectively, then we can define the ith d-dimensional
left and right boundary-coefficient vectors, viz, Li and Ri as follows:

Li =

d−1⊗

j=i

1(d+i−j) ⊗ li ⊗

i−1⊗

j=1

1(i−j), (3.11)

Ri =

d−1⊗

j=i

1(d+i−j) ⊗ ri ⊗

i−1⊗

j=1

1(i−j).

The contribution of the boundary-values in bh has two parts, i.e. values from the
left boundary and values from the right boundary. We denote the two by BL and
BR respectively. BL is the cummulative sum of the d left boundaries and likewise
for the right. At this point a word about the boundary-index-set is just in order.
If in (3.8) any ιi is replaced by a vector of zeros of the same length, we get a left-
boundary index set and if we replace it by a vector of ones of the same length, we
get a right-boundary index set. If

ILi
= [ιd ι(d−1) · · · ι(i − 1) 0 ι(i + 1) · · · ι2 ι1],

IRi
= [ιd ι(d−1) · · · ι(i − 1) 1 ι(i + 1) · · · ι2 ι1],
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then

BL =
d∑

i=1

(Li ⋄ fΓ
ILi

), (3.12)

BR =

d∑

i=1

(Ri ⋄ fΓ
IRi

).

⋄ represents component-wise multiplication of the operand column vectors.
Thus we have from the right hand side of (3.5) as

bh = S + BL + BR (3.13)

and the discretization is complete.

4. d-multigrid based on point smoothing. The core of this work is the
coarsening strategies proposed here which are based on a mixture of standard coars-
ening and quadrupling and which lead to efficient point smoothing based multigrid
methods. We propose a multigrid treatment through point relaxation and par-
tial coarsening schemes, which when fit together form excellent multigrid methods
for problems on non-equidistant grids, which are roughly equivalent to anisotropic
problems in d-dimensions.

Like basic multigrid for two and three dimensional problems, d -multigrid also con-
sists of the essential components, the smoothing method and the coarse grid correc-
tion. The well known algorithm of multigrid as presented in [11] does not change
for the higher dimensional case, however, the components have to be generalized
to match this new situation. General multigrid algorithms are presented in the
literature [8, 9, 10, 11, 12, 14].

For anisotropic problems it is a choice to keep the point smoothing method and
to coarsen only along a sub-set of the dimensions, precisely those that are strongly
coupled. This ensures that coarsening takes place only where the errors are smooth.
For isotropic problem the best strategy is to combine the point smoothing method
with standard full coarsening and to use the optimal relaxation parameters for d
dimensions.

4.1. The Relaxation Method. Of the many available point smoothing based
relaxation methods, we choose the ω-Red-Black Jacobi method due to its excellent
smoothing effect for problems of the Poisson type. The Red-Black Jacobi method
is equivalent to the Gauss-Seidel Red-Black method for the O(h2) (2d + 1)-point
discretization stencil and in that it is commonly abbreviated as GS-RB in the liter-
ature. In this section we assume familiarity with standard GS-RB for 2d problems;
see [8, 11]. ω-RB Jacobi consists of two partial steps, each an ω-Jacobi sweep; the
first one applying-to and updating only the red (odd) points, and the second one
applying-to and updating only the black (even) points in the grid.

From an implementational point of view, this Red-Black smoothing procedure which
is based on partial steps depends upon a partitioning process by which the grid G

can be dissected into the red part (GR), and the black part (GB). The grid-point-
enumeration that we employ in our implementation scheme is such that the points
are arranged linearly (in a column vector), counted out in the lexicographical order
for a d-dimensional grid. The un-equal number of cells along different dimensions of
the grid (mimicking discrete anisotropy) makes this partitioning process somewhat
non-trivial. In Appendix A we present a way to bring about this segregation of odd
and even points from a purely implementational aspect.
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We also employ optimal relaxation parameters ωopt in the relaxation process. It is
well known that ω = 1 serves as a good choice for the 2d isotropic case. In the case
of anisotropy and higher dimensions the error smoothing effect of the relaxation
method can be enhanced by the use of optimal relaxation parameters [16]. This
implies that a search for ωopt pays off. We employ a d-dimensional Local Fourier
Smoothing Analysis for this purpose, see Section 5.

4.2. Coarsening strategies to handle anisotropies. We present two grid-
adaptive coarsening procedures as our test cases, both of which have shown excellent
convergence results. We call them Strategy-1 and Strategy-2. In Strategy-1 we first
identify the dimensions having the largest number of grid points and then we coarsen
only along these dimensions simultaneously through an (h → 2h) transfer. When
this strategy is employed recursively at each level, it makes the grid equidistant
after a few simultaneous partial coarsenings. At this stage we start full coarsening
(h → 2h transfers along all dimensions) until we finally reach the coarsest possible
level and then we solve exactly. In the last section we evaluate this strategy for the
O(h2) (2d + 1)-point stencil and for the O(h4) (4d + 1)-point long stencil.

Strategy-2 is similar to Strategy-1 in that it also employs simultaneous partial coars-
ening, however, here we apply quadrupling in the partial phase and full doubling in
the complete coarsening phase (i.e. after achieving grid-equidistance). This strat-
egy gives good convergence when employed in conjunction with optimal relaxation
parameters, and, is cheaper than Strategy-1 because of quadrupling in the par-
tial phase. Moreover, we suggest that a strategy based on full quadrupling in the
complete phase should not be employed in a general multidimensional case as full
quadrupling always loses against full doubling, and hence is quite apt to hamper
convergence. See Section 6, Fig 6.2.

We take the grid-size along each dimension always as a power of 2.

Example 1: Suppose that the discretization grid for a certain 5d problem is
G = [ 32 8 8 128 32 ]. Then the sequence of grids that we get is the following:

Strategy − 1 Strategy − 2
Ω6 = [ 32 8 8 128 32 ]
Ω5 = [ 32 8 8 64 32 ]
Ω4 = [ 32 8 8 32 32 ]
Ω3 = [ 16 8 8 16 16 ]
Ω2 = [ 8 8 8 8 8 ]
Ω1 = [ 4 4 4 4 4 ]
Ω0 = [ 2 2 2 2 2 ]

Ω4 = [ 32 8 8 128 32 ]
Ω3 = [ 32 8 8 32 32 ]
Ω2 = [ 8 8 8 8 8 ]
Ω1 = [ 4 4 4 4 4 ]
Ω0 = [ 2 2 2 2 2 ]

(4.1)

Results for this particular experiment are available in Section 6, Table 6.4.

4.3. Coarse-grid discretization. An important component in the coarse
grid correction process is the choice of the coarse-grid operator LH . In this pa-
per we use the coarse-grid analog of the discrete operator on the fine-grid. Once
the next coarser-grid is decided we discretize the Laplacian using the same discrete
stencils as presented in section 3.

A particularly good choice of the coarse-grid operator for the O(h4) accuracy is to
employ the O(h4) long stencil only along the non-coarsened dimensions of the grid
and to discretize with the O(h2) stencil on the coarse grids along the dimensions
where partial coarsening takes place. This has the marked advantage of saving
cputime as now the coarse-grid operator has increased sparsity. Moreover, on very
coarse grids this is advantageous because at grid points adjacent to boundary points
the long stencil cannot be applied since it has entries which lie outside the discrete
domain, whereas the O(h2)-discretization can be applied throughout the domain.
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The overall accuracy remains fourth order as we have the fourth order accuracy
on the finest grid. This coarse-grid discretization scheme fits very nicely with the
numerical experiments and 2-grid and 3-grid analysis (not shown here) confirm this.

We do not use the Galerkin operator because of its disadvantage of being usually
more dense than the simple coarse-grid analog of the fine-grid operator (unless
special transfer operators are employed to generate the coarse grid operators). In
high d dimensions this disadvantage becomes more serious and impractical.

4.4. The Transfer Operators. We employ the d-dimensional analogs of the
Full-Weighting (FW) restriction operator and of the bilinear interpolation operator
in two dimensions for the intergrid transfers of the grid functions. In this section we
present a tensor formulation to generate the restriction and prolongation operator
matrices. For completeness we first mention [11] that a 2d FW restriction operator

I2h
h ,

1

16



1 2 1
2 4 2
1 2 1




2h

h

is the Kronecker tensor product of the following x1 and x2 directional 1-dimensional
FW operators:

(I2h
h )x1 ,

1

4

[
1 2 1

]
, (I2h

h )x2 ,
1

4



1
2
1


 .

A formula based on Kronecker tensor products for building up a FW restriction
operator matrix R, reads

R =

d∏

i=1

(Ri)
ki , (4.2)

(Ri)
ki =

ki−1∏

l=0

[
d−1⊗

j=i

IN(d+i−j)
⊗ O[

Ni/2(ki−l−1)
] ⊗

i−1⊗

j=1

I[
N(i−j)/2k(i−j)

]
]
.

We now define the quantities involved in (4.2) for the dummy subscript a.

Ia is the identity matrix of order (a − 1) × (a − 1).
Oa is the 1d FW restriction operator matrix, order =

(
a
2 − 1

)
× (a − 1).

G = [N1, N2, · · · , Nd], as in (3.6).
T = [k1, k2, · · · , kd] is the coarsening request, ki is the count of (h → 2h) transfers
along the ith dimension. We say that quadrupling takes place along the ith dimen-
sion if ki = 2. For reasons of space it is not possible to verify (in this manuscript)
eqn. (4.2) for any realistic example, however it is trivial to verify the same with a
matrix manipulation software package.

Once the FW restriction operator matrix in d-dimensions is set, the prolongation
(d-linear interpolation) operator matrix can be obtained by the following relation:

P = 2d(RT ). (4.3)

A generalized restriction operator (4.2) gives us the freedom to experiment with
different types of coarsening strategies depending on the grid. Note that the FW
restriction operator given by (4.2) provides the required matrix for any number of
coarsenings along any number of dimensions for an abstract d-dimensional problem.
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4.5. Computational Work for d-multigrid. The practical feasibility of a
d-multigrid method also has to take into account an estimate of the computational
work that it involves. Following the notation from [8, 11], we call this work-estimate
Wl, assuming that a particular multigrid method is based on a hierarchy of grids
(Ωl, Ωl−1, · · · , Ω1, Ω0,) where Ω0 is the coarsest grid. The computational-work Wl

per multigrid cycle on Ωl is modelled by the recursion:

W1 = W 0
1 + W0, Wk = W k−1

k + γk−1Wk−1 (k = 1, 2, · · · , l). (4.4)

W k−1
k is the work estimate for a single 2-grid cycle (hk, hk−1) excluding the work

needed to solve the defect equation on Ωhk−1
and W0 is the work required to solve

exactly on the coarsest grid. It is reasonable to assume that the multigrid compo-
nents (relaxation, computation of defect and the transfer of grid functions) applied
to a single unknown require a number of arithmetic operations which -independent
of k- is bounded by a small constant C. With Mk the total number of unknowns
at grid level k we have,

W k−1
k 6 CMk (k = 1, 2, · · · , l).

For a fixed cycle index γ and with the work on the coarsest grid neglected this leads
to

Wl 6 C
[
Ml + γMl−1 + γ2Ml−2 + · · · + γl−1M1

]
. (4.5)

Before we proceed further, we consider it important to point out at this stage that
the coarsening strategies (algorithms) that we use do not employ the same transfers
at all grid levels. Depending on the existing elongation of the grid along various
dimensions, Strategy 1 employs (h → 2h) transfers so that after application of
this strategy at each level the grid comes closer to equidistance (the elongation
is relaxed at each level). When grid-equidistance is achieved Strategy-1 resorts
to standard full coarsening till the grid is brought to the coarsest possible level
which the particular discretization allows. Strategy-2 is hybrid in the sense that
it is composed of a mixture of standard and quadrupling transfers, moreover, it is
grid-adaptive just like Strategy-1. In Strategy-2 we employ full (h → 2h) transfers
when grid-equidistance is achieved because quadrupling did not prove optimal with
equidistant grids even with the use of optimal relaxation parameters. Note that
in these coarsening strategies the number of dimensions along which the grid is
coarsened, increases (or remains constant in the case of an equidistant grid) at each
successive level. This gives the following:

Wl 6 CMl




1 −
(

γ
2j·s

)m

1 −
(

γ
2j·s

)


 ,

Wl 6
2j·s

(2j·s − γ)
CMl,

Wl 6
τ

(τ − γ)
CMl for γ < τ = 2j·s. (4.6)

Here j represents the number of dimensions coarsened and s = 1 for (h → 2h)
transfers and s = 2 for quadrupling. The worst case would be when the grid is
highly stretched along a single dimension, which implies that coarsening takes place
only along j = 1 dimension. With quadrupling, i.e. s = 2, this still renders τ = 4,
which implies that the complexity of the method is still O(Ml) for γ = 1, 2, 3. This
feature makes quadrupling particularly attractive in higher dimensions for non-
equidistant grids. Strategy-1 also gives an O(Ml) algorithm for γ = 1, 2, 3 as long
as j ≥ 2 whereas for j = 1 one has to apply a V -cycle.
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If the problem is isotropic, i.e. the grid is equidistant, we essentially have s = 1 and
j = d, which gives the work estimates that appear in Table 4.1.

Table 4.1

Multigrid Work-estimates for equidistant grids.

γ d = 2 d = 3 d = 4 d = 5 d = 6

1 4
3 CMl

8
7 CMl

16
15 CMl

32
31 CMl

64
63 CMl

2 2 CMl
4
3 CMl

8
7 CMl

16
15 CMl

32
31 CMl

4 O(Ml log2 Ml) 2 CMl
4
3 CMl

8
7 CMl

16
15 CMl

The 2d and 3d results are well-known [8], and an estimate for a general d (equidistant
grid) can be obtained by setting j = d in (4.6).

This leads us now to apply the standard multigrid procedure to our model problem
as the multigrid components have been adjusted for a general high dimensional set-
ting, along with a computational complexity estimate. A Local Fourier Smoothing
Analysis of the ω-RB Jacobi method follows, through an implementation of which
we derive the relaxation parameters for our experiments.

5. Local Fourier Smoothing Analysis of ω-RB Jacobi method. Local
Fourier Analysis (LFA) [2], is a tool for analyzing the convergence behaviour of
multigrid methods. The finer details including the validity of LFA along with re-
lated theorems and proofs are presented in [12]. In this section we concentrate on
the development of a Fourier representation for the ω-RB Jacobi method applied
to the model operator from Section 3.1, the definition of the smoothing-factor, the
evaluation of relaxation parameters and extension to a general d-dimensional set-
ting. We assume familiarity with the basics of this tool, see [8, 9, 11, 12, 14] for the
same. For the most part in this section we carry on the definitions and notations
as present in [11, 14] and [15, 16].

Consider the d-dimensional anisotropic diffusion operator

−

d∑

i=1

εi
∂2

∂x2
i

with εi > 0. (5.1)

With respect to the analysis it is more convenient to scale the real positive coeffi-
cients εi as in [15, 16] and to replace (5.1) by

−

d∑

i=1

ci
∂2

∂x2
i

with ci = εi/

d∑

j=1

εj and hence

d∑

i=1

ci = 1. (5.2)

The partial derivatives are discretized by second or fourth order differences (see
(3.3), (3.4)) leading to the discrete counterparts of (5.2) denoted by L2o

h and L4o
h ,

respectively. In contrast to Section 3.1 we assume that we are dealing with the
same mesh size in each space direction, i.e. h = h1 = · · · = hd. Here, possible
anisotropies caused by different mesh sizes are modeled by varying the coefficients
ci which is more appropriate for the analysis.

Local Fourier Analysis takes into account only the local nature of the operator.
Thus for an effective analysis through this tool one has to have constant coefficients
and one has to neglect the boundary effects. More precisely, all occurring operators
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are extended to an infinite grid

Gh :=
{

x = (x1, . . . , xd)
T

= κh = h (κ1, . . . , κd)
T

: κ ∈ ZZ

}
(5.3)

with mesh size h. The discrete eigenfunctions (Fourier Components) of the resulting
infinite grid operators serve as fundamental quantities in LFA, they are obviously
given by

ϕ(θ, x) = eiθx/h, x ∈ Gh. (5.4)

For this analysis we assume that θ varies continously in R
d. As 2π is the period of

ϕ, we are led to the identity:

ϕ(θ, x) ≡ ϕ(θ′, x) for x ∈ Gh iff θ = θ
′(mod 2π) (5.5)

where this difference of -multiples of 2π- is between all the components of the d-
tuples, (θ & θ

′), thus it suffices to consider these functions only for θ ∈ Θ =
[−π, π)d.

The corresponding eigenvalues (Fourier Symbols) of L2o
h and L4o

h read

L̃2o
h (θ) =

2

h2

(
1 −

d∑

i=1

ci cos (θi)

)
and

L̃4o
h (θ) =

1

6h2

(
15 −

d∑

i=1

ci (16 cos (θi) − cos (2θi))

)
,

respectively.

5.1. High and low Fourier frequencies. If full coarsening (H = 2h or
H = 4h in case of quadrupling) is selected, the Fourier components ϕh(θ, x) with
|θ| := max{|θ1|, . . . , |θd|} ≤ π/2 (or ≤ π/4) are also visible on the coarse grid GH

whereas components with |θ| > π/2 (> π/4) coincide with certain ϕh(θ̂, x) where

|θ̂| ≤ π/2 (≤ π/4). This observation leads to the distinction between high and low
Fourier frequencies.

Definition 1: (High and Low Frequencies for Full Coarsening). An element θj

(j ∈ {1, . . . , d}) of a Fourier frequency θ is called low if

−π/2 ≤ θj < π/2 (or −π/4 ≤ θj < π/4 in case of quadrupling) for θ ∈ Θ.

Otherwise it is called high. We speak of a low Fourier frequency θ ∈ Θ, if all its
elements are low. Otherwise it is named a high frequency.

The distinction obviously depends on the coarsening as for different coarsening
strategies different sets of Fourier frequencies are visible on the coarse grid. We
define the set of coordinate indices by J := {1, . . . , d}. In case of partial coarsening
(compare with section 4.2), the grid is coarsened only in a subset {xj | j ∈ J c ⊂ J}
of the coordinate directions and remains fixed in the other coordinates xj with
j ∈ J f = J \ J c. Especially for two-dimensional problems, this is often called
semicoarsening as well. In this case, we have for the coarse grid mesh size H that
Hj = 2hj (or Hj = 4hj in case of quadrupling) for j ∈ J c and Hj = hj for j ∈ J f .
Then, the definition of high and low frequencies has to be adapted accordingly.

Definition 2: (High and Low Frequencies for Partial Coarsening). A Fourier fre-
quency θ ∈ Θ is called low, if all elements θj ∈ Ic are low, compare with Definition 1.
Otherwise it is called a high frequency.
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Fig. 5.1. Low (white region) and high (shaded region) frequencies for red-black coarsening
in two dimensions.

5.2. Fourier representation of ω-RB-Jacobi. ω-RB Jacobi relaxation con-
sists of two partial steps of ω Jacobi-type, compare with Section 4.1. The iteration
matrix of classical damped Jacobi relaxation is given by Sh = Ih −ωD−1

h Ah where
Ih denotes the (M × M)-identity matrix and Dh the diagonal part of Ah. Hence,
the Fourier components remain eigenfunctions of ω-Jacobi relaxation. The Fourier
symbols of ω-Jacobi relaxation applied to L2o

h and L4o
h read

A2o(θ, ω) = 1 − ω
h2

2
L̃h(θ) = 1 − ω

(
1 −

d∑

i=1

ci cos (θi)

)
and

A4o(θ, ω) = 1 − ω
6h2

15
L̃h(θ) = 1 − ω

(
1 −

1

15

d∑

i=1

ci (16 cos (θi) − cos (2θi))

)
,

respectively, see [13, 15, 16].

Note that for pattern relaxations like ω-RB Jacobi the Fourier components are
no longer eigenfunctions. However, the minimal invariant subspaces for ω-RB Ja-
cobi are two-dimensional, see [15]. Each component ϕh(θ, x) is coupled only with

ϕh(θ̂, x), where

θ̂j := θj − sign (θj)π with j ∈ J .

Note that ω-RB Jacobi couples those Fourier components that alias on the coarse
grid in case of red-black coarsening. Considering red-black coarsening the set of low
frequencies (compare with Definitions 1 and 2) is given by

ΘRB :=

{
θ ∈ Θ : |θ| :=

d∑

i=1

|θi| ≤
d

2
π

}
. (5.6)

For d = 2, the set of low frequencies ΘRB is illustrated in figure 5.1.
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We decompose the set of Fourier frequencies Θ into a direct sum of such two-
dimensional subspaces that are coupled by ω-RB Jacobi:

Θ =
⊕

θ∈ΘRB

{
θ, θ̂

}
.

The Fourier representations of the half sweep operators which represent the smooth-
ing steps over the red points (R) and the black points (B) w.r.t. the two-dimensional
minimal invariant subspaces are given in [16]. They read

S̃R
h (θ, ω) =

1

2

(
A(θ, ω) + 1 A(θ̂, ω) − 1

A(θ, ω) − 1 A(θ̂, ω) + 1

)

and S̃B
h (θ, ω) =

1

2

(
A(θ, ω) + 1 −A(θ̂, ω) + 1

−A(θ, ω) + 1 A(θ̂, ω) + 1

)

with A(θ, ω) = A2o(θ, ω), A4o(θ, ω) and A(θ̂, ω) = A2o(θ̂, ω), A4o(θ̂, ω).

The transformation matrix S̃h(θ, ω) for
(
φh(θ, . ), φh(θ̂, . )

)T

after one relaxation

step is then given by

S̃h(θ, ω) = S̃B
h (θ, ω) S̃R

h (θ, ω). (5.7)

The four components of the (2 × 2)-matrix S̃h(θ, ω) = (sij)i,j=1,2 read

s11 =
1

4

[
(A(θ, ω) + 1)2 + (A(θ̂, ω) − 1)(1 − A(θ, ω))

]
,

s12 =
1

4

[
(A(θ, ω) + 1)(1 − A(θ̂, ω)) + A(θ̂, ω)2 − 1

]
,

(5.8)

s21 =
1

4

[
(A(θ̂, ω) + 1)(1 − A(θ, ω)) + A(θ, ω)2 − 1

]
,

s22 =
1

4

[
(A(θ̂, ω) + 1)2 + (A(θ̂, ω) − 1)(1 − A(θ, ω))

]
.

5.3. Smoothing factor. In order to measure the smoothing properties of
pattern relaxation methods we adopt the general definition of the smoothing factor
from [8]. Here, the “real” coarse grid correction for a two-grid method is replaced by
an “ideal” coarse grid correction operator QH

h which annihilates the low-frequency
error components and leaves the high-frequency components unchanged. QH

h is
a projection operator onto the space of high-frequency components. The Fourier
representation of the ideal coarse grid correction operator w.r.t. the subspaces
{φh(θ, . ), φh(θ̂, . )} (θ ∈ ΘRB) is then given by

Q̃H
h (θ) =

(
q(θ) 0

0 q(θ̂)

)
, (5.9)

where q = 0 for a low argument and 1 otherwise, compare with Definitions 1 and 2.

The smoothing factor µ of the ω-RB Jacobi operator is defined as the worst factor by
which the high frequency errors are reduced per iteration step. So with ν denoting
the number of relaxation sweeps, and ρ the matrix spectral radius, we have

µ(ω) := sup
θ∈ΘRB

{
ν

√
ρ
(
Q̃H

h (θ)S̃ν
h(θ, ω)

)}
. (5.10)

The smoothing factor can easily be calculated by a computer program which allows
for a numerical determination of optimal relaxation parameters for different coars-
ening strategies and both types of discretizations under consideration. We would
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Table 5.1

µ(1), ωopt and associated µ(ωopt) for ν = 1 relaxation sweep.

Left: Doubling along all dimensions, equidistant grid, isotropy, O(h2).
Right: Quadrupling along all dimensions, equidistant grid, isotropy, O(h2).

Doubling (h → 2h)
d µ(1) ωopt µ(ωopt) ωub

2 0.25 1.049 0.16 1.072
3 0.44 1.133 0.23 1.144
4 0.56 1.195 0.28 1.202
5 0.64 1.243 0.31 1.250
6 0.69 1.283 0.35 1.285

Quadrupling (h → 4h)
µ(ω) = µ(1) ωopt µ(ωopt) ωub

0.73 1.315 0.31 1.316
0.81 1.398 0.40 1.393
0.86 1.454 0.45 1.455
0.89 1.496 0.50 1.502
0.90 1.528 0.53 1.519

Left: Doubling along 1 dimension, non-equidistant grid, 128 × 32(d−1), O(h2).
Right: Quadrupling along 1 dimension, non-equidistant grid, 128× 32(d−1), O(h2).

Doubling (h → 2h)
d µ(1) ωopt µ(ωopt) ωub

2 0.125 0.997 0.123 1.033
3 0.22 1.059 0.17 1.062
4 0.31 1.114 0.21 1.093
5 0.37 1.162 0.25 1.115
6 0.43 1.206 0.28 1.140

Quadrupling (h → 4h)
µ(ω) = µ(1) ωopt µ(ωopt) ωub

0.59 1.209 0.29 1.219
0.65 1.248 0.32 1.257
0.69 1.282 0.35 1.285
0.73 1.310 0.37 1.316
0.76 1.335 0.39 1.342

like to emphasize that the optimal relaxation parameter depends on the number of
relaxation steps ν as it can be seen from (5.10).

Note that there are explicit (but very lengthy) analytical formulas for the optimal
relaxation parameters ωopt in case of full coarsening applied to the second order
discretization [13, 16]. Moreover, there is a close to optimal upper bound ωub [16] for
the optimal relaxation parameters which is given by the following handy expression:

ωopt < ωub =
2

1 +
√

1 − µ(ω = 1)
.

For partial coarsening and especially for the fourth order discretization it seems to
be very difficult to derive analytic expressions for ωopt. However, for the second
order discretization it turned out that ωub is a satisfactory approximation for ωopt

even in case of partial coarsening and quadrupling (but not necessarily an upper
bound anymore), see Table 5.1 which presents ωopt (optimized for ν = 1) and ωub

for equidistant and non-equidistant grids. This is a nice generalization of the results
from [16]. For the fourth order discretization this is no longer true and we have to
stay with the numerically derived values.

From the values in Table 5.2 (optimized for ν = 2) we see that the smoothness
enhancement effect of using optimal relaxation parameters is more prominent and
pronouced with Strategy-2. With Strategy-1 this enhancement becomes prominent
in the case of nearly equidistant grids (grids that are equidistant along (d − 2) or
more dimensions). With grids highly elongated along a single dimension (and dealt
with Strategy-1), the choice ω = 1 is more suitable -first- because the optimal
values themselves are very close to 1 and therefore do not bring about a substantial
enhancement, -and second- the cost of relaxation itself is cut down, which saves
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cputime.

6. Numerical Experiments. We now present the results of some of our nu-
merical experiments. The spectral radius ρ of the multigrid iteration operator Mh

represents the asymptotic convergence factor. During the course of an experiment
the only quantity available to estimate this factor is the defect di

h after the ith
multigrid cycle. The numerical results -presented in the Tables (6.1 - 6.4)- depict a
close match between the theoretical smoothing factors µ (computed for coarsening
based on the finest grid) and an emperical estimate of the multigrid convergence
factor ρ(Mh) which we denote by qm and define as

qm :=
‖ dm

h ‖

‖ dm−1
h ‖

where m represents the number of iterations or multigrid cycles that the discrete
problem takes to converge to the numerical solution.

All the experiments employ one pre and one post smoothing, and so the smoothing
factor is displayed as a square for a correspondence with qm, compare with (5.10).
The optimal relaxation parameters ωopt that we employ are computed for ν = 2.
For each order of accuracy and for each dimension, we have chosen two kinds of
grids, one equidistant and one non-equidistant (highly stretched in one dimension).
qm is displayed against the number of multigrid cycles that the experiment took to
converge to the tolerance value, which for all the experiments is 10−6, i.e.

| um
h − um−1

h | ≤ tol.

The experiments include the V and the W cycles. In some of the experiments the
grids used for the O(h2)-operator are different from the ones for the O(h4)-operator.
This only serves the purpose of accumulating results for slightly different-sized ex-
periments. C2

2 indicates the use of the second order stencil along all coarsened
and non-coarsened dimensions, likewise for C4

4 . C4
2 indicates the use of the O(h4)-

long-stencil along all non-coarsened dimensions and the use of the O(h2)-stencil on
the coarse grids along the dimensions where coarsening takes place. This hybrid
coarse grid discretization gives 4th order accuracy and converges faster than the
conventional 4th order long stencil.

Table 6.1 presents experimental results for equidistant grids. A comparison of the
convergence results with and without optimal relaxation parameters indicates the
benefits of using them for high dimensional problems. The cutdown in the multigrid
convergence factor as well as in the number of multigrid cycles (required to converge
to tol) is quite significant for d ≥ 3.

Table 6.2 presents experimental results for non-equidistant grids which we have
chosen to be highly stretched in only one dimension. Because of this characteristic
these experiments are computationally more expensive than any other as coarsening
takes place only along the elongated dimension. This is exactly the opposite of the
previous case, where coarsening took place along all dimensions and hence the
cutdown in the number of unknowns at each level was optimal. In this table we
display the results that we get from Strategy-1 which is based purely on h → 2h
transfers. Optimal relaxation parameters in this case pay off only with V-cycles,
with ω = 1 serving as a perfect compromise with W-cycles.

In Table 6.3 we have reworked the experiments of Table 6.2 but with Strategy-2 this
time. Partial quadrupling (Strategy-2) ensures an O(Ml) algorithm even with grids
of this type. Note that the computational complexity of the experiments in Table 6.2
is O(Ml log2 Ml), even though the multigrid convergence factor is quite impressive
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Table 5.2

µ(1), ωopt and associated µ(ωopt) for ν = 2 relaxation sweeps.

Left: Doubling along all dimensions, equidistant grid, isotropy, O(h2).
Right: Quadrupling along all dimensions, equidistant grid, isotropy, O(h2).

Doubling (h → 2h)
d µ(ω) = µ(1) ωopt µ(ωopt)

2 0.25 1.0107 0.23
3 0.44 1.1136 0.28
4 0.56 1.1832 0.31
5 0.64 1.2356 0.35
6 0.69 1.2771 0.37

Quadrupling (h → 4h)
µ(ω) = µ(1) ωopt µ(ωopt)

0.73 1.3062 0.39
0.81 1.3928 0.46
0.86 1.4507 0.50
0.89 1.4934 0.53
0.90 1.5266 0.56

Left: Doubling along 1 dimension, non-equidistant grid, 128 × 32(d−1), O(h2).
Right: Quadrupling along 1 dimension, non-equidistant grid, 128× 32(d−1), O(h2).

Doubling (h → 2h)
d µ(ω) = µ(1) ωopt µ(ωopt)

2 0.23 0.9023 0.20
3 0.23 0.9581 0.22
4 0.24 1.0043 0.23
5 0.31 1.0445 0.25
6 0.37 1.0803 0.26

Quadrupling (h → 4h)
µ(ω) = µ(1) ωopt µ(ωopt)

0.59 1.1986 0.32
0.65 1.2410 0.35
0.69 1.2761 0.37
0.73 1.3059 0.39
0.76 1.3318 0.41

Left: Doubling along all dimensions, equidistant grid, isotropy, O(h4).
Right: Quadrupling along all dimensions, equidistant grid, isotropy, O(h4).

Doubling (h → 2h)
d µ(ω) = µ(1) ωopt µ(ωopt)

2 0.28 1.0260 0.25
3 0.46 1.1108 0.29
4 0.57 1.1683 0.33
5 0.65 1.2128 0.36
6 0.70 1.2492 0.38

Quadrupling (h → 4h)
µ(ω) = µ(1) ωopt µ(ωopt)

0.76 1.3110 0.40
0.84 1.3782 0.47
0.87 1.4238 0.52
0.90 1.4579 0.55
0.91 1.4847 0.58

Left: Doubling along 1 dimension, non-equidistant grid, 128 × 32(d−1), O(h4).
Right: Quadrupling along 1 dimension, non-equidistant grid, 128× 32(d−1), O(h4).

Doubling (h → 2h)
d µ(ω) = µ(1) ωopt µ(ωopt)

2 0.25 0.9310 0.22
3 0.25 0.9779 0.24
4 0.28 1.0160 0.26
5 0.34 1.0491 0.28
6 0.39 1.0796 0.30

Quadrupling (h → 4h)
µ(ω) = µ(1) ωopt µ(ωopt)

0.64 1.2205 0.37
0.69 1.2526 0.40
0.73 1.2793 0.42
0.76 1.3018 0.45
0.79 1.3223 0.47
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Table 6.1

Results of numerical experiments for V (1, 1) and W (1, 1) on equidistant grids. The observed
convergence rate with the number of iterations i.e. (qm/# it.) is presented. For a correspondence-
comparison the smoothing factors [µ(1)]2 and [µ(ωopt)]2 (computed for coarsening based on the
finest grid), is also displayed. Results presented include experiments with ω = 1 as well as
ω = ωopt.

G = 1282 V W V W
[µ(1)]2 = 0.06 [µ(1.011)]2 = 0.05

O(h2)C2
2 0.10/8 0.06/7 0.09/8 0.05/7

G = 1282 [µ(1)]2 = 0.08 [µ(1.026)]2 = 0.06
O(h4)C4

4 0.13/9 0.10/8 0.12/9 0.08/7
O(h4)C4

2 0.10/8 0.07/7 0.09/8 0.05/7

G = 1283 V W V W
[µ(1)]2 = 0.20 [µ(1.114)]2 = 0.08

O(h2)C2
2 0.22/11 0.18/10 0.12/9 0.07/7

G = 643 [µ(1)]2 = 0.21 [µ(1.111)]2 = 0.08
O(h4)C4

4 0.26/12 0.22/11 0.16/10 0.09/8
O(h4)C4

2 0.24/12 0.21/11 0.13/9 0.07/7

G = 644 V W V W
[µ(1)]2 = 0.32 [µ(1.183)]2 = 0.10

O(h2)C2
2 0.33/14 0.30/12 0.16/10 0.08/7

G = 324 [µ(1)]2 = 0.33 [µ(0.168)]2 = 0.11
O(h4)C4

4 0.39/16 0.34/14 0.20/10 0.11/9
O(h4)C4

2 0.35/15 0.34/14 0.15/9 0.11/8

G = 165 V W V W
[µ(1)]2 = 0.41 [µ(1.236)]2 = 0.12

O(h2)C2
2 0.38/16 0.38/15 0.18/10 0.09/8

G = 86 V W V W
[µ(1)]2 = 0.48 [µ(1.277)]2 = 0.14

O(h2)C2
2 0.35/15 0.34/15 0.12/9 0.11/9

there. These results show the important role of optimal relaxation parameters in
enhancing convergence of multigrid with quadrupling transfers.

To make the discussion complete we have included some more experiments on a
nearly equidistant grid. The results are reported in Fig. 6.1. The convergence
report is depicted against the iteration scale as well as against the cputime scale.
A comparison of the results of Strategy-1 and Strategy-2 suggests that for these
kind of grids, a combination of Strategy-2 with V -cycles and optimal relaxation
parameters works very nicely.

A graphical presentation of the convergence behaviour of an isotropic 4 dimensional
multigrid experiment appears in Fig. 6.2. The defect reduction is displayed against
the iteration and the cputime scale. To emphasize the inefficiency of full quadru-
pling with completely equidistant grids, we have included the results against full
doubling. Clear enough, -here- standard coarsening is the strategy of choice. This
is the main reason why we do not keep quadrupling transfers in Strategy-2, once
grid-equidistance has been achieved but rather resort to doubling from this stage
onwards. Quadrupling along all dimensions at the same time hampers the multigrid
convergence rate as well as increasing the overall computation time.

Finally, we have performed a kind-of general 5-dimensional anisotropic experiment.
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Table 6.2

Results of numerical experiments for V (1, 1) and W (1, 1) with Strategy-1 on grids stretched
along 1 dimension. The observed convergence rate with the number of iterations i.e. (qm/# it.) is
presented. For a correspondence-comparison the smoothing factors [µ(1)]2 and [µ(ωopt)]2 (com-
puted for coarsening based on the finest grid), is also displayed. Results presented include exper-
iments with ω = 1 as well as ω = ωopt.

G = 512 × 32 V W V W
[µ(1)]2 = 0.05 [µ(0.849)]2 = 0.03

O(h2)C2
2 0.06/8 0.003/4 0.06/8 0.03/6

G = 512 × 32 [µ(1)]2 = 0.06 [µ(0.886)]2 = 0.04
O(h4)C4

4 0.10/8 0.03/6 0.09/8 0.07/7
O(h4)C4

2 0.10/7 0.02/6 0.05/7 0.04/6

G = 512 × 322 V W V W
[µ(1)]2 = 0.05 [µ(0.868)]2 = 0.03

O(h2)C2
2 0.20/11 0.005/4 0.12/9 0.03/6

G = 128 × 322 [µ(1)]2 = 0.06 [µ(0.978)]2 = 0.06
O(h4)C4

4 0.24/11 0.04/6 0.16/9 0.03/6
O(h4)C4

2 0.17/10 0.04/6 0.10/8 0.05/6

G = 128 × 83 V W V W
[µ(1)]2 = 0.05 [µ(0.886)]2 = 0.04

O(h2)C2
2 0.20/11 0.007/4 0.11/8 0.03/5

G = 128 × 323 [µ(1)]2 = 0.08 [µ(1.016)]2 = 0.07
O(h4)C4

4 0.33/13 0.04/6 0.20/9 0.04/6
O(h4)C4

2 0.27/12 0.05/6 0.14/9 0.05/6

G = 128 × 84 V W V W
[µ(1)]2 = 0.05 [µ(0.902)]2 = 0.04

O(h2)C2
2 0.24/12 0.009/4 0.13/8 0.02/5

G = 128 × 85 V W V W
[µ(1)]2 = 0.05 [µ(0.917)]2 = 0.20

O(h2)C2
2 0.27/13 0.009/5 0.15/9 0.02/5

The sequence of grids that we get with both coarsening strategies are displayed in
Section 4.2, (4.1). The convergence results that we achieve with both strategies are
presented in Table 6.4 as well as in a graphical display in Fig. 6.3. It is quite apparent
that the use of optimal relaxation parameters pays off significantly well with V -
cycles in combination with Strategy-1 (ω = 1 serving as a perfect choice for W -
cycles), and with both V and W cycles with Strategy-2. In Fig 6.3, the convergence
behaviour of these multigrid cycles is presented against the number of iterations as
well as the cputime that it took for the cycles to converge. With Strategy-1 this
shows clearly that W -cycles with ω = 1 form a very suitable combination. With
Strategy-2 (partial quadrupling) as well as for general d-dimensional isotropies, W -
cycles with ωopt give good results. We have used Matlab as our testing platform;
the same experiments implemented in C (in more optimized computer programs)
are expected to render smaller cputimes than those presented.

Remark 1: The multigrid convergence factors displayed in the tables are mostly
under 0.1, implying that a full multigrid algorithm starting on the coarsest grid is
expected to reach an approximate solution up to the discretization accuracy in just
one or two cycles.

Remark 2: It is also important to point out that for very coarse discretization grids
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Table 6.3

Results of numerical experiments for V (1, 1) and W (1, 1) with Strategy-2 on grids stretched
along 1 dimension. The observed convergence rate with the number of iterations i.e. (qm/# it.) is
presented. For a correspondence-comparison the smoothing factors [µ(1)]2 and [µ(ωopt)]2 (com-
puted for coarsening based on the finest grid), is also displayed. Results presented include exper-
iments with ω = 1 as well as ω = ωopt.

G = 512 × 32 V W V W
[µ(1)]2 = 0.28 [µ(1.159)]2 = 0.09

O(h2)C2
2 0.27/13 0.24/11 0.11/9 0.06/7

G = 512 × 32 [µ(1)]2 = 0.35 [µ(1.190)]2 = 0.12
O(h4)C4

4 0.34/14 0.31/13 0.20/9 0.13/8
O(h4)C4

2 0.31/13 0.30/13 0.10/8 0.08/7

G = 512 × 322 V W V W
[µ(1)]2 = 0.30 [µ(1.174)]2 = 0.10

O(h2)C2
2 0.30/13 0.24/11 0.14/9 0.02/7

G = 128 × 322 [µ(1)]2 = 0.48 [µ(1.253)]2 = 0.16
O(h4)C4

4 0.34/14 0.35/14 0.20/10 0.15/8
O(h4)C4

2 0.34/14 0.35/14 0.14/9 0.15/8

G = 128 × 83 V W V W
[µ(1)]2 = 0.32 [µ(1.186)]2 = 0.10

O(h2)C2
2 0.32 0.24/11 0.13/9 0.02/6

G = 128 × 323 [µ(1)]2 = 0.53 [µ(1.279)]2 = 0.18
O(h4)C4

4 0.38/16 0.37/15 0.23/10 0.16/8
O(h4)C4

2 0.38/16 0.36/14 0.19/10 0.16/8

G = 128 × 84 V W V W
[µ(1)]2 = 0.34 [µ(1.199)]2 = 0.10

O(h2)C2
2 0.35/15 0.24/11 0.14/9 0.07/6

G = 128 × 85 V W V W
[µ(1)]2 = 0.36 [µ(1.210]2 = 0.11

O(h2)C2
2 0.38/16 0.24/11 0.19/10 0.10/6

Table 6.4

A general 5d experiment on a non-equidistant grid G = [32 8 8 128 32].

strategy 1 V W V W
[µ(1)]2 = 0.052 [µ(0.982)]2 = 0.049

O(h2)C2
2 0.30/14 0.04/6 0.14/9 0.04/6

strategy 2 V W V W
[µ(1)]2 = 0.45 [µ(1.259)]2 = 0.13

O(h2)C2
2 0.64/29 0.43/17 0.31/15 0.12/8

(say 8 points along all dimensions), the asymptotic convergence of the relaxation
method ω-RB Jacobi is also quite satisfactory. To confirm this, we conducted a
6 dimensional asymptotic convergence experiment without a hierarchy of multiple
grids and measured the number of iterations and the time taken to reach the tol-
erance (10−6). Though the use of multigrid cuts down the number of iterations by
around a factor of 2.5, the time taken to meet the tolerance level is the same.
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Fig. 6.1. Convergence behaviour of different multigrid cycles for a 4d problem, on a non-
equidistant grid [64 64 64 16] (anisotropy with 3,750,705 unknowns), left side defect vs iterations,
right side defect vs cputime.

7. Conclusion. The central emphasis of this paper is on multigrid techniques
for high dimensional elliptic PDEs. To alleviate the implementation issues we have
shown how difference operator matrices can be put together through tensor meth-
ods. This renders testing in abstract higher d dimensions easy. Of course, tailored
routines (for specific applications) can be programmed and tuned as per require-
ment. The main idea has been to demonstrate how the multigrid convergence factor
can be reduced efficiently with appropriate coarsening strategies combined with the
use of relaxation parameters in the smoothing process. Through numerical results
supported by the Local Fourier Smoothing analysis we have shown that partial qua-
drupling is a strategy of choice in higher dimensions and ensures a computational
complexity of O(Ml) even in the worst case, i.e. coarsening in one dimension only.
This we have confirmed through a complexity analysis. Results of the numerical
experiments display the excellent multigrid convergence that can be brought about
with the presented strategies.

Appendix A. Implementational aspects of ω-RB Jacobi. ω-RB Jacobi can
be implemented in several ways depending on the test platform. We have here a
method that is suitable for iterations over a solution vector as opposed to explicit
update in a loop. The scheme that we present in this appendix is developed to
bring about the odd-even (red-black) partioning with minimal manipulation of the
grid-points.

We store three vectors in this scheme (two of which have just half the storage re-
quirement as the first one). The first vector is the unmanipulated vector (henceforth
called the main-vector) containing values for all grid points (red as well as black),
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Fig. 6.2. Convergence behaviour of different multigrid cycles for a 4d problem, on an equidis-
tant grid 324 (isotropy with 923,521 unknowns), left side defect vs iterations, right side defect vs
cputime.

the second vector has the values at the black points ejected out and replaced with
zeros. Symmetrically, the third has the values at the red positions ejected out and
replaced by zeros. This ejection-process is actually where our injection operators
(henceforth called ejectors) fit in.

First we construct the partition of the main vector storing the red and the black
parts, then we carry out the first partial ω-Jacobi sweep by updating only the red
part. This new red part along with the previously stored black part represents the
main vector after the first partial sweep. Carrying out the second partial sweep in
exactly the same manner, now for the black part instead, gives one ω-RB Jacobi
iteration.

We present two injection operators, one for points of each color (even/odd cate-
gory). We denote these ejectors by ER, and EB, with

ER =

( d⊕

i=1

η(d−i+1)

)
mod 2,

EB = (ER + 1) mod 2.

⊕
is the cummulative tensor sum of ηi, which counts the interior points along

the ith dimension (see (3.9)), i has the reverse order (from d to 1) to match the
lexicographic layout of the grid points. Due to space limitations we can only provide
a 2d example, although this formulation is true in general for an abstract higher
dimension d.

Example 2: Consider a 2d grid G = [4, 5]. In all we have 12 interior points which
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Fig. 6.3. Convergence behaviour of different multigrid cycles for a 5d problem, on a non-
equidistant grid [32 8 8 128 32](anisotropy with 5,980,303 unknowns), left side defect vs iterations,
right side defect vs cputime.

when counted in the lexicographic order, appear as follows:

u = [u11 u12 u13 u14 u21 u22 u23 u24 u31 u32 u33 u34]
T .

Evidently, G, the collection of all the points, has the following partition:

GR = {u11, u13, u22, u24, u31, u33},
GB = {u12, u14, u21, u23, u32, u34}.

Therefore according to our scheme:

uR = [ u11 0 u13 0 0 u22 0 u24 u31 0 u33 0 ]T ,
uB = [ 0 u12 0 u14 u21 0 u23 0 0 u32 0 u34 ]T

and ηi in this case would be:

η1 = [1 2 3 4]T & η2 = [1 2 3]T

which leads to:

ER = (η2 ⊕ η1) mod 2
= [2 3 4 5 3 4 5 6 4 5 6 7]T mod 2
= [0 1 0 1 1 0 1 0 0 1 0 1]T

∴ EB = [1 0 1 0 0 1 0 1 1 0 1 0]T .

These red and black point ejectors now can be used to partition the grid as de-
scribed. Once this partition is obtained, ω-RB Jacobi relaxation sweeps are trivial
to perform, in that, they are no different than their 2d counterparts.
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