
ar
X

iv
:c

s/
03

08
00

6v
2

 [
cs

.D
S]

 2
8

Ju
l 2

00
5

HIGHER-DIMENSIONAL PACKING WITH ORDER CONSTRAINTS ∗

SÁNDOR P. FEKETE† , EKKEHARD KÖHLER‡ , AND JÜRGEN TEICH§

Abstract. We present a first exact study on higher-dimensional packing problems with order
constraints. Problems of this type occur naturally in applications such as logistics or computer
architecture and can be interpreted as higher-dimensional generalizations of scheduling problems.
Using graph-theoretic structures to describe feasible solutions, we develop a novel exact branch-
and-bound algorithm. This extends previous work by Fekete and Schepers; a key tool is a new
order-theoretic characterization of feasible extensions of a partial order to a given complementarity
graph that is tailor-made for use in a branch-and-bound environment. The usefulness of our approach
is validated by computational results.

Key words. Higher-dimensional packing, higher-dimensional scheduling, reconfigurable com-
puting, precedence constraints, exact algorithms, modular decomposition.

AMS subject classifications. 90C28, 68R99

1. Introduction.

Scheduling and Packing Problems. Scheduling is arguably one of the most im-
portant topics in combinatorial optimization. Typically, we are dealing with a one-
dimensional set of objects (“jobs”) that need to be assigned to a finite set of contain-
ers (“machines”). Problems of this type can also be interpreted as (one-dimensional)
packing problems, and they are NP-hard in the strong sense, as problems like 3-
Partition are special cases.

Starting from this basic scenario, there are different generalizations that have
been studied. Many scheduling problems have precedence constraints on the sequence
of jobs. On the other hand, a great deal of practical packing problems consider
higher-dimensional instances, where objects are axis-aligned boxes instead of intervals.
Higher-dimensional packing problems arise in many industries, where steel, glass,
wood, or textile materials are cut. The three-dimensional problem is important for
practical applications such as container loading.

In this paper, we give the first study of problems that comprise both generaliza-
tions: these are higher-dimensional packing problems with order constraints—or, from
a slightly different point of view, higher-dimensional scheduling problems. In higher-
dimensional packing, these problems arise when dealing with precedence constraints
that are present in many container-loading problems. Another practical motivation
for considering multi-dimensional scheduling problems arises from optimizing the re-
configuration of a particular type of computer chips called FPGAs—described below.

FPGAs and Higher-Dimensional Scheduling. A particularly interesting class of
instances of three-dimensional orthogonal packing arises from a new type of recon-
figurable computer chips, called field-programmable gate arrays (FPGAs). An FPGA

∗Preliminary extended abstract versions reporting on parts of this paper appeared in [4, 5].
† Department of Mathematical Optimization, Braunschweig University of Technology, D–38116

Braunschweig, Germany, s.fekete@tu-bs.de. Partially supported by Deutsche Forschungsgemein-
schaft (DFG) within the special focus program “Reconfigurable Computing” (SPP 1148).

‡ Department of Mathematics, TU Berlin, D–10623 Berlin, Germany, ekoehler@math.tu-berlin
.de.

§ Department of Computer Science 12, (Hardware-Software-Co-Design), University of Erlangen-
Nuremberg, D-91058 Erlangen, Germany, teich@informatik.uni-erlangen.de. Partially supported
by Deutsche Forschungsgemeinschaft (DFG) within the special focus program “Reconfigurable Com-
puting” (SPP 1148).

1

http://arxiv.org/abs/cs/0308006v2

2 S. P. FEKETE, E. KÖHLER, AND J. TEICH

typically consists of a regular rectangular grid of equal configurable cells (logic blocks)
that allow the prototyping of simple logic functions together with simple registers and
with special routing resources (see Figure 1.1). These chips (see e.g. [1, 33]) may sup-
port several independent or interdependent jobs and designs at a time, and parts of
the chip can be reconfigured quickly during run-time. (For more technical details
on the underlying architecture, see the previous paper [31], and the more recent ab-
stract [6].) Thus, we are faced with a general class of problems that can be seen both
as scheduling and packing problems. In this paper, we develop a set of mathematical
tools to deal with these higher-dimensional scheduling problems, and we show that
our methods are suitable for solving instances of interesting size to optimality.

PSfrag replacements

t

x

y

Figure 1.1. An FPGA and a set of five jobs, shown as projections in ordinary two-dimensional
space and in three-dimensional space-time. Jobs must be placed inside the chip and must not overlap
if executed simultaneously on the chip.

Related Work. We are not aware of any exact study of higher-dimensional pack-
ing or scheduling problems with order constraints. For a comprehensive survey of
classical “one-dimensional” scheduling problems, the reader is referred to [23]. A re-
lated problem is dynamic storage allocation, where “processing jobs” means storing
them in contiguous blocks of memory from a one-dimensional array. Considering time
as the second dimension leads to a two-dimensional packing problem, possibly with
order constraints. However, this problem is primarily an online problem; for exam-
ple, see [24]. In an offline setting, precise starting an ending time values imply order
constraints, but also provide more information. (See our paper [31] for exact methods
for that scenario.)

Closest to our problems is the class of resource-constrained project scheduling prob-
lems (RCPSP), which can be interpreted as a step towards higher-dimensional packing
problems: In addition to a duration ti and precedence constraints on the temporal

order of jobs, each job i may have a number of other “sizes” x
(1)
i , . . . , x

(k)
i ; x

(j)
i indi-

cates the amount of resource j required for the proessing of job i. The total amount
∑

i x
(j)
i of each resource j is limited at any given time. See the book [32] and the

references in the article [27] for an extensive survey of recent work in this area. Even
though RCPSPs can be formulated as integer problems, solving resource-constrained
scheduling problems is already quite hard for instances of relatively moderate size:
The standard benchmark library used in this area consists of instances with 30, 60,
90 and 120 jobs. Virtually all work deals with lower and upper bounds on these in-

HIGHER-DIMENSIONAL PACKING WITH ORDER CONSTRAINTS 3

stances, and even for instances with 60 jobs, a considerable number has not yet been
solved to optimality.

It is easy to see that two-dimensional packing problems (possibly with precedence
constraints on the temporal order) can be relaxed to a scheduling problem with one
resource-constraint, by allowing a non-contiguous use of resources, i.e., the higher-
dimensional analogue of preemption. However, the example in Figure 1.2 shows that
the converse is not true, even for small instances of two-dimensional packing prob-
lems without any precedence constraints: An optimal solution for the corresponding
resource-constrained scheduling problem may not correspond to a feasible arrange-
ment of rectangles for the original packing problem. (We leave it to the reader to
verify the latter claim.) For d ≥ 2 the difference becomes more pronounced: The d
knapsack constraints for RSPSP require that for all of the d individual resources and
every pair of jobs, a disjointness property must be satisfied; on the other hand, the
more geometric conditions on d-dimensional packing require that any pair of boxes
must be disjoint in at least one of their coordinate intervals. Arguably, the disjunctive
constraints on (d+ 1)-dimensional packing problems are harder to model.

8

x

1
7

532
4

6

t
(a)

x

x1

2

1

2

(b)

x

x1

2

2

3

1

4

(c)

Figure 1.2. Differences between RCPSP and packing: (a) A set of jobs that is feasible for
scheduling with one resource constraint, but infeasible for two-dimensional packing: Job 8 does not
violate a resource constraint, but does not fit as a contiguous rectangle. (b) A set of jobs that is just
feasible for RCPSP with d = 2 constraints, i.e., that does not allow any tighten of either constraint
without becoming infeasible. (c) A set of boxes that is just feasible for packing in d = 2 dimensions.

Higher-dimensional packing problems (without order constraints) have been con-
sidered by a great number of authors, but only few of them have dealt with the exact
solution of general two-dimensional problems. See [8, 10] for an overview. It should
be stressed that unlike one-dimensional packing problems, higher-dimensional pack-
ing problems allow no straightforward formulation as integer programs: After placing
one box in a container, the remaining feasible space will in general not be convex.
Moreover, checking whether a given set of boxes fits into a particular container (the
so-called orthogonal packing problem, OPP) is trivial in one-dimensional space, but
NP-hard in higher dimensions.

Nevertheless, attempts have been made to use standard approaches of mathe-
matical programming. Beasley [2] and Hadjiconstantinou and Christofides [17] have
used a discretization of the available positions to an underlying grid to get a 0-1
program with a pseudopolynomial number of variables and constraints. Not surpris-
ingly, this approach becomes impractical beyond instances of rather moderate size.
More recently, Padberg [28] gave a mixed integer programming formulation for three-
dimensional packing problems, similar to the one anticipated by Schepers [29] in his
thesis. Padberg expressed the hope that using a number of techniques from branch-
and-cut will be useful; however, he did not provide any practical results to support
this hope.

4 S. P. FEKETE, E. KÖHLER, AND J. TEICH

In [7, 8, 10, 11, 31], a different approach to characterizing feasible packings and
constructing optimal solutions is described. A graph-theoretic characterization of the
relative position of the boxes in a feasible packing (by so-called packing classes) is used,
representing d-dimensional packings by a d-tuple of interval graphs (called component
graphs) that satisfy two extra conditions. This factors out a great deal of symmetries
between different feasible packings, it allows to make use of a number of elegant
graph-theoretic tools, and it reduces the geometric problem to a purely combinatorial
one without using brute-force methods like introducing an underlying coordinate grid.
Combined with good heuristics for dismissing infeasible sets of boxes [9], a tree search
for constructing feasible packings was developed. This exact algorithm has been
implemented; it outperforms previous methods by a clear margin.

For the benefit of the reader, a concise description of this approach is contained
in Section 3.

Graph Theory of Order Constraints. In the context of scheduling with prece-
dence constraints, a natural problem is the following, called transitive ordering with
precedence constraints (TOP): Consider a partial order P = (V,≺) of precedence
constraints and a (temporal) comparability graph G = (V,E), such that all relations
in P are represented by edges in G. Is there a transitive orientation D = (V,A) of G,
such that P is contained in D?

Korte and Möhring [20] have given a linear-time algorithm for deciding TOP,
using modified PQ-trees. However, their approach requires knowledge of the full set
of edges in G. When running a branch-and-bound algorithm for solving a scheduling
problem, these edges of G are only known partially during most of the tree search, but
already this partial edge-set may prohibit the existence of a feasible solution for a given
partial order P . This makes it desirable to come up with structural characterizations
that are already useful when only parts of G are known.

Such a set of precedence constraints may be described by a dependency graph,
see Figure 1.3.

For a problem instance of this type, we describe a general framework for finding
exact solutions to the problem of minimizing the height of a container of given base
area, or minimizing the makespan of a higher-dimensional non-preemptive scheduling
problem.

x

t

y

x

t

wx

wy
wt

y

vvv v

vvv

v

v

v

v

ADD

MUL

MUL MUL ADD

MUL

SUB

MUL

COMP

MUL

1

ADD

MUL

3

SUB 4

7 9 11

10862

5

Figure 1.3. Dependency graph of jobs and shape of modules (3D boxes) with the spatial di-
mensions x and y and the temporal dimension t (execution time).

HIGHER-DIMENSIONAL PACKING WITH ORDER CONSTRAINTS 5

Results of this paper. In this paper, we give the first exact study of higher-
dimensional packing with order constraints, which can also be interpreted as higher-
dimensional non-preemptive scheduling problems. We develop a general framework
for problems of this type by giving a pair of necessary and sufficient conditions for
the existence of a solution for the problem TOP on graphs G in terms of forbid-
den substructures. Using the concept of packing classes, our conditions can be used
quite effectively in the context of a branch-and-bound framework, because it can rec-
ognize infeasible subtrees at “high” branches of the search tree. In particular, we
describe how to find an exact solution to the problem of minimizing the height of a
container of given base area. If this third dimension represents time, this amounts
to minimizing the makespan of a higher-dimensional scheduling problem. We vali-
date the usefulness of these concepts and results by providing computational results.
Other problem versions (like higher-dimensional knapsack or bin packing problems
with order constraints) can be treated similarly.

The rest of this paper is organized as follows. In Section 2, we describe basic
assumptions and some terminology. The notion of packing classes and a solution to
packing problems without precedence constraints is summarized in Section 3. In Sec-
tion 4, we introduce precedence constraints, describe the mathematical foundations
for incorporating them into the search, and explain how to implement the resulting
algorithms. Section 5 provides the necessary mathematical foundations for the cor-
rectness of our approach. Finally, we present computational results for a number of
different benchmarks in Section 6.

2. Preliminaries. An FPGA consists of a rectangular grid of identical logic
cells. Each job v (or “module”) requires a rectangle of size wx(v) by wy(v) with fixed
axis-parallel orientation, and needs to remain available for at least the time wt(v). Any
logic cell that is not occupied by a module may be used by one of the rectangular jobs.
As shown in Figure 1.1, we are dealing with a three-dimensional packing problem,
possibly with order constraints. In the following, we describe technical as well as
mathematical terminology and assumptions.

2.1. Architecture Assumptions. The model of having relocatable, rectangu-
lar modules is justified by current FPGA technology [1, 33].

Intermodule communication. Intermodule communication is assumed to occur
at the end of operation of the sending module (task model). The issuing module
may store its result register values into an external memory connected to the FPGA
interface (read-out) via a bus interface. Memory is allocated for temporary storage of
intermediate results1. Afterwards, the receiving module will read the communicated
data into its registers via the bus interface. With this communication style, it is
justifiable to ignore routing overhead between modules that otherwise might introduce
additional placement constraints.

I/O-overhead. The communication time needed for writing out and reading in
communicated data may be accounted for by considering this as an offset and being
part of the execution time of a job.

Reconfiguration overhead. The time needed for carrying out reconfigurations may
be modeled by a constant (possibly a different number for each job), depending on
the target architecture. This may be considered a simplification because the recon-
figuration time might depend on the result of the placement. Consider two equal

1A static memory allocation may be deduced directly from the static placement.

6 S. P. FEKETE, E. KÖHLER, AND J. TEICH

modules with identical placements. A reconfiguration for the second module might
not be necessary in case no third module is occupying a (sub)set of cells in the time
interval between the execution of the two modules. However, there are many different
models for accounting for reconfiguration times, and the particular choice should be
adapted individually to the target architecture.

2.2. Mathematical Terminology.

Problem instances. We assume that a problem instance is given by a set V of
jobs. Each job has a spatial requirement in the x- and y-direction, denoted by wx(v)
and wy(v), and a duration, denoted by a size wt(v) along the time axis. The available
space H consists of an area of size hx × hy. In addition, there may be an overall
allowable time ht for all jobs to be completed. A schedule is given by a start time
pt(v) for each job. A schedule is feasible, if all jobs can be carried without preemption
or overlap of computation jobs in time and space, such that all jobs are within spatial
and temporal bounds.

Graphs. Some of our descriptions make use of a number of certain graph-theoretic
concepts. An (undirected) graph G = (V,E) is given by a set of vertices V , and a set
of edges E; each edge describes the adjacency of a pair of vertices, and we write {u,w}
for an edge between vertices u and w. We only consider graphs without multiple edges
and without loops. For a graph G, we obtain the complement graph G by exchanging
the set E of edges with the set E of non-edges. In a directed graph D = (V,A),
edges are oriented, and we write (u,w) to denote an edge directed from u to w. A
graph G = (V,E) is a comparability graph if there is a transitive orientation for it,
i.e., the edges E can be oriented to a set of directed arcs A, such that we get the
transitive closure of a partial order. More precisely, this means that D = (V,A) is a
cycle-free digraph for which the existence of edges (u, v) ∈ A and (v, w) ∈ A for any
u, v, w ∈ V implies the existence of (u,w) ∈ A. Comparability graphs have a variety
of nice properties. For our purpose we will make use of the algorithmic result that
computing maximum weighted cliques on comparability graphs can be done efficiently
(see [16]). A closely related family of graphs, the interval graphs, are defined as follows.
Given a set of intervals on the real line, every vertex of the graph corresponds to an
interval of the set; two vertices are joined by an edge if the corresponding intervals
have a non-empty intersection. Interval graphs have been studied intensively in graph
theory (see [16, 25]), and, similar to comparability graphs, they have a number of very
useful algorithmic properties.

Precedence constraints. Mathematically, a set of precedence constraints is given
by a partial order P = (V,≺) on V . The relations in ≺ can be interpreted as a directed
acyclic graph DP = (V,AP), where AP is a set of directed arcs corresponding to the
relations in ≺. In the presence of such a partial order, a feasible schedule is required to
satisfy the capacity constraints of the container, as well as these additional constraints.

Packing problems. In the following, we treat jobs as axis-aligned d-dimensional
boxes with given orientation, and feasible schedules as arrangements of boxes that
satisfy all side constraints. This is implied by the term of a feasible packing. There may
be different types of objective functions, corresponding to different types of packing
problems. The Orthogonal Packing Problem (OPP) is to decide whether a given set of
boxes can be placed within a given “container” of size hx×hy×ht. For the Constrained
OPP (COPP), we also have to satisfy a partial order P = (V,≺) of precedence
constraints in the t-dimension. To emphasize the motivation of temporal precedence
constraints, we write t to suggest that the time coordinate is constrained, and x and
y to imply that the space coordinates are unrestricted. Although our application

HIGHER-DIMENSIONAL PACKING WITH ORDER CONSTRAINTS 7

mainly requires to consider those temporal constraints, it should be mentioned that
our approach works the same way when dealing with spatial restrictions; that is why
we are using a generic index i in the mathematical discussion, while some of our
benchmark examples consider a temporal dimension t.

There are various optimization problems that have OPP or COPP as their
underlying decision problems. The Base Minimization Problem (BMP) is to minimize
the size hx for a fixed ht such that all boxes fit into a container hx × hx × ht with
quadratic base. This corresponds to minimizing the necessary area to carry out a
set of computations within a given time. Because our main motivation arises from
dynamic chip reconfigurations, where we want to minimize the overall running time,
we focus on the Constrained Strip Packing Problem (CSPP), which is to minimize
the size ht for a given base size hx × hy, such that all boxes fit into the container
hx × hy × ht. Clearly, we can use a similar approach for other objective functions.

3. Solving Unconstrained Orthogonal Packing Problems.

3.1. A General Framework. If we have an efficient method for solving OPPs,
we can also solve BMPs and SPPs by using a binary search. However, deciding the
existence of a feasible packing is a hard problem in higher dimensions, and methods
proposed by other authors [2, 17] have been of limited success.

Our framework uses a combination of different approaches to overcome these
problems:

1. Try to disprove the existence of a packing by classes of lower bounds on the
necessary size.

2. In case of failure, try to find a feasible packing by using fast heuristics.
3. If the existence of a packing is still unsettled, start an enumeration scheme

in form of a branch-and-bound tree search.
By developing good new bounds for the first stage, we have been able to achieve

a considerable reduction of the number of cases in which a tree search needs to be
performed. (Mathematical details for this step are described in [9, 11].) However, it is
clear that the efficiency of the third stage is crucial for the overall running time when
considering difficult problems. Using a purely geometric enumeration scheme for this
step by trying to build a partial arrangement of boxes is easily seen to be immensely
time-consuming. In the following, we describe a purely combinatorial characterization
of feasible packings that allows to perform this step more efficiently.

3.2. Packing Classes. Consider a feasible packing in d-dimensional space, and
project the boxes onto the d coordinate axes. This converts the one d-dimensional
arrangement into d one-dimensional ones (see Figure 3.1 for an example in d = 2).
By disregarding the exact coordinates of the resulting intervals in direction i and only
considering their intersection properties, we get the component graph Gi = (V,Ei):
Two boxes u and v are connected by an edge in Gi, iff their projected intervals in
direction xi have a non-empty intersection. By definition, these graphs are interval
graphs.

Considering sets of d component graphs Gi instead of complicated geometric
arrangements has some clear advantages (algorithmic implications for our specific
purposes are discussed further down). It is not hard to check that the following three
conditions must be satisfied by all d-tuples of graphs Gi that are constructed from a
feasible packing:

8 S. P. FEKETE, E. KÖHLER, AND J. TEICH

G

1
G

2

Figure 3.1. The projections of the boxes onto the coordinate axes define interval graphs (here
in 2D: G1 and G2).

C1: Gi is an interval graph, ∀i ∈ {1, · · · , d}.
C2: Any independent set S of Gi is i-admissible, ∀i ∈ {1, · · · , d}, i.e., wi(S) =∑

v∈S wi(v) ≤ hi, because all boxes in S must fit into the container in the
ith dimension.

C3: ∩d
i=1Ei = ∅. In other words, there must be at least one dimension in which the

corresponding boxes do not overlap.
A d-tuple of component graphs satisfying these necessary conditions is called

a packing class. The remarkable property (proven in [29, 10]) is that these three
conditions are also sufficient for the existence of a feasible packing.

Theorem 3.1 (Fekete, Schepers). A set of d-dimensional boxes allows a feasible
packing, iff there is a packing class, i.e., a d-tuple of graphs Gi = (V,Ei) that satisfies
the conditions C1, C2, C3.

This allows us to consider only packing classes in order to decide the existence of
a feasible packing, and to disregard most of the geometric information.

3.3. Solving OPPs. Our search procedure works on packing classes, i.e., d-
tuples of component graphs with the properties C1, C2, C3. Because each packing
class represents not only a single packing but a whole family of equivalent packings, we
are effectively dealing with more than one possible candidate for an optimal packing
at a time. (The reader may check for the example in Figure 3.1 that there are 36
different feasible packings that correspond to the same packing class.)

For finding an optimal packing, we use a branch-and-bound approach. The search
tree is traversed by depth first search, see [7, 29] for details. Branching is done
by deciding about a single pair of vertices b, c, whether the corresponding edge is
contained in Ei or is not contained in Ei, i.e., {b, c} ∈ Ei or {b, c} /∈ Ei. So in fact,
there are three classes of edges; those which are fixed to be in Ei, those which are
fixed not to be in Ei (non-edges), and those for which it is not decided yet whether
they will be contained in Ei or not. After each branching step, it is checked whether
one of the three conditions C1, C2, C3 is violated with respect to the currently
fixed edges and non-edges; furthermore it is checked whether a violation can only

HIGHER-DIMENSIONAL PACKING WITH ORDER CONSTRAINTS 9

be avoided by fixing further (formerly undecided) edges or non-edges. Testing for
two of the conditions C1–C3 is easy: enforcing C3 is obvious; checking C2 can be
done efficiently, since Gi is a comparability graph and, as mentioned before, in those
graphs maximum weighted cliques can be done efficiently. Note that for this step only
non-edges are used, i.e., pairs of vertices for which has been decided already that they
are not contained in Ei. In order to ensure that property C1 is not violated, we use
some graph-theoretic characterizations of interval graphs and comparability graphs.
These characterizations are based on two forbidden substructures. (Again, see [16]
for details; the first condition is based on the classical characterizations by [14, 15]:
a graph is an interval graph iff its complement has a transitive orientation, and it
does not contain any induced chordless cycle of length 4.) In particular, the following
configurations have to be avoided:
G1: induced chordless cycles of length 4 in Ei;
G2: so-called 2-chordless odd cycles in the set of edges excluded from Ei (see [7, 16]

for details);
G3: infeasible stable sets in Ei.
Each time we detect such a fixed subgraph, we can abandon the search on this node.
Furthermore, if we detect a fixed subgraph, except for one unfixed edge, we can fix
this edge, such that the forbidden subgraph is avoided.

Our experience shows that in the considered examples these conditions are al-
ready useful when only small subsets of edges have been fixed, because by excluding
small sub-configurations like induced chordless cycles of length 4, each branching step
triggers a cascade of more fixed edges.

4. Packing Problems with Precedence Constraints. As mentioned in the
above discussion, a key advantage of considering packing classes is that it makes possi-
ble the consideration of packing problems independent of precise geometric placement,
and that it allows arbitrary feasible interchanges of placements. However, for most
practical instances, we have to satisfy additional constraints for the temporal place-
ment, i.e., for the relative start times of jobs. For our approach, the nature of the
data structures may simplify these problems from three-dimensional to purely two-
dimensional ones: If the whole schedule is given, all edges Et in one of the graphs are
determined, so we only need to construct the edge sets Ex and Ey of the other graphs.
As worked out in detail in [30, 31], this allows it to solve the resulting problems quite
efficiently if the arrangement in time is already given.

A more realistic, but also more involved situation arises if only a set of precedence
constraints is given, but not the full schedule. We describe in the following how further
mathematical tools in addition to packing classes allow useful algorithms. Note that
our method of dealing with order constraints is not restricted to one (the temporal)
dimension; in fact, we can also deal with constraints in several dimensions at once, as
demonstrated in Section 6, Figure 6.4.

4.1. Packing Classes and Interval Orders. Any edge {v1, v2} in a component
graph Gi corresponds to an intersection between the projections of boxes 1 and 2 onto
the xi-axis. This means that the complement graph Gi given by the complement Ei

of the edge set Ei consists of all pairs of coordinate intervals that are “comparable”:
Either the first interval is “to the left” of the second, or vice versa.

Any (undirected) graph of this type is a comparability graph. By orienting edges
to point from “left” to “right” intervals, we get a partial order of the set V of vertices,
a so-called interval order [12, 25]. Obviously, this order relation is transitive, inducing
a transitive orientation on the (undirected) comparability graph Gi. See Figure 4.1

10 S. P. FEKETE, E. KÖHLER, AND J. TEICH

for a (two-dimensional) example of a packing class, the corresponding comparability
graphs, the transitive orientations, and the packing corresponding to the transitive
orientations.

(d)(c)(b)(a)

1(V,A)

2(V,A)

G

G

1

2
G

G

2

1

Figure 4.1. (a) A two-dimensional packing class. (b) The corresponding comparability graphs.
(c) Two transitive orientations. (d) A feasible packing corresponding to the orientation.

Now consider a situation where we need to satisfy a partial order P = (V,AP) of
precedence constraints in the time dimension. It follows that each arc a = (u,w) ∈
AP in this partial order forces the corresponding undirected edge e = {u,w} to be
excluded from Ei. Thus, we can simply initialize our algorithm for constructing
packing classes by fixing all undirected edges corresponding to AP to be contained in
Ei. After running the original algorithm, we may get additional comparability edges.
As the example in Figure 4.2 shows, this causes an additional problem: Even if we
know that the graph Gi has a transitive orientation, and all arcs a = (u,w) of the
precedence order (V,AP) are contained in Ei as e = {u,w}, it is not clear that there
is a transitive orientation that contains all arcs of AP .

v v

vv
4

32

1

(comparability edges)

(component edges)

E

E
i

i

Figure 4.2. A comparability graph Gi = (V,Ei) with a partial order P contained in Ei , such
that there is no transitive orientation of Gi that extends P .

4.2. Extending Partial Suborders. Consider a comparability graph G that
is the complement of an interval graph G. The problem TOP of deciding whether
G has a transitive orientation that extends a given partial order P has been studied
in the context of scheduling. Korte and Möhring [20] give a linear-time algorithm for
determining a solution, or deciding that none exists. Their approach is based on a
very special data structure called modified PQ-trees.

In principle it is possible to solve higher-dimensional packing problems with prece-
dence constraints by adding this algorithm as a black box to test the leaves of our

HIGHER-DIMENSIONAL PACKING WITH ORDER CONSTRAINTS 11

search tree for packing classes: In case of failure, backtrack in the tree. However, the
resulting method cannot be expected to be reasonably efficient: During the course
of our tree search, we are not dealing with one fixed comparability graph, but only
build it while exploring the search tree. This means that we have to expect spending
a considerable amount of time testing similar leaves in the search tree, i.e., compara-
bility graphs that share most of their graph structure. It may be that already a very
small part of this structure that is fixed very “high” in the search tree constitutes
an obstruction that prevents a feasible orientation of all graphs constructed below
it. So a “deep” search may take a long time to get rid of this obstruction. This
makes it desirable to use more structural properties of comparability graphs and their
orientations to make use of obstructions already “high” in the search tree.

4.3. Implied Orientations. As in the basic packing class approach, we consider
the component graphs Gi and their complements, the comparability graphs Gi. This
means that we continue to have three basic states for any edge:
1: edges that have been fixed to be in Ei, i.e., component edges ;
2: edges that have been fixed to be in Ei, i.e., comparability edges ;
3: unassigned edges.

In order to deal with precedence constraints, we also consider orientations of the
comparability edges. This means that during the course of our tree search, we can
have three different possible states for each comparability edge:
2a: one possible orientation;
2b: the opposite possible orientation;
2c: no assigned orientation.

A stepping stone for this approach arises from considering the following two con-
figurations; see Figure 4.3. The first configuration (shown in the left part of the

PSfrag replacements

(I) (II) (III)

(I’) (II’) (III’)

(D1) (D2)

v1

v1v1 v1

v1 v1

v2

v2v2 v2

v2 v2

v3

v3v3 v3

v3 v3
E

E

(comparability edges)

(component edges)

(unassigned or

comparability edges)

Figure 4.3. Implications for edges and their orientations: Above are P3 implications (D1, left)
and transitivity implications (D2, right); below the forced orientations of edges.

figure) consists of the two comparability edges {v1, v2}, {v2, v3} ∈ Ei, such that the
third edge {v1, v3} has been fixed to be an edge in the component graph Ei. Now any
orientation of just one of the comparability edges forces the orientation of the other
comparability edge. In Figure 4.3 the oriented edge in (I) forces the orientation of the

12 S. P. FEKETE, E. KÖHLER, AND J. TEICH

second edge as shown in (I’), similarly for (II) and (II’). Because this configuration
corresponds to an partially oriented induced path on three vertices, a P3 in Gi, we
call this arrangement a P3 implication.

The second configuration (shown in the right part of the figure) consists of two
directed comparability edges (v1, v2), (v2, v3). In this case we know that edge {v1, v3}
must also be a comparability edge, with an orientation of (v1, v3). Because this config-
uration arises directly from transitivity in Gi, we call this arrangement a transitivity
implication.

Clearly, any implication arising from one of the above configurations can induce
further implications.

In particular, when considering only sequences of P3 implications, we get a parti-
tion of comparability edges into P3 implication classes that will be used in more detail
in Section 5. Two comparability edges are in the same P3 implication class, iff there
is a sequence of P3 implications, such that orienting one edge forces the orientation of
the other edge. It is not hard to see that the P3 implication classes form a partition of
the comparability edges, because we are dealing with an equivalence relation. For an
example, consider the arrangement in Figure 4.2. Here, all three comparability edges
{v1, v2}, {v2, v3}, and {v3, v4} are in the same P3 implication class. Now the orienta-
tion of (v1, v2) implies the orientation (v3, v2), which in turn implies the orientation
(v3, v4), contradicting the orientation of {v3, v4} in the given partial order P .

We call a violation of a P3 implication a P3 conflict.

As the example in Figure 4.4 shows, only excluding P3 conflicts when recursively
carrying out P3 implications does not suffice to guarantee the existence of a feasible
orientation: Working through the queue of P3 implications, we end up with a directed
cycle, which violates a transitivity implication.

(a) (b) (c)

Figure 4.4. (a) A graph Gi with a partial order formed by three directed edges; (b) there are
three P3 implication classes that each have one directed arc; (c) carrying out P3 implications creates
directed cycles, i.e., transitivity conflicts.

We call a violation of a transitivity implication a transitivity conflict.

Summarizing, we have the following necessary conditions for the existence of a
transitive orientation that extends a given partial order P :

D1: Any P3 implication can be carried out without a conflict.
D2: Any transitivity implication can be carried out without a conflict.

These necessary conditions are also sufficient:

HIGHER-DIMENSIONAL PACKING WITH ORDER CONSTRAINTS 13

Theorem 4.1. Let P = (V,<) be a partial order with arc set AP that is contained
in the edge set E of a given comparability graph G = (V,E). AP can be extended to a
transitive orientation of G, iff all arising P3 implications and transitivity implications
can be carried out without creating a P3 conflict or a transitivity conflict.

A full proof and further mathematical details are described in the following Sec-
tion 5. This extends previous work by Gallai [13], who extensively studied implication
classes of comparability graphs. See Kelly [19], Möhring [25] for helpful surveys on
this topic, and Krämer [22] for an application in scheduling theory.

5. Extending Partial Orientations.

Modular decomposition. The concept of modular decomposition of a graph was
first introduced by Gallai [13] for studying comparability graphs. This powerful de-
composition scheme has a variety of applications in algorithmic graph theory; for
further material on this concept and its application the interested reader is referred
to [19, 26].

A module of a graph G = (V,E) is a vertex set M ⊆ V such that each vertex
v ∈ V \ M is either adjacent to all vertices or to no vertex of M in G. (Intuitively
speaking, all vertices of a module “look the same” to the other vertices of the graph.)
A module is called trivial if |M | ≤ 1 or M = V . A graph G is called prime if
it contains only trivial modules. Using the concept of modules one can define a
decomposition scheme for general graphs by decomposing it recursively into subsets,
each of which is a module of G, stopping when all sets are singletons. First of all,
observe that every connected component of a given graph G forms a module. It is
not hard to see that also every co-connected component of G is a module. If both
G and its complement are connected then the decomposition needs a further idea.
Consider the graph in Figure 5.1. Obviously it is connected and co-connected and has
a huge number of non-trivial modules. However, if one identifies the maximal proper
submodules of G, i.e., those modules M that are inclusion-maximal modules of G with
M 6= V , then one obtains a partition of the vertex set. The corresponding modules
of the example G are M1 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, M2 = {20}, M3 = {10, 11},
M4 = {12, 13, 14, 15, 16, 17, 18, 19}.

Gallai [13] showed that any graph G has a particular decomposition (the so-called
canonical decomposition) of its vertex set into a set of modules with a variety of nice
properties. He observed that any graph G is either of parallel type, i.e., G is not
connected; or G is of series type, i.e., G is not connected, or G is of prime type, i.e.,
G and G are connected. In the first case the canonical decomposition is defined by
the set of connected components; in the second case the canonical decomposition is
given by the connected components of G; finally, for prime-type graphs, the canonical
decomposition is given by decomposing G into its maximal proper submodules. Gallai
also showed that this decomposition is unique.

This recursive decomposition defines a decomposition tree T (G) for a given graph
G in a very natural way: Create a root vertex of T (G) for the trivial module G itself.
Label it series, parallel, or prime, depending on the type of G. For each non-singleton
module of the canonical decomposition of G create a tree vertex, labeled as series-,
parallel-, or prime-type node, depending on the type of the module, and make it a
child of the vertex corresponding to G; for each singleton module add a tree-vertex
labeled with the corresponding singleton. Now proceed recursively for each subgraph
corresponding to a non-trivial module in the decomposition tree, until all leaves of the
tree are labeled with singletons. Consequently, the leaves of the tree correspond to
the vertices of the graph, while all internal vertices correspond to non-trivial modules

14 S. P. FEKETE, E. KÖHLER, AND J. TEICH

0 1

2 3 4 5

6

7

8

9

10 11

12 13

14

1516

17 18 19

20

Figure 5.1. An example graph G.

of the canonical decomposition of the corresponding parent vertex in T (G). See
Figure 5.2 for the decomposition tree of our example.

prime

parallel 20 parallel prime

10 11
parallel 12 13 series 15 16

series series

0 1

prime

6 7 8 9
17 18 14 19

2 3 4 5

Figure 5.2. A modular decomposition tree for the graph G shown in Figure 5.1.

The decomposition graph G# of a graph G is the quotient of G by the canonical
decomposition into the set of modules {A1, . . . , Aq}, i.e., V (G#) = {A1, . . . , Aq}, and
distinct vertices Ai and Aj are joined by an edge in G# iff there is an AiAj-edge in G.

HIGHER-DIMENSIONAL PACKING WITH ORDER CONSTRAINTS 15

In the following we will look at the decomposition graphs corresponding to internal
vertices of T (G) and refer to them as the decomposition graphs of T .

In our example, the decomposition graph G# of G, i.e., to the root node of T (G),
is a path on four vertices, given by

G# = ({M1,M2,M3,M4}, {{M1,M2}, {M2,M3}, {M3,M4}}).

Modular decomposition and transitive orientations. An important property of the
modular decomposition is its close relationship to the concept of P3 implication classes.
Gallai observed the following properties of P3 implication classes with respect to the
modular decomposition:

Proposition 5.1 (Gallai [13]). Let G = (V,E) be an undirected graph.

1) If G is not connected and G1, . . . , Gq (q ≥ 2) are the components of G, then the
P3 implication classes of G1, . . . , Gq are exactly the P3 implication classes of G.

2) If G is not connected (so that G is connected), G1, . . . , Gq (q ≥ 2) are the com-
ponents of G, and Ai = V (Gi), then Ai and Aj are completely connected to each
other whenever 1 ≤ i < j ≤ q. Moreover, for all such i and j, the set of AiAj-
edges form an P3 implication class Eij of G. The P3 implication classes of G
that are distinct from any Eij are exactly the P3 implication classes of the graphs
Gi = G[Ai] (i = 1, . . . , q).

3) If G and G are both connected and have more than one vertex, and the canonical
decomposition of G is given by {A1, . . . , Aq}, then we have
a) If there is one edge between Ai and Aj (1 ≤ i < j ≤ q), then all edges between

Ai and Aj are in G.
b) The set of all edges of G that join different Ais forms a single P3 implication

class C of G. Every vertex of G is incident with some edge of C, (i.e., V (C) =
V (G)).

c) The P3 implication classes of G that are distinct from C are exactly the P3

implication classes of the graphs Gi = G[Ai] (1 ≤ i ≤ q).

This strong relationship between P3 implication classes and the modules in the
canonical decomposition of a given graph is a powerful tool for studying graphs hav-
ing a transitive orientation. Note that the fastest known algorithms for recognizing
comparability graphs make extensively use of this relationship. Gallai used the above
properties (among others) for proving the following theorem.

Theorem 5.2 (Gallai [13]). Let G be a non-empty graph, let T = T (G) be the
tree decomposition of G, and let H be a vertex set corresponding to a node of T .

1) If G is transitively oriented, and A and B are descendents of H in T , then every
A,B-edge of G is oriented in the same direction (to or from A). Therefore, H#

receives an induced transitive orientation.
2) Conversely, assuming that H# is transitively orientable for each H ∈ T , one

can choose an arbitrary transitive orientation of each H# and induce a transitive
orientation of G by orienting all A,B-edges (for A and B descendents of H in T)
in the same direction that {A,B} is oriented in H#.

It is straightforward to draw the following helpful corollaries from this theorem:

Corollary 5.3. A graph G is a comparability graph if and only if every decom-
position graph in the tree decomposition of G is a comparability graph.

16 S. P. FEKETE, E. KÖHLER, AND J. TEICH

Corollary 5.4. Let G be a comparability graph and T its tree decomposition.
Assigning to each of the decomposition graphs of T a transitive orientation indepen-
dently results in a transitive orientation of G.

Furthermore, if only a partial orientation of G is given and we are interested
in extending this orientation to a transitive orientation of G, we can formulate the
following lemma.

Lemma 5.5. Let G be a comparability graph and T its tree decomposition. Fur-
thermore, let P be a partial orientation of G, assigning orientations to some, but not
all P3 implication classes of G. P is extendible to a transitive orientation of G if and
only if for each decomposition graph H# of T the orientation induced on H# by P is
extendible to a transitive orientation on H#.

Proof: Follows immediately from Theorem 5.2 (2). ✷

Now we are ready to prove Theorem 4.1: ConditionsD1 andD2 are also sufficient.
Proof of Theorem 4.1:. Suppose there is a transitive orientation F of G that

contains P . Because F is a transitive orientation, all arcs implied by P3 or transitivity
implications are contained in F . Furthermore, there cannot be any P3 or transitivity
conflict in F , again because F is a transitive orientation. Thus F shows that all
arising P3 and transitivity implications can be carried out without creating a P3 or
transitivity conflict.

Suppose now that D1 and D2 are satisfied, i.e., there is a directed graph F
consisting of all arcs of P together with all orientations of edges of G that are implied
by a sequence of P3 and transitivity implications of arcs of P . In other words, F
contains all arcs that are forced by P3 or transitivity implications together with all
their implied arcs; i.e., all arcs that are forced by arcs of F are also contained in F .
We show that F can be extended to a transitive orientation of G.

First observe that, by assumption, there cannot be a P3 or transitivity conflict in
F . In particular, F is an orientation of edges of G and for each P3 implication class
C of G that has at least one edge that is oriented in F , all edges of C are oriented
in F and this orientation is conflict-free. By Corollary 5.4, every single conflict-free
oriented P3 implication class of G by itself is extendible to a transitive orientation of
G.

Now let T be the decomposition tree of G and consider the decomposition graphs
corresponding to T . By the above observation, the orientation of an P3 implication
class C in F implies an orientation of the edge(s) corresponding to this P3 implication
class in the decomposition graphs of T . More precisely, by Observation 5.1 (2), for
every series-type node H of T each edge e = {AB} of H# corresponds exactly to
one P3 implication class Ce of G. If Ce is oriented conflict-free in F , this orientation
directly induces an orientation of e (see Theorem 5.2). For a prime-type node H
the set of edges joining different Ais forms exactly one P3 implication class CE of G
(see Observation 5.1 (3)). Again, if CE is oriented conflict-free in F , this orientation
immediately implies an orientation on H#.

All we have to show now is that for each decomposition graph H# of T , the
partial orientation implied by F can be extended to a transitive orientation of H#.
Then, by Corollary 5.4, the implied orientation of G is transitive.

By Corollary 5.4, a parallel-type node of T cannot create a contradiction to
transitivity—it does not contain any edges.

Also a prime-type node of T cannot create a contradiction: All of its edges are
contained in only one P3 implication class and, because all P3 implication classes of

HIGHER-DIMENSIONAL PACKING WITH ORDER CONSTRAINTS 17

G contained in F are oriented conflict-free, the corresponding orientation induced by
F on this single P3 implication class has to be transitive.

This leaves the case of series-type nodes. Suppose there is a series-type node
H of T with decomposition graph H#, for which the partial orientation implied by
F cannot be extended to a transitive orientation of H#. Then we claim that this
partial orientation has to be cyclic: By definition for each series-type node H of T the
decomposition graph H# is a complete graph and every acyclic partial orientation of
a complete graph can be extended to a transitive orientation of this complete graph by
taking any topological ordering of the vertices that agrees with the partial orientation.
Hence, the partial orientation on H# has to contain a directed cycle.

However, by the definition of T and the implied orientation ofH# by F , a directed
cycle in H# immediately implies a cyclically oriented cycle in F . Furthermore, with
every consecutive pair of oriented edges (x, y), (y, z) of this cycle also the oriented
edge (x, z) (which is implied by transitivity) has to be contained in F . Iterating this
argument results in an cyclically oriented triangle in F , which is a transitivity conflict.
This contradicts our assumption that there are no transitivity conflicts. ✷

6. Computational Experiments.

6.1. Solving Problems with Precedence Constraints. We start by fixing
for all arcs (u, v) ∈ AP the edge {u, v} as an edge in the comparability graph Gi,
and we also fix its orientation to be (u, v). In addition to the tests for enforcing the
conditions for unoriented packing classes (C1, C2, C3), we employ the implications
suggested by conditions D1 and D2. For this purpose we check directed edges in Gi

for being part of a triangle that gives rise to either implication. Any newly oriented
edge in Gi gets added to a queue of unprocessed edges. Like for packing classes, we
can again get cascades of fixed edge orientations. If we get an orientation conflict
or a cycle conflict, we can abandon the search on this tree node. The correctness of
the overall algorithm follows from Theorem 4.1; in particular, the theorem guarantees
that we can carry out implications in an arbitrary order. In the following we present
our results for different types of instances: The video-codec benchmark described in
Section 6.3 arises from an actual application to FPGAs. In Section 6.4 we give a
number of results arising from different geometric packing problems.

Our code was implemented in C++ and was run on a SUN Ultra 10 with 333
MHz.

The first example is a numerical method for solving a differential equation (DE)
with 11 nodes. The node operations are either multiplications or ALU-type opera-
tions. In a second example, a video-codec using the H.261 norm is optimized. These
examples are meant to demonstrate the general applicability of our method for prac-
tical problems; given other problem instances, or additional constraints, we can easily
adapt our algorithm.

6.2. DE Benchmark. Let the module library contain two hardware modules
(box types): an array-multiplier and a module of type ALU that realizes all other
node operations (comparison, addition, subtraction). For a word-length of n=16 bits,
we assume a module geometry of 16 x 1 cells for the ALU module, and of 16 x 16
cells for the multiplier. Furthermore, the execution time of an ALU node takes one
clock cycle, while a multiplication requires 2 clock cycles on our target chip.

The dependency graph is shown in Fig. 1.3. First, we compute the transitive
closure of all data dependencies to allow our algorithm to find contradictions to feasible
packings already in the input.

18 S. P. FEKETE, E. KÖHLER, AND J. TEICH

Next, we solve several instances of the BMP problem for different values of ht

reported in Table 6.1. Each ht listed yields a test case for which the container size
is minimized (MinA), assuming hx = hy. Also shown is the CPU-time needed for
finding a solution.

Table 6.1
Computational results for optimizing reconfigurations for the DE benchmark.

test container sizes

ht hx hy CPU-time

1 6 32 32 55.76 s
2 13 17 17 0.04 s
3 14 16 16 0.03 s

The reported optimization times were measured as the CPU-times on a SUN-Ultra
10 with 333 MHz.

For the DE benchmark, it turns out that a chip of 32 x 32 freely programmable
cells is necessary to obtain a latency between 6 and 12 clock cycles. As the longest
path in the graph has length 6, there does not exist any faster schedule. For 12 and
13 cycles, a chip of size 17 x 17 is necessary, for ht ≥ 14, a chip of size 16 x 16 cells
is sufficient, which is the smallest chip possible to implement the problem, as one
multiplication by itself uses the full chip.

The SPP is solved in a similar way. The tradeoff between area size and necessary
time is visualized in Fig. 6.1, in which the Pareto-optimal points are shown. The
figure also shows the Pareto points for the case where no partial order needs to be
satisfied (shown dashed).

12
13
14

6
4
2

h

9664321716

t

xh = hy

Figure 6.1. Pareto-optimal points for minimizing chip area and processing time for the DE
benchmark. (a) Including partial order constraints (solid lines). (b) Without consideration of partial
order constraints (dashed lines).

6.3. Video-Codec Benchmark. Figure 6.2 shows a block diagram of the op-
eration of a hybrid image sequence coder/decoder that arises from the FPGA applica-
tion. The purpose of the coder is to compress video images using the H.261 standard.
In this device, transformative and predictive coding techniques are unified. The com-
pression factor can be increased by a predictive method for motion estimates: blocks
inside a frame are predicted from blocks of previous images.

The blocks of the operational description shown in the figure possess the granu-
larity of more complex functions. However, this description contains no information
corresponding to timing, architecture, and mapping of blocks onto an architecture.

HIGHER-DIMENSIONAL PACKING WITH ORDER CONSTRAINTS 19

+

RLC

motion vector

loop frame memory

Q

motion

-1

motion

DCT

-1

estimation

filter

- prediction errorcurrent frame
a[i]

g[i]
compensation

previous frame
f[i]

DCT Q

k[i]
h[i]

e[i]

c[i]b[i]

d[i]

predicted frame

Figure 6.2. Block diagram of a video-codec (H.261).

The resulting problem graph contains a subgraph for the coder and one subgraph for
the decoder.

For realizing the device we have a library of three different modules. One is a
simple processor core with a (normalized) area requirement of 625 units (25 x 25 cells,
normalized to other modules in order to obtain a coarser grid) called PUM, denoted
by “P” in Table 6.2. Secondly, there are two dedicated special-purpose modules: a
block matching module (BMM), “B” in Table 6.2) that is used for motion estimation
and requires 64 x 64 = 4096 cells; and a module DCTM (“D” in Table 6.2) for
computing DCT/IDCT-computations, requiring 16 x 16 = 256 cells. Again, the BMP
and the CSPP were considered, and the makespan was minimized for different latency
constraints. Here there is only one Pareto-point found, shown in Table 6.2.

Table 6.2
Optimizing reconfigurations for the Video-Codec.

test container sizes

ht hx hy CPU-time

1 59 64 64 24.87 s

6.4. Geometric Instances. We describe computational results for two types
of two-dimensional objects. See Table 6.3 for an overview. The first class of instances
was constructed from a particularly difficult random instance of the 2-dimensional
knapsack problem (see [8]). Results are given for order constraints of increasing size.
In order to give a better idea of the computational difficulty, we give separate running
times for finding an optimal feasible solution, and for proving that this solution is
best possible.

Table 6.3
Optimal packing with order constraints.

instance optimal upper lower
ht hx bound bound

okp17-0 169 100 7.29 s 179 s
okp17-1 172 100 6.73 s 1102 s
okp17-2 182 100 5.39 s 330 s
okp17-3 184 100 236 s 553 s
okp17-4 245 100 0.17 s 0.01 s

square21-no 112 112 84.28 s 0.01 s
square21-mat 117 112 15.12 s 277 s
square21-tri 125 112 107 s 571 s

square21-2mat [118,120] [118,120] 346 s 476 s

20 S. P. FEKETE, E. KÖHLER, AND J. TEICH

See Table 6.3 for the exact sizes of the 17 rectangles involved, and Figure 6.3 for
the geometric layout of optimal packings. For easier reference, the boxes in the okp17
instances are labeled 1-17 in the given order.

The second class of instances arises from the well-known tiling of a 112x112 square
by 21 squares of different sizes. Again we have added order constraints of various sizes.
For the instance square21-2mat (with order constraints in two dimensions), we could
not close the gap between upper and lower bound. For this instance we report the
running times for achieving the best known bounds. Layouts of best solutions are
shown in Figure 6.4.

Table 6.4
The problem instances okp17.

okp17: base width of container = 100, number of boxes = 17
sizes = [(8,81),(5,76),(42,19),(6,80),(41,48),(6,86),(58,20),(99,3),(9,52),

(100,14),(7,53),(24,54),(23,77),(42,32),(17,30),(11,90),(26,65)]

okp17-0: no order constraints

okp17-1: 11→8, 11→16

okp17-2: 11→8, 11→16, 8→16

okp17-3: 11→8, 11→16, 8→16, 8→17, 11→7, 16→7

okp17-4: 11→8, 11→16, 8→16, 8→17, 11→7, 16→7, 17→16

Table 6.5
The problem instances square21.

square21: base width of container = 112, number of boxes = 21
sizes = [(50,50),(42,42),(37,37),(35,35),(33,33),(29,29),(27,27),(25,25),

(24,24),(19,19),(18,18),(17,17),(16,16),(15,15),(11,11),(9,9),(8,8),
(7,7),(6,6),(4,4),(2,2)]

square21-0: no order constraints

square21-mat: 2→4, 6→7, 8→9, 11→15, 16→17, 18→19, 24→25, 27→29,
33→35, 37→42, 2→50, 50→4

square21-tri: 2→15, 15→17, 2→27, 4→16, 16→29, 4→29, 6→17, 17→33,
6→33, 7→18, 18→35, 7→35, 8→19, 19→37, 8→37, 9→24,
24→42, 9→42, 11→25, 25→50, 11→50

square21-2mat: x-constraints:
2→19, 6→25, 8→29, 11→35, 16→42, 18→4, 24→7, 27→9,
33→15, 37→17, 50→4, 18→50
y-constraints:
2→4, 6→7, 8→9, 11→15, 16→17, 18→19, 24→25, 27→29,
33→35, 37→42, 2→50, 50→4

Acknowledgments. We are extremely grateful to Jörg Schepers for letting us
continue the work with the packing code that he started as part of his thesis, and for
several helpful hints, despite of his departure to industry. We thank Nicole Megow for
helpful comments, Marc Uetz for a useful discussion on resource-constrained schedul-
ing, and an anonymous referee for a number of helpful suggestions that helped to
improve the presentation of this paper.

HIGHER-DIMENSIONAL PACKING WITH ORDER CONSTRAINTS 21

6

5

14

12
13

16

15

1

17

4

10

9

7

2

3

11

8

16

8

5

17

7

3

13

9

10

6

14

15

12 11

4
2

1

11

8 16

10

16

4

1

6

8

17

13

1211

3

14

5

15

9

7

2

16

8

11

10

15

9

13

12

5

14

17

11

8

3

7

16
6

4
2

1

71617

11

8

Figure 6.3. (a) An optimal packing of okp17-0 of height 169; (b) an optimal packing of okp17-1
of height 172; (c) an optimal packing of okp17-2 of height 182; (d) An optimal packing of okp17-3
of height 184.

22 S. P. FEKETE, E. KÖHLER, AND J. TEICH

15

17

24

35

50

18

42
6

8

16

29

9

33

7

11

4

37

25

27
19

2

25

24

42

373327

2919

18

17

16

15

11

 9 7

 6

 4

 2

50

 8

35

29

42

15

19

11

27

7

24

37
17

35

18
8 16

6

25

9

50

4

2

33

17 19 2416 2515

27 29 33 37 42 50

18

 11 9 8 7 6 4 2

35

25

17

19

16

24

15

29

11

33

9

18

8

37

7

42

2

35

4

27

6

50

17

50

19 29

27 3316 37

42

24

2515

11

35 9

 8

 7

 6

 4

 2 18

50

17
15

 9
 7

4216

3511

29 8

25 6

19 2

 4

27
33

37
24

18

42
15

37

17

35

33

11

50

18

2

25

9
24

29

8

7

6

416

19

27

Figure 6.4. (a) An optimal packing of square21-0 of height 112; (b) an optimal packing of
square21-mat of height 117; (c) an optimal packing of square21-tri of height 125; (d) a packing of
square21-2mat of size 120x120.

REFERENCES

[1] Atmel, AT6000 FPGA configuration guide, Atmel Inc.
[2] J. E. Beasley, An exact two-dimensional non-guillotine cutting tree search procedure, Opera-

tions Research, 33 (1985), pp. 49–64.
[3] , OR-Library: distributing test problems by electronic mail, Journal of the Operations

Research Society, 41 (1990), pp. 1069–1072.
[4] S. P. Fekete, E. Köhler, and J. Teich, Extending partial suborders, in Electronic Notes

in Discrete Mathematics, J. H. Hajo Broersma, Ulrich Faigle and S. Pickl, eds., vol. 8,
Elsevier Science Publishers, 2001.

[5] S. P. Fekete, E. Köhler, and J. Teich, Multi-dimensional packing with order constraints,
in Proceedings 7th International Workshop on Algorithms and Data Structures, vol. 2125
of Lecture Notes in Computer Science, Springer-Verlag, 2001, pp. 300–312.

[6] S. P. Fekete, E. Köhler, and J. Teich, Optimal FPGA module placement with temporal
precedence constraints, in Proc. DATE 2001, Design, Automation and Test in Europe,
Computer Society Press, 2001, pp. 658–665.

HIGHER-DIMENSIONAL PACKING WITH ORDER CONSTRAINTS 23

[7] S. P. Fekete and J. Schepers, An exact algorithm for higher-dimensional orthogonal packing,
Operations Research. To appear.

[8] S. P. Fekete and J. Schepers, A new exact algorithm for general orthogonal d-dimensional
knapsack problems, in Algorithms – ESA ’97, vol. 1284, Springer Lecture Notes in Computer
Science, 1997, pp. 144–156.

[9] , New classes of lower bounds for bin packing problems, in Integer Programming and
Combinatorial Optimization (IPCO’98), vol. 1412, Springer Lecture Notes in Computer
Science, 1998, pp. 257–270.

[10] , A combinatorial characterization of higher-dimensional orthogonal packing, Mathemat-
ics of Operations Research, 29 (2004), pp. 353–368.

[11] S. P. Fekete and J. Schepers, A general framework for bounds for higher-dimensional orthog-
onal packing problems, Mathematical Methods of Operations Research, 60 (2004), pp. 311–
329.

[12] P. C. Fishburn, Interval Orders and Interval Graphs, John Wiley & Sons, New York, 1985.
[13] T. Gallai, Transitiv orientierbare Graphen, Acta Math. Acd. Sci. Hungar., 18 (1967), pp. 25–

66.
[14] A. Ghouilà-Houri, Caractérization des graphes non orientés dont on peut orienter les arrêtes

de manière à obtenir le graphe d’une relation d’ordre, C.R. Acad. Sci. Paris, 254 (1962),
pp. 1370–1371.

[15] P. C. Gilmore and A. J. Hoffmann, A characterization of comparability graphs and of in-
terval graphs, Canadian Journal of Mathematics, 16 (1964), pp. 539–548.

[16] M. C. Golumbic, Algorithmic graph theory and perfect graphs, Academic Press, New York,
1980.

[17] E. Hadjiconstantinou and N. Christofides, An exact algorithm for general, orthogonal,
two-dimensional knapsack problems, European Journal of Operations Research, 83 (1995),
pp. 39–56.

[18] C.-H. Huang and J.-Y. Juang, A partial compaction scheme for processor allocation in hy-
percube multiprocessors, in Proc. of 1990 Int. Conf. on Parallel Proc., 1990, pp. 211–217.

[19] D. Kelly, Comparability graphs, in Graphs and Order, I. Rival, ed., D. Reidel Publishing
Company, Dordrecht, 1985, pp. 3–40.

[20] N. Korte and R. Möhring, Transitive orientation of graphs with side constraints, in Pro-
ceedings of WG’85, H. Noltemeier, ed., Trauner Verlag, 1985, pp. 143–160.

[21] , An incremental linear–time algorithm for recognizing interval graphs, Siam Journal of
Computing, 18 (1989), pp. 68–81.

[22] A. Krämer, Scheduling multiprocessor tasks on dedicated processors. Doctoral thesis, Fach-
bereich Mathematik und Informatik, Universität Osnabrück, 1995.

[23] E. L. Lawler, J. K. Lenstra, A. H. G. Rinooy Kan, and D. B. Shmoys, Sequencing and
scheduling: Algorithms and complexity, in Logistics of Production and Inventory, S. C.
Graves, A. H. G. Rinnooy Kan, and P. H. Zipkin, eds., Handbooks in Operations Research
and Management, vol. 4, North–Holland, Amsterdam, 1993, pp. 445–522.

[24] M. Luby, J. Naor, and A. Orda, Tight bounds for dynamic storage allocation, in Proc. 15th
ACM-SIAM Sympos. Discrete Algorithms, 1994, pp. 724–732.

[25] R. H. Möhring, Algorithmic aspects of comparability graphs and interval graphs, in Graphs
and Order, I. Rival, ed., D. Reidel Publishing Company, Dordrecht, 1985, pp. 41–101.

[26] , Algorithmic aspects of the substitution decomposition in optimization over relations,
set systems, and Boolean functions, Annals of Oper. Res., 4 (1985/6), pp. 195–225.

[27] R. H. Möhring, A. S. Schulz, F. Stork, and M. Uetz, Solving project scheduling problems
by minimum cut computations, Management Science, 49 (2003), pp. 330–350.

[28] M. Padberg, Packing small boxes into a big box, Math. Meth. of Op. Res., 52 (2000), pp. 1–21.
[29] J. Schepers, Exakte Algorithmen für orthogonale Packungsprobleme, Tech. Rep. 97-302, Doc-

toral thesis, Universität Köln, 1997.
[30] J. Teich, S. P. Fekete, and J. Schepers, Compile-time optimization of dynamic hardware

reconfigurations, in Proc. Int. Conf. on Parallel and Distributed Processing Techniques and
Applications (PDPTA’99), Las Vegas, USA, June 1999, pp. 1097–1103.

[31] J. Teich, S. P. Fekete, and J. Schepers, Optimal hardware reconfiguration techniques, Jour-
nal of Supercomputing, 19 (2001), pp. 57–75.

[32] J. Weglarz, Project Scheduling. Recent Models, Algorithms and Applications, Kluwers Aca-
demic Publishers, Norwell, MA, USA, 1999.

[33] Xilinx, XC6200 field programmable gate arrays, tech. rep., Xilinx, Inc., October 1996.

