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Abstract. We analytically investigate a wide cluster solution and show that it is not admitted
in some of the traffic flow models in the literature. For those traffic flow models that admit the wide
cluster solution, the relationship between two important control parameters and the critical densities
that divide an equilibrium solution into stable and unstable regions is thoroughly discussed in detail.
We find that such wide clusters exist with a free traffic density in an unstable region, and with one
or three critical densities. These results are different from the cases in the well-known higher-order
traffic flow models of Payne and Whitham [H. J. Payne, “Models of freeway traffic and control,” in
Mathematical Models of Public Systems, A. G. Bekey, ed., Simulation Council Proc. Ser. 1, La Jolla,
CA, 1971, pp. 51–61], [G. B. Whitham, Linear and Nonlinear Waves, John Wiley and Sons, New
York, 1974], Kühne [R. D. Kühne, “Macroscopic freeway model for dense traffic-stop-start waves
and incident detection,” in Proceedings of the 9th International Symposium on Transportation and
Traffic Theory, J. Volmuller and R. Hamerslag, eds., VNU Science Press, Utrecht, 1984, pp. 21–42],
and Kerner and Konhäuser [B. S. Kerner and P. Konhäuser, Phys. Rev. E (3), 50 (1994), pp. 54–83].
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1. Introduction. Lighthill and Whitham [14] and Richards [17] independently
proposed a hydrodynamic approach to study the traffic flow problems on a homoge-
neous highway, which is known in the literature as the first-order LWR model. The
model has recently been extended to multilane [4] and multiclass models [3, 9, 10,
25, 31, 30, 32]. To embody the important nonlinear phenomena in traffic flow prob-
lems, some classical higher-order traffic flow models were developed [13, 12, 15, 23]
and are characterized by their capability to reproduce the stop-and-go waves that
are frequently observed on the highways. The formation of clusters is related to the
instability of congested traffic, of which the development into free traffic and jams is
typical of phase transitions and hystereses [12, 29, 28]. However, Daganzo [5] crit-
icized the “isotropic” nature of these models, following which a stream of so-called
anisotropic higher-order models [1, 8, 11, 19, 26, 27] was developed.

Recently, an analytical tool that is based on the weak solution theory was pro-
posed to give a full and concise description of a wide cluster solution in higher-order
models. Zhang, Wong, and Dai [33] used the model proposed by Jiang, Wu, and
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WIDE CLUSTER SOLUTION IN TRAFFIC FLOW MODELS 563

Zhu [11] to demonstrate the solution procedure. Zhang and Wong [28] further showed
that two conservation forms of the Payne–Whitham (PW) models [15, 23] have dif-
ferent cluster solutions that are asymptotic to the solutions of the Kühne [13] and
Kerner and Konhäuser (KK) [12] models.

In this paper, we thoroughly investigate the admissibility of a wide cluster solu-
tion for several aforementioned “anisotropic” models, using the technique that was
developed in [33, 28]. The model equations are introduced in section 2. In section 3,
the procedure for solving a wide cluster is briefly discussed. While a criterion is
prescribed as an essential condition, the formulations in [26, 27] are excluded from
further consideration because they do not admit a wide cluster solution (see sec-
tion 3.1). Here, we note that cluster solutions were also derived in Greenberg [6],
Siebel and Mauser [20], and Wilson and Berg [24]. With two control parameters in
the “pressure” p(ρ) = α(ρ/ρm)γ of Aw and Rascle [1], the admissible regions of (γ, α)
for the wide cluster solution are displayed. The regions of (γ, α) that are related to
the stability of an equilibrium solution are also discussed (see section 3.2). It is novel
to find that the free traffic flow (the constant flow with the minimal density) of a wide
cluster solution is not stable in numerous regions, whereas the jam (the flow with the
maximal density in the cluster) together with the whole solution is always stable. In
some of these regions, it is evident that a wide cluster solution is admitted with one
or three critical densities, which are used to divide equilibrium flows into stable and
unstable regions. The results from numerical simulations (see section 4) are in good
agreement with all analytical findings.

2. Model equations. In macroscopic descriptions, vehicles on a highway are
analogous to flows in compressible hydrodynamics [14, 17]. We have, by the mass
conservation,

(1) ρt + qx = 0,

where ρ(x, t) is the density, q(x, t) is the flow, and no off- or on-ramp flows are
considered along the highway. By defining an average speed v = q/ρ, the acceleration
is considered in higher-order models. We write the acceleration of the discussed
“anisotropic” models in the following mutual form:

(2) vt + vvx =
ve(ρ) − v

τ
+ ρp′(ρ)vx,

where p(ρ) is the “pressure” with p′(ρ) > 0, and ve(ρ) is the equilibrium speed-density
relationship with v′e(ρ) < 0. For the derivation of a stable wide cluster, we assume a
nonconvex fundamental diagram qe(ρ) = ρve(ρ). Precisely, q′′e (ρ) < 0 for 0 ≤ ρ < ρI ,
and q′′e (ρ) > 0 for ρI < ρ ≤ ρm, where q′′e (ρI) = 0, and ρm is the jam (maximum)
density. Furthermore, we assume that τ > τ0 for some fixed τ0 > 0, and thus the
relaxation term is bounded. Nevertheless, this model is asymptotic to the LWR model
[14, 17] if we allow τ → 0, which leads to v → ve(ρ); see [16].

It is easy to derive the two characteristic speeds of system (1)–(2): λ1 = v−ρp′(ρ)
and λ2 = v, which are no greater than the motion speed. Therefore, a perturbation
propagates only upstream with respect to the perturbed moving vehicle. This is why
the formulation is classified as “anisotropic.” In contrast, the two characteristic speeds
in the classical models are, respectively, smaller and greater than the traffic speed v,
meaning that the perturbation propagates both upstream and downstream.

Several choices of the function p(ρ) are listed in Table 1, corresponding to different

D
ow

nl
oa

de
d 

03
/2

5/
14

 to
 1

47
.8

.2
04

.1
64

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

564 R.-Y. XU, P. ZHANG, S.-Q. DAI, AND S. C. WONG

Table 1

“Anisotropic” formulations of higher-order traffic flow models, which are distinguished by the
“pressure” p(ρ) or the sound speed c(ρ) = ρp′(ρ), where T (ρ) = tr[1 + E/(1 + ρ)] and constants
c0, E, tr > 0.

Models c(ρ) p(ρ)
Aw and Rascle [1] ρ p′(ρ) p(ρ)
Jiang, Wu, and Zhu [11] c0 c0 ln ρ
Zhang [27] −ρ v′e(ρ) −ve(ρ)

Xue and Dai [26] −ρ tr
T (ρ)

v′e(ρ) − tr
T (ρ)

ve(ρ)

X 

ρ 
ρ = ρ  

ρ = ρ  

B 

A 

upstream front 

downstream front 

^ 

^ 

ρ = ρ  A 

(a) 
ρ 

q 

fundamental diagram 
ρ 

ρ 

ρ 

Α 

C 

B 

^ 

^ 

q 0

(b) 

Fig. 1. Illustration of a wide cluster solution: (a) profile of the density distribution; (b) phase
plot q = q(ρ) in comparison to the fundamental diagram q = qe(ρ).

formulations in [1, 11, 26, 27]. We note that Aw and Rascle [1] contained a more
general model by assuming an increasing function p(ρ), and that the relaxation term
was considered in [16] as an improvement; see also [2, 7] for further development of the
Aw and Rascle model. Similarly, we add such a term to the formulation of Zhang [27];
without the term, it is unlikely to derive a wide cluster solution.

3. Admissibility of a wide cluster solution. The profile of a wide cluster
solution is shown in Figure 1(a). The cluster is expected to move backward with a
constant velocity a < 0, without change in the shape. In other words, we assume a
traveling wave solution ρ(x, t) = ρ(X) and v(x, t) = v(X) with X = x − at. Follow-
ing the procedures in [33, 28], we can show that the downstream front is a smooth
transition layer and the upstream front is a shock wave.

3.1. The downstream and upstream fronts. For the downstream front that
smoothly links a higher density region ρ = ρB to a lower density region ρ = ρA,
ρA < ρB , equations (1) and (2) are applicable. Hence, we replace ρ(x, t) and v(x, t)
with ρ(X) and v(X) in the equations, which yields

(3) q = aρ + q0

and

(4)
dρ

dX
= g(ρ)

qe(ρ) − (aρ + q0)

p′(ρ)ρ2 − q0
,

where the integration constant q0 > 0, and thus the function g(ρ) = ρ2(τq0)
−1 > 0.

Equation (3) suggests a linear relation between the flow q and the density ρ, which
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WIDE CLUSTER SOLUTION IN TRAFFIC FLOW MODELS 565

is represented by a segment AB in Figure 1(b). As we assume that dρ/dX|ρ=ρA
=

dρ/dX|ρ=ρB
= 0 (Figure 1(a)), (4) gives

(5) qe(ρA) = aρA + q0, qe(ρB) = aρB + q0.

This implies that the two constant states ρA and ρB are in equilibrium (see Fig-
ure 1(b)). See [23] for a similar derivation. Let (ρC , qe(ρC)) be the intersection of the
segment AB and the fundamental diagram q = qe(ρ), i.e.,

(6) qe(ρC) = aρC + q0.

It is obvious that the numerator of (4) is positive for ρ ∈ (ρA, ρC) and negative for
ρ ∈ (ρC , ρB) (see Figure 1(b)). Accordingly, a decreasing transition layer (dρ/dX < 0)
is guaranteed if and only if

(7) p′(ρC)ρ2
C − q0 = 0, (p′(ρ)ρ2 − q0)(ρ− ρC) > 0 for ρ �= ρC .

Intuitively, we have q′e(ρC) < a < q′e(ρB); see Figure 1(b). This along with (5)–(7)
gives v′e(ρC)+ p′(ρC) < 0, and v′e(ρB)+ p′(ρB) > 0. By the linear stability conditions
(see section 3.2), the two inequalities imply the following property.

Property 1. For the solvability of a transition layer, (i) ρC must be located in
an unstable region, whereas (ii) ρB must be located in a stable region.

The two formulations attained by choosing p(ρ) = −ve(ρ) in [27] and p(ρ) =
−trve(ρ)/T in [26] (see Table 1) are not able to generate a transition layer, because
equilibria of [27] and [26] can be easily shown to be uniformly stable and unstable,
respectively. This also implies that they are not able to reproduce a wide cluster.
For the choice of p(ρ) = c0 ln ρ in [11] (see Table 1), the detailed discussion on the
solution of a wide cluster was given in [33]. These three models are excluded from the
forthcoming discussion.

We also note that Siebel and Mauser [19, 20, 21] adopted a strictly concave flow-
density relationship qe(ρ) = ρve(ρ) with the “pressure” p(ρ) = −ve(ρ). Although
the convective term of their models resembled the model in Zhang [27], Siebel and
Mauser introduced a coefficient β(ρ, v) in the relaxation term which may change sign
to reflect the interaction or difference between the relaxation time and reaction time
of drivers. This allowed two critical densities (and thus an unstable regime) which
correspond to the roots of the function β(ρ, v). Then a traveling wave solution was
obtained for this novel formulation [20].

In another development, Greenberg [6] derived the traveling wave solutions (clus-
ters) using Lagrangian coordinates, in which the headway s = 1/ρ and the car index
m were taken as solution variables. Conservation across the discontinuous upstream
front was also considered in [6], which in essence was similar to our discussion in what
follows. Here, we remark that some intrinsic relations were implied in the formulations
of Greenberg, Klar, and Rascle [8], Greenberg [6], and Siebel and Mauser [19].

In the forthcoming discussion, we assume that the denominator of (4) is an in-
creasing function of ρ, that is,

(8) (p′(ρ)ρ2)′ ≡ ρ(ρp(ρ))′′ > 0,

which is sufficient to ensure the inequality in (7). Essentially, (8) or the convexity of
the function ρp(ρ) was also assumed in [1, 8, 6, 19, 20, 21].
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566 R.-Y. XU, P. ZHANG, S.-Q. DAI, AND S. C. WONG

A monotonically increasing and smooth connection from ρA to ρB is impossible
at the upstream front according to (3) and (4) and the detailed discussion in [33, 28].
We consider a shock wave with the following conservation form of (2),

(9)
∂ρ(v + p(ρ))

∂t
+

∂ρv(v + p(ρ))

∂x
=

qe(ρ) − q

τ
,

in [1, 16]. It is difficult, if not impossible, to define other conservation forms, except
for that defined in [33] in which c(ρ) = ρp′(ρ) was taken as a constant. We note that
different conservation forms result in different values of the characteristic parameters
for solving a wide cluster [28].

To deal with the assumed shock that is also a traveling wave with the moving
speed a < 0, we apply the Rankine–Hugoniot conditions to the conservation system
of (1) and (9). This gives two equalities: one is implied in (5) and the other reads

(10) a =
qe(ρB)(ve(ρB) + p(ρB)) − qe(ρA)(ve(ρA) + p(ρA))

(qe(ρB) + ρBp(ρB)) − (qe(ρA) + ρAp(ρA))
,

where the constant state ρ = ρA (together with ρ = ρB) can easily be verified to be
in equilibrium by (1) and (9). By (5)–(7) and (10) we have five independent algebraic
equations to solve for five unknowns: a, ρA, ρB , ρC , and q0. The solution of this
algebraic equation system determines the assumed wide cluster solution.

3.2. Control parameters and solvability of the wide cluster. The speed-
density relationship is taken as

(11) ve(ρ) = vf ((1 + e12.5(ρ/ρm−0.25))−1 − (1 + e12.5×0.75)−1),

where vf is the free-flow speed, ρm is the jam density, and the point of inflexion of
the fundamental diagram qe(ρ) = ρve(ρ) is located at ρI ≈ 0.333598. Equation (11)
is similar to that in [12] and was also applied in [33]. We take the “pressure” as

(12) p(ρ) = α(ρ/ρm)γ , α, γ > 0.

Let (ρ0, qe(ρ0)) be an equilibrium point in the fundamental diagram. The lin-
ear stability conditions for a constant solution ρ = ρ0 can then be easily determined
as λ1(ρ0) ≤ q′e(ρ0) ≤ λ2(ρ0), which implies that the kinematic wave speed lies be-
tween the first and second characteristic speeds. See Whitham [23] for the relevant
discussion. The inequalities are equivalent to

(13) H(ρ0) ≡ −1 − v′e(ρ0)

p′(ρ0)
≤ 0,

because it is assumed that p′(ρ0) > 0, and the condition of a single point at the
boundary with ρ0 = 0 is excluded. Taking the equality of (13) and with two control
parameters α and γ, we indicate the solvability of the critical densities and the re-
sultant stable and unstable regions. Hereafter, we denote dimensionless variables by
placing a bar over them, such that a density is scaled by ρm and a speed (including
the parameter α) is scaled by vf . Using the dimensionless variables, we note that
these critical densities and all characteristic parameters of the cluster solution depend
on γ and ᾱ only.

For the case γ > 1, say γ = 2 as is applied in the construction of Figure 2(a),
monotone changes of the function H(ρ0) are divided into three intervals. This suggests
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⎯ρ
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(a) 0
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⎯ρ ⎯ρc c1 2

H

(b) 0

Fig. 2. Solvability of critical densities and division of stable and unstable regions for an equi-
librium constant solution ρ = ρ0 for (a) γ > 1 and (b) γ ≤ 1.

γ
0.5 1 1.5 2

0

1

2

3

4

5

6

c1

ρ = ρ

c0
A c1

ρ = ρc1 c2

ρ = ρ
a= -0.2

a= -0.1

a=q ( )e’ ρ
I

ρ = ρ -

-

⎯α

B m

Fig. 3. Division of the γ-ᾱ plane for the study of a wide cluster solution. The solution exists
below the curve a = q′e(ρI), and the traveling wave velocity a and the height ρB − ρA decrease when
(γ, ᾱ) approaches the curve. The equilibrium density ρ = ρA of the cluster solution is located in a
stable region only for approximately γ < 0.4 and (γ, ᾱ) in or below the curve ρA = ρc1 .

at most three critical densities, ρc0 , ρc1 , and ρc2 . In this case, say with ᾱ = 7.2 as
in the figure, the three critical densities divide the interval (0, 1] into two stable
intervals, [ρ̄c0 , ρ̄c1 ] and [ρ̄c2 , 1], and two unstable intervals, (0, ρ̄c0) and (ρ̄c1 , ρ̄c2). As
ᾱ decreases (with reference to another curve H(ρ̄0) for ᾱ = 7.1 < 7.2), ρ̄c1 and ρ̄c0
become identical for some ᾱ ∈ (7.1, 7.2). This is to simultaneously have H(ρc0) = 0
and H ′(ρc0) = 0, which determine a curve that is denoted by ρc1 = ρc0 in the
γ-ᾱ coordinate plane (Figure 3). In the region that is below the curve ρc1 = ρc0
(Figure 3), the critical densities ρ̄c0 and ρ̄c1 together with the interval [ρ̄c0 , ρ̄c1 ] must
vanish because ᾱ becomes smaller; see also the reference curve H(ρ̄0) for ᾱ = 7.1 < 7.2
in Figure 2(a). In this case, we have an unstable interval (0, ρ̄c2) and a stable interval
[ρ̄c2 , 1]. Similarly, we can draw a curve ρc1 = ρc2 in Figure 3, which is determined by
setting H(ρc2) = 0 and H ′(ρc2) = 0. The critical densities ρ̄c1 and ρ̄c2 along with the
interval (ρ̄c1 , ρ̄c2) vanish for (γ, ᾱ) in the region that is above this curve (Figure 3).
See also the reference curve H(ρ̄0) for ᾱ = 7.3 > 7.2 in Figure 2(a). In this case, we
have an unstable interval (0, ρ̄c0) and a stable interval [ρ̄c0 , 1].
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For the case γ̄ ≤ 1, monotone changes of the function H(ρ0) are divided into two
intervals. This suggests at most two critical densities ρ̄c1 and ρ̄c2 . We define the same
curve ρc1 = ρc2 as previously discussed, and the curve goes smoothly in the whole
region for γ > 1 and γ ≤ 1 (Figure 3). However, in the region that is above the curve
ρc1 = ρc2 and for γ ≤ 1, we have an overall stable interval (0, 1].

We now turn our attention to the solvability and the characteristic parameters of
the discussed wide cluster, which is related to the critical densities and the division
of the stable and unstable intervals through Property 1 and the following discussion.
With two control parameters ᾱ and γ, we note that one equation in addition to (5)–(7)
and (10) determines a curve in the γ-ᾱ coordinate plane implicitly, which is also shown
in Figure 3.

Defining the curve ρB = ρm, we can verify that the region below the curve
ρB = ρm suggests that ρB > ρm, by which the wide cluster solution is not collision-
free. Therefore, this region is not considered in the forthcoming discussion. Further-
more, we define the curve a = q′e(ρI) (≈ −0.542579vf ). By Figure 1(b), it is evident
that the traveling wave speed a reaches its minimum with ρA = ρC = ρB = ρI for
(γ, ᾱ) in this curve. Here, the inequalities

(14) ρA < min(ρC , ρI) < ρB

are assumed for the wide cluster solution because of the nonconvexity of the function
qe(ρ) (cf. Figure 1(b)). According to Property 1, it is implied that ρI is a critical
density in the above limiting solution. Actually, we derive the same curve when
defining ρc2 = ρI . For (γ, ᾱ) that is above this curve (a = q′e(ρI) or ρc2 = ρI), (5)–(7)
and (10) are insolvable. This means that the iteration that is applied to solve these
equations is never convergent under the restriction of (14). On the other hand, (5)–(7)
and (10) are solvable for (γ, ᾱ) that is between the curves ρB = ρm and a = q′e(ρI).
Here, the curve a = q′e(ρI) serves as the other boundary to separate the two regions
in which the wide cluster is, respectively, solvable and insolvable.

Let α increase. Then we find that the traveling wave speed a of the wide cluster
decreases until a reaches its limiting value in the curve a = q′e(ρI). Two reference
curves ā = −0.1 and ā = −0.2 are depicted in Figure 3 to show such a monotonic
decreasing property. By the mass conservation at the discontinuous upstream front, a
decreasing traveling wave speed usually suggests a drastic drop in the height ρB − ρA
of the wide cluster. The critical density ρc2 also decreases in this trend, which implies
that ρc2 > ρI for (γ, ᾱ) below the curve a = q′e(ρI), and ρc2 < ρI for (γ, ᾱ) between
the curves a = q′e(ρI) and ρc1 = ρc2 . This seems to suggest that it is essential that
there exist a critical density that is greater than the inflexion ρI for the solvability
of the wide cluster. On the other hand, it is novel that the wide cluster is insolvable
even though we do have a critical density ρc2 < ρI that is close to ρI .

The foregoing discussion together with Property 1 also suggests the locational
relations between the critical densities and the two characteristic densities ρC and ρB .
That is, ρ = ρC and ρ = ρB (as a constant portion of the wide cluster), respectively,
are located in two adjacent unstable and stable intervals that is separated by ρc2 > ρI .
This fact is also related to the following analytical property.

Property 2. There is at most one critical density in [ρI , ρm].
This property holds simply because a critical density is also the root of the func-

tion ρ2p′(ρ)H(ρ), and (ρ2p′(ρ)H(ρ))′ = −ρ(ρp(ρ))′′ − ρ(ρve(ρ))
′′ < 0 in [ρI , ρm]. For

the solvability of the wide cluster, we do have such a critical density ρc2 . Here, it is
implied that ρc0 ≤ ρc1 < ρI if the critical density ρc0 or ρc1 does exist.

D
ow

nl
oa

de
d 

03
/2

5/
14

 to
 1

47
.8

.2
04

.1
64

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

WIDE CLUSTER SOLUTION IN TRAFFIC FLOW MODELS 569

To learn the locational relation between ρA and the critical densities, we draw the
curve ρA = ρc1 in Figure 3, which exists for γ ≤ 0.4 approximately, where it meets
with the curve ρB = ρm. Between the two curves we have ρA ≤ ρc1 , which suggests
that the equilibrium ρ = ρA (as a constant portion of the wide cluster) is stable.
In other regions where ρc1 does not vanish, we obviously have ρc1 < ρA < ρI < ρc2 ,
which suggests that ρ = ρA is unstable. In the region that is below the curve ρc0 = ρc1
for γ > 1, where ρc0 and ρc1 vanish, ρ = ρA < ρI < ρc2 still belongs to the unstable
region (0, ρc2).

4. Wide clusters derived from numerical simulation. We write the system
of (1) and (9) as the following standard conservation or balance laws:

(15) ut + f(u)x = s(u),

where u = (ρ, h)T , h = ρ(v + p(ρ)), f(u) = (h− ρp(ρ), ρ−1h2 − hp(ρ))T , and s(u) =
(0, τ−1(qe(ρ) − h + ρp(ρ)))T . For a numerical simulation, a conservative scheme of
system (15) can be written as

un+1
i = un

i − Δtn

Δx
(f̂n

i+1/2 − f̂n
i−1/2) + Δtns(un

i ),

where Δx = L/N , and N is the grid number of the computational interval (0, L). We
apply the Lax–Friedrichs numerical flux:

f̂n
i+1/2 =

1

2
(f(un

i ) + f(un
i+1) − μn(un

i+1 − un
i )), μn = max

u
max(|λ1|, |λ2|),

where λ1,2 are the two characteristic speeds, and the maximum is taken over un
i for

all i at time level n. The CFL condition that is necessary for numerical stability turns
out to be Δtn ≤ μnΔx; we always take Δtn = 0.7μnΔx in numerical simulations. As
the grids should be sufficiently refined to obtain the discussed wide cluster solution,
we take a large grid number N = 10000 in all examples. For illustration purposes,
only one state in every 20 grid points is shown in the figures. See [18, 22] for detailed
accounts of the Lax–Friedrichs scheme. The reason for the application of this scheme
rather than the Godunov or a higher-order scheme was explained in [28].

For an initial constant distribution ρ(x, 0) = ρ0, which is in equilibrium with
v(x, 0) = ve(ρ(x, 0)), the small perturbation

(16) ρ(x, 0) = ρ0 + 0.005ρ0(sgn(0.05 − |x/L− 0.5|) + 1) sin(20π(x/L− 0.5))

induces amplifying oscillations if density ρ0 is located in an unstable region. Here, we
define sgn(s) = 1 for s ≥ 0, and sgn(s) = −1 for s < 0; the integral average density
of ρ(x, 0) over the computational interval [0, L] is not changed by the perturbation.
Applying the periodic boundary conditions

(17) ρ(0, t) = ρ(L, 0), v(0, t) = v(L, 0),

which ensure the conservation of the total vehicles in numerical simulation, the os-
cillations may evolve into stop-and-go waves or wide clusters in the long run if ρ0

is sufficiently large. The dynamics of the evolution was well described in the PW
[15, 23], Kühne [13], and KK [12] models; see also [28] for more relevant discussion.

As discussed in previous sections, the evolution of the perturbed constant flow
ρ = ρ0 is dependent on the control parameters γ and ᾱ, as shown in Figure 3. Our

D
ow

nl
oa

de
d 

03
/2

5/
14

 to
 1

47
.8

.2
04

.1
64

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

570 R.-Y. XU, P. ZHANG, S.-Q. DAI, AND S. C. WONG

(a)
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0.222

-
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t=100s

t=150s

t=200s

⎯ρ

(b)
x0 0.2 0.4 0.6 0.8 1

0.24

0.25

0.26

0.27

0.28

t=0s
t=50s

t=100s
t=150s

t=2000s

t=2000s

-

⎯ρ

(c)
0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

t=7200s

x-

⎯ρ

⎯ρ =0.14304

⎯ρ =0.96542

A

B

(d)
0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8
t=6000s

x-

⎯ρ

⎯ρ =0.15439

⎯ρ =0.81369

A

B

Fig. 4. Evolution of unstable equilibrium flow ρ = ρ0 with small perturbation for (γ, ᾱ) in
different domains in Figure 3. (a) (γ, ᾱ) = (0.3, 4.2), ρ̄0 = 0.22, and τ = 10s; (b) (γ, ᾱ) = (0.7, 2.8),
ρ̄0 = 0.25, and τ = 10s; (c) (γ, ᾱ) = (0.25, 2.1), ρ̄0 = 0.25, and τ = 18s; (d) (γ, ᾱ) = (0.5, 1.5),
ρ̄0 = 0.32, and τ = 10s.

Table 2

Characteristic parameters of a wide cluster and critical densities for comparison to the nu-
merical results in Figures 4 and 5, where “IS” means insolvable and the values in the bracket are
obtained from numerical simulation.

γ ᾱ ρ̄A ρ̄B ρ̄C ā ρ̄c0 ρ̄c1 ρ̄c2
0.3 4.2 IS IS IS IS IS IS IS
0.7 2.8 IS IS IS IS IS 0.226662 0.303168
0.25 2.1 0.142860 0.968573 0.332912 −0.137028 IS 0.150555 0.440170

(0.14304) (0.96542)
0.5 1.5 0.153584 0.817781 0.334882 −0.176989 IS 0.139590 0.423337

(0.15439) (0.81369)
1.5 1.5 0.162911 0.680572 0.346706 −0.229506 IS IS 0.401206

(0.16368) (0.67614)

numerical tests agree well with all these descriptions. In the domain that is on or
above the curve ρc1 = ρc2 in Figure 3, the perturbation decays with time because
the solution ρ = ρ0 is stable if γ̄ ≤ 1 or, otherwise, if ρ0 is greater than ρc0 , which
is usually very small (see Figure 4(a)). In the domain between the curves ρc1 = ρc2
and a = q′e(ρI), the perturbation increases with time but a wide cluster solution can
never be developed regardless of the length of simulation (see Figure 4(b)). Here and
hereafter, for all figures, the related parameters are shown in Table 2 and the variable
x is scaled by x̄ = x/L. Through numerical simulation, we can always derive one or
more wide clusters in other domains where the solution is predicted analytically. Two
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(a)
x0 0.2 0.4 0.6 0.8 1
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0.4

0.5

0.6

0.7

⎯ρ =0.16368

⎯ρ =0.67614

A

B
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⎯ρ

-
(b)

x0 0.2 0.4 0.6 0.8 1

0.2

0.3

0.4

0.5

0.6

0.7

-

t=4150s

⎯ρ

(c)
x0 0.2 0.4 0.6 0.8 1

0.2

0.3

0.4

0.5

0.6

0.7

t=4450s

⎯ρ

-
(d)

⎯ρ0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

q-

⎯ρ

⎯ρ

A

B

t=4450s

Fig. 5. Stability test of a wide cluster solution with (γ, ᾱ) = (1.5, 1.5), ρ̄0 = 0.33, and τ = 10s:
(a) two fully developed clusters; (b) density change due to a perturbation to the cluster solution;
(c) recovery of the cluster solution from the perturbation; (d) the fundamental diagram (ρ̄, q̄e(ρ̄))
and the phase plot (ρ̄, q̄).

such examples are shown in Figures 4(c) and (d).
It is novel that all predicted wide clusters are stable through numerical testing,

even though the density ρ = ρA of the free traffic is located in an unstable region. It
is evident that a stable wide cluster solution exists with one or three critical densities
for γ̄ > 1, as predicted analytically in Figure 3. We show a stability test in Figure 5
with (γ̄, α) in this region, in which there is only one critical density (see also Table 2).
Figure 5(a) shows two wide clusters that are derived at t = 4000s. By a perturbation
that changes the speed v̄ to v̄ ∓ 0.1 for x̄ between 0.5 and 0.5 ∓ 0.01, one cluster is
found to be slightly distorted at t = 4150s. However, it soon recovers, as shown in
Figure 5(c). In comparison to the fundamental diagram, we show the phase plot of
the solution in Figure 5(d), where the segment AB represents the acceleration path
of the downstream front. Nevertheless, the deceleration path of the two upstream
fronts is now replaced by two curves from A to B. This takes place because a shock
profile has to be smoothed by numerical viscosities, which can hardly be avoided in
any scheme. The clusters that are shown in all of these figures follow the pattern that
is anticipated in Figures 1(a) and (b).

A stable wide cluster solution with a length of unstable equilibrium ρ = ρA
might be well explained by the stable structure of the upstream front. Actually,
the relaxation term of (9) vanishes for solution states on the both sides near the
upstream front. Moreover, it is easy to verify that the Lax entropy conditions are
satisfied with respect to this discontinuity (see also [6]). When the periodic boundary
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conditions are applied, a perturbation to ρ = ρA (or other solution states) of the wide
cluster is expected to be overtaken and thus “absorbed” by the upstream-moving
shock. However, an affirmative conclusion could be made only through a rigorous
mathematical proof, which is an interesting question for future study.

The parameter values of ρA and ρB acquired from numerical simulations are also
shown in the figures, which are in good agreement with those that are derived from
(5)–(7) and (10), and are listed in Table 2. This demonstrates that our numerical
solutions converge to the analytical solutions of the described wide cluster.

5. Conclusions and discussions. We have thoroughly investigated the admis-
sibility of a wide cluster solution in “anisotropic” higher-order models, in which the
acceleration equation takes the functional form in (2). By this functional form (and
also those in [6] and [19]), it appears essential that for the existence of the wide clus-
ter solution the speed-density relationship ve(ρ) and the “pressure” p(ρ) should be in
“conflict” such that there exists an unstable regime in the vicinity of the congestion.
Accordingly, it is evident that some formulations that are mentioned in this paper
(and probably others) do not admit any wide cluster solution. Even with the func-
tional forms that allow an unstable regime, the “pressure” p(ρ) and the speed-density
relationship ve(ρ) that represents the “force” for relaxation or fluctuation should act
“harmoniously” to admit the solution. With reference to Figure 3, this means that a
wide cluster is not always ensured or physically sound for all combinations of control
parameters (γ, ᾱ). The intrinsic relationships between the aforementioned functions
or “forces” can be left for future study.
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