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Corner-Impact Bifurcations: a novel class

of discontinuity-induced bifurcations in

Cam-Follower Systems ∗

Gustavo Osorio‡†‡ Mario di Bernardo‡ Stefania Santini‡

Abstract

This paper is concerned with the analysis of a class of impacting systems of relevance

in applications: cam-follower systems. We show that these systems, which can be mod-

elled as discontinuously forced impact oscillators, can exhibit complex behaviour due to

the detachment at high rotational speeds between the follower and the cam. We propose

that the observed phenomena can be explained in terms of a novel type of discontinuity-

induced bifurcation, termed as corner-impact. We present a complete analysis of this

bifurcation in the case of non-autonomous impact oscillator and explain the transition

to chaos observed in a representative cam-follower example. The theoretical findings

are validated numerically.

1 Introduction

Recently, much research effort has been spent to analyse the dynamics of piece-
wise smooth dynamical systems with impacts [5, 41]. These systems arise in
many areas of engineering and applied science. A typical example is that of
mechanical systems characterised by structural components with displacement
constraints. Examples include bouncing or hopping robots, systems with back-
lash or friction, gears, vibro-impacting mechanical devices [5].

Cam-follower systems are a particularly important class of mechanical sys-
tems with displacement constraints widely used for the operation of various
machines and mechanical devices [30]. Usually, their purpose is to actuate
valves or other mechanisms through the movement of a follower forced by a
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rotating cam. For example, all types of automated production machines, in-
cluding screw machines, spring winders and assembly machines, rely heavily
on this kind of systems for their operation. One of the most common appli-
cation is to the valve train of internal combustion engines (ICE) [18], where
the effectiveness of the ICE is based on the proper working of a cam-follower
system. A schematic of a single valve for a typical pushrod type engine is pre-
sented in Figure 1. Here, the cam rotation results in a linear motion imparted to
the valve. The valve spring in the system provides the restoring force necessary
to maintain contact between the components.

To guarantee that the follower moves as required, it is important in appli-
cations to carefully design the cam profile. Different cam geometries are used
in practice ranging from circular cams to highly complex cam profiles. In gen-
eral, there is now a large variety of alternative methods to select the cam profile.
For example, by using constrained optimization algorithm, it is possible to use
splines to obtain the cam geometry from the desired motion that the cam is
required to impart on the follower (see for examples [9] and [16]). This often
means that while the cam has a continuous displacement profile, it might have
discontinuities in its acceleration [31].

It has been observed that, as the cam rotational speed increases, the fol-
lower can detach from the cam. This causes the onset of undesired behaviour
associated to impacts taking place between the follower and the cam. For ex-
ample, in automotive engines this phenomenon can seriously deteriorate the
engine performance as the valves can close with abnormally high velocity and
even bounce off the seat (valve floating and bouncing) [21, 37, 10]. To avoid
this phenomenon, a large spring force and preload are applied to the follower
[34]. This often causes an increase in the contact force, which induces higher
stresses possibly leading to early surface failure of the parts. The resulting high
friction valve train reduces the efficiency of the engine system [39].

In general, cam-follower systems can be thought of as impact oscillators
with moving boundaries [20, 30, 15, 40]. While the dynamics of impact oscilla-
tors with continuous forcing has been the subject of many papers in the exist-
ing literature (see for example [32], [17], [6, 7]), the possible intricate bifurcation
behaviour of impact oscillators with discontinuous forcing was discussed only
recently, as for example in [8]. It was proposed that discontinuously forced
oscillators can show a novel bifurcation phenomenon unique to their nature
which was termed as corner-impact bifurcation. Namely, in [8] the dynam-
ics are studied of an impact oscillator forced by a discontinuous sinusoidal
forcing of the form f (t) = A| sin(ωt)|. It was shown that, under variation
of the system parameters, abrupt changes of the system qualitative behaviour
are observed when an impact occurs at a point where the forcing velocity is
discontinuous (a corner-impact bifurcation point).

The observed behaviour was explained in terms of appropriate local maps.
In particular, by using the technique of discontinuity-mappings recently pro-
posed in [17] and [12], it was suggested that a corner-impact bifurcation of
the oscillator corresponds to a border-collision of a fixed point of the associ-
ated Poincaré map. An important difference was highlighted between corner-
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Fig. 1: Valve train configuration.

impact bifurcations and other types of discontinuity-induced bifurcations [4] in
impacting systems such as grazing of limit cycles [28, 38, 22, 26, 33, 24]. While
the normal form map of a grazing bifurcation is typically characterised by a
square root singularity [28], the local normal form map associated to a corner-
impact bifurcation was shown to be a piecewise linear map with a gap such as
those studied in [19]. Hence, as explained in [8], an appropriate classification
method needs to be used to investigate this novel class of bifurcations.

In [14], it was conjectured for the first time that corner-impact bifurcations
are fundamental in organizing the complex behaviour observed in cam-follower
systems. It was shown that, as the cam rotational speed increases, these sys-
tems can exhibit sudden transitions from periodic solutions to chaos. Such
transitions were conjectured to be due to corner-impact bifurcations.

In this paper, we present a careful analysis of corner-impact bifurcations in
cam-follower systems. We derive analytically the normal form map associated
to such a bifurcation in a representative example of interest where the cam pro-
file is characterised by a discontinuous acceleration. In particular, we investi-
gate the bifurcation behaviour exhibited by this system under variations of the
cam rotational speed. We find that following the detachment of the follower
from the cam, the system can exhibit complex nonlinear phenomena involving
chattering, period adding cascades and the sudden transition from periodic at-
tractors to chaos. We explain the sudden transition to chaos observed in the
system in terms of a corner-impact bifurcation. Namely, we show that dra-
matic changes in the system behaviour are observed when, under parameter
variation, one of the impacts characterizing the system trajectory crosses one
of the manifolds in phase space where the cam acceleration is discontinuous.

We prove that the normal form map of the corner-impact bifurcation in
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these systems is a piecewise linear continuous map rather than discontinuous
because of the higher degree of discontinuity of the forcing signal provided
by the cam with respect to that of the forcing considered in [8]. We wish to
emphasize that such a finding is generic for the the wide class of impacting
systems characterised by forcing terms with discontinuous acceleration.

As shown in the paper, the derivation of the mapping has an immediate
practical relevance. In fact, the derivation of a piecewise linear normal form
map implies that the strategy to classify border-collisions in piecewise linear
continuous maps due to Feigin [13] can be used, under some circumstances, to
classify corner-impact bifurcations in continuous-time impacting flows.

The rest of the paper is outlined as follows. In Sec. 2, we present the mod-
elling of the cam follower system of our concern where the cam profile has been
assumed to be characterized by a discontinuous acceleration. Then in Sec. 3
the numerical bifurcation analysis is presented under variation of the cam rota-
tional speed. In Sec. 4 we present the analysis of the corner impact bifurcation
phenomenon detected in the system and we classify the ensuing dynamics by
using an appropriately derived local mapping. Finally, conclusions are drawn
in Sec. 5.

2 Modelling

The formulation of an appropriate model for a cam-follower system can be a
challenging task for most applications. Various models with different degrees
of complexity have been proposed and extensively studied. They range from
simple models with one degree-of-freedom (DOF) such as that described in
[20] to complex models characterised by many DOFs, as for example the 21
DOFs model studied in [36] where additional effects of camshaft torsion and
bending, backlash, squeeze of lubricant in bearings are included. Nevertheless,
there is a general agreement in the literature, confirmed by experiments, that
a lumped parameter single degree-of-freedom model is adequate to represent
the main qualitative features of the dynamic behavior of the system of interest
[3, 20, 1, 15].

The schematic diagram of the cam-follower system under investigation is
shown in Figure 2. We consider the following second order equation to model
the free body dynamics of the follower away from the cam,

mq′′(t) + bq′(t) + kq(t) = −mg

if q(t) > c(t), (1)

where m, b, k and g are constant positive parameters representing the follower
mass, viscous damping, spring stiffness and the gravitational constant respec-
tively. The state of the follower is given by the position q(t) and the velocity
q′(t). The cam position is given by c(t) and we assume that the follower motion
is constrained to the phase-space region where q(t) > c(t).

The dynamic behavior when impacts occurs (i.e. q(t) = c(t) ) is modelled
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via a Newton restitution law as [5, 23, 29]:

q′(t+) = (1 + r)c′(t)− rq′(t−)

if q(t) = c(t), (2)

where q′(t+) and q′(t−) are the post- and pre-impact velocities respectively,
c′(t) is the projection of the cam velocity vector at the contact point along the
direction of the free movement of the follower, and r ∈ [0, 1] is the coefficient
of restitution used to model from plastic to elastic impacts.

Cam

Followerm

k b

c(τ)− c(0)

ωτ

(a) (b)

Fig. 2: Cam-Follower schematics. (a) t=0. (b) t=τ .

An essential ingredient of the model is the choice of the cam profile, c(t).
The cam is assumed to be rotating at a constant angular velocity ω and can be
interpreted as the “control action” acting on the follower state as suggested in
[30]. Therefore, c(t) is carefully selected in applications as a trade off between
several optimality criteria dependent upon the specific device being consid-
ered and the unavoidable physical constraints present on the system.

Typically, this results in a design process where the cam profile is selected
by using splines and can contain several degrees of discontinuity. For exam-
ple, the cam for a single overhead camshaft valve train is designed by using
quadratic splines and, as a consequence, discontinuities are present in its accel-
eration. In general, it is not uncommon in applications, to find cam geometries
characterised by continuous cam positions and velocities but a discontinuous
second-derivative [30].

In what follows, we assume the cam profile to be characterised by a dis-
continuous second derivative as shown in Figure 3. For the sake of brevity,
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Fig. 3: (a) Cam profile. (b) Constraint position c(t), velocity c′(t) and accelera-
tion c′′(t).

the analytical expressions of the cam profile and its derivatives are reported
in Appendix A. The case of a smooth cam profile with continuous first and
second-order derivatives is also of interest in applications and was studied ex-
perimentally in [2].

3 Numerical bifurcation analysis

The model represented by equations (1) and (2) was found to exhibit an in-
tricate bifurcation behaviour including the sudden transition to chaos under
variation of the cam rotational speed, ω [14]. The presence of bifurcations and
chaos was also confirmed by experiments as described in [2].

Here we briefly summarize some of the most striking behaviour exhibited
by the system focusing on the abrupt transition from a one-periodic impacting
solution to chaos observed when ω ≈ 673.234445 rpm.

In general, starting from low values ofω the system exhibits solutions char-
acterised by permanent contact between the cam and the follower. As ω in-
creases the follower is observed to detach from the cam during its evolution
and then to impact with it. A typical periodic evolution with impacts is shown
in Fig. 4(a) when ω = 183 rpm. We observe that the follower and the cam
are in contact with zero relative velocity for part of the orbit (sticking) and then
detach giving rise to impacting behaviour. As shown in Fig.4(b)-(c) a careful
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✲

✻

t

q(t), c(t)

✲

✻

t

q(t)− c(t)

✲

✻

❄

q(t)− c(t)

q′(t)− c′(t)

(a) (b) (c)

Fig. 4: Time simulation at ω = 183 rpm. (a) Follower position, q(t) (Light);
Cam position, c(t) (Dark). (b) Relative position, q(t) − c(t). (c) Phase
space, q(t)− c(t) Vs. q′(t)− c′(t).

look at the follower evolution shows that a chattering sequence is present, where
theoretically an infinite number of impacts accumulate in finite time. (Note
that in practice chattering is associated to a large but finite number of impacts.)

Chattering can be associated to an intricate bifurcation structure. In Fig. 5(a),
the location of the impacts in the cam surface is depicted for each value of ω,
characterising the follower asymptotic solution. We see that following detach-
ment at about 114 rpm, the follower immediately exhibits multi-impacting be-
haviour and chattering (characterised by the accumulation of the impact lines
in the diagram onto the darker areas corresponding to the chattering accumu-
lation points). An interesting phenomenon is the appearance of resonant peaks
associated to impact lines crossing the boundaries where the cam acceleration
profile is discontinuous (represented by dotted lines in the figure). A detailed
analysis of this bifurcation scenario is presented in [27].

This phenomenon can be classified as due to a corner-impact bifurcation, a
type of discontinuity-induced bifurcation recently described in [8]. Namely,
at certain values of ω, one of the impacts characterising the follower motion
occurs at a point on the cam profile where the acceleration is discontinuous.
We shall seek to investigate analytically this phenomenon and classify the be-
haviour following the corner-impact event in the cam-follower system of in-
terest. For the sake of simplicity, we focus on a different region of the system
bifurcation diagram depicted in Fig. 5(c). Here a one-periodic solution charac-
terized by one impact per period exhibits sudden transitions to chaos as ω is
decreased below 673.234445 rpm. A close look at the impact bifurcation dia-
gram in Fig. 5(c) and in the stroboscopic bifurcation diagram Fig. 5(d) shows
that such transitions occur precisely when the impact characterising the solu-
tion crosses the cam discontinuity boundaries (the dotted lines in figure 5(c)).
Specifically, the sudden transition to chaos is due to the corner-impact bifur-
cation of the periodic solution depicted in Fig. 5(e). Past the corner-impact
bifurcation point the system exhibits chaotic behaviour (see for example the
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trajectory reported in Fig. 5(f) for ω ≈ 670 rpm). The rest of this paper is
devoted to the analysis of this bifurcation scenario.
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Fig. 5: (a) Impact bifurcation diagram for [115, 200] rpm. The phase of an im-
pact φi (rad), is plotted agaist ω. (b) Time evolution for 175 rpm. (c)
Impact Bifurcation diagram for ω = [660, 750]rpm.(d) Stroboscopic Bi-
furcation diagram forω = [660, 750]rpm. (e) Bifurcating orbit at the cor-
ner impact point at ω = 700rpm. (f) Chaotic evolution for ω = 670rpm.
Dotted and dashed lines in the diagrams, represent phases where the
cam profile is discontinuous. Vertical curves in panels (a),(c) shows the
cam position velocity and acceleration as function of the phase.
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4 Corner Impact Bifurcation Analysis

The numerical observations reported above indicate that a corner-impact bifur-
cation is causing the transition to chaos observed in the cam-follower system.
Specifically, we are interested in analyzing the occurrence of the corner impact
bifurcation depicted in Fig. 5(c) when
ω ≈ 673.234445 rpm. Numerically, we detected that the bifurcating orbit,
shown in Fig. 5(e) is a one-periodic orbit characterised by one impact per pe-
riod. As the rotational speed of the cam is decreased, at the bifurcation point,
the impact is observed to cross the point on the cam surface where the cam
acceleration is discontinuous. To investigate this novel type of discontinuity-
induced bifurcation we will construct analytically the Poincaré map of the sys-
tem close to the bifurcation point. We will then study the bifurcations of the
fixed point corresponding to the periodic solution of interest. A crucial point
in the analysis is to assess whether the resulting map is piecewise linear con-
tinuous or not. Indeed, only if this is the case, the theory of border-collision
bifurcations (see [35, 13]) can be used to classify the possible solutions branch-
ing from the corner-impact bifurcation point [25].

We use the concept of discontinuity mapping (or normal form map) re-
cently introduced in [17], [12] to construct analytically the Poincaré map asso-
ciated to the bifurcating orbit of interest. We use the cam-follower system de-
scribed in Sec 2 as a representative example to carry out the analytical deriva-
tions.

4.1 Poincaré Map Derivation

We are interested in the analysis of the period one orbit at the corner-impact
bifurcation point. Such orbit is sketched in figure 6. Then, close to such peri-
odic orbit we define the stroboscopic map P as the mapping from the follower
state x1 ∈ Π1 at a stroboscopic time instant t1 to the next stroboscopic point

x2 ∈ Π2. Without loss of generality, we assume that tn = − T
2 + (n − 1)T

for n = 1, 2, 3, . . ., where T is the period of the cam forcing cycle (note that
T = 2π/ω). Namely, we have:

x2 = P(x1). (3)

To construct P we would need to flow forward using the system evolution
from x1 to x2 for time T taking into account the possible occurrence of impacts
and therefore applying Newton’s restitution law as required. Alternatively, as
shown in [17], it is possible to construct P as the composition of three submap-
pings: (i) an affine transformation P1,T/2 from the stroboscopic plane Π1 at

t1 = − T
2 to the plane ΠD going through the corner impact point at t = 0; (ii) an

appropriate zero-time discontinuity mapping(ZDM) PD on ΠD accounting for
the presence of the discontinuity; and again (iii) an affine transformation P2,T/2

from the plane ΠD at t = 0 back to the stroboscopic plane Π2 at t2 = T
2 . Specifi-

cally, while P1,T/2 and P2,T/2 are fixed time maps that accounts for the follower
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evolution away from the cam as if no impact had occurred, the ZDM repre-
sents the correction that needs to be made to the system trajectories because of
the presence of impacts. Figure 6 represents the global map composition. This
means that we can write

P = P2,T/2 ◦ PD ◦ P1,T/2, (4)

where P1,T/2 : Π1 7→ ΠD, will map the state from the initial condition x1 on

the stroboscopic plane Π1 to a point x−d on the discontinuity plane ΠD as if no

impacts had occurred. PD : ΠD 7→ ΠD will then map x−d to the point x+d appro-
priately correcting the evolution for the presence of impacts (See Fig. 7). Finally
P2,T/2 : ΠD 7→ Π2,

will map x+d to a point x2 back onto the stroboscopic plane Π2. In so doing,
as discussed in [17], [12], the effect of the system discontinuities due to impacts
are all taken into account by the ZDM, PD, which is therefore often termed as
the local normal form map in the context of the theory of discontinuity-induced
bifurcations [26].

-T -T/2 0 T/2 T t

Π1

ΠD

Π2

x1

x2

x−d

x+d

x∗t

ct

x∗ x∗

q(t)

q′(t)

t

Fig. 6: Global map composition.

4.1.1 Derivation of P1,T/2 and P2,T/2

As explained above, the maps P1,T/2 and P2,T/2 are defined only in terms of the
free body dynamics of the follower and the cam rotating period T (depending
upon the cam rotational speed ω). Therefore we can solve equations (1) to get
an analytical expression of the flows generating the mappings of interest.
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Specifically, we define

xt =

[

q(t) + g

ω2
0

q′(t)

]

, yt =

[

c(t)
c′(t)

]

.

as the state vector for the follower and the cam respectively.
Then, as explained in Appendix B, the generalized solution of (1) is:

xt = e−ζt (I cos(ωst) + A sin(ωst)) x0 (5)

= φtx0,

where ζ = b
2m , ω0 =

√

k
m , ωs =

√

ω2
0 −ζ2, I is the identity matrix, φtx0

represents the system flow for time t starting from the initial condition x0 and

A =

[

ζ
ωs

1
ωs

−
ω2

0
ωs

− ζ
ωs

]

.

Note that, in general, the system flow operator can be expressed as:

φt =
e−ζt

ωs

[

ωs cos(ωst) +ζ sin(ωst) sin(ωst)
−ω2

0 sin(ωst) ωs cos(ωst)−ζ sin(ωst)

]

. (6)

The submapping Pi,T/2 can then be easily obtained using (5) as:

Pi,T/2(x) = e−ζT/2 (I cos(ωsT/2) + A sin(ωsT/2)) x

:= φ T
2

x. (7)

4.1.2 Derivation of PD

As explained in [12], the ZDM can be obtained by an appropriate composition
of backward and forward flows so that the overall time spent following back-
ward and forward is zero. As explained earlier, the ZDM is the correction that
maps the point x−d ∈ ΠD onto the point x+d ∈ ΠD taking into account the pres-
ence of impacts in the trajectory of interest. In what follows we assume that
only one impact occurs over one cycle of the periodic orbit of interest as we
suppose to be sufficiently close to the bifurcating orbit x∗t shown in Fig. 6. Fig-
ure 7 shows a schematic diagram that describes the construction of the ZDM,
close to the corner-impact bifurcations. Without loss of generality we assume
that the origin is placed at the Poincaré section ΠD. To derive analytically the
mapping x+d = PD(x−d ) we need to perform the following steps:

1. Starting from x−d , we find the time ti at which the impact occurs. Namely,
ti is obtained by looking at the difference, (q(t)− c(t)), between the fol-
lower position and the cam position close to t = 0. Given a vector z, we
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indicate by [z]1 its first component. Then q(t) = [xt]1 −
g

ω2
0

and therefore,

close to x−d , ti can be obtained as the nearest solution of the equation:

H(x−−ti
, ti) :=

[

x−−ti
− y−ti

]

1
= h ·

[

φ−ti
x−d − y−ti

]

= 0, (8)

where h = [ 1 0 ].

Hence, ti is implicitly defined by the equation H(x−−ti
, ti) = 0. Once, ti is

found, the pre-impact state of the system, x−−ti
, can also be obtained as

x−−ti
= φ−ti

x−d . (9)

Note that ti can be either negative or positive according to whether the
impact occurs to the left or to the right of t = 0.

2. Using the restitution law (2), we can then write the post-impact state of
the follower x+−ti

as

x+−ti
= x−−ti

+ R(x−−ti
− y−ti

) = ρ(x−−ti
, y−ti

), (10)

where

R =

[

0 0
0 −(1 + r)

]

.

3. Finally, to obtain x+d , we flow forward for time ti starting from the post-

impact state x+−ti
found at the previous step. In so doing, the state of the

follower x+d ∈ ΠD can be computed as:

x+d = φti
x+−ti

. (11)

Using equations (9),(10) and (11) we can then write explicitly the ZDM as:

x+d = PD(x−d ) = (I +φti
Rφ−ti) x−d −φti

Ry−ti
, (12)

with ti defined implicitly by the equation (8).

4.1.3 Constructing the Stroboscopic Map

Composing the submappings P1,T/2, P2,T/2 and PD given by (7) and (12), we
can then construct the stroboscopic Poincaré map, P, of the system close to the
corner-impact bifurcation point from a generic xn ∈ Πn to xn+1 ∈ Πn+1 as:

xn+1 = P(xn, T) = P2,T/2(PD(P1,T/2(xn)))

= φ T
2

(

(I +φti
Rφ−ti)φ T

2
xn −φti

Ry−ti

)

, (13)

where ti is implicitly defined by the equation H(xn, ti) = h ·
(

φ T
2 −ti

xn − y−ti

)

=

0.
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0ti t

x−d

x−ti
x+ti

x+d

c(t)

q(t)
ΠD

Fig. 7: ZDM construction.

Note that the fixed point (x∗ associated to the periodic solution existing for
a fixed value of the cam period T = T∗), can be obtained by solving equation
(13) for xn+1 = xn = x∗ i.e.,

x∗ = −
[

I −φT∗ +φ T∗
2

Rφ T∗
2

]−1
φ T

2
Ry0, (14)

with t∗i = 0.
In what follows we are interested in studying such mapping locally to the

corner-impact bifurcation point detected when ω = ω∗ = 673.234445 rpm,
corresponding to a period T∗ = 0.08912199969159 s. The fixed point associ-

ated to the bifurcating orbit is x∗ =
[

5.09700788184250 0
]′

. These values
were detected firstly numerically and then obtained analytically by solving (14)
through an algebraic manipulation software (For the sake of brevity we leave
out the computer algebra here).

4.2 A locally piecewise-linear continuous map

Let δxn and δT be sufficiently small variations of the state and parameter from
the bifurcation point x∗, T∗. We can then linearize the map xn+1 = P(xn, T) in
(13) about this point as:

δxn+1 =
∂P(x∗, T∗)

∂xn
δxn +

∂P(x∗, T∗)

∂T
δT. (15)

For the computation of ∂P
∂xn

it is essential to take into account the implicit de-

pendance of ti on xn and T. Hence, using implicit differentiation, we have

∂P(xn, T)

∂xn
=

∂P(xn)

∂xn
+

∂P(ti)

∂ti

∂ti(xn)

∂xn
. (16)
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Using (13), we can then write

∂P(xn)

∂xn
= φ T

2
(I +φ−ti

Rφti
)φ T

2
(17)

∂P(ti)

∂ti
= φ T

2

(

φ′
ti

Rφ−ti
−

(

φti
Rφ′

−ti

)

φ T
2

xn −φ′
ti

Ry−ti
+φti

Ry′−ti

)

.(18)

Moreover, using implicit differentiation theorem, from (8) we have:

∂H(xn, ti(xn))

∂xn
=

∂H(xn)

∂xn
+

∂H(ti)

∂ti

∂ti(xn)

∂xn
= 0.

The above expression can be used to compute the remaining term in (16) as:

∂ti(xn)

∂xn
= −

(

∂H(ti)

∂ti

)−1 ∂H(xn)

∂xn
, (19)

where

∂H(ti)

∂ti
= −h ·

(

φ′
T
2 −ti

xn − y′−ti

)

,

∂H(xn)

∂xn
= h ·φ T

2 −ti
,

and h =
[

1 0
]

.
After substituting (17),(18) and (19) in (16) we obtain

∂P(xn, T)

∂xn

∣

∣

∣

∣ xn=x∗

T=T∗

=

φ T
2
∗









(I + R) +
(

(

Rφ′
0 −φ′

0R
)

φ T
2
∗x∗ +φ′

0Ry0 − Ry′0

) h

h ·

(

φ′
T
2

∗x∗ − y′0

)









φ T
2
∗ .

(20)

In an analogous way, for the computation of ∂P
∂T , it is essential to take into

account the implicit dependance of ti on xn and T. Hence, by using implicit
differentiation, we have

∂P(xn, T)

∂T
=

∂P(T)

∂T
+

∂P(ti)

∂ti

∂ti(T)

∂T
. (21)

Using (13), we can then write

∂P(T)

∂T
=

(

φ′
T +

1

2
φ′

T
2 +ti

Rφ T
2 −ti

+
1

2
φ T

2 +ti
Rφ′

T
2 −ti

)

xn −
1

2
φ′

T
2 +ti

Ry−ti
−φ T

2 +ti
R

∂y−ti,T

∂T
.

(22)
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Again, from (8) we have:

∂H(xn, ti(xn))

∂T
=

∂H(T)

∂T
+

∂H(ti)

∂ti

∂ti(T)

∂T
= 0,

that can be used to compute the remaining term in (21). Namely, we obtain:

∂ti(T)

∂T
= −

(

∂H(ti)

∂ti

)−1 ∂H(T)

∂T
, (23)

where

∂H(ti)

∂ti
= −h ·

(

φ′
T
2 −ti

xn − y′−ti

)

∂H(T)

∂T
= h ·

(

1

2
φ′

T
2 −ti

xn −
∂y−ti,T

∂T

)

and
∂yt,T

∂T
=

[

− t
T c′(t)

− 1
T c′(t)− t

T c′′(t)

]

.

Finally, substituting (18), (22) and (23) into (21), yields

∂P(xn, T)

∂T

∣

∣

∣

∣ xn=x∗

T=T∗

=

(

φ′
T∗ +

1

2
φ′

T
2

∗ Rφ T
2
∗ +

1

2
φ T

2
∗Rφ′

T
2

∗

)

x∗ −
1

2
φ′

T
2

∗ Ry0 −φ T∗
2

R
∂y0,T∗

∂T

+φ T
2

∗

(

(

Rφ′
0 −φ′

0R
)

φ T
2

∗x∗ +φ′
0Ry0 − Ry′0

)

·

h ·

(

1
2φ

′
T
2

∗x∗ −
∂y0,T∗

∂T

)

h ·

(

φ′
T
2

∗x∗ − y′0

) . (24)

We can then compute explicitly these quantities for the cam-follower sys-
tem of interest. In particular, after some algebraic manipulation, we have:

A :=
∂P

∂xn
(x∗, T∗) = φ T

2
∗

[

−r 0

−
(1+r)(2ζc′0+c′′0+ω2

0q∗d)

q,∗
d −c′0

−r

]

φ T
2
∗ (25)

and

B :=
∂P

∂T
(x∗, T∗) =

1

2
φ T

2
∗

[

q∗d
−rq,∗

d + (1 + r)c′0

]

+
1

2
φ′

T
2
∗

[

q,∗
d

−rq,,∗
d − 2(1+r)

T∗ c′0

]

+
1

2
φ T

2
∗
(1 + r)q,∗

d

q,∗
d − c′0

[

q,∗
d − c′0

2ζc′0 + c′′0 +ω2
0q∗d

]

. (26)
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Note that both the matrices A and B as defined by (25)-(26) depend on the
value of the second derivative of the cam acceleration c′′0 at the impact point.
Therefore the map is actually piecewise-linear locally to the bifurcation point
where the cam acceleration is discontinuous, i.e.

c′′−0 := lim
t→0−

c′′(t) 6= lim
t→0−

c′′(t) := c′′+0 .

Then, the local map can be expressed as:

δxn+1 =







A−δxn + B−δT, If C · δxn + D · δT < 0,

A+δxn + B+δT, If C · δxn + D · δT > 0,
(27)

where

A± =
∂P±

∂x
, B± =

∂P±

∂T
,

with the index ± indicating whether the matrices are evaluated with c′′0 = c′′−0

or c′′0 = c′′+0 .
We have established that close to the corner-impact bifurcation point, the

dynamics of the follower can be studied by means of the local mapping (27).
Now, from (13), the global Poincaré map is known to be a continuous func-

tion of the cam position and velocity through the term y−ti
. Moreover, the map

is independent from the cam acceleration. It follows, that the map is continu-
ous at the bifurcation point, i.e. we must have that

A−δxn + B−δT = A+δxn + B+δT,

when
Cδxn + DδT = 0.

Therefore we have

C = h · (A+ − A−), and D = h · (B+ − B−).

Substituting the numerical values of the map parameters for the cam fol-
lower system of interest, we obtain the following analytical estimates of the
map matrices:

A− =

[

0.82093496821478 0.01346530915655
2.52012201452530 0.82093496821478

]

, B− =

[

−51.62757990297
−5455.79455977621

]

,

A+ =

[

0.68571072072040 −0.07351052377964
2.30988433707948 0.68571072072040

]

, B+ =

[

208.11740649865
−5051.96030903248

]

and

C = [−0.13522424749438 − 0.08697583293619] , D = 259.7449864016200.
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4.2.1 Numerical Validation

We will now validate our numerical findings by comparing the map (27), which
was derived analytically, with the numerical estimates of the mapping ob-
tained by means of simulation and an optimized fitting algorithm close to the
bifurcation point.

To derive such an estimate, we use an accurate event-driven numerical al-
gorithm to simulate the cam dynamics over one period starting from a set of M
different initial conditions and parameter values. Namely, say δx̄n the vector of
M possible perturbations of x∗ and δT̄ the vector of M possible perturbations
of T. We then simulate the cam dynamics from each of the perturbed initial
conditions and parameter values to obtain the vector δx̄n+1 = x∗ − xn+1 after
one period. We repeat the set of simulation twice, once with the cam accelera-
tion set to c′′+0 and once with the acceleration set to c′′−0 . In so doing, we obtain
numerically the vectors

δx̄±n+1 =
[

δx̄1
n+1 . . . δx̄m

n+1 . . . δx̄M
n+1

]

.

We then use a least-squares fitting algorithm to estimate the matrices Â±

and B̂± that minimize the error

e =

∥

∥

∥

∥

δx̄±n+1 −
[

Â± | B̂±
]

[

δx̄n

δT̄

]∥

∥

∥

∥

2

.

The estimated map matrices found using this numerical strategy are

Â− =

[

0.82093497830369 0.01346530945739
2.52012201542191 0.82093496286678

]

, B̂− =

[

−51.62757113994
−5455.79411324739

]

,

Â+ =

[

0.68571065978423 −0.07351053029558
2.30988432418263 0.68571073479454

]

, B̂+ =

[

208.11731732063
−5051.95951604729

]

.

We notice that these numerical estimates are almost identical (up to at least
5 decimal places) to those obtained analytically earlier in the paper. This vali-
dates our analysis and shows the reliability of the analytical derivation used to
get a leading order estimate of the Poincaré map close to the bifurcation point
under investigation.

4.3 Classification of the Non-Smooth Bifurcation Scenario

We can now use the locally derived map (analytical or numerical) to classify
and explain the bifurcation scenario due to the corner-impact bifurcation de-
tected in the cam-follower system of interest. In particular, the map derived
above is a piecewise linear continuous map. As the cam rotational speed is
increased, the period T of the forcing provided by the cam varies. Correspond-
ingly, at the corner-impact bifurcation point (δT = 0), the map fixed point
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undergoes a border collision. Feigin strategy for border-collision bifurcations
can then be used to classify the corner-impact bifurcation scenario [13].

The idea is to start by recasting the map (27) into a canonical form following
the procedure presented in [4]. Specifically,

1. We eliminate the term depending on δT by considering an appropriate
change of coordinates. In particular if we say c1 and c2 the coefficients of
C, we choose:

δx̃1
n = δx1

n + D
µ

c1
,

δx̃2
n = δx2

n,

so that the map becomes

δx̃n+1 =







A−δx̃n + B̃δT, If C · δx̃n < 0,

A+δx̃n + B̃δT, If C · δx̃n > 0,

where

B̃ =





b−1 −
a−11
c1

d

b−2 −
a−21
c1

d



 =





b+1 −
a+11
c1

d

b+2 −
a+21
c1

d



 =

[

1525.26226128059
−615.02768162765

]

,

with a±i j being the coefficients of A±.

2. Then, using the strategy presented in [4, 11], we consider the change of
coordinates x = W−1 x̃ where the matrix W is obtained as W = T−O−

with

O− =

[

C
CA−

]

, T− =

[

1 0
d−1 1

]

,

where d−1 is the linear coefficient of the characteristic polynomial of A−

given by p−(λ) = λ2 + d−1 λ + d−2 . Applying such a similarity transfor-
mation, the map matrices become:

Ā− =

[

1.64186993642956 1
−0.64 0

]

, Ā+ =

[

1.37142144144080 1
−0.64 0

]

,

and

B̄ =

[

152.75990
207, 79599

]

, C̄ =
[

1 0
]

.

As explained in [13, 4], we can now classify the type of bifurcation scenario
observed at the bifurcation point under investigation by computing the map
eigenvalues on both sides of the boundary. For the case under investigation,
we have that: (i) the eigenvalues of A− are λ−1 = 1.0052 and λ−2 = 0.6367; (ii)

the eigenvalues of A+ are λ+1,2 = 0.6857± j0.4120. Hence, according to Feigin’s
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Fig. 8: Numerical bifurcation diagram of the local map (27) with the analyti-
cally estimated matrices. The border collision when δT = 0 corresponds
to the corner-impact bifurcation point at ω ≈ 673.2 rpm. Note that as
predicted a nonsmooth fold scenario is observed with no fixed point ex-
isting for δT < 0 and two coexisting fixed points, one stable, the other
unstable for δT > 0.

classification strategy, since the total number of real eigenvalues greater than
unity on both sides of the boundary is odd, the bifurcating fixed point will
undergo a nonsmooth saddle node bifurcation and ceases to exist [13]. This
is in perfect agreement with what observed numerically as shown in Fig. 8,
where the local bifurcation scenario observed in the map is shown.

Therefore, we can explain the sudden transition to chaos observed in the
cam-follower system under investigation as due to the occurrence of a corner-
impact bifurcation. Namely, the corner-impact is associated to a nonsmooth-
fold scenario causing the disappearance of the stable impacting solution under-
going the bifurcation. This causes trajectories to leave the local neighborhood
where they are confined before the bifurcation and converge towards the sta-
ble coexisting chaotic attractor when ω is decreased below the corner-impact
bifurcation point.

Hence, we can conclude that corner-impact bifurcations in cam follower
systems can indeed lead to dramatic changes of the system qualitative behavior
including sudden transitions from periodic solutions to chaos.

5 Conclusions

We have studied a novel type of discontinuity-induced bifurcation in a class
of mechanical devices widely used in applications: cam-follower systems. Us-
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ing a representative second-order model of the follower, we have shown that
its dynamics can undergo several bifurcations including sudden transitions to
chaos as the cam rotational speed is varied. We analysed in detail the corner-
impact bifurcation of a one-periodic solution characterised by one impact per
period. In particular, we observed that the system behaviour undergoes dra-
matic changes when the impact occurs at a point where the cam profile is dis-
continuous. Using the concept of discontinuity mappings, we derived analyti-
cally the Poincaré map associated to the bifurcating orbit in the case where the
cam profile has a discontinuous acceleration. Then, using the classification
strategy for border-collision bifurcations, we proved that the corner-impact
causes the fixed point associated to the bifurcating orbit to undergo a nons-
mooth saddle-node bifurcation. Namely, the fixed point ceases to exist, with
the trajectories being attracted towards a chaotic invariant set.

We wish to emphasize that:

• the analysis presented above applies with minor changes to the case of
impact oscillators forced by signals with discontinuous second deriva-
tive. As shown above, this leads to maps which are locally piecewise lin-
ear continuous close to a corner-impact bifurcation point. This extends
the analysis presented in [8] for the case of an impact oscillator forced
by a function with discontinuous first derivative. We conjecture that the
properties of the local mapping depend on the degree of discontinuity of
the forcing signal. This is the subject of ongoing work.

• As shown in [12], discontinuity-induced bifurcations in flows are usually
associated to maps which are not piecewise linear. Grazing bifurcations
of limit cycles where known to be associated to maps with square-root
singularities in impacting systems and Filippov systems [26] or maps
with higher order nonlinear terms in the case of piecewise-smooth con-
tinuous flows
(PWSC). The only cases in the literature where the map was indeed found
to be piecewise linear-continuous were corner-collisions in PWSC sys-
tems and grazing sliding bifurcations in Filippov systems. So far, no evi-
dence was given of a bifurcation event in impacting systems associated to
locally piecewise-linear continuous maps. The corner-impact bifurcation
scenario presented in this paper fills this gap in the literature.

• We believe cam follower systems are a particularly useful set-up to show
generically the behaviour of impacting systems with discontinuous forc-
ing.

Finally, the results presented here can open a way to future work towards a
better understanding of the complex dynamics of cam-follower systems. This
can lead to less conservative solutions to detachment avoidance, hopefully
without recurring to highly stiff closing springs and maybe active control strate-
gies.
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Appendix A - Cam Profile

We report below the analytical description of the representative cam profile
considered in this paper. As shown in Fig. 9, in this case the cam profile is the
result of a geometrical based design.

O

O1

O2

Q
P

R

S
x

y

c(θ)

(a) (b)

Fig. 9: Cam profile definition. (a) θ = 0. (b) θ = π . .

The lift profile c(θ) can be defined from the construction as a piecewise
smooth function of the angle θ as:

c(θ) =















c0(θ) If 0 < θ ≤ π
2 −θ1,

c1(θ) If π
2 −θ1 < θ ≤ π

2 −θ2,
c2(θ) If π

2 −θ2 < θ ≤ π
2 −θ3,

c3(θ) If π
2 −θ3 < θ ≤ π ,

(28)
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c0(θ) = ρ0

c1(θ) = −κ1 sin(θ+θ1) + (ρ2
1 −κ2

1cos(θ+θ1)
2)

1
2

c2(θ) = κ2 sin(θ+θ3) + (ρ2
2 −κ2

2cos(θ+θ3)
2)

1
2

c3(θ) = ρ3

where θ1 = ∠SOR, θ2 = ∠SOP, θ3 = ∠SOQ. Additionally, κi and ρi are
constant parameter given by our particular geometrical construction of the cam
as (See Fig.9)

κ1 = ‖OO1‖, ρ0 = ‖OR‖, ρ2 = ‖O2P‖,

κ2 = ‖OO2‖, ρ1 = ‖O1R‖, ρ3 = ‖OQ‖.
(29)
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