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Abstract. Many students are familiar with the idea of modeling chemical reactions in terms of ordi-
nary differential equations. However, these deterministic reaction rate equations are really
a certain large-scale limit of a sequence of finer-scale probabilistic models. In studying
this hierarchy of models, students can be exposed to a range of modern ideas in applied
and computational mathematics. This article introduces some of the basic concepts in an
accessible manner and points to some challenges that currently occupy researchers in this
area. Short, downloadable MATLAB codes are listed and described.
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1. Motivation. Our aim here is to use chemical reaction modeling as a means to
illustrate three relevant and widely applicable ideas.

1. Mathematical models must rely on modeling assumptions, and the appropri-
ateness of a model depends entirely on the appropriateness of these assump-
tions.

2. Complex systems are typically too expensive to simulate in complete detail.
Hence, there is a need for multiscale models and corresponding computational
algorithms that, to maximize efficiency, can adaptively operate at the most
coarse-grained level possible.

3. Continuous-valued, deterministic differential equations generally arise from
discrete (particle-based) probabilistic models, and moving between these two
extremes is often a subtle and poorly understood business.

We also believe in a fourth principle.
4. The best way to learn about a computational algorithm is to understand and

experiment with a simple code.
Hence, focusing on a concrete example, we list short MATLAB programs that

illustrate the three main modeling regimes in chemical kinetics. These may be down-
loaded from

http://www.maths.strath.ac.uk/∼aas96106/algfiles.html.

Slightly longer versions of the programs that produced the figures in this article are
also available there.
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This treatment should be accessible to students who have been exposed to stan-
dard first- or second-year undergraduate classes on calculus and numerical methods.
We also assume a familiarity with basic concepts from probability, in particular, ex-
pected value, variance, density functions, and uniformly and normally distributed
random variables. Since typical readers are likely to be less familiar with probability
and stochastic simulation than with applied mathematics and differential equations,
we have added an appendix that expands on some of this material.

The topics that we cover could be incorporated in lectures on differential equa-
tions, stochastic simulation, mathematical modeling, computational biology, or scien-
tific computing, and could also be the basis of a self-study project.

This article is organized as follows. Section 2 gives a general, equation-free
overview of the issues involved. In section 3 we set up some mathematical details
and show how the chemical master equation arises. The stochastic simulation al-
gorithm, a computational tool for sampling from the chemical master equation, is
described in section 4. In section 5 we introduce tau-leaping as a way to speed up
simulations, and in section 6 we show how this modification leads naturally to the
chemical Langevin equation. The classic reaction rate equation is described in sec-
tion 7 and shown to be essentially equivalent to the chemical Langevin equation when
fluctuations are ignored. Using the Michaelis–Menten system, in section 8 we give
MATLAB codes and computational results for the three main modeling regimes.

Let us emphasize that this introductory article has been kept as tightly focused
as possible and does not contain any original results. In section 9 we point the reader
toward more detailed references and mention recent developments, especially in the
field of computational cell biology. At this stage, however, it is appropriate to mention
that this research area owes a great debt to the pioneering work of Gillespie [15, 16] and
that this article was heavily influenced by the expository treatments in [19] and [34].

2. Introduction. In this section we summarize key concepts without writing
down any equations. Our intention is to focus the reader on the big picture. Subse-
quent sections then flesh out the details.

We are concerned with a process that involves N different types of molecules, or
chemical species. These molecules may take part in one or more ofM types of chemical
reactions; for example, we may know that “a molecule of species A and a molecule of
species B can combine to create a molecule of species C.” In principle, we could start
with a position and a velocity for each molecule and let the system evolve under appro-
priate laws of physics, keeping track of collisions between molecules and the resulting
interactions. However, this molecular dynamics approach is typically too expensive,
computationally, when the overall number of molecules is large or the dynamics over
a long time interval are of interest [25, 35]. Instead, our approach is to ignore spatial
information and simply keep track of the number of molecules of each type. This
simplification is valid if we have a well-stirred system, so that molecules of each type
are spread uniformly throughout the spatial domain. We also assume that the system
is in thermal equilibrium and that the volume of the spatial domain is constant.

Suppose that initially, at time t = 0, we know how many molecules of each species
are present and our aim is to describe how these numbers evolve as time increases.
We therefore think of a state vector,

X(t) =




X1(t)
X2(t)

...
XN (t)


 ,
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where Xi(t) is a nonnegative integer that records how many molecules of species i are
present at time t.

The state vector X(t) can change whenever one of the M types of reaction takes
place. In this setup, because we do not have spatial information, we think in terms
of the probability of a reaction taking place, based on the current state of the sys-
tem. This is analogous to modeling a coin toss—for practical purposes, rather than
attempting to follow the dynamics of the coin it is usually acceptable to treat the
outcome as a random variable. It is therefore natural to talk about the probability of
the system being in a particular state at time t and to describe the evolution of these
probabilities. This leads to the chemical master equation (CME), a set of ordinary
differential equations (ODEs), one ODE for each possible state of the system. At time
t the kth equation gives the probability of the system being in the kth state. The
important point here is that the dimension of the ODE is not given by the number
of species, N , but by the number of possible states of the system. The latter quan-
tity depends upon the total number of molecules present and the precise form of the
chemical reactions, and is usually very large. For example, suppose there are N = 4
species A, B, C, D, and M = 2 types of reaction:

• a molecule of A and a molecule of B can combine to create a molecule of C
plus a molecule of D, which we may write as A+B → C +D;

• the reverse reaction, which we may write as C +D → A+B.
If we start with K molecules of type A and K molecules of type B, with no molecules
of C or D, so that

X(0) =




K
K
0
0


 ,

then the state vector X(t) takes the possible values values


K
K
0
0


 ,



K − 1
K − 1

1
1


 ,



K − 2
K − 2

2
2


 , . . . . . . ,




0
0
K
K


 ,

so there are K + 1 different states.
Generally, the CME has such extremely high dimension that it cannot be handled

analytically or computationally.
The stochastic simulation algorithm (SSA), also called Gillespie’s algorithm, gives

one approach to computing indirectly with the CME. Here, rather than solving the
full set of ODEs to get a probability distribution over all possible states for each time
t, we compute samples from these distributions, that is, compute realizations of the
state vector {t,X(t)} in such a way that the chance of a particular realization being
computed reflects the corresponding probability given by the CME.

Although straightforward to implement, the SSA can be impractically slow when
reactions occur frequently. We can try to speed up the SSA by “lumping together”
reactions and only updating the state vector after many reactions have fired. This tau-
leaping approximation introduces errors that will be small as long as the state vector
updates are relatively small. Pushing the approximation further leads to the chemical
Langevin equation (CLE). Here, we have a set of N stochastic differential equations
(SDEs), with one component for each chemical species. The state vector, which we
write as Y(t), is now a continuous time, real-valued stochastic process—at each time
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t, Yi(t) is a real-valued random variable representing the number of molecules of the
ith species. We emphasize that in moving from the CME to the CLE we have

• reduced the dimension of the system from the number of possible states to
the number of chemical species;
• relaxed from integers to real values in describing the numbers of molecules

for each species;
• changed from a probability distribution over the large but discrete set of states

to a continuous probability distribution for each of the N chemical species.
Simplifying from the CME to the CLE is attractive from a computational point

of view. It is relatively cheap to simulate the N -dimensional SDE; that is, to compute
approximate trajectories {t,Y(t)} whose chance of arising agree with the CLE.

As a further simplification, we can ignore fluctuations in the CLE and regard the
deterministic part as our model. This produces the reaction rate equations (RREs).
This is a set of N ODEs involving a state vector that we write as y(t). Here, yi(t) is a
real number representing the concentration of the ith species at time t. In comparison
with the CME and CLE, simulating with the RRE is an extremely simple task that
can be handled by any stiff ODE solving software.

In the following box we summarize the high-level differences between the CME,
CLE, and RRE philosophies.

Chemical Master Equation. A set of linear, autonomous ODEs. One ODE for
each possible state of the system. Solution of the kth equation at time t
is a real number giving the probability of system being in that particular
state at time t.

Chemical Langevin Equation. A set of nonlinear, autonomous SDEs. One SDE
for each chemical species. Solution of the jth equation at time t is
a real-valued random variable representing the amount of species j at
time t.

Reaction Rate Equations. A set of nonlinear, autonomous ODEs. One ODE for
each chemical species. Solution of the jth equation at time t is a real
number representing the concentration of species j at time t.

3. Chemical Master Equation. We begin this section with a motivating example
of a chemical system.

The namesMichaelis–Menten are associated with a system involving four species:
• a substrate, S1,
• an enzyme, S2,
• a complex, S3, and
• a product, S4.

The reactions may be written

S1 + S2
c1→ S3,(1)

S3
c2→ S1 + S2,(2)

S3
c3→ S4 + S2.(3)

The role of the rate constants, c1, c2, c3, will be explained later in this section. Over-
all, the enzyme converts substrate into product. It does this by binding with the
substrate to form the enzyme-substrate complex (reaction (1)). A molecule of this
complex may simply dissociate back into enzyme and product (reaction (2)). Or it
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may dissociate into the product (an altered version of the substrate) and the enzyme
(reaction (3)). This model rules out the possibility of reaction (3) being reversed—
product and enzyme cannot recombine to form the complex.

Although simple, the Michaelis–Menten system deals with an extremely important
mechanism and hence has been very widely studied. Crampin and Schnell [10] argue
that “almost everything that happens in life boils down to enzymatic catalysis and
biochemical kinetics.”

We explained in section 2 that in deriving the CME we will not consider the
position or velocity of individual molecules, and hence we will be content to describe
the system in terms of the state vector X(t). In the system (1)–(3) we see that, once
created, a molecule of the product S4 is never involved in any further reactions. If
we were not interested in the amount of product, then we could ignore S4 and use
a state vector that recorded only the amounts of S1, S2, and S3 (since any change
of state only depends on these three species). Also, we could recover the state of S4
from the states of S1 and S3 by noting that S1 + S3 + S4 = constant. However, in
this illustration we will work with the full state vector X(t) ∈ R4.

If reaction (1) takes place, then X1(t) and X2(t) decrease by one and X3(t)
increases by one. So X(t) becomes X(t) + ν1, where

ν1 =



−1
−1
1
0


 .

Similarly, for reactions (2) and (3) we introduce

ν2 =




1
1
−1
0


 and ν3 =




0
1
−1
1


 ,

respectively.
Now a type (1) reaction can arise only when an S1 molecule meets an S2 molecule.

Intuitively, if there are very few S1 or S2 molecules present at some time, then a
reaction of this type is less likely to take place than if there were many S1 and S2
molecules present. Using this type of argument, we may talk about the probability
of this reaction taking place, and we will assume this probability to be proportional
to the product of the numbers of S1 and S2 molecules present. More precisely, we
assume that the probability of this reaction taking place in the infinitesimal time
interval [t, t + dt) is given by c1X1(t)X2(t)dt. Here the product X1(t)X2(t) relates
to the likelihood of two appropriate molecules coming into contact, and the constant
c1 is a scale factor that, among other things, allows for the fact that not every such
collision will result in a reaction.

For the second type of reaction, (2), only S3 has an active role. Hence, we take the
corresponding probability to be c2X3(t)dt—proportional to the amount of S3 present.
Similarly, we use the probability c3X3(t)dt for the third type of reaction, (3).

This setup generalizes to any collection of unimolecular (one molecule on the left-
hand side) or bimolecular (two molecules on the left-hand side) reactions. Generally,
we have chemical species S1, S2, . . . , SN that take part inM different types of chemical
reaction, or reaction channels. For 1 ≤ j ≤ M , the jth type of reaction has an
associated stoichiometric, or state-change vector, νj ∈ RN , whose ith component is
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the change in the number of Si molecules caused by the jth reaction. So one reaction
of type j has the effect of changing the state vector from X(t) to X(t) + νj .

Also associated with the jth reaction is the propensity function, aj(X(t)), which
has the property that the probability of this reaction taking place in the infinitesimal
time interval [t, t+dt) is given by aj(X(t))dt. The propensity functions are constructed
as follows.

Second Order. Sm + Sn
cj→ something, with m 	= n, has aj(X(t)) = cjXm(t)Xn(t).

Dimerization. Sm + Sm
cj→ something has aj(X(t)) = cj 1

2Xm(t)(Xm(t)− 1).

First Order. Sm
cj→ something has aj(X(t)) = cjXm(t).

The first and third of these were illustrated above in the Michaelis–Menten example.
The second deals with the case where two molecules from the same chemical species
interact. The factor 1

2Xm(t)(Xm(t) − 1) can be understood from the combinatoric
fact that it represents the number of ways of choosing an (unordered) pair of objects
from a total of Xm(t).

The forms of the propensity functions should make intuitive sense. In fact, they
can be justified rigorously from first principles; see the classic references cited in
section 9.1 for details. (This contrasts with the case of the RRE in section 7, where
the modeling arguments are much more ad hoc.)

We are now in a position to study the quantity P (x, t), which we define to be the
probability that X(t) = x. We assume that X(0) is given. Our approach is to derive a
recurrence. Given that we know the probability of being in any of the possible states
at time t, we will work out the probability of being in state x at time t+dt, assuming
dt is so small that at most one reaction can take place over [t, t+ dt). The first step
is to notice that to be in state x at time t + dt there are only two basic scenarios
for time t; either the system was already in state x at time t and no reaction took
place over [t, t + dt), or for some 1 ≤ j ≤ M the system was in state x − νj at time
t and the jth reaction fired over [t, t+ dt), thereby bringing the system into state x.
We need to apply a standard result from probability theory known as the law of total
probability. Generally, suppose A is the event of interest and suppose that the events
H0, H1, H2, . . . , HM , HM+1 are (a) disjoint (no more than one can happen) and (b)
exhaustive (one of them must happen). Then the law of total probability says that

P (A) =
M+1∑
j=0

P (A|Hj)P (Hj) .(4)

Here, P (A|Hj) means the probability that A happens, given that Hj happens. In
our case, A is the event that the system is in state x at time t + dt. We can let H0
be the event that the system is in state x at time t, let Hj for 1 ≤ j ≤ M be the
event that the system is in state x − νj at time t, and let HM+1 be the event that
the system is in any other state at time t. Now, for 1 ≤ j ≤ M , P(A|Hj) is simply
the probability of the jth reaction firing over [t, t + dt). From the definition of the
propensity functions this means

P (A|Hj) = aj(x− νj)dt, 1 ≤ j ≤M.(5)

Similarly, P(A|H0) is the probability of no reaction firing over [t, t + dt). This must
equal 1 minus the probability of any reaction firing, so

P (A|H0) = 1−
M∑
j=1

aj(x)dt.(6)
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Finally,

P (A|HM+1) = 0,(7)

because HM+1 contains all the states that are more than one reaction away from x.
Using (5), (6), and (7) in (4), along with the definition of P (x, t), we find that

P (x, t+ dt) =


1−

M∑
j=1

aj(x)dt


P (x, t) +

M∑
j=1

aj(x− νj)dtP (x− νj , t).

This equation can be rearranged to

P (x, t+ dt)− P (x, t)
dt

=
M∑
j=1

(aj(x− νj)P (x− νj , t)− aj(x)P (x, t)) .

Letting dt→ 0 we see that the left-hand side of this equation becomes a time deriva-
tive, leading to the CME

dP (x, t)
dt

=
M∑
j=1

(aj(x− νj)P (x− νj , t)− aj(x)P (x, t)) .(8)

We emphasize here that the state vector x ranges over a (large) discrete set of values,
and the CME (8) is a linear ODE system with one ODE for each possible state.

4. Stochastic Simulation Algorithm. Typically, the CME is too high-dimen-
sional to deal with computationally. The SSA gets around this issue by computing
single realizations of the state vector rather than an entire probability distribution.

To derive the SSA we introduce the quantity P0(τ |x, t), where

given X(t) = x, P0(τ |x, t) is the probability that no reaction takes
place in the time interval [t, t+ τ).

Now we consider the time interval [t, t+ τ + dτ). We assume that what happens
over [t, t + τ) is independent of what happens over [t + τ, t + τ + dτ), so that “and”
translates into “product.” In words, we have

Prob. no reaction over [t, t+ τ + dτ) = Prob. no reaction over [t, t+ τ)
and no reaction over [t+ τ, t+ τ + dτ)

= Prob. no reaction over [t, t+ τ)
× Prob. no reaction over [t+ τ, t+ τ + dτ)

= Prob. no reaction over [t, t+ τ)
× (1− sum of prob. each reaction over

[t+ τ, t+ τ + dτ)) .

Using the definition of the propensity function, this may be written

P0(τ + δτ |x, t) = P0(τ |x, t)
(
1−

M∑
k=1

ak(x)dτ

)
,
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that is,

P0(τ + δτ |x, t)− P0(τ |x, t)
dτ

= −asum(x)P0(τ |x, t), where asum(x) :=
M∑
k=1

ak(x).

Passing to the limit as dτ → 0 leads to a linear scalar ODE, which, by definition, has
initial condition P0(0|x, t) = 1. Solving the ODE gives

P0(τ |x, t) = e−asum(x)τ .(9)

Now, the key quantity for the SSA is p(τ, j|x, t), which is defined by

given X(t) = x, p(τ, j|x, t)dτ is the probability that the next reaction
(a) will be the jth reaction and (b) will occur in the time interval
[t+ τ, t+ τ + dτ).

In words, with “and” becoming a product again, we have

Prob. (a) and (b) = Prob. no reaction took place over [t, t+ τ)
× Prob. jth reaction took place over [t+ τ, t+ τ + dτ).

(Here, we assume that dτ is so small that at most one reaction can take place over
that length of time.) Using the definitions of P0 and aj , this translates to

p(τ, j|x, t)dτ = P0(τ |x, t)aj(x)dτ,

so, from (9),

p(τ, j|x, t) = aj(x)e−asum(x)τ .

This is conveniently rewritten as

p(τ, j|x, t) =
aj(x)
asum(x)

asum(x)e−asum(x)τ .(10)

Formally, p(τ, j|x, t) is the joint density function for the two random variables
• next reaction index and
• time until next reaction,

and (10) shows that it may be written as the product of two individual density func-
tions.

Next Reaction Index aj(x)/asum(x) corresponds to a discrete random variable: pick
one of the reactions with the rule that the chance of picking the jth reaction
is proportional to aj(x).

Time until Next Reaction asum(x)e−asum(x)τ is the density function for a continuous
random variable with an exponential distribution. These exponential random
variables arise universally in descriptions of the time elapsing between unpre-
dictable events.

From a computational perspective this is a very important observation. It allows
us to simulate independently a reaction index and a reaction time. Each can be
computed via a uniform (0, 1) sample. The details are spelled out in the appendix.
The resulting algorithm can be summarized very simply in the following pseudocode,
where an initial state X(0) is given.
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1. Evaluate {ak(X(t))}Mk=1 and asum(X(t)) :=
∑M
k=1 ak(X(t)).

2. Draw two independent uniform (0, 1) random numbers, ξ1 and ξ2.
3. Set j to be the smallest integer satisfying

∑j
k=1 ak(X(t)) > ξ1asum(X(t)).

4. Set τ = ln(1/ξ2)/asum(X(t)).
5. Set X(t+ τ) = X(t) + νj and update t to t+ τ .
6. Return to step 1.

In practice, of course, step 6 would also include a termination condition; for example,
stop when t has passed a specified value, when some species exceeds a specified upper
or lower bound, or when a specified number of iterations have been taken.

5. Tau-Leaping. The SSA is exact, in the sense that the statistics from the CME
are reproduced precisely. However, this exactness comes at a high computational
price. At each iteration, a reaction time and reaction index must be drawn, and
then the state vector and propensity functions must be updated. If there are many
molecules in the system and/or some fast reactions, so that asum(X(t)) is large and
hence the time τ to the next reaction is typically small, then this can result in a huge
amount of random number generation and bookkeeping. It is therefore attractive to
consider a fixed time interval length, τ , and to fire simultaneously all reactions that
would have taken place. More precisely, given X(t), we could freeze the propensity
functions aj(X(t)) and, using these values, fire an appropriate number of reactions of
each type. This gives the tau-leaping method

X(t+ τ) = X(t) +
M∑
j=1

νjPj(aj(X(t)), τ),(11)

where the random variables {Pj(aj(X(t)), τ)}Mj=1 must now be determined.
In order for this approximation to the SSA to be valid, we require that τ is suffi-

ciently small that relatively few reactions take place, in the sense that the propensity
functions aj(X(t)) would not have changed very much if we had taken the effort to
update after each reaction.

Now if aj(X(t)) were to stay exactly constant over [t, t + τ), then the number
of type j reactions to fire would be given by a simple counting process: we know
that the probability of the jth reaction firing over a small time interval of length dτ
is given by aj(X(t))dτ , and we need to count how many of these events arise over
[t, t + τ). It follows that the number of reactions, Pj(aj(X(t)), τ), will have what
is known as a Poisson distribution with parameter aj(X(t))τ). (Generally a Poisson
random variable P with parameter λ > 0 takes possible values {0, 1, 2, 3, . . .} such
that P (P = i) = e−λ λ

i

i! .)
Overall, a path from the tau-leaping method with leap time τ can be computed

as follows.
1. Draw samples {pj}Mj=1 from the distributions of independent Poisson random

variables {Pj(aj(X(t)), τ)}Mj=1.
2. Set X(t+ τ) = X(t) +

∑M
j=1 νjpj and update t to t+ τ .

3. Return to step 1.
In practice, the leap time, τ , can be chosen adaptively, based on the current state
vector and propensity function values.

6. Chemical Langevin Equation. In addition to being a viable computational
approach, tau-leaping can also be viewed as a link that connects the CME to a coarser-
grained model. The Poisson random variable Pj(aj(X(t)), τ) has mean aj(X(t))τ , so
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this is the expected number of times for the jth reaction to fire over [t, t + τ). The
variance of Pj(aj(X(t)), τ) is also aj(X(t))τ . Now suppose the leap time τ is chosen
so that aj(X(t))τ is large for all 1 ≤ j ≤ M . A standard result from probability
theory says that a Poisson random variable with large mean is well approximated
by a normal random variable with the same mean and variance. Hence, in the tau-
leaping method it is reasonable to change from Poisson to normal if every reaction
is expected to fire many times over [t, t+ τ). (Recall that tau-leaping was motivated
under a different assumption—that each aj(X(t)) will have a relatively small change
over [t, t+ τ). This is not incompatible with the large aj(X(t))τ assumption, and we
are now hoping that both are valid.)

Replacing each Pj(aj(X(t)), τ) in (11) with aj(X(t))τ +
√
aj(X(t))τZj , where

the Zj are independent normal (0, 1) random variables, we arrive at the recurrence

Y(t+ τ) = Y(t) + τ

M∑
j=1

νjaj(Y(t)) +
√
τ

M∑
j=1

νj

√
aj(Y(t))Zj .(12)

Note that we have switched from integer-valued Poisson random variables to real-
valued normal random variables. To mark the fact that real numbers are now being
used to describe the amount of each species present, we are using a different symbol,
Y(t), for the state vector.

Although continuous in the state variables, the recurrence (12) runs over discrete
time. It generates a sequence of random variables {Y(0),Y(τ),Y(2τ), . . .} corre-
sponding to the state vector at discrete times {0, τ, 2τ, . . .}. Computationally, we
could simulate a sample path of this process by taking steps of the following form.

1. Draw independent samples {zj}Mj=1 from the normal (0, 1) distribution.
2. Set Y(t + τ) = Y(t) + τ

∑M
j=1 νjaj(Y(t)) +

√
τ
∑M
j=1 νj

√
aj(Y(t)) zj and

update t to t+ τ .
3. Return to step 1.

Moreover, readers familiar with numerical methods for SDEs will recognize (12) as an
Euler–Maruyama discretization of the continuous time problem

dY(t) =
M∑
j=1

νjaj(Y(t))dt+
M∑
j=1

νj

√
aj(Y(t)) dWj(t),(13)

where the Wj(t) are independent scalar Brownian motions. We refer to [21] for an
introduction to numerical SDEs. Readers not familiar with SDEs could simply accept
that in the limit τ → 0 the discrete time recurrence (12) converges to a continuous
time process Y(t), and (13) is a way of writing the equation satisfied by this limiting
process. Further, the standard way to solve (13) numerically is to use the recurrence
(12) with a sufficiently small τ .

The system (13) is called the CLE. For every t ≥ 0, its solution is a random
variable with N components, describing the state of each species.

It is worthwhile to recap the assumptions that were used to take us from the SSA,
via tau-leaping, to the CLE.

1. Each propensity function aj(X(t)) will undergo a relatively small change over
each [t, t+ τ).

2. Each of the products aj(X(t))τ will be large.
3. The leap time τ will be small enough for the numerical method (12) to give

a good approximation to the SDE (13).
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Assumptions 1 and 3 ask for τ to be “small enough,” whereas assumption 2 asks
for τ to be “large enough.” Noting that the propensity functions depend linearly
or quadratically on the state vector components, we see that to meet these three
requirements simultaneously, we must have a large number of molecules present.

7. Reaction Rate Equation. If we simply ignore the stochastic part of the CLE,
and mark this by using the lowercase symbol y(t), we arrive at the set of ODEs

dy(t)
dt

=
M∑
j=1

νjaj(y(t)).(14)

We will show in this section that these ODEs essentially correspond to the “textbook”
model for chemical kinetics.

The classical approach to chemical kinetics deals with a state vector y(t) ∈ RM ,
with yi(t) a nonnegative real number representing the concentration of species Si at
time t. Concentrations are usually measured in M (moles per liter). Avagadro’s con-
stant, nA ≈ 6.023×1023, gives the number of molecules in a mole. So a concentration
yi(t)M of species Si in a fixed volume of vol liters corresponds to yi(t)nAvol molecules
of that species.

In this setting the concentrations are assumed to vary continuously in time, ac-
cording to the RRE. An empirical rule of thumb, called the law of mass action, is
used to determine the RRE. Essentially, this law says that each reaction in the system
affects the rate of change of the species involved. More precisely, the effect on the
instantaneous rate of change is proportional to the product of the concentrations of
the reacting species.

For the Michaelis–Menten system (1)–(3), letting the reaction constants be de-
noted k1, k2, and k3, the RRE reads

dy1(t)
dt

= −k1y1(t)y2(t) + k2y3(t),

dy2(t)
dt

= −k1y1(t)y2(t) + (k2 + k3)y3(t),

dy3(t)
dt

= k1y1(t)y2(t)− (k2 + k3)y3(t),

dy4(t)
dt

= k3y3(t).

For example, to obtain the second equation we note that species S2 is involved in all
three reactions. Reaction (1) decreases the amount of S2 at a rate proportional to
the product of the two reactants involved, giving the term −k1y1(t)y2(t). Reaction
(2) increases the amount of S2 at a rate proportional to the single reactant, giving
the term k2y3(t). Similarly, reaction (3) gives the term k3y3(t).

Generally, in terms of the stoichiometric vectors {νj}, the RRE can be constructed
as follows.
Second Order. Sm + Sn

kj→ something, with m 	= n, contributes νjkjym(t)yn(t) to
the RRE system.

Dimerization. Sm + Sm
kj→ something contributes νjkjym(t)2 to the RRE system.

First order. Sm
kj→ something contributes νjkjym(t) to the RRE system.

We may now convince ourselves that this RRE description looks very much like
the CLE with the noise terms switched off (14). To do this, we must compare the
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appropriate terms for each of our reaction types, remembering how to convert between
concentrations and molecule counts.
Second Order. Sm + Sn → something, with m 	= n. Here the RRE law has a

concentration-based rate of change of kjym(t)yn(t)Ms−1. With Xm(t) =
ym(t)nAvol and Xn(t) = yn(t)nAvol denoting the number of molecules of
Sm and Sn, this rate is equivalent to kjXm(t)Xn(t)/(nAvol) molecules per
second. Equating this with the propensity function value, cjXm(t)Xn(t),
gives the relation

cj =
kj

nAvol
.(15)

Dimerization. Sm + Sm → something. Now the concentration-based rate kjym(t)2

corresponds to a molecular rate of 2×kjXm(t)2/(nAvol). Equating this with
the propensity function value, 2 × cjXm(t) (Xm(t)− 1) /2, we arrive at the
relation

cj ≈
2kj
nAvol

.(16)

Here, “≈” appears because Xm(t)(Xm(t) − 1) does not equal Xm(t)2, but
approximates it well when Xm(t) is large.

First Order. Sm → something. In this case the deterministic rate kjym(t) gives a
molecular rate of kjXm(t), exactly matching the rate from the propensity
function, so

cj = kj .(17)

In summary, the classical RRE model can be regarded as arising from the CLE
(13) when the stochastic terms are removed, the reaction constants are converted
according to (15)–(17), and, in the case of dimerization-type reactions, the “large
molecule number” approximation Xm(t)(Xm(t)− 1) ≈ Xm(t)2 is used.

It is, of course, no coincidence that the CME and CLE are related. The idea of
modeling in terms of concentrations and instantaneous rates of change presupposes
that large numbers of molecules are present. Formally, we can think of a thermo-
dynamic limit in which the system volume, vol, and the species populations, Xi(t),
tend to infinity, but where the species concentrations Xi(t)/vol remain constant. In
this limit, the deterministic coefficients in the CME grow like the system size, but
the stochastic coefficients grow like the square root of the system size, and hence the
ODE part dominates. So, in this well-defined sense, the RRE is a logical consequence
of the CME model under appropriate simplifying assumptions.

Since the propensity function approach of section 3 can be justified from first
principles, these arguments put the “mass action” framework on a firmer footing,
but also emphasize that the RRE can be valid only when there are large numbers of
molecules of each species.

An important point is that the RRE solution, in general, does not correspond to
the “average” solution from the CLE or CME. So, for example, it cannot be argued
that solving the RRE is equivalent to computing many solution paths of the CLE
and then forming an ensemble average. The underlying reason for this mismatch is
that E[X2] 	= (E[X])2 for a general random variable X, and E[XY ] 	= E[X]E[Y ] for
general nonindependent random variablesX and Y . Hence the quadratic terms arising
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from second order or dimerization reactions do not succumb easily to the expectation
operator. So the RRE is not computing averages, it is computing the thermodynamic
limit.

8. Computational Experiment. Our purpose in this section is to give numerical
simulations of the Michaelis–Menten system (1)–(3) using the SSA, CLE, and RRE
frameworks.

We will use initial data and rate constants from [40, section 7.3]. Here, the
concentration-based data is


y1(0)
y2(0)
y3(0)
y4(0)


 =




5× 10−7M
2× 10−7M

0M
0M


 , k1 = 106, k2 = 10−4, k3 = 10−1,

within a volume of vol = 10−15 liters. This corresponds to molecular data of


X1(0)
X2(0)
X3(0)
X4(0)


 =



�5× 10−7nAvol�
�2× 10−7nAvol�

0
0


 , c1 =

106

nAvol
, c2 = 10−4, c3 = 10−1,

where �·� denotes rounding to the nearest integer. We will simulate reactions until
the time exceeds t = 50.

Since X1(0) = 312 and X2(0) = 125, we are in the regime of a reasonably small
number of molecules, with roughly 2.5 times as many substrate molecules as enzyme
molecules, initially, and no complex or product.

The code ssa_mm in Listing 1 implements the SSA for this system. This is a
straightforward translation into MATLAB [22] of the pseudocode summary in sec-
tion 4, making use of the built-in uniform random number generator, rand. Perhaps
the only nontransparent line of code is

j = min(find(rand<cumsum(a/asum)));

Here, cumsum(a/asum) is a vector whose kth component is the cumulative sum of the
first k components of a/asum; that is,[

a(1)
asum

,
a(1) + a(2)

asum
,

a(1) + a(2) + a(3)
asum

]
.

By construction, the final component equals 1. Then find(rand<cumsum(a/asum)) is
a vector giving the indices for those components of cumsum(a/asum) that exceed the
random number. So, min(find(rand<cumsum(a/asum))) records the smallest such
index. In the appendix we explain why this is an appropriate way to choose a reaction
index.

Figure 1 shows the evolution of the number of molecules of substrate, X1(t), and
product, X4(t). To emphasize that these are integer-valued quantities changing at
discrete points in time, in Figure 2 we zoom in on part of the plot. The circles and
asterisks denote substrate and product counts, respectively, before and after each
reaction.

Listing 2 shows cle mm.m, which implements the Euler–Maruyama method (12)
on the CLE for the same system, with a stepsize τ = 0.2. In this case, MATLAB’s
normal random number generator, randn, is used. We note that the state vector is not
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%SSA_MM.M
%
% Simple implementation of the Stochastic Simulation Algorithm
% (or Gillespie’s algorithm) on the Michaelis-Menten system.
%
% Parameters from Chapter 7 of
% Stochastic Modelling for Systems Biology,
% by Darren J. Wilkinson, Chapman & Hall/CRC, 2006.
%
% Downloadable from
% http://www.maths.strath.ac.uk/˜aas96106/algfiles.html
% along with an extended version that produces graphical output.

rand(’state’,100)

%stoichiometric matrix
V = [-1 1 0; -1 1 1; 1 -1 -1; 0 0 1];

%%%%%%%%%% Parameters and Initial Conditions %%%%%%%%%
nA = 6.023e23; % Avagadro’s number
vol = 1e-15; % volume of system
X = zeros(4,1);
X(1) = round(5e-7*nA*vol); % molecules of substrate
X(2) = round(2e-7*nA*vol); % molecules of enzyme
c(1) = 1e6/(nA*vol); c(2) = 1e-4; c(3) = 0.1;

t = 0;
tfinal = 50;
while t < tfinal

a(1) = c(1)*X(1)*X(2);
a(2) = c(2)*X(3);
a(3) = c(3)*X(3);
asum = sum(a);
j = min(find(rand<cumsum(a/asum)));
tau = log(1/rand)/asum;
X = X + V(:,j);
t = t + tau;

% Record or plot system state here if required
end

Listing 1 Listing of ssa mm.m.

guaranteed to remain nonnegative in this computation, and hence we apply abs before
taking square roots. For comparison with Figure 1, we show in Figure 3 the evolution
of substrate and product. The underlying CLE produces paths in continuous time
that are, with probability 1, continuous but not differentiable. The Euler–Maruyama
method gives a discrete time approximation to these paths. In Figure 4 we zoom in
on part of Figure 3 to show some of the detail.

Finally, the function rre mm.m in Listing 3 applies MATLAB’s built-in stiff ODE
solver ode15s to the RRE formulation. The format is based on rossler ex1.m from
[22, Listing 12.1], and a nested function is used to specify the ODE system. Figure 5
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Fig. 1 Molecules of substrate and product from a run of the SSA on the Michaelis–Menten system.
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Fig. 2 A zoom in on the picture in Figure 1.

shows the substrate and product curves. In this case, the underlying RRE model pro-
duces continuous time, smooth solutions, and the symbols in the plot simply indicate
where ode15s has chosen to discretize for the purpose of numerical approximation.
We note that this model uses concentrations and has output in moles per liter. The
absolute size of the solution is quite small, of the order 10−7, which can cause difficul-
ties for an ODE solver. We found that using the default error tolerances in ode15s
produced qualitatively incorrect results, hence in rre mm.m we specify a more strin-
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%CLE_MM.M
%
% Simple implementation of Euler-Maruyama to simulate the
% Chemical Langevin Equation for the Michaelis-Menten system.
%
% Parameters from Chapter 7 of
% Stochastic Modelling for Systems Biology,
% by Darren J. Wilkinson, Chapman & Hall/CRC, 2006.
%
% Downloadable from
% http://www.maths.strath.ac.uk/˜aas96106/algfiles.html
% along with an extended version that produces graphical output.

randn(’state’,100)

%stoichiometric matrix
V = [-1 1 0; -1 1 1; 1 -1 -1; 0 0 1];

%%%%%%%%%% Parameters and Initial Conditions %%%%%%%%%
nA = 6.023e23; % Avagadro’s number
vol = 1e-15; % volume of system
Y = zeros(4,1);
Y(1) = round(5e-7*nA*vol); % molecules of substrate
Y(2) = round(2e-7*nA*vol); % molecules of enzyme
c(1) = 1e6/(nA*vol); c(2) = 1e-4; c(3) = 0.1;

tfinal = 50;
L = 250;
tau = tfinal/L; % stepsize

for k = 1:L
a(1) = c(1)*Y(1)*Y(2);
a(2) = c(2)*Y(3);
a(3) = c(3)*Y(3);
d(1) = tau*a(1) + sqrt(abs(tau*a(1)))*randn;
d(2) = tau*a(2) + sqrt(abs(tau*a(2)))*randn;
d(3) = tau*a(3) + sqrt(abs(tau*a(3)))*randn;
Y = Y + d(1)*V(:,1) + d(2)*V(:,2) + d(3)*V(:,3);

% Record or plot system state here if required
end

Listing 2 Listing of cle mm.m.

gent absolute tolerance via odeset. As an alternative, of course, we could convert to
appropriate dimensionless quantities.

9. Discussion and Further Reading. For the computations in section 8, even
with molecule counts as low as the hundreds, the RRE gave a reasonable match to
the single paths that we drew from the CLE and SSA. In general, whether the RRE is
an acceptable model depends not only on the initial data and system parameters, but
also on the purpose for which the model is to be used. Biochemistry within the cell is
an important example where, in many cases, the law of mass action is inappropriate.
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Fig. 3 Molecules of substrate and product from an Euler–Maruyama simulation of the CLE for the
Michaelis–Menten system.
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Fig. 4 A zoom in on the picture in Figure 3.

Many cellular processes involve extremely small population sizes, where it is unrealistic
to think in terms of concentration, and often the system response depends critically
on the precise quantitative values. A related issue is that in addition to discreteness,
stochasticity is often a vital component. For example, a biological system may exhibit
bistability, switching between two distinct states. Here, the switching is driven purely
by the inherent noise in the system—a sufficiently large excursion can cause a path
to move from one state to another. Rather than an “ensemble average,” quantitative
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function rre_mm
%
% ODE15s solution the Reaction Rate Equation for
% the Michaelis-Menten system.
%
% Parameters from Chapter 7 of
% Stochastic Modelling for Systems Biology,
% by Darren J. Wilkinson, Chapman & Hall/CRC, 2006.
%
% Downloadable from
% http://www.maths.strath.ac.uk/˜aas96106/algfiles.html
% along with an extended version that produces graphical output.

tspan = [0 50]; yzero = [5e-7; 2e-7; 0; 0];
options = odeset(’AbsTol’,1e-8);
k1 = 1e6; k2 = 1e-4; k3 = 0.1;

[t,y] = ode15s(@mm_rre,tspan,yzero,options);

% Record or plot (t,y) at this stage

%--------------Nested function----------
function yprime = mm_rre(t,y)
% MM_RRE Michaelis-Menten Reaction Rate Equation
yprime = zeros(4,1);
yprime(1) = -k1*y(1)*y(2) + k2*y(3);
yprime(2) = -k1*y(1)*y(2) + (k2+k3)*y(3);
yprime(3) = k1*y(1)*y(2) - (k2+k3)*y(3);
yprime(4) = k3*y(3);
end

end

Listing 3 Listing of rre mm.m.

measures such as “average time between switches” and “relative time spent in each
state” are more likely to be of interest. These properties can be computed naturally
from large scale stochastic simulations.

We finish with some pointers to the literature.

9.1. Classics. The SSA was invented by Dan Gillespie. The classic early ref-
erences [15, 16], which emphasize that the underlying propensity functions can be
derived from first principle physical arguments, remain highly pertinent. Streamed
video of a 2004 seminar titled Stochastic Chemical Kinetics given by Gillespie at the
Mathematical Biosciences Institute, Ohio State University, can be downloaded from

http://mbi.osu.edu/2004/ws2abstracts.html.

There are many viewpoints on the CME and CLE. Good starting points are [13, 17,
39]. The original tau-leaping idea is also due to Gillespie [18].

9.2. Expository. For further expository reading we strongly recommend [19] and
[34], both of which greatly influenced this article. The reference [28] provides a simple
tutorial with MATLAB code. The recent text [40] gives a general exposition from the
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Fig. 5 Concentrations of substrate and product from MATLAB’s ode15s solver applied to the RRE
for the Michaelis–Menten system, using absolute error tolerance of AbsTol=1e-8.

viewpoint of systems biology and discusses many issues, including the task of inferring
parameters from experimental data.

9.3. Biochemistry. Computational cell biology is perhaps the most high-profile
area where the issues of discrete/stochastic versus continuous/deterministic arise.
There is now a vast array of literature involving Gillespie-style simulations of cel-
lular processes. An excellent route into this material is [40]. A very readable overview
can also be found in [37], which includes some insightful computations comparing
different modeling regimes. The article [38] has a systems biology perspective and
includes MATLAB examples.

There are many issues to be addressed when stochastic simulation techniques are
applied in a biological context. Important examples are that cell growth and cell
division give rise to time-varying volumes [27], “reactions” may not be instantaneous
[5], and spatial effects can be significant [36].

9.4. Algorithms and Software. Software that implements stochastic simulation
algorithms is described in [1, 8, 24, 26, 33]. Also, the MATLAB SimBiology Toolbox
has the SSA and tau-leaping algorithms.

There is currently a great deal of algorithmic activity, both in (a) designing new
variants for increased efficiency or accuracy in certain circumstances [7, 14, 29], and
(b) developing multiscale algorithms that work across different modeling regimes to
gain the benefits of stochastic simulation without the full cost [6, 11, 12, 20, 32].

Chapter 8 of [40] gives an accessible overview of recent developments.
The Markov process corresponding to the CME may be written in terms of stan-

dard Poisson processes using a random time change representation. This provides a
very convenient framework for proving limit theorems and performing multiscale anal-
ysis [3], and, very recently, has been used as the basis for improving the reliability of
tau-leaping [2].
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9.5. Related Fields. The CME is an example of a birth-and-death process, pro-
viding links to classical population dynamics [23, 31], with the residence-time algo-
rithm [9] taking the same form as the SSA.

The SSA also fits into the frameworks of discrete event simulation and Petri nets.
The text [40] is a good place to learn more. In the physics and materials science
communities an analogue of the SSA was proposed by Young and Elcock [41] and is
known as kinetic Monte Carlo (KMC). Bortz, Kalos, and Lebowitz [4] used the same
ideas to simulate Ising spin systems, and hence some disciplines refer to the BKL
method.

The type of noise arising in the CLE is called intrinsic, distinguishing it from
extrinsic noise that may arise from external factors (temperature, pressure, etc.).
Modeling extrinsic noise is a separate issue that gives rise to different stochastic terms
that are typically derived in an ad hoc manner [30].

Appendix. Simulation and Probability Issues. This appendix fills in some of
the details concerning stochastic simulation that were glossed over in the main text.

First, we very briefly explain how steps 2, 3, and 4 in the pseudocode description
of the SSA in section 4 follow from the result (10). Our task is to compute an integer
j between 1 and M for the reaction index and a positive real number τ for the time
to the next reaction.

The reaction index is easy to handle. The chance of a reaction index being chosen
must be proportional to its propensity function. Conceptually, we can imagine the unit
interval being divided up into M subintervals, where the jth subinterval has length
aj(x)/asum(x). Then if we choose a point in the unit interval uniformly at random,
the chance of this point lying in the jth subinterval will be precisely aj(x)/asum(x).
Step 3 in the pseudocode does exactly this: j is taken to be the index of the subinterval
in which ξ1 lands.

For the time to the next reaction, we need to know that, in general, an expo-
nentially distributed random variable with parameter λ > 0 is characterized by the
density function {

λe−λx for x ≥ 0,
0 otherwise.

Hence, if X is exponentially distributed with parameter λ, then, for any 0 < a < b,

P (a < X < b) =
∫ b

a

λe−λx dx = e−λa − e−λb.

Now,

P (a < X < b) = P (−b < −X < −a) = P
(
e−λb < e−λX < e−λa

)
,

so we conclude that

P
(
e−λb < e−λX < e−λa

)
= e−λa − e−λb.

This shows that the random variable Z := e−λX has a uniform (0, 1) distribution—
the probability of Z lying in any subinterval of (0, 1) is given by the length of that
subinterval. Hence X may be written ln(1/Z)/λ, where Z is uniform (0, 1). With
λ = asum(X(t)), this gives step 4 of the pseudocode.
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