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WALSH SPACES CONTAINING SMOOTH FUNCTIONS AND

QUASI-MONTE CARLO RULES OF ARBITRARY HIGH ORDER

JOSEF DICK∗

Abstract. We define a Walsh space which contains all functions whose partial mixed derivatives
up to order δ ≥ 1 exist and have finite variation. In particular, for a suitable choice of parameters,
this implies that certain Sobolev spaces are contained in these Walsh spaces. For this Walsh space
we then show that quasi-Monte Carlo rules based on digital (t, α, s)-sequences achieve the optimal
rate of convergence of the worst-case error for numerical integration. This rate of convergence is also
optimal for the subspace of smooth functions. Explicit constructions of digital (t, α, s)-sequences are
given hence providing explicit quasi-Monte Carlo rules which achieve the optimal rate of convergence
of the integration error for arbitrarily smooth functions.

Key words. Numerical integration, quasi-Monte Carlo, digital nets and sequences, Walsh
functions
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1. Introduction. Quasi-Monte Carlo rules are quadrature rules which aim to
approximate an integral

∫

[0,1]s f(x) dx by the average of the N function values f(xn)

at the quadrature points x0, . . . ,xN−1 ∈ [0, 1]s (and hence are equal weight quadra-
ture rules). The dimension s can be arbitrarily large. The task here is to find ways of
how to choose those quadrature points in order to obtain a fast convergence of the ap-
proximation to the integral. Explicit constructions of quadrature points in arbitrary
high dimensions are until now available for the following two cases:

1. for sufficiently smooth periodic functions arbitrary high convergence can be
achieved using Kronecker sequences [18, Theorem 5.3] or a modification of
digital nets recently introduced in [2];

2. a convergence of O(N−1(logN)s−1) can be achieved for functions of bounded
variation (in this case the functions are not required to be periodic).

For non-periodic functions no explicit constructions have been established which can
fully exploit the smoothness of the integrand. This paper provides a complete solution
to this problem.

Among other things we show that an explicit construction of suitable point
sets and sequences can be obtained in the following way: let d ≥ 1 be an inte-
ger and let x0,x1, . . . ∈ [0, 1)ds be the points of a digital (t,m, ds)-net or digital
(t, ds)-sequence over a finite field Fq in dimension ds (see [20] for the definition of
digital nets and sequences and see for example [9, 20, 21, 23, 31] for explicit con-
structions of suitable digital nets and sequences). Let xn = (xn,1, . . . , xn,ds) with
xn,j = xn,j,1q

−1 + xn,j,2q
−2 + · · · and xn,j,i ∈ {0, . . . , q − 1} (i.e. xn,j,i are the digits

in the base q representation of xn,j). Then for n ≥ 0 we define yn = (yn,1, . . . , yn,s)
with

yn,j =

∞
∑

i=1

d
∑

k=1

xn,(j−1)d+k,iq
−k−(i−1)d for j = 1, . . . , s.

(Note that the addition here is carried out in R and that the sum over i above is
often finite as xn,j,i = 0 for i large enough.) We point out here that the quality of the

∗School of Mathematics and Statistics, University of New South Wales, Sydney 2052, Australia.
(josef.dick@unsw.edu.au)

1

http://arxiv.org/abs/1304.0328v1


2 Josef DICK

point set or sequence is directly related to the t-value of the underlying (t,m, ds)-net
or (t, ds)-sequence, see Theorem 4.11 and Theorem 4.12.

Corollary 5.5 now shows that quasi-Monte Carlo rules using the points y0, . . . ,yN−1

(with N = qm for some m ≥ 1) achieve the optimal rate of convergence of the integra-
tion error of O(N−ϑ(logN)ϑs) for functions which have partial mixed derivatives up
to order ϑ which are square integrable as long as 1 ≤ ϑ ≤ d (Corollary 5.5 is actually
more general). If ϑ > d no improvement of the convergence rate is obtained compared
to functions with smoothness ϑ = d, i.e. we obtain a convergence of O(N−d(logN)ds).
Similar, but less general results for periodic functions compared to those in this paper
have been shown in [2] by a different proof method. (The construction above is an
example of a construction method which can be used. In Section 4 we outline the
general algebraical properties required for the construction of suitable point sets.)

The quasi-Monte Carlo algorithm based on digital nets and sequences proposed
here has also some further useful properties. For example our results also hold if one
randomizes the point set by, say, a random digital shift (see for example [4, 5, 17]).
(This follows easily because the worst-case error (see Section 5) is invariant with
respect to digital shifts in the Walsh space and hence we obtain the same upper
bounds for randomized digital nets and sequences.) In summary the quadrature rules
have the following properties:

• The quadrature rules introduced in this paper are equal weight quadrature
rules which achieve the optimal rate of convergence up to some logN factors
and the result holds for deterministic and randomly digitally shifted quadra-
ture rules.

• The construction of the underlying point set is explicit and suitable point
sets are available in arbitrary high dimensions and arbitrary high number of
points.

• The quadrature rules automatically adjust themselves to the optimal rate of
convergence O(N−ϑ(logN)sϑ) as long as 1 ≤ ϑ ≤ d.

• The underlying point set is extensible in the dimension as well as in the
number of points, i.e., one can always add some coordinates or points to an
existing point set such that the quality of the point set is preserved.

In the following we lay out some of the underlying principles used in this work
which stem from the behaviour of the Walsh coefficients of smooth functions. Walsh
functions are piecewise constant wavelets which form an orthonormal set of L2([0, 1]

s).
In their simplest form, for a non-negative integer k with base 2 representation k = κ0+
· · ·+κm−12

m−1 and an x ∈ [0, 1) with base 2 representation x = x12
−1+x22

−2+ · · · ,
the k-th Walsh function in base 2 is given by

walk(x) = (−1)κ0x1+···+κm−1xm .

(Later on we will use the more general definition of Walsh functions over groups.)

The behaviour of the Fourier coefficients of smooth periodic functions is well
known, i.e. the smoother the function the faster the Fourier coefficients go to zero
(see for example [34]). An analogous result for Walsh functions has, to the best of the
authors knowledge, not been known until now (see Fine [10] who, for example, shows
that the only absolute continuous functions whose k-th Walsh coefficients decay faster
than 1/k are constant functions). This will be established here and subsequently be
exploited to obtain quasi-Monte Carlo rules with arbitrary high order of convergence.
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To give a glimpse of how the Walsh coefficients of smooth functions behave,
consider for example the Walsh series for 1/2− x:

1/2− x =

∞
∑

k=0

ckwalk(x) =

∞
∑

a=0

2−a−2wal2a(x).

Although the function is infinitely smooth, in general the decay of the Walsh coefficient
is only of order 1/k. But note that most of the Walsh coefficients are actually 0. For
example when we consider (1/2 − x)2, then typically we would have that the Walsh
coefficient of k = 2a is of order 2−a, the Walsh coefficient of k = 2a1 + 2a2 (a1 > a2)
is of order 2−a1−a2 and for k = 2a1 + 2a2 + · · · + 2av with a1 > · · · > av and v > 2
the k-th Walsh coefficient would be 0. By considering (1/2 − x)3, (1/2 − x)4, . . ., or
more generally polynomials, one can now realize that the speed of convergence of
the Walsh coefficients depends on how many non-zero digits k has. This is the basic
feature which we will relate to the speed of convergence of the Walsh coefficients for
smooth functions.

Subsequently we will explicitly state and use the behaviour of the Walsh coef-
ficients of smooth functions. In general the Walsh functions depend on the base q
digit expansion of the wavenumber k and also of the point x where the Walsh func-
tion is to be evaluated. Hence, maybe not surprisingly, the value of the k-th Walsh
coefficients of smooth functions also depend on the q-adic expansion of k. We show
that the Walsh space Es,q,ϑ,γ introduced in Section 3 contains all functions whose
partial mixed derivatives up to order δ < ϑ exist and have finite variation, where ϑ is
a parameter restricting the behaviour of the Walsh coefficients of the function space
Es,q,ϑ,γ . (We use a similar, though much more general, technique as Fine [10] used
for showing that the Walsh coefficients of a differentiable function cannot decay faster
than 1/k.)

The concept of digital (t, α, β,m, s)-nets and digital (t, α, β, s)-sequences (see Sec-
tion 4 and also [2] for a similar concept) is now designed to yield point sets which
work well for the Walsh space Es,q,ϑ,γ , just in the same way as the digital nets and
sequences from [9, 19, 20, 23, 31] are designed to work well for the spaces for example
considered in [4, 11] (or as lattice rules are designed to work well for periodic Korobov
spaces). Here the power of the result that the Walsh space Es,q,ϑ,γ contains smooth
functions comes into play: it follows that we can fully exploit the smoothness of an
integrand using digital (t, α, α,m, s)-nets or digital (t, α, α, s)-sequences. As the con-
struction of the points y0,y1, . . . introduced at the beginning yields explicit examples
of digital (t, α, α,m, s)-nets or digital (t, α, α, s)-sequences as shown in Section 4 we
therefore obtain explicit constructions of quasi-Monte Carlo rules which can achieve
the optimal order of convergence for arbitrary smooth functions.

In the next section we introduce Walsh functions over groups and state some of
their essential properties.

2. Walsh functions over groups. In this section we give the definition of
Walsh functions over groups and present some essential properties. Walsh functions
in base 2 were first introduced by Walsh [33], though a similar but non-complete set
of functions has already been studied by Rademacher [27]. Further important results
were obtained in [10]. We follow [26] in our presentation.

2.1. Definition of Walsh functions over groups. An essential tool for the
investigation of digital nets are Walsh functions. A very general definition, corre-
sponding to the most general construction of digital nets over finite rings, was given
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in [15]. There, Walsh functions over a finite abelian group G, using some bijection ϕ,
were defined. Here we restrict ourselves to the additive groups of the finite fields Fpr ,
p prime and r ≥ 1. We restate the definitions for this special case here for the sake
of convenience. In the following let N denote the set of positive integers and N0 the
set of non-negative integers.

Definition 2.1 (Walsh functions). Let q = pr, p prime, r ∈ N and let Fq be the
finite field with q elements. Let Zq = {0, 1, . . . , q − 1} ⊂ Z and let ϕ : Zq −→ Fq be a
bijection such that ϕ(0) = 0, the neutral element of addition in Fq. Moreover denote
by ψ the canonical isomorphism (described below) of additive groups ψ : Fq −→ Z

r
p

and define η := ψ ◦ ϕ. For 1 ≤ i ≤ r denote by πi the projection πi : Z
r
p −→ Zp,

πi(x1, . . . , xr) = xi.

Zq
ϕ

//

η
��
❅

❅

❅

❅

❅

❅

❅

Fq

ψ

��

Z
r
p

πi
// Zp

Let now k ∈ N0 with base q representation k = κ0 + κ1q + · · · + κm−1q
m−1 where

κl ∈ Zq and let x ∈ [0, 1) with base q representation x = x1/q+x2/q
2+ · · · (unique in

the sense that infinitely many xl must be different from q − 1). Then the k-th Walsh
function over the additive group of the finite field Fq with respect to the bijection ϕ
is defined by

Fq,ϕwalk(x) = exp

(

2πi

p

m−1
∑

l=0

r
∑

i=1

(πi ◦ η)(κl)(πi ◦ η)(xl+1)

)

.

For convenience we will in the rest of the paper omit the subscript and simply write
walk if there is no ambiguity.

Multivariate Walsh functions are defined by multiplication of the univariate com-
ponents, i.e., for s > 1, x = (x1, . . . , xs) ∈ [0, 1)s and k = (k1, . . . , ks) ∈ N

s
0, we

set

walk(x) =

s
∏

j=1

walkj (xj).

We now briefly describe the canonical isomorphism. Let Fq = Zp[θ], such that
{1, θ, . . . , θr−1} is a basis of Fq over Zp as a vector space. Then the isomorphism ψ
between Fq and Z

r
p shall be given by

ψ(x) = (x1, . . . , xr)
⊤, for x =

r
∑

i=1

xiθ
i−1, xi ∈ Zp.

For more information on the Walsh functions defined above see [26].
We summarize some important properties of Walsh functions over the additive

group of a finite field which will be used throughout the paper. The proofs of the
subsequent results can be found e.g. in [16, 25] (see also [1]). In the following we call
x ∈ [0, 1) a q-adic rational if x can be represented by a finite base q expansion.

Proposition 2.2. Let p, q, Fq and ϕ be as in Definition 2.1. For x, y with
q-adic representations x =

∑∞
i=w xiq

−i and y =
∑∞
i=w yiq

−i, w ∈ Z (taking w neg-
ative, hence the following operations are also defined for integers), define x ⊕ϕ y :=
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∑∞
i=w ziq

−i where zi := ϕ−1(ϕ(xi) + ϕ(yi)) and ⊖ϕx :=
∑∞

i=w viq
−i where vi :=

ϕ−1(−ϕ(xi)). Further we set x ⊖ϕ y := x ⊕ϕ (⊖ϕy). For vectors x,y we define the
operations component-wise. Then we have:

1. For all k, l ∈ N0 and all x, y ∈ [0, 1), with the restriction that if x, y are not
q-adic rationals then x⊕ϕ y is not allowed to be a q-adic rational, we have

walk(x) · wall(x) = walk⊕ϕl(x), walk(x) · walk(y) = walk(x⊕ϕ y)

and, with the restriction that if x, y are not q-adic rationals then x ⊖ϕ y is
not allowed to be a q-adic rational,

walk(x) · wall(x) = walk⊖ϕl(x), walk(x) · walk(y) = walk(x⊖ϕ y).

2. We have

q−1
∑

k=0

wall(k/q) =

{

0 if l 6= 0,

q if l = 0.

3. We have
∫ 1

0

wal0(x) dx = 1 and

∫ 1

0

walk(x) dx = 0 if k > 0.

4. For all k, l ∈ N
s
0 we have the following orthogonality properties:

∫

[0,1)s
walk(x)wall(x) dx =

{

1 if k = l,

0 otherwise.

5. For any f ∈ L2([0, 1)
s) and any σ ∈ [0, 1)s we have
∫

[0,1)s
f(x) dx =

∫

[0,1)s
f(x⊕ϕ σ) dx.

6. For any integer s ≥ 1 the system {walk : k ∈ N
s
0} is a complete orthonormal

system in L2([0, 1)
s).

Remark 2.3. The restrictions in item 1. was added to exclude cases like: x =
(0.010101 . . .)2, y = (0.0010101 . . .)2 and x ⊕ y = (0.1)2, for which the result is of
course not true. On the other hand, the result holds for x⊕ y = (0.0111111 . . .)2.

Throughout the paper we will use a fixed bijection ϕ and a fixed finite field Fq is
used for Walsh functions and ⊕ϕ and ⊖ϕ. Hence we will often write ⊕ and ⊖ instead
of ⊕ϕ and ⊖ϕ.

In the following section we will deal with Walsh series and Walsh coefficients,
which we briefly describe in the following: functions f ∈ L2([0, 1)

s) have an associated
Walsh series

f(x) ∼
∑

k∈Ns
0

f̂(k)walk(x),

where the Walsh coefficients f̂(k) are given by

f̂(k) =

∫

[0,1)s
f(x)walk(x) dx.

For smooth functions the Walsh series converges to the function, which is shown in
Section 3.3.
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3. Walsh spaces containing smooth functions. In the following we inves-
tigate how the Walsh coefficients of smooth functions decay and subsequently we
use this to define function classes based on Walsh functions which contain smooth
functions. But first we introduce a suitable variation.

3.1. A generalized weighted Hardy and Krause variation. In the follow-
ing we generalize the Hardy and Krause variation which suits our purposes later on.

3.1.1. Hölder condition. A function f : [0, 1) → R satisfies a Hölder condition
with coefficient 0 < λ ≤ 1 if there is a constant Cf > 0 such that

|f(x)− f(y)| ≤ Cf |x− y|λ for all x, y ∈ [0, 1).

The right hand side of the above inequality forms a metric on [0, 1). When one
considers the higher dimensional domain [0, 1)s then |x− y| is changed to some other
metric on [0, 1)s. Here we consider tensor product spaces and we generalize the
Hölder condition to higher dimensions in a way which is suitable for tensor product
spaces in our context. Consider for example the function f(x) =

∏s
j=1 fj(xj), where

x = (x1, . . . , xs) and each fj : [0, 1) → R satisfies a Hölder condition with coefficient
0 < λ ≤ 1. Then it follows that for all ∅ 6= u ⊆ S := {1, . . . , s} we have

∏

j∈u

|fj(xj)− fj(yj)| ≤
∏

j∈u

Cfj
∏

j∈u

|xj − yj|
λ (3.1)

for all xj , yj ∈ [0, 1) with j ∈ u. But here
∏s
j=1 |xj − yj | is not a metric on [0, 1)s.

Note that we have

∏

j∈u

|fj(xj)− fj(yj)| =

∣

∣

∣

∣

∣

∣

∑

v⊆u

(−1)|v|−|u|
∏

j∈v

fj(xj)
∏

j∈u\v

fj(yj)

∣

∣

∣

∣

∣

∣

, (3.2)

which can be described in words in the following way: for given ∅ 6= u ⊆ S let
xj , yj ∈ [0, 1) with xj 6= yj for all j ∈ u; consider the box J with vertices {(aj)j∈u :
aj = xj or aj = yj for j ∈ u}. Then (3.2) is the alternating sum of the function
∏

j∈u fj at the vertices of J where adjacent vertices have opposite signs. This sum
can also be defined for functions on [0, 1)s which are not of product form.

Indeed, let for a subinterval J =
∏s
j=1[xj , yj) with 0 ≤ xj < yj ≤ 1 and a function

f : [0, 1)s → R the function ∆(f, J) denote the alternating sum of f at the vertices
of J where adjacent vertices have opposite signs. (Hence for f =

∏s
j=1 fj we have

∆(f, J) =
∏s
j=1(fj(xj)− fj(yj)).)

3.1.2. Generalized Vitali variation. Let p ≥ 1. Then we define the general-
ized variation in the sense of Vitali with coefficient 0 < λ ≤ 1 by

V
(s)
λ,p (f) = sup

P

(

∑

J∈P

Vol(J)

∣

∣

∣

∣

∆(f, J)

Vol(J)λ

∣

∣

∣

∣

p
)1/p

, (3.3)

where the supremum is extended over all partitions P of [0, 1]s into subintervals and
Vol(J) denotes the volume of the subinterval J .

Note that for λ = 1 and p = 1 one obtains the usual definition of the Vitali
variation, see for example [20]. If we take p = ∞, then we obtain a condition of the

form (3.1) where u = S and where we can take the constant
∏s
j=1 Cfj = V

(s)
λ,∞(f).
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For s = 1 and p = ∞ we obtain a Hölder condition with coefficient 0 < λ ≤ 1. In this
sense we can view (3.3) as a fractional Vitali variation of order λ.

For λ = 1 and if the partial derivatives of f are continuous on [0, 1]s we also have
the formula

V
(s)
1,p (f) =

(

∫

[0,1]s

∣

∣

∣

∣

∂sf

∂x1 · · · ∂xs

∣

∣

∣

∣

p

dx

)1/p

, (3.4)

for all p ≥ 1. Indeed we have

|∆(f, J)| =

∣

∣

∣

∣

∫

J

∂sf

∂x1 · · · ∂xs
(x) dx

∣

∣

∣

∣

= Vol(J)

∣

∣

∣

∣

∂sf

∂x1 · · · ∂xs
(ζJ)

∣

∣

∣

∣

for some ζJ ∈ J , which follows by applying the mean value theorem to the inequality

min
x∈J

∣

∣

∣

∣

∂sf

∂x1 · · ·∂xs
(x)

∣

∣

∣

∣

≤ Vol(J)−1

∣

∣

∣

∣

∫

J

∂sf

∂x1 · · · ∂xs
(x) dx

∣

∣

∣

∣

≤ max
x∈J

∣

∣

∣

∣

∂sf

∂x1 · · · ∂xs
(x)

∣

∣

∣

∣

.

Therefore we have

∑

J∈P

Vol(J)

∣

∣

∣

∣

∆(f, J)

Vol(J)

∣

∣

∣

∣

p

=
∑

J∈P

Vol(J)

∣

∣

∣

∣

∂sf

∂x1 · · · ∂xs
(ζJ)

∣

∣

∣

∣

p

,

which is just a Riemann sum for the integral
∫

[0,1]s

∣

∣

∣

∂sf
∂x1···∂xs

∣

∣

∣

p

dx and thus the equality

follows.
Using Hölder’s inequality and the fact that

(
∑

J∈P(Vol(J)
1−1/p)p/(p−1)

)1−1/p
=

(
∑

J∈P Vol(J)
)1−1/p

= 1 it follows that

V
(s)
λ,1 (f) ≤ V

(s)
λ,p (f) for all p ≥ 1.

3.1.3. Generalized Hardy and Krause variation. Until now we did not take
projections to lower dimensional faces into account (in (3.1) we did take projections
into account as we considered all ∅ 6= u ⊆ S).

For ∅ 6= u ⊆ S, let V
(|u|)
λ,p (fu;u) be the generalized Vitali variation with coefficient

0 < λ ≤ 1 of the |u|-dimensional function fu(xu) =
∫

[0,1)s−|u| f(x) dxS\u. For u = ∅

we have f∅ =
∫

[0,1)s f(x) dxS and we define V
(|∅|)
λ,p (f∅; ∅) = |f∅|. Let q ≥ 1, then

Vλ,p,q(f) =





∑

u⊆S

(

V
(|u|)
λ,p (fu;u)

)q





1/q

(3.5)

is called the generalized Hardy and Krause variation of f on [0, 1]s.
For λ = p = q = 1 one obtains an unanchored version of the usual definition

of the Hardy and Krause variation, see [20]. A function f for which Vλ,p,q(f) < ∞
is said to be of finite variation with coefficient λ. (We remark that in some cases it
might be appropriate to leave out the term corresponding to u = ∅ in (3.5), but here
this term will be needed later on and hence we include it already in the definition of
the variation.)
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3.1.4. Generalized weighted Hardy and Krause variation. As first sug-
gested in [30] (see also [6]) different coordinates might have different importance,
hence we can also define a weighted variation. In the spirit of the weighted Sobolev
spaces in [6], let γ = (γu)u⊂N be an indexed set of non-negative real numbers. Then
we define the weighted variation Vλ,p,q,γ(f) of f with coefficient 0 < λ ≤ 1 by

Vλ,p,q,γ(f) =





∑

u⊆S

γ−1
u

(

V
(|u|)
λ,p (fu;u)

)q





1/q

.

Note that for λ = 1 and p = q = 2 the weighted variation Vλ,p,q,γ(f) coincides
with the norm in a weighted unanchored Sobolev space for any function in this Sobolev
space, i.e, we have the identity V1,2,2,γ(f) = ‖f‖sob, where

‖f‖sob =





∑

u⊆S

γ−1
u

∫

[0,1)|u|

∣

∣

∣

∣

∣

∫

[0,1)s−|u|

∂|u|f(x)

∂xu
dxS\u

∣

∣

∣

∣

∣

2

dxu





1/2

denotes the norm in the weighted Sobolev space (see [6] for more information on this
Sobolev space).

3.2. The decay of the Walsh coefficients of smooth functions. We are now
ready to show how the Walsh coefficients of smooth functions decay. This behaviour
is essentially captured in Definition 3.5 below. But before we get there we need several
lemmas to prove the result. The following lemma is needed to show how the Walsh
coefficients of functions with bounded variation decay. A simpler version of it was
shown in [25, Lemma 4].

Lemma 3.1. Let f ∈ L1([0, 1)
s) and let k = (k1, . . . , ks) ∈ N

s with kj = κjq
aj−1+

k′j where aj ∈ N, κj ∈ {1, . . . , q − 1}, 0 ≤ k′j < qaj−1 and let 0 ≤ cj < qaj−1 for
j = 1, . . . , s. Then

∣

∣

∣

∣

∣

∫

∏
s
j=1[cjq

−aj+1,(cj+1)q−aj+1)

f(x) walk(x) dx

∣

∣

∣

∣

∣

≤ q−
∑s

j=1(aj−1) sup
J

|∆(f, J)|,

where the supremum is taken over all boxes of the form

J =

s
∏

j=1

[dj , ej) ⊆
s
∏

j=1

[cjq
−aj+1, (cj + 1)q−aj+1)

with qaj |ej − dj | ∈ {1, . . . , q − 1}.
Proof. We have walkj = walκjq

aj−1 walk′j and the function walk′j is constant on

each subinterval [cjq
−aj+1, (cj + 1)q−aj+1). Hence we have

∣

∣

∣

∣

∣

∫

∏
s
j=1[cjq

−aj+1,(cj+1)q−aj+1)

f(x) walk(x) dx

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∫

∏
s
j=1[cjq

−aj+1,(cj+1)q−aj+1)

f(x)
s
∏

j=1

walκjq
aj−1(xj) dx

∣

∣

∣

∣

∣

∣

.

Note that the function walκjq
aj−1 is constant on each of the subintervals [rjq

−aj , (rj+

1)q−aj ) for rj = 0, . . . , qaj − 1 for j = 1, . . . , s. Without loss of generality we may
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assume that cj = 0, for all other cj the result follows by the same arguments. Thus
we have

∫

∏
s
j=1[0,q

−aj+1)

f(x)

s
∏

j=1

walκjq
aj−1(xj) dx

=

q−1
∑

r1,...,rs=0

s
∏

j=1

walκj
(rj/q)

∫

∏
s
j=1[rjq

−aj ,(rj+1)q−aj )

f(x) dx.

Let now a(r1,...,rs) =
∫

∏
s
j=1[rjq

−aj ,(rj+1)q−aj )
f(x) dx and for a given 0 ≤ r1, . . . , rs < q

let

A(r1, . . . , rs) = q−s
q−1
∑

t1,...,ts=0

∑

∅6=u⊆{1,...,s}

(−1)|u|a(tu,r{1,...,s}\u), (3.6)

where (tu, r{1,...,s}\u) denotes the vector obtained by setting the j-th coordinate to tj
if j ∈ u and rj if j /∈ u. Further let

B(r1, . . . , rs) = q−s
q−1
∑

t1,...,ts=0

∑

u⊆{1,...,s}

(−1)|u|a(tu,r{1,...,s}\u).

Then we have

q−1
∑

r1,...,rs=0

s
∏

j=1

walκj
(rj/q)a(r1,...,rs)

= −

q−1
∑

r1,...,rs=0

s
∏

j=1

walκj
(rj/q)A(r1, . . . , rs)

+

q−1
∑

r1,...,rs=0

s
∏

j=1

walκj
(rj/q)(a(r1,...,rs) +A(r1, . . . , rs)).

Since
∑q−1
r=0 walκ(r/q) = 0 and A(r1, . . . , rs) is a sum where each summand does not

depend on at least one rj , i.e. the case u = ∅ is excluded in (3.6), it follows that
the first sum on the right hand side above is zero. Further we have a(r1,...,rs) +
A(r1, . . . , rs) = B(r1, . . . , rs) and thus

∣

∣

∣

∣

∣

∣

q−1
∑

r1,...,rs=0

s
∏

j=1

walκj
(rj/q)a(r1,...,rs)

∣

∣

∣

∣

∣

∣

≤

q−1
∑

r1,...,rs=0

|B(r1, . . . , rs)| .

We have

|B(r1, . . . , rs)| ≤ max
t∈{0,...,q−1}s

∣

∣

∣

∣

∣

∣

∑

u⊆{1,...,s}

(−1)|u|a(tu,r{1,...,s}\u)

∣

∣

∣

∣

∣

∣

.
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Therefore we have
∣

∣

∣

∣

∣

∣

∫

∏
s
j=1[0,q

−aj+1)

f(x)

s
∏

j=1

walκjq
aj−1(xj) dx

∣

∣

∣

∣

∣

∣

≤

q−1
∑

r1,...,rs=0

max
t∈{0,...,q−1}s

∣

∣

∣

∣

∣

∣

∑

u⊆{1,...,s}

(−1)|u|a(tu,r{1,...,s}\u)

∣

∣

∣

∣

∣

∣

≤ qs max
r,t∈{0,...,q−1}s

∣

∣

∣

∣

∣

∣

∑

u⊆{1,...,s}

(−1)|u|a(tu,r{1,...,s}\u)

∣

∣

∣

∣

∣

∣

.

Note that if in the above maximum there is a j such that rj = tj then it follows that
∣

∣

∣

∣

∣

∣

∑

u⊆{1,...,s}

(−1)|u|a(tu,r{1,...,s}\u)

∣

∣

∣

∣

∣

∣

= 0.

Hence we may in the following assume without loss of generality that the maximum in
the last line of the inequality above is taken on for r = (r1, . . . , rs) and t = (t1, . . . , ts)
which satisfy rj 6= tj for j = 1, . . . , s.

We have
∣

∣

∣

∣

∣

∣

∑

u⊆{1,...,s}

(−1)|u|a(tu,r{1,...,s}\u)

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∫

∏
s
j=1[rjq

−aj ,(rj+1)q−aj )

∑

u⊆{1,...,s}

(−1)|u|f(x+ yu) dx

∣

∣

∣

∣

∣

∣

,

where yu = (y1, . . . , ys) with yj = 0 for j /∈ u and yj = (tj − rj)q
−aj for j ∈ u. We

can write
∑

u⊆{1,...,s}

(−1)|u|f(x+ yu) = ∆(f, Jx),

where Jx =
∏s
j=1[min(xj , xj + (tj − rj)q

−aj ),max(xj , xj +(tj − rj)q
−aj )). Therefore

it follows that
∣

∣

∣

∣

∣

∣

∑

u⊆{1,...,s}

(−1)|u|a(tu,r{1,...,s}\u)

∣

∣

∣

∣

∣

∣

≤ q−
∑s

j=1 aj sup
x∈

∏
s
j=1[rjq

−aj ,(rj+1)q−aj )

|∆(f, Jx)|.

The result follows.
In the following lemma we now obtain a bound on the Walsh coefficients for

functions of bounded variation. It is a generalization of [25, Proposition 6].
Lemma 3.2. Let 0 < λ ≤ 1 and let f ∈ L2([0, 1)

s) satisfy Vλ,1,1,γ(f) <∞. Then
for any k ∈ N

s
0 \ {0} the k-th Walsh coefficient of f satisfies

|f̂(k)| ≤ q|u|−λ
∑

j∈u(aj−1)V
(|u|)
λ,1 (fu;u),

where k = (k1, . . . , ks), u = {1 ≤ j ≤ s : kj 6= 0} and for j ∈ u we have kj =
κjq

aj−1 + k′j , where κj ∈ {1, . . . , q − 1}, aj ∈ N and 0 ≤ k′j < qaj−1.
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Proof. Let f ∈ L2([0, 1)
s) with k-th Walsh coefficient f̂(k). First note that it

suffices to show the result for k ∈ N
s, as otherwise we only need to replace the function

f with the function fu(xu) =
∫

[0,1)s−|u| f(x) dxS\u. Hence let now k ∈ N
s be given

and let k′ = (k′1, . . . , k
′
s). Then we have

∣

∣

∣

∣

∣

∫

[0,1)s
f(x) walk(x) dx

∣

∣

∣

∣

∣

≤
∑

0≤cj<q
aj−1

1≤j≤s

∣

∣

∣

∣

∣

∫ (c1+1)q−a1+1

c1q−a1+1

· · ·

∫ (cs+1)q−as+1

csq−as+1

f(x) walk(x) dx

∣

∣

∣

∣

∣

.

Now we use Lemma 3.1 and thereby obtain that the above sum is bounded by

∑

0≤c1<qa1−1

· · ·
∑

0≤cs<qas−1

q−
∑s

j=1(aj−1) sup
J

|∆(f, J)|,

where the supremum is taken over all boxes J =
∏s
j=1[dj , ej) ⊆

∏s
j=1[cjq

−aj+1, (cj +

1)q−aj+1) with qaj |ej − dj | ∈ {1, . . . , q − 1}. Now we have

q−
∑s

j=1(aj−1) sup
J

|∆(f, J)| ≤ sup
Pc

∑

I∈Pc

Vol(I)1−λ|∆(f, I)|
q−

∑s
j=1(aj−1)

Vol(I)1−λ
,

where the supremum on the right hand side is taken over all partitions Pc of the cube
∏s
j=1[cjq

−aj+1, (cj+1)q−aj+1) and where each I ∈ Pc is of the form I =
∏s
j=1[xj , yj)

with qaj |yj − xj | ∈ {1, . . . , q − 1}. We have q−
∑s

j=1 aj ≤ Vol(I) ≤ q−
∑s

j=1(aj−1) and
therefore

q−
∑s

j=1(aj−1)

Vol(I)1−λ
≤ Vol(I)λqs ≤ qs−λ

∑s
j=1(aj−1)

and hence

q−
∑s

j=1(aj−1) sup
J

|∆(f, J)| ≤ qs−λ
∑s

j=1(aj−1) sup
Pc

∑

I∈Pc

Vol(I)1−λ|∆(f, I)|.

Note that

∑

0≤cj<q
aj−1

1≤j≤s

sup
Pc

∑

I∈Pc

Vol(I)1−λ|∆(f, I)| ≤ sup
P

∑

J∈P

Vol(J)
|∆(f, J)|

Vol(J)λ

where the supremum on the left hand side is taken over all partitions P of the cube
∏s
j=1[cjq

−aj+1, (cj+1)q−aj+1) into subintervals and the supremum on the right hand
side is taken over all partitions of [0, 1)s into subintervals. Thus the result follows.

For the next lemma we will need the following two functions. For κ ∈ {1, . . . , q−1}
let now

υκ =

q−1
∑

r=0

rwalκ(r/q).
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If q is chosen to be a prime number and the bijections ϕ and η are chosen to be the
identity, then υκ = q(e2πiκ/q − 1)−1, see [4, Appendix A].

Further for l ∈ {1, . . . , q − 1} we define the function ζa(x) =
∑xa−1
r=0 wall(r/q),

where a ≥ 1 and x = x1q
−1+x2q

−2+ · · · and where for xa = 0 we set ζa(x) = 0. The
function ζa depends on x only through xa, thus it is a step-function which is constant
on the intervals [cq−a, (c + 1)q−a) for c = 0, . . . , qa − 1. By [25, Proposition 5] it
follows that ζa can be represented by a finite Walsh series. Indeed, there are numbers
c0, . . . , cq−1 (which depend on l but not on a) such that

ζa(x) =

q−1
∑

z=0

czwalzqa−1 (x).

If q is chosen to be a prime number and the bijections ϕ and η are chosen to be the
identity, then ζa(x) = (1−wallqa−1(x))(1−wall(1/q))

−1, i.e., c0 = (1−wall(1/q))
−1,

cl = (wall(1/q)− 1)−1 and cz = 0 for z 6= 0, l.
The following lemma will be used in the induction step for differentiable functions.

For example, for a differentiable function F : R → R given by F (x) =
∫ x

0 f(y) dy we
can calculate the Walsh coefficients using integration by parts in the following way:
for k > 0 we have

F̂ (k) =

∫ 1

0

F (x)walk(x) dx =

[∫ x

0

walk(y) dyF (x)

]1

0

−

∫ 1

0

f(x)

∫ x

0

walk(y) dy dx

= −

∫ 1

0

f(x)

∫ x

0

walk(y) dy dx, (3.7)

where we used
∫ 0

0 walk(x) dx =
∫ 1

0 walk(x) dx = 0. For k = 0 on other hand we obtain

F̂ (0) =

∫ 1

0

F (x)wal0(x) dx =

[∫ x

0

wal0(y) dyF (x)

]1

0

−

∫ 1

0

f(x)

∫ x

0

wal0(y) dy dx

=

∫ 1

0

f(x) dx−

∫ 1

0

f(x)

∫ x

0

wal0(y) dy dx, (3.8)

Thus if we know the Walsh series for f , then we can easily calculate the Walsh
series for F , provided that we know the Walsh series for

∫ x

0
walk(y) dy. This will be

calculated in the following lemma. It appeared in a simpler form in [10].
Lemma 3.3. For k ∈ N0 and x ∈ [0, 1) define Jk(x) =

∫ x

0
walk(y) dy. For k ≥ 1

let k = lqa−1 + k′ where l ∈ {1, . . . , q − 1}, a ≥ 1 and 0 ≤ k′ < qa−1. Then Jk can be
represented by a Walsh series which is given by

Jk(x) = q−a

(

q−1
∑

z=0

czwalzqa−1+k′(x)+ 2−1walk(x)+

∞
∑

c=1

q−1
∑

κ=1

q−c−1υκwalκqa+c−1+k(x)

)

.

Further we have

J0(x) = 1/2 +

∞
∑

c=1

q−1
∑

κ=1

q−c−1υκ walκqc−1(x).

Proof. Let k = lqa−1 + k′ with a ≥ 1, 0 ≤ k′ < qa−1 and l ∈ {1, . . . , q −
1}. The function wallqa−1 (y) is constant on each interval [rq−a, (r + 1)q−a) and
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walk′ (y) is constant on each interval [cq−a+1, (c + 1)q−a+1). We have walk(y) =
wallqa−1 (y) walk′ (y). For any 0 ≤ c < qa−1 we have

∫

[cq−a+1,(c+1)q−a+1)

walk(y) dy = walk′(cq−a+1)

∫

[cq−a+1,(c+1)q−a+1)

wallqa−1(y) dy

= walk′(cq−a+1)q−a
q−1
∑

r=0

wall(r/q)

= 0.

Thus we have

Jk(x) = walk′ (x)Jlqa−1(x).

Let x = x1q
−1 + x2q

−2 + · · · and y = xa+1q
−1 + xa+2q

−2 + · · · , then we have

Jlqa−1 (x) = q−a
xa−1
∑

r=0

wall(r/q) + q−awall(xa/q)y.

We now investigate the Walsh series representation of the function Jlqa−1 (x). First

note that wall(xa/q) = wallqa−1(x). Further, by a slight adaption of [4, eq. (30)] we
obtain

y = 1/2 +

∞
∑

c=1

q−1
∑

κ=1

q−c−1υκ walκqc−1(y). (3.9)

As walκqc−1(y) = walκqa+c−1(x) we obtain

y = 1/2 +

∞
∑

c=1

q−1
∑

κ=1

q−c−1υκ walκqa+c−1(x).

As noted above, the Walsh series of ζa(x) =
∑xa−1

r=0 wall(r/q), where for xa = 0
we set ζa(x) = 0 can be written as

ζa(x) =

q−1
∑

z=0

czwalzqa−1 (x).

Altogether we obtain

qaJlqa−1(x) =

q−1
∑

z=0

czwalzqa−1(x) + 2−1wallqa−1(x)

+

∞
∑

c=1

q−1
∑

κ=1

q−c−1υκwalκqa+c−1+lqa−1 (x)

and therefore

qaJk(x) =

q−1
∑

z=0

czwalzqa−1+k′(x) + 2−1walk(x) +

∞
∑

c=1

q−1
∑

κ=1

q−c−1υκwalκqa+c−1+k(x).
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The result for k = 0 follows easily from (3.9).

Note that Lemma 3.3 can easily be generalized to arbitrary dimensions s, since
for k = (k1, . . . , ks) ∈ N

s
0 we have for any x = (x1, . . . , xs) ∈ [0, 1)s that

Jk(x) =

∫

[0,x)

walk(y) dy =

s
∏

j=1

Jkj (xj),

where [0,x) =
∏s
j=1[0, xj).

The next lemma shows how the Walsh coefficients of a function F =
∫

f can be
obtained from the Walsh coefficients of f .

Lemma 3.4. Let f ∈ L2([0, 1)
s) and let F (x) =

∫

[0,x)
f(y) dy, where [0,x) =

∏s
j=1[0, xj) with x = (x1, . . . , xs). Further let F̂ (k) denote the k-th Walsh coefficient

of F . Let k = (k1, . . . , ks) ∈ N
s
0 and let U = {1 ≤ j ≤ s : kj 6= 0}. For j ∈ U let

kj = ljq
aj−1 + k′j, 0 < lj < q and 0 ≤ k′j < qaj−1 and further let k′ = (k′1, . . . , k

′
s)

where k′j = 0 for j /∈ U . Then we have

F̂ (k) = q−
∑

j∈U aj
∑

U⊆v⊆S

(−1)|v|
∑

hv∈N
|v|
0

f̂(k′ + (hv,0)) χU,v,k(hv),

where (hv,0) denotes the s-dimensional vector whose j-th component is hj for j ∈ v

and 0 otherwise and where for hv = (hj)j∈v ∈ N
|v|
0 we set

χU,v,k(hv) =
∏

j∈U

ρkj (hj)
∏

j∈v\U

φ(hj).

Here

ρkj (hj) =







cz + 2−11z=lj for hj = zqaj−1,
υzq

−i−1 for h = zqaj−1+i + ljq
aj−1, i > 0, 0 < z < q,

0 otherwise,

where 1z=lj = 1 for z = lj and 0 otherwise, and

φ(hj) =







2−1 for hj = 0,
υzq

−i−1 for h = zqaj−1+i, i > 0, 0 < z < q,
0 otherwise.

Proof. Using integration by parts in each coordinate, Fubini’s theorem and
Jk(0) = Jk(1) = 0 for any k ∈ N (see Equations (3.7) and (3.8) for one-dimensional
examples) it follows that

F̂ (k) =

∫

[0,1)s
F (x)walk(x) dx =

∑

U⊆v⊆S

(−1)|v|
∫

[0,1)s
Jkv

(xv)f(x) dx,

where for k = (k1, . . . , ks) and x = (x1, . . . , xs) we have Jkv
(xv) =

∏

j∈v Jkj (xj).

Using the Walsh series expansion of Jk given by Lemma 3.3 we can now express
the Walsh coefficient F̂ (k) as a sum of the Walsh coefficients f̂(h), from which the
result follows.
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The following definition now captures the essence of the decay of the Walsh co-
efficients of smooth functions and will be used in the statement of the subsequent
lemmas, theorems and corollaries.

Definition 3.5. Let k = k(v; a1, . . . , av) = κ1q
a1−1 + · · ·+ κvq

av−1 with v ≥ 1,
κ1, . . . , κv ∈ {1, . . . , q − 1} and 1 ≤ av < · · · < a1 be a natural number. For k = 0 we
set v = 0, i.e., k(0) = 0. A function B : N0 → R is called q-adically non-increasing if
B(k) = B(k(v; a1, . . . , av)) is non-increasing in v and each ai for i = 1, . . . , v, that is,
for any v ≥ 0 we have

B(k(v; a1, . . . , av)) ≥ B(k(v + 1; a′1, . . . , a
′
v+1))

with 1 ≤ a′v+1 < · · · < a′1 and a1, . . . , av ∈ {a′1, . . . , a
′
v+1} and for an arbitrary

1 ≤ i ≤ v we have

B(k(v; a1, . . . , av)) ≥ B(k(v; a1, . . . , ai−1, ai + 1, ai+1, . . . , av))

provided that ai + 1 < ai−1 in case 1 < i ≤ v.
In the following lemma we give a bound on the Walsh coefficients of F if f satisfies

some smoothness condition.
Lemma 3.6. Let B : Ns0 → [0,∞) be a q-adically non-increasing function in each

variable. Let f ∈ L2([0, 1)
s) and let the Walsh coefficients of f satisfy

|f̂(k)| ≤ B(k) for all k ∈ N
s
0.

Let F (x) =
∫

[0,x)
f(y) dy, where [0,x) =

∏s
j=1[0, xj) with x = (x1, . . . , xs).

Further let F̂ (k) denote the k-th Walsh coefficient of F . Let k = (k1, . . . , ks) ∈
N
s
0 \ {0} and let U = {1 ≤ j ≤ s : kj 6= 0}. For j ∈ U let kj = ljq

aj−1 + k′j and

0 ≤ k′j < qaj−1 and further let k′ = (k′1, . . . , k
′
s) where k′j = 0 for j /∈ U . Then there

is a constant Cs,U > 0 independent of k such that

|F̂ (k)| ≤ Cs,U q−
∑

j∈U ajB(k′).

Proof. Using Lemma 3.4 we obtain that

|F̂ (k)| ≤ q−
∑

j∈U ajB(k′)
∑

U⊆v⊆S

∑

hv∈N
|v|
0

|χU,v,k(hv)|,

as |f̂(k′ + (hv,0))| ≤ B(k′ + (hv,0)) ≤ B(k′) for all values of hv ∈ N
|v|
0 for which

χU,v,k(hv) 6= 0, since B is q-adically non-increasing in each variable.
Thus it remains to bound

∑

U⊆v⊆S

∑

hv∈N
|v|
0

|χU,v,k(hv)| independently of k. We

only prove the case where q is chosen to be a prime number and the bijections ϕ and
η are chosen to be the identity, as in this case we can obtain an explicit constant
Cs,U > 0. The general case can be obtained by similar arguments using the result
from Lemma 3.4.

Using the notation from Lemma 3.4 we have
∑

h∈N0

|ρkj (h)| = |1− ω−lj
q |−1 + 2−1|1 + ω−lj

q ||ω−lj
q − 1|−1

+

∞
∑

i=1

q−i
q−1
∑

z=1

|e2πiz/q − 1|−1

≤ 3(2− 2 cos(2π/q))−1/2
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and

∞
∑

h=0

|φ(h)| = 2−1 +

∞
∑

i=1

q−i
q−1
∑

z=1

|e2πiz/q − 1|−1 ≤ 2−1 + (2− 2 cos(2π/q))−1/2.

Therefore we have
∑

U⊆v⊆S

∑

hv∈N
|v|
0

|χU,v,k(hv)|

≤ 3|U|(2− 2 cos(2π/q))−|U|/2(3/2 + (2− 2 cos(2π/q))−1/2)s−|U|

and hence we can choose

Cs,U = 3|U|(2 − 2 cos(2π/q))−|U|/2(3/2 + (2− 2 cos(2π/q))−1/2)s−|U| (3.10)

in Lemma 3.6 for this case.
We use the above results now to establish an upper bound on the Walsh coeffi-

cients of a polynomial. The proof will give a glimpse on how the argument will work
for more general function classes.

Lemma 3.7. Let k = κ1q
a1−1+· · ·+κvqav−1 with v ≥ 1, κ1, . . . , κv ∈ {1, . . . , q−1}

and 1 ≤ av < · · · < a1. For v = 0 let k = 0. Let f : [0, 1) → R be the polynomial

f(x) = f0+ f1x+ · · ·+ fixi with fi 6= 0 and let f̂(k) denote the k-th Walsh coefficient
of f . Then for v ≥ 0 there are constants 0 < Cf,i,v <∞ such that

|f̂(k)| ≤ Cf,i,vq
−a1−···−av ,

where we can choose Cf,i,v = 0 for v > i.
Proof. Let f(x) = f0+f1x+· · ·+fixi, where i = deg(f) (that is, fi 6= 0). Then we

have f (i)(x) = i!fi 6= 0. As f (i) is a constant function, its Walsh series representation
is simply given by f (i)(x) = i!fi. Now we use Lemma 3.6. The dimension s in our case
is 1 and we can choose the function B1 by B1(0) = i!|fi| and for k > 0 we set B1(k) = 0.
Note the function B1 defined this way is a q-adically non-increasing function. Then it
follows that there is a constant C1 > 0 such that the Walsh coefficients of the function
∫ x

0
f (i)(t) dt = f (i−1)(x)− f (i−1)(0) are bounded by C1q

−a1i!|fi| for all k where v = 1
and the Walsh coefficients are 0 for v > 1. The Walsh coefficient for k = 0 is given
by f (i−2)(1)− f (i−2)(0)− f (i−1)(0).

Now consider the function
∫ x

0
f (i−1)(t) dt = f (i−2)(x)− f (i−2)(0). It follows from

the above and Lemma 3.6 that the Walsh coefficients of f (i−2)(x) − f (i−2)(0) can
be bounded by a q-adically non-increasing function B2. Indeed there are constants
C2, C3 > 0 such that we can choose B2(0) = |f (i−2)(1)−f (i−2)(0)−f (i−1)(0)|, B2(k) =
C2q

−a1 for v = 1, B2(k) = C3q
−a1−a2 for v = 2 and B2(k) = 0 for v > 2. Again B2 is

a q-adically non-increasing function and Lemma 3.6 can again be used.
By using the above argument iteratively we obtain that there is a constant C > 0

such that |f̂(k)| ≤ Cq−a1−···−av , for k = κ1q
a1−1 + · · · + κvq

av−1 with κ1, . . . , κv ∈
{1, . . . , q − 1} and 1 ≤ av < · · · < a1. The result thus follows.

For the case where q is chosen to be a prime number and the bijections ϕ and η
are chosen to be the identity and for 0 ≤ v ≤ i we can choose

Cf,i,v = C̄v
i
∑

l=v

C′i−ll!|fl|, (3.11)



Explicit constructions of quasi-Monte Carlo rules achieving arbitrary high convergence 17

where C̄ = (2− 2 cos(2π/q))−1/2 and C′ = 3/2+ (2− 2 cos(2π/q))−1/2 in Lemma 3.7.
Let f : [0, 1)s → R be such that the partial mixed derivatives up to order δ ≥ 1

in each variable exist and are continuous. We need some further notation: let τ =
(τ1, . . . , τs) and

f (τ)(x) =
∂τ1+···+τs

∂xτ11 · · ·∂xτss
f(x).

For τ ∈ {0, . . . , δ}s let u(τ ) = {1 ≤ j ≤ s : τj = δ}. Let γ = (γv)v⊂N be an
indexed set of non-negative real numbers. Let v(τ ) = {1 ≤ j ≤ s : τj > 0}. Then
for 0 < λ ≤ 1 and p, q, r ≥ 1 (p, q, r do not appear in the subscript of N as they do
not have influence on our subsequent bounds, we only assume that they are bigger or
equal to 1) we define

Nδ,λ,γ(f) =





∑

τ∈{0,...,δ}s

γ−1
v(τ )

[

V
(|u(τ)|)
λ,p,q,1 (f (τ)(·,0S\u(τ )))

]r





1/r

, (3.12)

where, for clarity, we introduce the additional superscript (|u(τ )|) in the Hardy and

Krause variation V
(|u(τ)|)
λ,p,q,1 which indicates the dimension of the function and where

for u(τ ) = ∅ we set V
(|u(τ)|
λ,p,q,1 (f

(τ)(·,0S\u(τ ))) = |f (τ)(0)|.
The weights γ are introduced to modify the importance of various coordinate

projections and were first introduced in [30], see also [6, 7]. If for some v′ ⊆ S the

weight γv′ = 0, then we assume that the function f satisfies V
(|v′|)
λ,p,q,1(f

(τ)(·,0S\v′)) = 0
for all τ ∈ {0, . . . , δ}s with v(τ ) = v′ and in (3.12) we formally set 0/0 = 0.

The parameters in the definition of Nδ,λ,γ have the following meaning:
• δ denotes the order of partial derivatives of f required in order for Nδ,λ,γ(f)
to make sense;

• λ is a Hölder type parameter or fractional order type parameter of the general-
ized Hardy and Krause variation; roughly, f needs to have partial derivatives
up to order δ + λ, where for 0 < λ < 1 this means some type of fractional
smoothness or in dimension one a Hölder condition of order λ;

• the Vitali variation is in p norm;
• q is the norm in the summation of the generalized Hardy and Krause variation;
• r is the norm in the summation over the τ ;
• γ are the weights which regulate the importance of different coordinate pro-
jections;

Note that for λ = 1 and p = q = r = 2 the functional Nδ,λ,γ is just the norm in a
weighted reproducing kernel Sobolev space with continuous partial mixed derivatives
up to order δ + 1 in each variable. In one dimension the unweighted norm in this
reproducing kernel Sobolev space is given by

〈f, g〉sob,an,δ+1 (3.13)

= f(0)g(0) + · · ·+ f (δ−1)(0)g(δ−1)(0)

+

∫ 1

0

f (δ)(x) dx

∫ 1

0

g(δ)(x) dx+

∫ 1

0

f (δ+1)(x)g(δ+1)(x) dx

and for higher dimensions one just takes the weighted tensor product of the one
dimensional reproducing kernel Sobolev spaces (see [7] for examples of weighted tensor
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product reproducing kernel Sobolev spaces). Let the s dimensional weighted inner
product be denoted by 〈·, ·〉sob,an,s,δ+1,γ and the corresponding norm ‖ · ‖sob,an,s,δ+1,γ

(indeed if the partial mixed derivatives up to order δ+1 of f are continuous on [0, 1]s

then we have ‖f‖sob,an,s,δ+1,γ = Nδ,1,γ(f)).

In the following we define a function µ which will be used throughout the paper:
let δ ≥ 1 be an integer and 0 < λ ≤ 1 be a real number. Then for k = (k1, . . . , ks) we
set

µq,δ+λ(k) =
s
∑

j=1

µq,δ+λ(kj) (3.14)

with

µq,δ+λ(k) =







0 for k = 0,
a1 + · · ·+ av for v ≤ δ,
a1 + · · ·+ aδ + λaδ+1 for v > δ,

(3.15)

where for k ∈ N we write k = κ1q
a1−1 + · · · + κvq

av−1 with v ≥ 1, κ1, . . . , κv ∈
{1, . . . , q − 1} and 1 ≤ av < · · · < a1.

Theorem 3.8. Let δ ≥ 1 be an integer, 0 < λ ≤ 1, p, q, r ≥ 1 be real numbers and
an indexed set γ = (γv)v⊂N of non-negative real numbers be given. Let f : [0, 1)s → R

be such that the partial mixed derivatives up to order δ in each variable exist and such
that Nδ,λ,γ(f) < ∞. Then for any k ∈ N

s
0 \ {0} it follows that there is a constant

Cf,q,s,γ > 0 independent of k such that

|f̂(k)| ≤ Cf,q,s,γq
−µq,δ+λ(k).

Proof. In order to prove the result we use the Taylor series expansion of the
function f . We have

f(x) =
∑

τ∈{0,...,δ−1}s

xτ

τ !
f (τ)(0) +

∑

∅6=u⊆S

∑

τS\u∈{0,...,δ−1}s−|u|

((δ − 1)!)−|u|

∏

j∈S\u x
τj
j

∏

j∈S\u τj !

∫

[0u,xu)

f (δu,τS\u)(yu,0S\u)
∏

j∈u

(xj − yj)
δ−1 dyu. (3.16)

First note that the first sum in (3.16) is a polynomial in x and therefore the
Walsh coefficients of this polynomial satisfy the desired bound by Lemma 3.7.

Now we consider the second sum. Let ∅ 6= u ⊆ S with u = {j1, . . . , j|u|} be given.
Then for j /∈ u the Walsh coefficients satisfy the desired bound by Lemma 3.7. Hence
it remains to consider the Walsh coefficients of

Gu(xu) =

∫

[0u,xu)

f (δu,τS\u)(yu,0S\u)
∏

j∈u

(xj − yj)
δ−1 dyu

=

∫

[0u,1u)

f (δu,τS\u)(yu,0S\u)
∏

j∈u

(xj − yj)
δ−1
+ dyu,

where (x− y)+ = max(0, x− y).
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By differentiating the function Gu in each variable 0 ≤ k < δ times we obtain
(see [32, pp. 153,154])

∂k|u|

∂xku
Gu(xu)

=

(

(δ − 1)!

(δ − 1− k)!

)|u| ∫

[0u,xu)

f (δu,τS\u)(yu,0S\u)
∏

j∈u

(xj − yj)
δ−1−k dyu.

Hence ∂k|u|

∂xk
u
Gu(xu) = 0 if there is at least one j ∈ u such that xj = 0. Further we

have

∂δ|u|

∂xδu
Gu(xu) = ((δ − 1)!)|u|f (δu,τS\u)(xu,0S\u).

From Nδ,λ,γ(f) <∞ it follows that the Walsh coefficients of f (δu,τS\u)(xu,0S\u)
decay with order µq,0+λ(k) in each variable. Further we have

Gu(xu) =

∫

[0,xu)

∫

[0,y1)

· · ·

∫

[0,yδ−1)

G(δu)
u (yδ) dyδ · · · dy1

as the function Gu and its derivatives are 0 if at least one xj = 0 for j ∈ u, i.e., we
have

∫

[0,xu)

G(τ )
u (y) dy =

∑

v⊆u

(−1)u\vG(τ−1)
u (xv,0u\v) = G(τ−1)

u (xu).

Hence it follows by repeated use of Lemma 3.6 that the desired bound holds for Gu
and thus the result follows from (3.16).

For the case where q is chosen to be a prime number and the bijections ϕ and η
are chosen to be the identity we can also obtain an explicit constant in Theorem 3.8.
Indeed, using Lemma 3.2, Lemma 3.6 together with the explicit constant (3.10) and
Lemma 3.7 together with the explicit constant (3.11) we obtain that the constant
Cq,γ can be chosen as

Cf,q,s,γ =
∑

τ∈{0,...,δ−1}s

γv(τ) 6=0

|f (τ)(0)|Ĉτ1+···+τs +
∑

∅6=u⊆S

q|u|Cδs,u

∑

τS\u∈{0,...,δ−1}s−|u|

γu∪v(τS\u) 6=0

Ĉ
∑

j∈S\u τjV
(|u|)
λ,1 (f (δu,τS\u)(·,0S\u)),

where Ĉ = 1 for 2 ≤ q < 6 and Ĉ = (2 − 2 cos(2π/q))−1/2 for q > 6 (note that for
q > 6 we have Ĉ > 1) and

Cs,u = 3|u|(2− 2 cos(2π/q))−|u|/2(3/2 + (2− 2 cos(2π/q))−1/2)s−|u|.

As noted above, under certain conditions we can write V
(|u|)
λ,1 also as an integral, see

(3.4).
We give a further useful estimation of the constant by separating the dependence

of the function from the constants. This way we obtain

Cf,q,s,γ ≤ Cδ,q,s,γNδ,λ,γ(f),
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where

Cδ,q,s,γ =
∑

τ∈{0,...,δ−1}s

γv(τ)Ĉ
τ1+···+τs

+
∑

∅6=u⊆S

q|u|Cδs,u
∑

τS\u∈{0,...,δ−1}s−|u|

γu∪v(τS\u)Ĉ
∑

j∈S\u τj . (3.17)

Consider now the case where the weights are of product form (see [7]), i.e., there is a
sequence of positive real numbers (γj)j∈N such that γv =

∏

j∈v γj for all v ⊂ N and
for v = ∅ we set γv = 1. If now q is prime with 2 ≤ q < 6, then

Cδ,q,s,γ =
s
∏

j=1

(1 + γj(δ − 1)) +
s
∏

j=1

[

(1 + γj(δ − 1))(3/2 + Ĉ) + γj3qĈ
]

−
s
∏

j=1

[

(1 + γj(δ − 1))(3/2 + Ĉ)
]

.

For example for q = 2, δ = 1 and product weights we obtain

C1,2,s,γ = 1− 2s + 2s
s
∏

j=1

(1 + 6γj).

The approach used here for prime q and ϕ the identity map can also be used for
arbitrary prime powers q and arbitrary mappings ϕ with ϕ(0) = 0. Hence we obtain
the following corollary.

Corollary 3.9. Under the assumptions of Theorem 3.8 there exists a constant
Cδ,q,s,γ > 0 independent of k and f such that

|f̂(k)| ≤ Cδ,q,s,γNδ,λ,γ(f)q
−µq,δ+λ(k) for all k ∈ N

s
0,

where µq,δ+λ is given by (3.14) and (3.15).
Remark 3.10. The results in this section also hold for the following generaliza-

tion. In the definition of Nδ,λ,γ we anchored the function and its derivatives at 0,

i.e., we used V
(|u(τ)|)
λ,p,q,1 (f(·,0S\u(τ ))). This can be generalized by choosing an arbitrary

a ∈ [0, 1]s and using V
(|u(τ)|)
λ,p,q,1 (f(·,aS\u(τ))) in the definition of Nδ,λ,γ . It can be

shown that in this case we also have Theorem 3.8 and Corollary 3.9.

3.3. Convergence of the Walsh series. For our purposes here we need strong
assumptions on the convergence of the Walsh series S(f)(x) =

∑

k∈Ns
0
f̂(k)walk(x) to

the function f , i.e., we require that the partial series Sm(f)(x) =
∑

k∈Ns0
kj<m

f̂(k)walk(x)

converges to f(x) at every point x ∈ [0, 1)s as m → ∞. (Note that the Walsh
series S(f) for the functions considered in this paper is always absolutely convergent,

i.e.,
∑

k∈Ns
0
|f̂(k)| < ∞, hence the Walsh series S(f)(x) is uniformly bounded by

∑

k∈Ns
0
|f̂(k)| and therefore S(f)(x) itself converges at every point x ∈ [0, 1)s.) This

is necessary as we want to approximate the integral at function values xn and for
our analysis we deal with the Walsh series rather than the function itself, hence it is
paramount that the function and its Walsh series coincide at every point x ∈ [0, 1)s.

As the functions considered here are at least differentiable it follows that they
are continuous and using the argument in [10, p. 373] it follows that the Walsh series
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really converges at every point x ∈ [0, 1)s to the function value f(x). Indeed, for a
given x ∈ [0, 1)s we have

Sqm(f)(x) =
∑

k∈{0,...,qm−1}s

f̂(k)walk(x) = Vol(Jx)
−1

∫

Jx

f(x) dx,

where Jx =
∏s
j=1[q

−m⌊qmxj⌋, q−m⌊qmxj⌋+ q−m). The last equality follows from

∑

k∈{0,...,qm−1}s

f̂(k)walk(x)

=

∫

[0,1)s
f(y)

∑

k∈{0,...,qm−1}s

walk(x)walk(y) dy

= Vol(Jx)
−1

∫

Jx

f(x) dx.

As the function f is continuous it immediately follows that Sqm(f)(x) converges to
f(x) as m goes to infinity and the result follows.

3.4. A function space based on Walsh functions containing smooth

functions. In this section we use the above results to define a function space based
on Walsh functions which contains smooth functions for smoothness conditions con-
sidered in the previous section.

Let ϑ > 1 be a real number and q a prime power. Then for k ∈ N
s
0 we set

rq,ϑ(k) = q−µq,ϑ(k), where µq,ϑ is given by (3.14) and (3.15) (if ϑ is an integer, then
choose λ = 1 and δ = ϑ− 1 and otherwise δ = ⌊ϑ⌋ and λ = ϑ− ⌊ϑ⌋).

Now we define a function space Es,q,ϑ,γ ⊆ L2([0, 1)
s) with norm ‖ · ‖Es,q,ϑ,γ

given
by

‖f‖Es,q,ϑ,γ
= max

u⊆S
γu 6=0

γ−1
u sup

ku∈N|u|

|f̂(ku,0S\u)|

rq,ϑ(ku)
,

where again for γu = 0 we assume that f̂(ku,0S\u) = 0 for all ku ∈ N
|u|.

The following result follows now directly from Corollary 3.9.
Corollary 3.11. Let δ ≥ 1, 0 < λ ≤ 1, p, q, r ≥ 1 and an indexed set γ =

(γv)v⊂N of non-negative real numbers be given. Then there exists a constant Cδ,q,s,γ >
0 such that for every function f : [0, 1)s → R, whose partial mixed derivatives up to
order δ exist, we have

‖f‖Es,q,δ+λ,γ
≤ Cδ,q,s,γNδ,λ,γ(f),

where µq,δ+λ is given by (3.14) and (3.15).
Again, using (3.17) an explicit constant in Corollary 3.11 can be obtained for q

prime and ϕ the identity map. For all other cases (i.e., arbitrary prime powers q and
mappings ϕ with ϕ(0) = 0) explicit constants can be obtained as well, but in this
case the constant may also depend on the particular choice of q and ϕ. Further, as
noted already above, for λ = 1 and p = q = r = 2 the functional Nδ,λ,γ coincides
with the norm in a certain Sobolev space (the one dimensional inner product for this
Sobolev space is given by (3.13) and for higher dimensions one just considers tensor
products of the one dimensional space) and hence it follows that Es,q,δ+1,γ contains
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certain Sobolev spaces. Hence Corollary 3.11 shows that if we want to prove results
for smooth functions it is enough to consider Es,q,ϑ,γ (in the following we design
quasi-Monte Carlo rules which work well for Es,q,ϑ,γ rather than directly for smooth
functions, so the results for smooth functions come as a byproduct).

A function f ∈ Es,q,ϑ,γ can be written as a sum of their anova terms f =
∑

u⊆S fu

(see [8]). For a function f ∈ Es,q,ϑ,γ given by f(x) =
∑

k∈Ns
0
f̂(k)walk(x) the anova

term fu corresponding to a subset u ⊆ S is simply given by

fu(xu) =
∑

ku∈N|u|

f̂(ku,0S\u)walku
(xu).

If for some u ⊆ S we have γu = 0, then this implies that the anova term corresponding
to u satisfies fu ≡ 0. Hence the Walsh space Es,q,ϑ,γ consists only of functions whose
anova term belonging to a subset u is zero for all subsets u with γu = 0 (see also [7]).

4. Digital (t, α, β, n×m, s)-nets and digital (t, α, β, σ, s)-sequences. In this
section we give the definition of digital (t, α, β, n×m, s)-nets and digital (t, α, β, σ, s)-
sequences. Similar point sets were introduced in [2].

4.1. The digital construction scheme. The construction of the point set
used here is a slight generalization of the digital construction scheme introduced by
Niederreiter, see [20], by breaking with the tradition of having square generating
matrices.

Definition 4.1. Let q be a prime-power and let n,m, s ≥ 1 be integers. Let
C1, . . . , Cs be n×m matrices over the finite field Fq of order q. Now we construct qm

points in [0, 1)s: for 0 ≤ h ≤ qm − 1 let h = h0 + h1q+ · · ·+ hm−1q
m−1 be the q-adic

expansion of h. Consider an arbitrary but fixed bijection ϕ : {0, 1, . . . , q − 1} −→ Fq.

Identify h with the vector ~h = (ϕ(h0), . . . , ϕ(hm−1))
⊤ ∈ F

m
q , where ⊤ means the

transpose of the vector (note that we write ~h for vectors in the finite field F
m
q and h

for vectors of integers or real numbers). For 1 ≤ j ≤ s multiply the matrix Cj by ~h,
i.e.,

Cj~h =: (yj,1(h), . . . , yj,n(h))
⊤ ∈ F

n
q ,

and set

xh,j :=
ϕ−1(yj,1(h))

q
+ · · ·+

ϕ−1(yj,n(h))

qn
.

The point set {x0, . . . ,xqm−1} is called a digital net (over Fq) (with generating ma-
trices C1, . . . , Cs).

For n,m = ∞ we obtain a sequence {x0,x1, . . .}, which is called a digital sequence
(over Fq) (with generating matrices C1, . . . , Cs).

Niederreiter’s concept of a digital (t,m, s)-net and a digital (t, s)-sequence will
appear as a special case in the subsequent section. Further, the digital nets considered
below all satisfy n ≥ m.

For a digital net with generating matrices C1, . . . , Cs let D = D(C1, . . . , Cs) be
the dual net given by

D = {k ∈ N
s
0 \ {0} : C⊤

1
~k1 + · · ·+ C⊤

s
~ks = ~0},
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where for k = (k1, . . . , ks) with kj = κj,0 + κj,1q + · · · and κj,i ∈ {0, . . . , q − 1} let
~kj = (ϕ(κj,0), . . . , ϕ(κj,n−1))

⊤. Further, for ∅ 6= u ⊆ S let Du = D((Cj)j∈u) and
D∗
u = Du ∩ N

|u|.

Note that throughout the paper Walsh functions and digital nets are defined using
the same finite field Fq and the same bijection ϕ.

The following lemma is a slight generalization of [26, Lemma 2.5].

Lemma 4.2. Let {x0, . . . ,xqm−1} be a digital net over Fq with bijection ϕ, where
ϕ(0) = 0, generated by the n ×m matrices C1, . . . , Cs over Fq, n,m ≥ 1. Then for
any vector k = (k1, . . . , ks) of nonnegative integers 0 ≤ k1, . . . , ks < qn we have

qm−1
∑

h=0

Fq,ϕwalk(xh) =

{

qm if k ∈ D ∪ {0},

0 else,

where 0 is the zero vector in N
s
0.

4.2. (t, α, β, n×m, s)-nets and (t, α, β, σ, s)-sequences. Digital (t, α, β,m, s)-
nets and digital (t, α, β, s)-sequences were first introduced in [2]. Those point sets were
used for quasi-Monte Carlo rules which achieve the optimal rate of convergence of the
worst-case error in Korobov spaces (which are reproducing kernel Hilbert spaces of
smooth periodic functions). By a slight generalization of digital (t, α, β,m, s)-nets we
will show that those digital nets also achieve the optimal convergence of the worst-case
error in the space Es,q,ϑ,γ for all 1 < ϑ ≤ α.

The t value of a (t,m, s)-net is a quality parameter for the distribution properties
of the net. A low t value yields well distributed point sets and it has been shown,
see for example [4, 20], that a small t value also guarantees a small worst-case error
for integration in Sobolev spaces for which the partial first derivatives are square
integrable. In [2] it was shown how the definition of the t value needs to be modified
in order to obtain faster convergence rates for periodic Sobolev spaces for which the
partial derivatives up to order δ ≤ β are square integrable. Here we extend those result
in several ways. First we generalize the digital (t, α, β,m, s)-nets used in [2] to digital
(t, α, β, n×m, s)-nets and show that we then can remove the periodicity assumption
necessary in [2]. Further, if the derivatives up to order δ also have bounded variation
with coefficient 0 < λ ≤ 1, then we have shown that such functions are in Es,q,δ+λ,γ .

In the following we repeat some definitions and results from [2] and give the
definition of digital (t, α, β, n×m, s)-nets and digital (t, α, β, σ, s)-sequences.

For a real number ϑ > 1 the definition of the Walsh space Es,q,ϑ,γ suggests to
define the metric µq,ϑ(k, l) = µq,ϑ(k ⊖ l) on N

s
0, where µq,ϑ(k ⊖ l) is given by (3.14)

and (3.15), which is an extension of the metric introduced in [19], see also [28] (the
metric for ϑ = 1 can be used for Walsh spaces for example considered in [4]; for
this case one basically obtains the metric in [19, 28]). As we will see later, in order
to obtain a small worst-case error in the Walsh space Es,q,ϑ,γ we need digital nets
for which min{µq,ϑ(k) : k ∈ D} is large. By translating this property into a linear
independence property of the row vectors of the generating matrices C1, . . . , Cs we
arrive at the following definition.

Definition 4.3. Let n,m, α ≥ 1 be natural numbers, let 0 < β ≤ αm/n be a
real number and let 0 ≤ t ≤ βn be a natural number. Let Fq be the finite field of
prime power order q and let C1, . . . , Cs ∈ F

n×m
q with Cj = (cj,1, . . . , cj,n)

⊤. If for all
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1 ≤ ij,νj < · · · < ij,1 ≤ n, where 0 ≤ νj ≤ m for all j = 1, . . . , s, with

s
∑

j=1

min(νj ,α)
∑

l=1

ij,l ≤ βn− t

the vectors

c1,i1,ν1 , . . . , c1,i1,1 , . . . , cs,is,νs , . . . , cs,is,1

are linearly independent over Fq then the digital net with generating matricesC1, . . . , Cs
is called a digital (t, α, β, n ×m, s)-net over Fq. Further we call a digital (t, α, β, n×
m, s)-net over Fq with the largest possible value of β, i.e., β = αm/n, a digital
(t, α, n×m, s)-net over Fq.

If t is the smallest non-negative integer such that the digital net generated by
C1, . . . , Cs is a digital (t, α, β, n×m, s)-net, then we call the digital net a strict digital
(t, α, β, n×m, s)-net or a strict digital (t, α, n×m, s)-net if β = αm/n.

Remark 4.4. Using duality theory (see [22]) it follows that for a digital (t, α, β, n×
m, s)-net we have mink∈D µq,α(k) > βn−t and for a strict digital (t, α, β, n×m, s)-net
we have mink∈D µq,α(k) = βn− t+ 1. Hence digital (t, α, β, n×m, s)-nets with high
quality have a large value of βn− t.

Remark 4.5. In summary the parameters t, α, β, n,m, s have the following mean-
ing:

• s denotes the dimension of the point set.
• n and m denote the size of the generating matrices for digital nets, i.e. the
generating matrices are of size n×m; in particular this means the point set
has qm points.

• t denotes the quality parameter of the point set; a low t value means high
quality. In the upper bound, t is a quality parameter related to the constant
in the upper bound.

• β is also a quality parameter. We will see later that the integration error
is roughly q−n. This is of course only true within boundaries, which is the
reason for the parameter β, i.e. the integration error is roughly q−βn. Hence
β is a quality parameter related to the convergence rate.

• α is the smoothness parameter of the point set.
We can group the parameters also in the following way:
• m,n, s are fixed parameters, i.e. they specify the number and size of the
generating matrices.

• α is a variable parameter, i.e. given (fixed) generating matrices can for
example generate a (t1, 1, β1, 10 × 5, 5)-net, a (t2, 2, β2, 10 × 5, 5)-net, and
so on (note the point set is always the same in each instance; the values
t1, t2, . . . , β1, β2, . . . may differ). This is necessary as in the upper bounds α
will be the smoothness of the integrand, which may not be known explicitly.

• t and β are dependent parameters, they will depend on the generating ma-
trices and on α. For given generating matrices, it is desirable to know the
values of β and t for each value of α ∈ N.

Digital (t, α, β, n×m, s)-nets do not exist for arbitrary choices of the parameters
t, α, β, n,m, s, see [2]. The digital nets considered in [2] had the restriction that n = m
and special attention was paid to those digital nets with high quality, i.e., where α = β.
In this paper, a special role will be played by those digital nets for which n = αm
and β = 1. The restriction on the linear independence of the digital nets comprises
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now n− t = αm− t row vectors, which is the same as in [2], with the only difference
that the size of the generating matrices is now bigger as now each generating matrix
has n = αm rows. As those digital nets play a special role in this work we have the
following definition.

Definition 4.6. A digital (t, α, 1, αm × m, s)-net over Fq is called a digital
(t, α, αm×m, s)-net over Fq. A strict digital (t, α, 1, αm×m, s)-net over Fq is called
a strict digital (t, α, αm×m, s)-net over Fq.

Remark 4.7. For practical purposes we would like to explicitly know digital
(t, α, αm×m, s)-nets for all α,m, s ≥ 1 with t as small as possible (as will be shown
later, they achieve the optimal rate of convergence of the integration error of inte-
grands for which all mixed partial derivatives of order α are, for example, square
integrable, thus their usefulness).

Further, for given α,m, s ≥ 1 and a given digital (t, α, αm×m, s)-net P , we would
then also like to know the t′ and β′ value of this point set P when viewed as a digital
(t′, δ, β′, αm × m, s)-net for all values δ ∈ N, i.e., t′ and β′ are functions of δ (this
is because we would also like to know how well such a digital net P performs if the
integrand has partial mixed derivatives of order up to δ, because we might not know
the smoothness of the integrand, but still would wish that P performs best possible).

We can also define sequences of points for which the first qm points form a digital
(t, α, β, n ×m, s)-nets. In the classical case [20] one can just consider the left-upper
m×m submatrices of the generating matrices of a digital sequence and determine the
net properties of these for each m ∈ N. Here, on the other hand, we are considering
digital nets whose generating matrices are n × m matrices. So we would have to
consider the left-upper nm ×m submatrices of the generating matrices of the digital
sequence for each m ∈ N and where (nm)m∈N is a sequence of natural numbers. For
our purposes here it is enough to consider only nm of the form σm, for some given
σ ∈ N.

Definition 4.8. Let α, σ ≥ 1 and t ≥ 0 be integers and let 0 < β ≤ α/σ be a
real number. Let Fq be the finite field of prime power order q and let C1, . . . , Cs ∈
F
∞×∞
q with Cj = (cj,1, cj,2, . . .)

⊤. Further let Cj,σm×m denote the left upper σm×m
submatrix of Cj . If for all m > t/(βσ) the matrices C1,σm×m, . . . , Cs,σm×m generate
a digital (t, α, β, σm × m, s)-net then the digital sequence with generating matrices
C1, . . . , Cs is called a digital (t, α, β, σ, s)-sequence over Fq. Further we call a digital
(t, α, 1, α, s)-sequence over Fq a digital (t, α, s)-sequence over Fq.

If t is the smallest non-negative integer such that the digital sequence generated
by C1, . . . , Cs is a digital (t, α, β, σ, s)-sequence, then we call the digital sequence a
strict digital (t, α, β, σ, s)-sequence or a strict digital (t, α, s)-sequence if α = σ and
β = 1.

For short we will often write (t, α, β, n ×m, s)-net instead of digital (t, α, β, n ×
m, s)-net over Fq. The same applies to the other notions defined above.

Remark 4.9. Note that the definition of a digital (t, 1,m×m, s)-net coincides
with the definition of a digital (t,m, s)-net and the definition of a digital (t, 1, s)-
sequence coincides with the definition of a digital (t, s)-sequence as defined by Nieder-
reiter [20]. Further note that the t-value depends on α, β and σ, i.e., t = t(α, β, σ) or
t = t(α) if α = σ and β = 1.

The definition of (t, α, s)-sequences here differs slightly from the definition in
[2]. Indeed the definition of a (t, α, s)-sequence in [2] corresponds to a (t, α, α, 1, s)-
sequence in the terminology of this paper, whereas here we call a (t, α, 1, α, s)-sequence
a (t, α, s)-sequence. On the other hand note that the condition of linear independence
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in Definition 4.3 is the same in both cases, i.e., the sum i1,1 + · · ·+ i1,min(ν1,α) + · · ·+
is,1+· · ·+is,min(νs,α) needs to be bounded by αm−t for allm for (t, α, 1, α, s)-sequences
and also for (t, α, α, 1, s)-sequences.

4.3. Some properties of (t, α, β, n×m, s)-nets and (t, α, β, σ, s)-sequences.
The properties of such digital nets and sequences shown in [2] also hold here. For ex-
ample it was shown there that a digital (t, α,m, s)-net is also a digital (⌈tα′/α⌉, α′,m, s)-
net for all 1 ≤ α′ ≤ α and every digital (t, α, s)-sequence is also a digital (⌈tα′/α⌉, α′, s)-
sequence for all 1 ≤ α′ ≤ α. In the same way we have the following theorem.

Theorem 4.10. Let P be a digital (t, α, β, n ×m, s)-net over Fq and let S be a
digital (t, α, β, σ, s)-sequence over Fq. Then we have:

(i) P is a digital (t′, α, β′, n×m, s)-net for all 1 ≤ β′ ≤ β and all t ≤ t′ ≤ β′m
and S is a digital (t′, α, β′, σ, s)-sequence for all 1 ≤ β′ ≤ β and all t ≤ t′.

(ii) P is a digital (t′, α′, β′, n×m, s)-net for all 1 ≤ α′ ≤ n where β′ = βmin(α, α′)/α
and t′ = ⌈tmin(α, α′)/α⌉ and S is a digital (t′, α′, β′, σ, s)-sequence for all
α′ ≥ 1 where β′ = βmin(α, α′)/α and where t′ = ⌈tmin(α, α′)/α⌉.

(iii) Any digital (t, α, n × m, s)-net is a digital (⌈tα′/α⌉, α′, n ×m, s)-net for all
1 ≤ α′ ≤ α and every digital (t, α, σ, s)-sequence is a digital (⌈tα′/α⌉, α′, σ, s)-
sequence for all 1 ≤ α′ ≤ α.

(iv) If C1, . . . , Cs ∈ Z
n×m
b are the generating matrices of a digital (t, α, β, n×m, s)-

net then the matrices C
(n′)
1 , . . . , C

(n′)
s , where C

(n′)
j consists of the first n′ rows

of Cj, generate a digital (t, α, β, n′ ×m, s)-net for all 1 ≤ n′ ≤ n .
(v) Any digital (t, α, β, σ, s)-sequence is a digital (t, α, β, σ′, s)-sequence for all

1 ≤ σ′ ≤ σ.

4.4. Constructions of (t, α, β, n × m, s)-nets and (t, α, σ, s)-sequences. In
this section we show how explicit examples of (t, α, β, n×m, s)-nets and (t, α, β, σ, s)-
sequences can be constructed. The idea for the construction is based on the construc-
tion method presented in [2].

Let d ≥ 1 and let C1, . . . , Csd be the generating matrices of a digital (t,m, sd)-
net. Note that many explicit examples of such generating matrices are known, see
for example [9, 20, 23, 31] and the references therein. For the construction of a
(t, α,m, s)-net any of the above mentioned explicit constructions can be used, but as
will be shown below the quality of the (t, α,m, s)-net obtained depends on the quality
of the underlying digital (t,m, sd)-net on which our construction is based on.

Let Cj = (cj,1, . . . , cj,m)⊤ for j = 1, . . . , sd, i.e., cj,l are the row vectors of Cj .

Now let the matrix C
(d)
j be made of the first rows of the matrices C(j−1)d+1, . . . , Cjd,

then the second rows of C(j−1)d+1, . . . , Cjd and so on. The matrix C
(d)
j is then an

dm×m matrix, i.e., C
(d)
j = (c

(d)
j,1 , . . . , c

(d)
j,dm)

⊤ where c
(d)
j,l = cu,v with l = (v− j)d+ u,

1 ≤ v ≤ m and (j − 1)d < u ≤ jd for l = 1, . . . , dm and j = 1, . . . , s. The following
result is a slight generalization of [2, Theorem 3] and can be obtained using the same
proof technique.

Theorem 4.11. Let d ≥ 1 be a natural number and let C1, . . . , Csd be the gener-
ating matrices of a digital (t′,m, sd)-net over the finite field Fq of prime power order q.

Let C
(d)
1 , . . . , C

(d)
s be defined as above. Then for any α ≥ 1 the matrices C

(d)
1 , . . . , C

(d)
s

are generating matrices of a digital (t, α,min(1, α/d), dm×m, s)-net over Fq with

t = min(α, d) t′ +

⌈

s(d− 1)min(α, d)

2

⌉

.
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The above construction and Theorem 4.11 can easily be extended to (t, α, β, σ, s)-
sequences. Indeed, let d ≥ 1 and let C1, . . . , Csd be the generating matrices of a digital
(t, sd)-sequence. Again many explicit generating matrices are known, see for example
[9, 20, 23, 31]. Let Cj = (cj,1, cj,2, . . .)

⊤ for j = 1, . . . , sd, i.e., cj,l are the row

vectors of Cj . Now let the matrix C
(d)
j be made of the first rows of the matrices

C(j−1)d+1, . . . , Cjd, then the second rows of C(j−1)d+1, . . . , Cjd and so on, i.e.,

C
(d)
j = (c(j−1)d+1,1, . . . , cjd,1, c(j−1)d+1,2, . . . , cjd,2, . . .)

⊤.

The following theorem states that the matrices C
(d)
1 , . . . , C

(d)
s are the generating ma-

trices of a digital (t, α,min(1, α/d), d, s)-sequence, compare with [2, Theorem 4].
Theorem 4.12. Let d ≥ 1 be a natural number and let C1, . . . , Csd be the gen-

erating matrices of a digital (t′, sd)-sequence over the finite field Fq of prime power

order q. Let C
(d)
1 , . . . , C

(d)
s be defined as above. Then for any α ≥ 1 the matri-

ces C
(d)
1 , . . . , C

(d)
s are generating matrices of a digital (t, α,min(1, α/d), d, s)-sequence

over Fq with

t = min(α, d) t′ +

⌈

s(d− 1)min(α, d)

2

⌉

.

The last result shows that (t, α, β, σm×m, s)-nets indeed exist for β = 1 and any
0 < σ ≤ α and for m arbitrarily large. We have even shown that digital (t, α, β, αm×
m, s)-nets exist which are extensible in m and s. This can be achieved by using an
underlying (t′, sd)-sequence which is itself extensible in m and s. If the t′ value of
the original (t′,m, s)-net or (t′, s)-sequence is known explicitly then we also know the
t value of the digital (t, α, β, αm ×m, s)-net or (t, α, β, σ, s)-sequence. Furthermore
it has also been shown how such digital nets can be constructed in practice. Further
results on such sequences are established in [2].

5. Numerical integration in the Walsh space Es,q,ϑ,γ . In this section we
investigate numerical integration in the Walsh space Es,q,ϑ,γ using quasi-Monte Carlo
rules

Qqm,s(f) =
1

qm

qm−1
∑

n=0

f(xn),

where x0, . . . ,xqm−1 are the points of a digital (t, α, β,m, s)-net over Fq. More pre-
cisely, we want to approximate the integral

Is(f) =

∫

[0,1]s
f(x) dx

by the quasi-Monte Carlo rule Qqm,s(f). As a quality measure for our rule we intro-
duce the worst-case error in the next section.

5.1. The worst-case error in the Walsh space Es,q,ϑ,γ . The worst-case error
for the Walsh space Es,q,ϑ,γ using the quasi-Monte Carlo rule Qqm,s is given by

e(Qqm,s, Es,q,ϑ,γ) = sup
f∈Es,q,ϑ,γ

‖f‖Es,q,ϑ,γ
≤1

|Is(f)−Qqm,s(f)| .
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The initial error is given by

e(Q0,s, Es,q,ϑ,γ) = sup
f∈Es,q,ϑ,γ

‖f‖Es,q,ϑ,γ
≤1

|Is(f)| .

In the following we use digital nets generated by the matrices C1, . . . , Cs as
quadrature points for the quadrature rule Qqm,s. Let f ∈ Es,q,ϑ,γ . Using Lemma 4.2
it follows that

|Is(f)−Qqm,s(f)| =

∣

∣

∣

∣

∣

∑

k∈D

f̂(k)

∣

∣

∣

∣

∣

≤
∑

k∈D

|f̂(k)| =
∑

∅6=u⊆S

∑

ku∈D∗
u

|f̂(ku,0S\u)|.

Now we have |f̂(ku,0S\u)| ≤ γurq,ϑ(ku)‖f‖Es,q,ϑ,γ
and thus we obtain

|Is(f)−Qqm,s(f)| ≤ ‖f‖Es,q,ϑ,γ

∑

∅6=u⊆S

γu
∑

ku∈D∗
u

rq,ϑ(ku). (5.1)

By choosing f̂(ku,0S\u) = γurq,ϑ(ku) for all u and ku we can also obtain equality in
(5.1). Thus we have

e(Qqm,s, Es,q,ϑ,γ) =
∑

∅6=u⊆S

γu
∑

ku∈D∗
u

rq,ϑ(ku). (5.2)

From the last formula we can now see that essentially a large value of min{µq,ϑ(k) :
k ∈ D} guarantees a small worst-case error. Further it can be shown that

e(Q0,s, Es,q,ϑ,γ) = γ∅. (5.3)

We have shown the following theorem.
Theorem 5.1. The initial error for multivariate integration in the Walsh space

Es,q,ϑ,γ is given by (5.3) and the worst-case error for multivariate integration in the
Walsh space Es,q,ϑ,γ using a digital net as quadrature points is given by (5.2).

In the following lemma we establish an upper bound on the sum
∑

ku∈D∗
u
rq,ϑ(ku)

for digital (t, α, β, n×m, s)-nets over Fq. The proof is similar to [2, Lemma 6].
Lemma 5.2. Let ϑ > 1 be a real number, q ≥ 2 be a prime power, C1, . . . , Cs ∈

F
n×m
q be the generating matrices of a digital (t, ⌈ϑ⌉, β, n × m, s)-net over Fq with

0 < β ≤ 1 and let D∗
u = D∗

u((Cj)j∈u). For all ∅ 6= u ⊆ S we have: if ϑ is not an
integer it follows that

∑

ku∈D∗
u

rq,ϑ(ku) ≤ C|u|,q,ϑ(βn− t+ ⌈ϑ⌉)|u|⌈ϑ⌉−1q−ϑ⌊(βn−t)/⌈ϑ⌉⌋,

where

C|u|,q,ϑ = q|u|⌈ϑ⌉((q − qϑ−⌊ϑ⌋)−1 + (1− q(1−ϑ)/⌈ϑ⌉)−|u|⌈ϑ⌉)

and if ϑ is an integer it follows that

∑

ku∈D∗
u

rq,ϑ(ku) ≤ C′
|u|,q,ϑ(βn− t+ ϑ)|u|ϑq−(βn−t),
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where

C′
|u|,q,ϑ = q|u|ϑ(q−1 + (1− q1/ϑ−1)−|u|ϑ).

Proof. To simplify the notation we prove the result only for u = S. For all other
subsets the result follows by the same arguments.

We first consider the case where ϑ > 1 is not an integer. We partition the set D∗
S

into parts where the highest digits of kj are prescribed and we count the number of

solutions of C⊤
1
~k1 + · · ·+ C⊤

s
~ks = ~0. For j = 1, . . . , s let now ij,⌈ϑ⌉ < · · · < ij,1 with

ij,1 ≥ 1. Note that we now allow ij,l < 1, in which case the contributions of those
ij,l are to be ignored. This notation is adopted in order to avoid considering many
special cases. Further we write is,⌈ϑ⌉ = (i1,1, . . . , i1,⌈ϑ⌉, . . . , is,1, . . . , is,⌈ϑ⌉) and define

D∗
S(is,⌈ϑ⌉) = {k ∈ D∗

S : kj = ⌊κj,1q
ij,1−1 + · · ·+ κj,⌈ϑ⌉q

ij,⌈ϑ⌉−1 + lj⌋

with 0 ≤ lj < qij,⌈ϑ⌉−1and 1 ≤ κj,l < q for j = 1, . . . , s},

where ⌊·⌋ just means that the contributions of ij,l < 1 are to be ignored. Let
µ(is,⌈ϑ⌉) = i1,1+· · ·+i1,⌈ϑ⌉−1+(ϑ−⌊ϑ⌋)i1,⌈ϑ⌉+· · ·+is,1+· · ·+is,⌈ϑ⌉−1+(ϑ−⌊ϑ⌋)is,⌈ϑ⌉.

Then we have

∑

kS∈D∗
S

rq,ϑ(kS) =

∞
∑

i1,1=1

· · ·

i1,⌈ϑ⌉−1−1
∑

i1,⌈ϑ⌉=1

· · ·
∞
∑

is,1=1

· · ·

is,⌈ϑ⌉−1−1
∑

is,⌈ϑ⌉=1

|D∗
S(is,⌈ϑ⌉)|

qµ(is,⌈ϑ⌉)
. (5.4)

Some of the sums above can be empty in which case we just set the corresponding
summation index ij,l = 0.

Note that by the (t, ⌈ϑ⌉, β, n×m, s)-net property we have that |D∗
S(is,⌈ϑ⌉)| = 0 as

long as i1,1+· · ·+i1,⌈ϑ⌉+· · ·+is,1+· · ·+is,⌈ϑ⌉ ≤ βn−t. Hence let now 0 ≤ i1,1, . . . , is,⌈ϑ⌉
be given such that i1,1, . . . , is,1 ≥ 1, ij,⌈ϑ⌉ < · · · < ij,1 for j = 1, . . . , s and where if
ij,l < 1 we set ij,l = 0 (in which case we also have ij,l+1 = ij,l+2 = . . . = 0 and the
inequalities ij,l > · · · > ij,⌈ϑ⌉ are ignored) and i1,1+· · ·+i1,⌈ϑ⌉+· · ·+is,1+· · ·+is,⌈ϑ⌉ >
βn − t. We now need to estimate |D∗

S(is,⌈ϑ⌉)|, that is we need to count the number
of k ∈ D∗

S with kj = ⌊κj,1bij,1−1 + · · ·+ κj,⌈ϑ⌉b
ij,⌈ϑ⌉−1 + lj⌋.

There are at most (q−1)⌈ϑ⌉s choices for κ1,1, . . . , κs,⌈ϑ⌉ (we write at most because
if ij,l < 1 then the corresponding κj,l does not have any effect and therefore need not
to be included).

Let now 1 ≤ κ1,1, . . . , κs,⌈ϑ⌉ < q be given and define

~g = κ1,1c
⊤
1,i1,1 + · · ·+ κ1,⌈ϑ⌉c

⊤
1,i1,⌈ϑ⌉

+ · · ·+ κs,1c
⊤
s,is,1 + · · ·+ κs,⌈ϑ⌉c

⊤
s,is,⌈ϑ⌉

,

where we set c⊤j,l = 0 if l < 1 or l > n. Further let

B = (c⊤1,1, . . . , c
⊤
1,i1,⌈ϑ⌉−1, . . . , c

⊤
s,1, . . . , c

⊤
s,is,⌈ϑ⌉−1).

Now the task is to count the number of solutions ~l of B~l = ~g.
As long as the columns of B are linearly independent the number of solutions can

at most be 1. By the (t, ⌈ϑ⌉, β, n×m, s)-net property this is certainly the case if (we
write (x)+ = max(x, 0))

(i1,⌈ϑ⌉ − 1)+ + · · ·+ (i1,⌈ϑ⌉ − ⌈ϑ⌉)+ + · · ·

+(is,⌈ϑ⌉ − 1)+ + · · ·+ (is,⌈ϑ⌉ − ⌈ϑ⌉)+ ≤ ⌈ϑ⌉(i1,⌈ϑ⌉ + · · ·+ is,⌈ϑ⌉)

≤ βn− t,
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that is, as long as

i1,⌈ϑ⌉ + · · ·+ is,⌈ϑ⌉ ≤
βn− t

⌈ϑ⌉
.

Let now i1,⌈ϑ⌉ + · · ·+ is,⌈ϑ⌉ >
βn−t
⌈ϑ⌉ . Then by considering the rank of the matrix

B and the dimension of the space of solutions of B~l = ~0 it follows the number of
solutions of B~l = ~g is smaller or equal to qi1,⌈ϑ⌉+···+is,⌈ϑ⌉−⌊(βn−t)/⌈ϑ⌉⌋. Thus we have

|D∗
S(is,⌈ϑ⌉)| = 0

if
∑s

j=1

∑⌈ϑ⌉
l=1 ij,l ≤ βn− t, we have

|D∗
S(is,⌈ϑ⌉)| = (q − 1)s⌈ϑ⌉

if
∑s

j=1

∑⌈ϑ⌉
l=1 ij,l > βn− t and

∑s
j=1 ij,⌈ϑ⌉ ≤

βn−t
⌈ϑ⌉ and finally we have

|D∗
S(is,⌈ϑ⌉)| ≤ (q − 1)s⌈ϑ⌉qi1,⌈ϑ⌉+···+is,⌈ϑ⌉−⌊(βn−t)/⌈ϑ⌉⌋

if
∑s

j=1

∑⌈ϑ⌉
l=1 ij,l > βn− t and

∑s
j=1 ij,⌈ϑ⌉ >

βn−t
⌈ϑ⌉ .

We estimate the sum (5.4) now. Let S1 be the sum in (5.4) where i1,1+· · ·+is,⌈ϑ⌉ >

βn − t and i1,⌈ϑ⌉ + · · · + is,⌈ϑ⌉ ≤ βn−t
⌈ϑ⌉ . Let l1 = i1,1 + · · · + i1,⌈ϑ⌉−1 + · · · + is,1 +

· · · + is,⌈ϑ⌉−1 and let l2 = i1,⌈ϑ⌉ + · · · + is,⌈ϑ⌉. Let A(l1 + l2) denote the number of
admissible choices of i1,1, . . . , is,⌈ϑ⌉ such that l1+ l2 = i1,1+ · · ·+ is,⌈ϑ⌉. Then we have

S1 = (q − 1)s⌈ϑ⌉
⌊βn−t

⌈ϑ⌉
⌋

∑

l2=0

1

q(ϑ−⌊ϑ⌋)l2

∞
∑

l1=βn−t+1−l2

A(l1 + l2)

bl1
.

We have A(l1 + l2) ≤
(l1+l2+s⌈ϑ⌉−1

s⌈ϑ⌉−1

)

and hence we obtain

S1 ≤ (q − 1)s⌈ϑ⌉
⌊ βn−t

⌈ϑ⌉
⌋

∑

l2=0

1

q(ϑ−⌊ϑ⌋)l2

∞
∑

l1=βn−t+1−l2

1

ql1

(

l1 + l2 + s⌈ϑ⌉ − 1

s⌈ϑ⌉ − 1

)

.

From a result by Matoušek [17, Lemma 2.18], see also [4, Lemma 6], we have

(q − 1)s⌈ϑ⌉
∞
∑

l1=βn−t+1−l2

1

ql1

(

l1 + l2 + s⌈ϑ⌉ − 1

s⌈ϑ⌉ − 1

)

≤ ql2−βn+t−1+s⌈ϑ⌉

(

βn− t+ s⌈ϑ⌉

s⌈ϑ⌉ − 1

)

and further we have

⌊ βn−t
⌈ϑ⌉

⌋
∑

l2=0

ql2

q(ϑ−⌊ϑ⌋)l2
=

⌊βn−t
⌈ϑ⌉

⌋
∑

l2=0

ql2(⌈ϑ⌉−ϑ) =
q(⌈ϑ⌉−ϑ)(⌊(βn−t)/⌈ϑ⌉⌋+1) − 1

q⌈ϑ⌉−ϑ − 1
.
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Thus we obtain

S1 ≤
q(⌈ϑ⌉−ϑ)(⌊(βn−t)/⌈ϑ⌉⌋+1) − 1

q⌈ϑ⌉−ϑ − 1
q−βn+t−1+s⌈ϑ⌉

(

βn− t+ s⌈ϑ⌉

s⌈ϑ⌉ − 1

)

≤
qs⌈ϑ⌉−1

1− qϑ−⌈ϑ⌉

(

βn− t+ s⌈ϑ⌉

s⌈ϑ⌉ − 1

)

q−ϑ⌊(βn−t)/⌈ϑ⌉⌋.

Let S2 be the part of (5.4) for which i1,1 + · · ·+ is,⌈ϑ⌉ > βn− t and i1,⌈ϑ⌉ + · · ·+

is,⌈ϑ⌉ >
βn−t
⌈ϑ⌉ , i.e., we have

S2 ≤ (q − 1)s⌈ϑ⌉
∞
∑

i1,1=1

· · ·

i1,⌈ϑ⌉−1−1
∑

i1,⌈ϑ⌉=1

· · ·

∞
∑

is,1=1

· · ·

is,⌈ϑ⌉−1−1
∑

is,⌈ϑ⌉=1

q−⌊(βn−t)/⌈ϑ⌉⌋q(i1,⌈ϑ⌉+···+is,⌈ϑ⌉)(⌈ϑ⌉−ϑ)

qi1,1+···+i1,⌈ϑ⌉−1+···+is,1+···+is,⌈ϑ⌉−1
,

where we have the additional conditions i1,1 + · · ·+ is,⌈ϑ⌉ > βn− t and i1,⌈ϑ⌉ + · · ·+

is,⌈ϑ⌉ >
βn−t
⌈ϑ⌉ . As above let l1 = i1,1 + · · · + i1,⌈ϑ⌉−1 + · · · + is,1 + · · · + is,⌈ϑ⌉−1 and

let l2 = i1,⌈ϑ⌉ + · · · + is,⌈ϑ⌉. Let A(l1 + l2) denote the number of admissible choices
of i1,1, . . . , is,⌈ϑ⌉ such that l1 + l2 = i1,1 + · · ·+ is,⌈ϑ⌉. Note that l1 > ⌊ϑ⌋l2. Then we

have A(l1 + l2) ≤
(l1+l2+s⌈ϑ⌉−1

s⌈ϑ⌉−1

)

and hence we obtain

S2 ≤ (q − 1)s⌈ϑ⌉q−⌊(βn−t)/⌈ϑ⌉⌋

∞
∑

l2=⌊βn−t
⌈ϑ⌉

⌋+1

q(⌈ϑ⌉−ϑ)l2
∞
∑

l1=⌊ϑ⌋l2+1

1

ql1

(

l1 + l2 + s⌈ϑ⌉ − 1

s⌈ϑ⌉ − 1

)

= (q − 1)s⌈ϑ⌉q−⌊(βn−t)/⌈ϑ⌉⌋

∞
∑

l2=⌊βn−t
⌈ϑ⌉

⌋+1

∞
∑

l1=0

q−l1+l2−1−l2ϑ

(

l1 + l2 + ⌊ϑ⌋l2 − 1 + s⌈ϑ⌉ − 1

s⌈ϑ⌉ − 1

)

.

By using again Matoušek [17, Lemma 2.18], see also [4, Lemma 6], we have

(q − 1)s⌈ϑ⌉
∞
∑

l1=0

q−l1+l2−1−l2ϑ

(

l1 + l2 + ⌊ϑ⌋l2 − 1 + s⌈ϑ⌉ − 1

s⌈ϑ⌉ − 1

)

≤ qs⌈ϑ⌉ql2(1−ϑ)−1

(

l2⌈ϑ⌉ − 1 + s⌈ϑ⌉ − 1

s⌈ϑ⌉ − 1

)

and also

qs⌈ϑ⌉−1−⌊(βn−t)/⌈ϑ⌉⌋
∞
∑

l2=⌊βn−t
⌈ϑ⌉

⌋+1

ql2(1−ϑ)
(

l2⌈ϑ⌉ − 1 + s⌈ϑ⌉ − 1

s⌈ϑ⌉ − 1

)

≤ qs⌈ϑ⌉−1−⌊(βn−t)/⌈ϑ⌉⌋
∞
∑

l2=βn−t

ql2(1−ϑ)/⌈ϑ⌉
(

l2 + ⌈ϑ⌉ − 1 + s⌈ϑ⌉ − 1

s⌈ϑ⌉ − 1

)

≤ qs⌈ϑ⌉(1− q(1−ϑ)/⌈ϑ⌉)−s⌈ϑ⌉
(

βn− t+ ⌈ϑ⌉ − 2 + s⌈ϑ⌉

s⌈ϑ⌉ − 1

)

q−ϑ(βn−t)/⌈ϑ⌉.
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Hence we have

S2 ≤ qs⌈ϑ⌉(1− q(1−ϑ)/⌈ϑ⌉)−s⌈ϑ⌉
(

βn− t+ ⌈ϑ⌉ − 2 + s⌈ϑ⌉

s⌈ϑ⌉ − 1

)

q−ϑ(βn−t)/⌈ϑ⌉.

Note that we have
∑

kS∈D∗
S
rq,ϑ(kS) = S1 + S2. Let a ≥ 1 and b ≥ 0 be integers,

then we have

(

a+ b

b

)

=

b
∏

i=1

(

1 +
a

i

)

≤ (1 + a)b.

Therefore we obtain

S1 ≤
qs⌈ϑ⌉−1

1− qϑ−⌈ϑ⌉
(βn− t+ 2)s⌈ϑ⌉−1q−ϑ⌊(βn−t)/⌈ϑ⌉⌋

and

S2 ≤ qs⌈ϑ⌉(1 − q(1−ϑ)/⌈ϑ⌉)−s⌈ϑ⌉(βn− t+ ⌈ϑ⌉)s⌈ϑ⌉−1q−ϑ(βn−t)/⌈ϑ⌉.

Thus we have
∑

kS∈D∗
S

rq,ϑ(kS) ≤ Cs,q,ϑ(βn− t+ ⌈ϑ⌉)s⌈ϑ⌉−1q−ϑ⌊(βn−t)/⌈ϑ⌉⌋,

where

Cs,q,ϑ = qs⌈ϑ⌉((q − qϑ−⌊ϑ⌋)−1 + (1− q(1−ϑ)/⌈ϑ⌉)−s⌈ϑ⌉).

The result follows for the case 0 < ϑ− ⌊ϑ⌋ < 1.
Let now ϑ > 1 be an integer. Then using the same arguments as above it can be

shown that

S1 ≤ (βn− t+ 2)sϑq−(βn−t)−1+sϑ

and

S2 ≤ qsϑ(1− q1/ϑ−1)−sϑ(βn− t+ ϑ)sϑ−1q−(βn−t).

Thus we have
∑

kS∈D∗
S

rq,ϑ(kS) ≤ C′
s,q,ϑ(βn− t+ ϑ)sϑq−(βn−t),

where

C′
s,q,ϑ = qsϑ(q−1 + (1− q1/ϑ−1)−sϑ).

The result now follows.
Remark 5.3. We note that the above lemma does not hold for β > 1 in general.

Indeed, take for example u = {1}, then ku = (k1) and choose k1 = qn. Then the

digit vector of the first n digits of qn is (0, . . . , 0)⊤ and hence C⊤
1
~k1 = ~0 and hence

k(1) ∈ D∗
(1). Thus

∑

k(1)∈D∗
(1)

rq,ϑ(k(1)) ≥ q−n−1
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and hence a counterexample can be obtained for some choices of n, β, ϑ.
In [2] we did allow β > 1, but therein we had the additional assumption that the

functions are periodic. In this case we were able to show that the Walsh coefficients
rq,α(k, l) =

∏s
j=1 rq,α(kj , lj) of the reproducing kernel also satisfy the additional

property that rq,α(q
mkj , q

mkj) = rq,α(q
mkj) = q−2αmrq,α(kj , kj) for all kj ,m ∈ N, see

[2, Lemma 15]. Similarly, if we would also assume here that rq,ϑ(q
nk) = q−ϑnrq,ϑ(k)

and rq,ϑ(k) given as above if q 6 |k, then the above counterexample would fail as then
rq,ϑ(q

n) = rq,ϑ(1q
n) = q−ϑ(n+1)rq,ϑ(1).

Using the above lemma we can now obtain an upper bound on the worst-case
error.

Theorem 5.4. Let ϑ > 1 be a real number and q ≥ 2 be a prime power. The
worst-case error for multivariate integration in the Walsh space Es,q,ϑ,γ using a digital
(t, ⌈ϑ⌉, β, n × m, s)-net over Fq, with 0 < β ≤ 1, as quadrature points is for non-
integers ϑ bounded by

e(Qqm,s, Es,q,ϑ,γ) ≤ q−ϑ⌊(βn−t)/⌈ϑ⌉⌋
∑

∅6=u⊆S

γuC|u|,q,ϑ(βn− t+ ⌈ϑ⌉)|u|⌈ϑ⌉−1,

where

C|u|,q,ϑ = q|u|⌈ϑ⌉((q − qϑ−⌊ϑ⌋)−1 + (1− q(1−ϑ)/⌈ϑ⌉)−|u|⌈ϑ⌉),

and if ϑ is an integer, the worst-case error is bounded by

e(Qqm,s, Es,q,ϑ,γ) ≤ q−(βn−t)
∑

∅6=u⊆S

γuC
′
|u|,q,ϑ(βn− t+ ϑ)|u|ϑ,

where

C′
|u|,q,ϑ = q|u|ϑ(q−1 + (1− q1/ϑ−1)−|u|ϑ).

As a direct consequence of Corollary 3.11 we obtain the following result.
Corollary 5.5. Let δ ≥ 1 be an integer, 0 < λ ≤ 1 and q ≥ 2 be a prime power.

Then for any function f : [0, 1)s → R whose partial mixed derivatives up to order δ
exist it follows that the integration error using a digital (t, δ+ 1, β, n×m, s)-net over
Fq with 0 < β ≤ 1 as quadrature points is for 0 < λ < 1 bounded by

|Is(f)−Qqm,s(f)| ≤ q−(δ+λ)⌊(βn−t)/(δ+1)⌋Cδ,s,q,γNδ,λ,γ(f)
∑

∅6=u⊆S

γuC|u|,q,δ+λ(βn− t+ δ + 1)|u|(δ+1)−1

and for λ = 1 the integration error is bounded by

|Is(f)−Qqm,s(f)| ≤ q−(βn−t)Cδ,s,q,γNδ,λ,γ(f)
∑

∅6=u⊆S

γuC
′
|u|,q,δ+1(βn− t+ δ + 1)|u|δ+1,

where the constant Cδ,s,q,γ is given in Corollary 3.11 and the constants C|u|,q,δ+λ and
C′

|u|,q,δ+1 are given in Theorem 5.4.

Explicit constructions of digital (t, α,min(1, α/d), dm × m, s)-nets over Fq for
all prime powers q, integers α, d,m, s > 1 are given in Section 4.4. By choosing
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d = α = ⌈ϑ⌉ = δ + 1, by Theorem 5.4 and Corollary 5.5 we obtain a convergence
of O(q−ϑmms⌈ϑ⌉+1), which is optimal even for the smooth functions contained in the
Walsh space Es,q,ϑ,γ , see [29] where a lower bound for smooth periodic functions was
shown.

Remark 5.6. In [2, Remark 4] it was noted that if m = n and β > α the t-value
must grow with m and hence the restriction β ≤ α was added. A similar argument
yields in our case that the t-value must grow with n if βn > αm as Theorem 5.4 shows
a convergence of O(q−βn+t) but the best possible convergence rate is q−αm, hence the
restriction β ≤ αm/n was added.

In case the smoothness of the function is not known our constructions adjust
themselves automatically up to a certain degree in the following way: for the con-
struction of the digital net we choose some value of d ≥ 1 and construct a digital
(t, α,min(1, α/d), dm × m, s)-net or a digital (t, α,min(1, α/d), d, s)-sequence for all
α ≥ 1. The values δ ≥ 1 and 0 < λ ≤ 1 determine the real smoothness of the function,
which we now assume is not known. The value of α is the smoothness analog for the
digital net, i.e., we need to choose α = δ + 1. First assume that δ + λ ≤ d, then
min(1, α/d) = (δ + 1)/d and therefore we have β = (δ + 1)/d. As n = dm it follows
that βn = (δ + 1)m and therefore Corollary 5.5 shows that we achieve a convergence
of O(q−(δ+λ)mms(δ+1)+1), which is optimal. Now assume on the other hand that
δ + λ > d, then min(1, α/d) = 1 and therefore β = 1. Again we have n = dm and
hence βn = dm. In this case Corollary 5.5 shows that our construction achieves a
convergence of O(q−dmms(δ+1)+1).

Note that numerical integration of functions with less smoothness, i.e., for exam-
ple functions with partial mixed derivatives up to degree 1 in L2([0, 1)

s) or functions
with bounded variation, has been considered in many papers and monographs, see
for example [3, 4, 6, 7, 14, 20, 30, 31]. Using the notation from above, basically those
results are concerned with the case where δ = 0 and λ = 1, hence the results here
are a direct continuation of what was previously known. The construction of digital
nets proposed here for d = 1 yields obviously digital (t,m, s)-nets and (t, s)-sequences
as for example defined in [20]. In view of Corollary 5.5 and the explanation which
followed it is hence not surprising that the classical examples and theory (see for ex-
ample [3, 4, 12, 13, 14, 20, 26, 31]) only yielded a convergence of O(qm(−1+ε)) for any
ε > 0 (the ε here is used to hide the powers of m).

Note that the worst-case error in the Walsh space Es,q,ϑ,γ is invariant with respect
to a digital shift (see [4]), hence Corollary 5.5 also holds for digitally shifted digital
nets. Thus, if one wants to use randomized digital nets, one can also use randomly
digitally shifted digital nets. The root mean square worst-case error for this case
would of course be bounded by the bound in Corollary 5.5, as this bound holds for
any digital shift, i.e., our result here is even stronger in that we have shown that
even for the worst digital shift we still have the bound of Corollary 5.5. From this, it
follows that for our situation here, there is, in some sense, no bad digital shift. Other
more sophisticated scrambling methods which do not destroy the essential properties
of the point set can be used as well (for example a digital shift of depth m, see [5, 17]),
see [24] for some ideas in this direction.

REFERENCES

[1] H.E. Chrestenson, A class of generalized Walsh functions, Pacific J. Math., 5 (1955), 17–31.
[2] J. Dick, Explicit constructions of quasi-Monte Carlo rules for the numerical integration of high

dimensional periodic functions, SIAM J. Numer. Anal., 45(2007), 2141–2176.



Explicit constructions of quasi-Monte Carlo rules achieving arbitrary high convergence 35

[3] J. Dick, F.Y. Kuo, F. Pillichshammer and I.H. Sloan, Construction algorithms for polynomial
lattice rules for multivariate integration, Math. Comp., 74 (2005), 1895–1921.

[4] J. Dick and F. Pillichshammer, Multivariate integration in weighted Hilbert spaces based on
Walsh functions and weighted Sobolev spaces, J. Complexity, 21 (2005), 149–195.

[5] J. Dick and F. Pillichshammer, On the mean square weighted L2 discrepancy of randomized
digital (t,m, s)-nets over Z2, Acta Arith., 117 (2005), 371–403.
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