
ar
X

iv
:0

71
0.

21
39

v1
 [

cs
.C

C
]

 1
0

O
ct

 2
00

7

Approximation algorithms and hardness for domination with

propagation

Ashkan Aazami

aaazami@uwaterloo.ca

Department of Combinatorics and Optimization

University of Waterloo

Michael David Stilp

mstilp3@gatech.edu

School of Industrial and Systems Engineering

Georgia Institute of Technology

November 2, 2018

Abstract

The power dominating set (PDS) problem is the following extension of the well-known dom-
inating set problem: find a smallest-size set of nodes S that power dominates all the nodes,
where a node v is power dominated if (1) v is in S or v has a neighbor in S, or (2) v has a
neighbor w such that w and all of its neighbors except v are power dominated. We show a
hardness of approximation threshold of 2log

1−ǫ
n in contrast to the logarithmic hardness for the

dominating set problem. We give an O(
√
n) approximation algorithm for planar graphs, and

show that our methods cannot improve on this approximation guarantee. Finally, we initiate
the study of PDS on directed graphs, and show the same hardness threshold of 2log

1−ǫ
n for

directed acyclic graphs. Also we show that the directed PDS problem can be solved optimally
in linear time if the underlying undirected graph has bounded tree-width.

Keywords: Approximation algorithms, Hardness of approximation, Dominating set, Power
dominating set, Tree-width, Planar graphs, Greedy algorithms, PMU placement problem.

AMS subject classifications: 68W25; 90C27

1 Introduction

A dominating set of an (undirected) graph G = (V,E) is a set of nodes S such that every node in
the graph is in S or has a neighbor in S. The problem of finding a dominating set of minimum size
is an important problem that has been extensively studied, especially in the last 20 years, see the
books by Haynes et al. [17, 18]. The problem is NP-hard [14], a simple greedy algorithm achieves
a logarithmic approximation guarantee∗ [20], and, modulo the P 6= NP conjecture, no polynomial
time algorithm gives a better approximation guarantee [27, 13].

Our focus is on an extension called the Power Dominating Set (abbreviated as PDS) problem.
Power domination is defined by two rules; the first rule is the same as the rule for the Dominating

Set problem, but the second rule allows a type of indirect propagation. More precisely, given a set
of nodes S, the set of nodes that are power dominated by S, denoted PS , is obtained as follows.

∗An approximation algorithm for a (minimization) optimization problem means an algorithm that runs in poly-
nomial time and computes a solution whose cost is within a guaranteed factor of the optimal cost; the approximation

guarantee is the worst-case ratio, over all inputs of a given size, of the cost of the solution computed by the algorithm
to the optimal cost.

1

http://arxiv.org/abs/0710.2139v1

(Rule 1) if node v is in S, then v and all of its neighbors are in PS ;

(Rule 2) (propagation) if node v is in PS , one of its neighbors w is not in PS , and all other neighbors
of v are in PS , then w is inserted into PS .

The set PS is independent of the sequence in which nodes are inserted by Rule 2. Otherwise,
there is a minimal counter example with two maximal sequences of insertions and an “earliest”
node that occurs in one sequence but not the other; this is not possible. The PDS problem is
to find a node-set S of minimum size that power dominates all nodes (i.e., find S ⊆ V with |S|
minimum such that PS = V). We use Opt(G) to denote the size of an optimal solution for the PDS
problem for a graph G. Throughout, we use n to denote the number of nodes in the input graph.

For example, consider the planar graph in Figure 1; the graph has t disjoint triangles, and three
(mutually disjoint) paths such that each path has exactly one node from each triangle; note that
|V | = 3t. The minimum dominating set has size Θ(|V |), since the maximum degree is 4. The
minimum power dominating set has size one – if S has any one node of the innermost (first)
triangle (like v), then PS = V †.

v

Figure 1: Illustrating those nodes power dominated by Rule 1 (denoted by a triangle) and Rule 2
(denoted by a square); the picked node is shown by a circle.

The PDS problem arose in the context of electric power networks, where the aim is to monitor all
of the network by placing a minimum-size set of very expensive devices called phase measurement
units; these units have the capability of monitoring remote elements via propagation (as in Rule 2);
see Brueni [6], Baldwin et al. [4], and Mili et al. [28]. In the engineering literature, the problem is
called the PMU placement problem.

Our motivation comes from the area of approximation algorithms and hardness results. The
Dominating Set problem is a so-called covering problem; we wish to cover all nodes of the graph
by choosing as few node neighborhoods as possible. In fact, the Dominating Set problem is a
special case of the well-known Set Covering‡ problem.

Such covering problems have been extensively investigated. One of the key positive results dates
from the 1970’s, when Johnson [20], Lovász [26] and later Chvátal [8] showed that the greedy method
achieves an approximation guarantee of O(log |V |) where |V | denotes the size of the ground set, see
also [30]. Several negative results (on the hardness of approximation) have been discovered over

†In more detail, we apply Rule 1 to see that all the nodes of the innermost (first) triangle and one node of the
second triangle are in PS; then by two applications of Rule 2 (to each of the nodes in the first triangle not in S), we
see that the other two nodes of the second triangle are in PS; then by three applications of Rule 2 (to each of the
nodes in the second triangle) we see that all three nodes of the third triangle are in PS; etc.

‡Given a family of sets on a groundset, find the minimum number of sets whose union equals the groundset.

2

the last few years: Lund and Yannakakis [27] showed that the Set Covering problem is hard to
approximate within a ratio of Ω(logn) and later, Feige [13] showed that it is hard to approximate
within a ratio of (1− ǫ) ln n, modulo some variants of the P 6= NP assumption.

A natural question is what happens to covering problems (in the setting of approximation algo-
rithms and hardness results) when we augment the covering rule with a propagation rule. PDS
seems to be a key problem of this type, since it is obtained from the Dominating Set problem by
adding a simple propagation rule.

1.1 Previous literature

Apparently, the earliest publications on PDS are Brueni [6], Baldwin et al. [4], and Mili et al. [28].
Later, Haynes et al. [16] showed that the problem is NP-complete even when the input graph is
bipartite; they presented a linear-time algorithm to solve PDS optimally on trees. Kneis et al. [23]
generalized this result to a linear-time algorithm that finds an optimal solution for graphs that have
bounded tree-width, relying on earlier results of Courcelle et al. [9]. Kneis et al. [23] also showed
that PDS is a generalization of the Dominating Set problem as follows. Given a graph G we
can construct an augmented graph G′ such that S is an optimal solution for the Dominating Set

problem on G if and only if it is an optimal solution for PDS on G′; the graph G′ is obtained from
G by adding a new node v′ for each node v in G and adding the edge vv′. Guo et al. [15] developed
a combinatorial algorithm based on dynamic-programming for optimally solving PDS on graphs of
tree-width k. The running time of their algorithm is O(ck

2 · n) where c is a constant. Guo et al.
also compared the tractability of the Dominating Set problem versus PDS on several classes of
graphs, that is, they study whether there are classes of graphs where the former problem is in P

but the latter one is NP-hard; but they have no result that “separates” the two problems. Even
for planar graphs, the Dominating Set problem is NP-hard [14], and the same holds for PDS
[15]. Liao and Lee [25] proved that PDS on split graphs is NP-complete, and also they presented
a polynomial time algorithm for solving PDS optimally on interval graphs. Dorfling and Henning
computed the power domination number, i.e. the size of optimal power dominating set, for n ×m
grids [12]. Brueni and Heath [7] have more results on PDS, especially the NP-completeness of
PDS on planar bipartite graphs. To the best of our knowledge, no further results are known on
solving the PDS problem, either optimally or approximately. Some of the results in this paper have
appeared in the thesis of the second author [31], and in the proceedings of a workshop [1].

1.2 Our contributions

Our results substantially improve on the understanding of PDS in the context of approximation
algorithms. In particular, we show a substantial gap between the approximation guarantees for the
Dominating Set problem and PDS modulo a variant of the P 6= NP conjecture. This seems to be
the first known “separation” result between the two problems, in any class of graphs.

• We present a reduction from the MinRep problem to the PDS problem that shows that PDS
cannot be approximated within a factor of 2log

1−ǫn, unless NP ⊆ DTIME(npolylog(n)).

• For undirected graphs, we introduce the notion of strong regions and weak regions as a
means of obtaining lower bounds on the size of an optimal solution for PDS. Based on this,
we develop an approximation algorithm for PDS that gives an approximation guarantee of
O(k) for graphs that have tree-width k. The algorithm requires the tree decomposition as

3

part of the input, and runs in time O(n3) (independent of k). By slightly modifying this
algorithm we get an algorithm that solves PDS optimally on trees. Our algorithm provides
an O(

√
n)-approximation algorithm for PDS on planar graphs because a tree decomposition

of a planar graph with width O(
√
n) can be computed efficiently [2]. Moreover, we show

that our methods (specifically, the lower bounds used in our analysis) cannot improve on our
O(
√
n) approximation guarantee.

• We extend PDS in a natural way to directed graphs and prove that even for directed acyclic
graphs, PDS is hard to approximate within the same threshold as for undirected graphs
modulo the same complexity assumption.

• We give a linear-time algorithm based on dynamic-programming for Directed PDS when
the underlying undirected graph has bounded tree-width. This builds on results and methods
of Guo et al. [15].

2 PDS in Undirected Graphs

In this section we prove a result on the hardness of approximating PDS by a reduction from the
MinRep problem. In Section 2.1 we define theMinRep problem, and then we give a gap preserving
reduction from MinRep to PDS in Section 2.2.

2.1 The MinRep problem

In the MinRep [24] problem we are given a bipartite graph G = (A,B,E) with a partition of A and
B into equal-sized subsets. Let qA and qB denote the number of sets in the partition of A and B,
respectively. Let A = A1∪A2∪ · · ·∪AqA denote the partition of A, and let B = B1∪B2∪ · · ·∪BqB

denote the partition of B. This partition naturally defines a super bipartite graph H = (A,B, E).
The super nodes of H are A1, A2, . . . , AqA and B1, B2, . . . , BqB . There is a super edge between
super nodes Ai and Bj if there exists some a ∈ Ai and b ∈ Bj such that ab is an edge in G. We
say that super edge AiBj is covered by nodes a, b if a ∈ Ai, b ∈ Bj , and there is an edge between
a and b in G. Given S ⊆ A ∪ B we say that the super edge AiBj is covered by S if there exists
a, b ∈ S that covers AiBj. The goal in the MinRep problem is to pick a minimum-size set of nodes,
A′ ∪ B′ ⊆ V (G), to cover all the super edges in H. Note that we need a pair of nodes to cover
a super edge, and the pair should induce an edge between the two super nodes of the super edge;
moreover, a node in A′ ∪ B′ may be useful for covering more than one super edge. The following
Theorem is from [24].

Theorem 2.1 (Theorem 5.4 in [24]) The MinRep problem cannot be approximated within ra-

tio 2log
1−ǫn, for any fixed ǫ > 0, unless NP ⊆ DTIME(npolylog(n)).

2.2 The reduction to PDS

Theorem 2.2 The PDS problem cannot be approximated within ratio 2log
1−ǫn, for any fixed ǫ > 0,

unless NP ⊆ DTIME(npolylog(n)).

The reduction: Theorem 2.2 is proved by a reduction from the MinRep problem. We create an
instance G = (V ,E) of the PDS problem from a given instance G = (A,B,E)(H = (A,B, E)) of
the MinRep problem. The idea is to replace each super edge with a “cover testing gadget”.

4

1. Start with a copy of each node in A∪B in G. For convenience, we use the same notation for
nodes (and set of nodes) in G and their copies in G.

2. Add a new node w∗ to the graph G, and connect w∗ to all nodes in A ∪ B. Also add new
nodes w∗

1, w
∗
2 , w

∗
3 and connect them to w∗ (the nodes w∗

1, w
∗
2, w

∗
3 are added to force w∗ to be

in any optimal solution. See the proof of Lemma 2.3 for more details).

3. ∀i ∈ {1, . . . , qA} , j ∈ {1, . . . , qB} if AiBj is a super edge, then do the following:

(a) Let Eij denote the set of edges between Ai and Bj in G and let ℓij denote |Eij| (see
Figure 3(a); for an example E11 has 3 edges, and E12 has 4 edges). We denote the edges
in Eij by e1, e2, · · · , ek, · · ·.

(b) Let Cij be a cycle of 3ℓij nodes. We sequentially label the nodes of Cij as u1, v1, w1,
u2, v2, w2, · · · , uk, vk, wk, · · · (informally speaking, we associate each triple uk, vk, wk with
an edge ek of Eij). Make λ = 4 new copies of the graph Cij (λ can be any constant greater
than 3; refer to the proof of Lemma 2.3 for more details). For each edge ek = akbk ∈ Eij

and for each of the 4 copies of Cij, we add an edge from ak to uk and an edge from bk
to vk. See Figures 2(a), 2(b) for an illustration.

Cij

v2

u2

u1 v1

vℓij

uℓij

ek

e2

e1

eℓij

vk uk

w1

w2wk

wℓij

(a) The Cij graph

Cij

a1 b1

a2

b2

e2

e1

v2

u2

u1 v1

vk uk

ek akbk

vℓij

uℓij

bℓij

aℓij

eℓij

(b) Edges between Cij and Ai ∪ Bj .

Figure 2: The cover testing gadget.

4. Let G = (V ,E) be the obtained graph (see Figure 3 for an illustration).

Let S be a feasible solution for the resulting PDS instance G, and suppose w∗ ∈ S. Then all
of the nodes in A ∪ B are power dominated (by Rule 1 of PDS). Now consider a gadget Cij , and
assume a node v of Cij is in S. By applying Rule 1 once and then repeatedly applying Rule 2 of
PDS, the gadget Cij will be completely power dominated, that is, all nodes of the gadget will be
in PS .
The next lemma shows that the size of an optimal solution in PDS is exactly one more than the

size of an optimal solution in MinRep. The number of nodes in the constructed graph is equal to
∣

∣V (G)
∣

∣ = 4+ |V (G)|+3λ |E(G)|. This will complete the proof of Theorem 2.2 by showing that the
above reduction is a gap preserving reduction from MinRep to PDS with the same gap (hardness
ratio) as the MinRep problem.

5

Lemma 2.3 A∗∪B∗ is an optimal solution to the instance G = (A,B,E) of the MinRep problem
if and only if S∗ = A∗ ∪ B∗ ∪ {w∗} ⊆ V (G) is an optimal solution to the instance G of the PDS
problem.

Proof: First, we claim that w∗ should be in any optimal solution of the PDS instance G. Suppose
that w∗ is not in some optimal solutions. Then, in order to power dominate the nodes w∗, w∗

1, w
∗
2 , w

∗
3

in G, the set S must contain at least two of the nodes (leaves) w∗
1, w

∗
2, w

∗
3 . This is a contradiction,

since we can replace these 2 nodes by w∗ and obtain a smaller feasible solution.

Assume that A∗ ∪ B∗ is a feasible solution for the MinRep instance G. We will show that
S = A∗ ∪B∗ ∪ {w∗} is a feasible solution to the PDS instance G. Note that all nodes in A ∪ B ∪
{w∗, w∗

1 , w
∗
2, w

∗
3} are power dominated by applying Rule 1 on w∗. Now, we only need to show that

all nodes in the gadgets Cij are power dominated. Consider any super edge AiBj of H. The set
A∗ ∪B∗ covers all the super edges in H. So there exists a pair of nodes ak ∈ A∗ ∩Ai, bk ∈ B∗ ∩Bj

that induces an edge of G. Since ak and bk are in S, their neighbors, uk and vk, in each of the
λ = 4 copies of Cij in G, will be power dominated by applying Rule 1. Then the nodes uk and vk
in each copy of Cij will power dominate the entire cycle by repeatedly applying Rule 2. To see this,
note that any node in Cij has exactly 2 neighbors in Cij and at most 1 neighbor not in Cij. The
neighbors not in Cij are from Ai∪Bj, and they are power dominated by w∗. Hence, if a node in Cij

and one of its neighbors in Cij are power dominated, then by applying Rule 2 the other neighbor
in Cij will be power dominated. Hence, by starting from vk and repeatedly applying Rule 2, we
can sequentially power dominate the nodes in Cij . This shows that S power dominates all nodes
in G. Therefore, Opt(G) is at most |A∗ ∪B∗|+ 1.

Let S∗ ⊆ V (G) be an optimal solution for PDS. By the above claim, w∗ is in S∗. Now define
A′ = A ∩ S∗ and B′ = B ∩ S∗. First we prove that any optimal solution of PDS is contained in
A ∪ B ∪ {w∗}, and then we show that A′ ∪ B′ covers all super edges of the MinRep instance G.
Suppose that S∗ contains some nodes not in A∪B ∪{w∗}. Hence, there are some gadgets that are
not completely power dominated by S∗ ∩ (A∪B ∪ {w∗}). Let Cij be such a gadget. By symmetry
each of the λ = 4 copies of Cij is not completely power dominated. Therefore, the optimal solution
S∗ needs to have at least 3 nodes from the 4 copies of Cij. By removing these 3 nodes from S∗ and

A1 A2

B1 B2

(a) MinRep Instance G

w
∗

3

w
∗

1

w
∗

2

w∗

C2,2

A2

B2B1

C1,1 C1,2

A1

(b) PDS instance G: For each super edge AiBj we show
only 1 copy of Cij ; in fact G has λ = 4 copies of Cij .

Figure 3: The hardness construction

6

adding ak ∈ Ai and bk ∈ Bj to S∗ for some arbitrary edge akbk ∈ Eij , we can power dominate all
of the 4 copies of Cij . This contradicts the minimality of S∗, and proves that S∗ ⊆ A ∪B ∪ {w∗}.
To see that A′ ∪ B′ covers all super edges, note the following: suppose no node from any copy of
Cij is in the optimal solution; then any Cij can be power dominated only by taking a pair of nodes
a ∈ Ai, b ∈ Bj that induces an edge of G. This completes the proof of the lemma. �

3 Approximation Algorithms for Planar Graphs

In this section we describe an O(k)-approximation algorithm for PDS in graphs with tree-width
k; the running time is O(n3), independent of k. This algorithm gives an O(

√
n)-approximation

algorithm for PDS in planar graphs, since the tree-width of a planar graph G with n nodes is
O(
√
n) and in O(n

3

2) time we can find an O(
√
n) tree-width decomposition of the given planar

graph G [2]. Finally, we show that the analysis of our algorithm is tight on planar graphs. We use
Planar PDS to denote the special case of the PDS problem where the graph is planar.

Definition 3.1 [11] A tree decomposition of a graph G = (V,E) is a pair 〈{Xi ⊆ V |i ∈ I} , T =
(I, F)〉 such that T is a tree with V (T) = I, E(T) = F , and satisfying the following properties:

(T1)
⋃

i∈I Xi = V , and every edge uv ∈ E has both ends in some Xi,

(T2) For all i, j, k ∈ I if j is on the unique path from i to k in T then we have: Xi ∩Xk ⊆ Xj ,

The width of 〈{Xi|i ∈ I} , T 〉 is the maxi∈I |Xi|−1. The tree-width of G is defined as the minimum
width over all tree decompositions. The nodes of the tree are called T -nodes and the sets Xi are
called bags.

A nice tree decomposition is a tree decomposition 〈{Xi ⊆ V |i ∈ I} , T = (I, F)〉, where T is a
rooted tree in which each node has at most 2 children. If a node i ∈ I has two children j, k
then Xi = Xj = Xk (i is called a Join node), and if i has one child j then either Xj ⊂ Xi and
|Xi \Xj| = 1 or Xi ⊂ Xj and |Xj \Xi| = 1 (i is called an Insert or a Forget node, respectively).

We introduce the notion of a strong region before presenting our algorithm. Informally speaking,
a set of nodes R ⊆ V is called strong if every feasible solution to the PDS problem has a node of R.
For a graph G = (V,E), the neighborhood of R ⊆ V is nbr(R) = {v ∈ V |∃uv ∈ E, u ∈ R, v /∈ R},
and the exterior of R is defined by ext(R) = nbr(V \R), i.e., ext(R) consists of the nodes in R that
are adjacent to a node in V \R.

Definition 3.2 Given a graph G = (V,E) and a set S ⊆ V , the subset R ⊆ V is called an S-strong
region if R 6⊆ PS∪nbr(R), otherwise, the set R is called an S-weak region. The region R is called
minimal S-strong if it is an S-strong region and ∀r ∈ R, R− r is an S-weak region.

It is easy to check from the definition that an S-strong region is also an ∅-strong (or shortly strong)
region. Any feasible solution to the PDS problem needs to have at least one node from every strong
region.

Lemma 3.3 A subset R ⊆ V is an S-strong region if and only if for every feasible solution S ∪S∗

of G, we have R ∩ (S∗ \ S) 6= ∅.

7

Proof: It can be seen that the set S ∪ (V \ R) will power dominate the same set of nodes in R
that can be power dominated by S ∪ nbr(R); this is valid for any subset R ⊆ V .

Let R be an S-strong region. By the definition of a strong region we have R 6⊆ PS∪nbr(R). Hence,
by the above claim R 6⊆ PS∪(V \R). This shows that every feasible solution S∗ needs to have at least
one node from R that is not in S.

Now assume that for every feasible solution S∗ of G we have R ∩ (S∗ \ S) 6= ∅. Suppose that R
is an S-weak region, so by the definition of a weak region we have R ⊆ PS∪nbr(R). It follows that
S∗ = S ∪ (V \R) is a feasible solution, but R has no intersection with S∗ \ S ⊆ (V \R). This is a
contradiction, so R is an S-strong region. �

Our algorithm makes one level-by-level and bottom-to-top pass over the tree T of the tree de-
composition of G and constructs a solution S for PDS (initially, S = ∅). At each node rj of T we
check whether the union of the bags in the subtree rooted at rj forms an S-strong region; if yes,
then the bag Xrj of rj is added to S, otherwise S is not updated. The key point in the analysis is
to show that Opt(G) ≥ m, where m is the number of nodes of T where we updated S.

Algorithm 1 O(k)-approximation Algorithm

1: A tree decomposition 〈{Xi|i ∈ I} , T 〉 of G is given, where T is rooted at r.
2: Let Iℓ be the set of T -nodes at distance ℓ from the root, and let d be the maximum distance

from r in T .
3: S ← ∅
4: for i = d to 0 do
5: Let Ii = {r1, . . . , rki} and denote by Trj the subtree in T rooted at rj.
6: Let Yrj be the union of bags corresponding to the T -nodes in Trj .
7: for j = 1 to ki do
8: if Yrj is an S-strong region then
9: S ← S ∪Xrj ; where Xrj is the bag corresponding to rj .

10: end if
11: end for
12: end for
13: Output So = S

3.1 Analysis of the algorithm

In this subsection we show that our algorithm has an approximation guarantee of O(k). Let
G = (V,E) denote the input graph, and let S ⊆ V be any set of nodes.

Lemma 3.4 Suppose Z is an S-weak region such that ext(Z) ⊆ S. Then we have Z ⊆ PS .

Proof: Let Y = ext(Z), it is easy to check that nbr(Z \ Y) ⊆ ext(Z). We claim that Z \ Y is an
S-weak region. Let S∗ = V \ (Z ∪ S), it is easy to check that S ∪ S∗ is a feasible solution for the
graph G, but S∗ ∩ (Z \ Y) = ∅. Hence, by Lemma 3.3, Z \ Y is not an S-strong region, and so it
is an S-weak region. Thus Z \ Y ⊆ PS∪nbr(Z\Y) ⊆ PS∪ext(Z) = PS and this implies that Z ⊆ PS as
Y = ext(Z) ⊆ S.

�

8

Lemma 3.5 Let Z ⊆ V be an S-strong region. Suppose that Y is a subset of V such that Y ⊆ PS
and ext(Y) ⊆ S. Then Z \ Y is an S-strong region.

Proof: Assume for the sake of contradiction that Z \Y is an S-weak region. Then by the definition
of strong regions we have: Z \Y ⊆ PS∪nbr(Z\Y). It is easy to see that nbr(Z \Y) ⊆ nbr(Z)∪ext(Y).
This implies that Z \Y ⊆ PS∪nbr(Z\Y) ⊆ PS∪nbr(Z)∪ext(Y) = PS∪nbr(Z). The condition in the lemma
states that Y ⊆ PS ⊆ PS∪nbr(Z). Hence, we get Z = (Z \ Y) ∪ (Z ∩ Y) ⊆ PS∪nbr(Z), which means
that Z is an S-weak region. This is a contradiction, so the lemma is proved. �

Theorem 3.6 Given a graph G = (V,E) and a tree decomposition of G of width k as input,
Algorithm 1 runs in time O(n · |E|), and achieves an approximation guarantee of (k + 1).

Proof: First, we show that the solution So found by the algorithm is feasible. Then we prove the
approximation guarantee, and establish the running time.

For any node q of T , recall that Yq denotes the union of the bags corresponding to the T -nodes
in the subtree rooted at q in T ; let Gq denote the subgraph of G induced by Yq. We claim that
ext(Yq) ⊆ Xq. Suppose that q has m children in T , call them c1, . . . , cm. For each edge qcj
(j = 1, · · · ,m), the set Xq ∩ Xcj separates Ycj from the rest of the graph, that is, every path
between a node in Ycj and a node in V \Ycj contains a node of Xq ∩Xcj (see Lemma 12.3.1 in [11]).
Thus, ext(Ycj) ⊆ Xq ∩Xcj ⊆ Xq, and hence, for Yq = Xq ∪ Yc1 ∪ · · · ∪ Ycm , we have ext(Yq) ⊆ Xq.

We use induction on the height of the subtree of T rooted at q to prove the following: if Yq is
S∗-strong, then Yq ⊆ PS∗∪Xq , where S∗ denotes the solution just before the algorithm examines
Yq. The statement clearly holds when q is a leaf of T (since Yq = Xq). Otherwise, let c1, . . . , cm
be the children of q in T . For each j = 1, . . . ,m, when the algorithm examined Ycj , either Ycj was
S-weak, in which case (by Lemma 3.4) we have Ycj ⊆ PS∪ext(Ycj

) ⊆ PS∪(Xcj
∩Xq) ⊆ PS∗∪Xq or Ycj

was S-strong in which case Ycj ⊆ PS∪Xcj
by induction (note that S∪Xcj ⊆ S∗); we use S to denote

the solution just before the algorithm examines Ycj . Hence, Yq = Yc1 ∪ · · · ∪ Ycm ∪Xq ⊆ PS∗∪Xq .

The above statement implies that V ⊆ PSo because at the step when the algorithm examines the
root r of T either

(i) Yr is S-strong, so So = S ∪Xr, and Yr ⊆ PS∪Xr = PSo ; or

(ii) Yr is S-weak, and Yr ⊆ PS∪ext(Yr) = PSo ; since Yr = V (G) and ext(Yr) = ∅.

To show that the approximation guarantee is (k+1) we will construct a set ∆ of pairwise disjoint
strong regions R1, R2, . . . , such that there is a strong region Rj corresponding to each step of the
algorithm that adds a non empty bag Xqj to S. Thus |So| ≤ (k+1) |∆| since each bag has ≤ k+1
nodes, and Opt(G) ≥ |∆| because every feasible solution has size ≥ |∆|, by Lemma 3.3. Hence,
|So| ≤ (k + 1)Opt(G). We construct the sets R1, R2, . . . , during the execution of the algorithm
as follows. Suppose the algorithm finds Yq to be S-strong while examining a node q of T . Let
q1, . . . , qℓ−1 be the nodes of T where the algorithm updated the solution before examining q, and
let S be the solution just before the algorithm examines q. Then define Rℓ = Yqℓ \(Yq1 ∪· · ·∪Yqℓ−1

),
where qℓ = q. We claim that Rℓ is an S-strong region. For each strong region Yqj (j = 1, . . . , ℓ−1) we
have seen that ext(Yqj) ⊆ Xqj ⊆ S and Yqj ⊆ PS ; note that the algorithm added Xqj to the solution
since Yqj was a strong region. It follows that ext(Yq1 ∪ · · · ∪ Yqℓ−1

) ⊆ S, and Yq1 ∪ · · · ∪ Yqℓ−1
⊆ PS .

Hence, by Lemma 3.5, the set Rℓ is an S-strong region. Clearly, the sets R1, R2, . . . , are pairwise
disjoint. This completes the construction of ∆.

9

Consider the running time. Without loss of generality we can assume that the given tree decom-
position of width k has at most 4n bags (see Lemma 13.1.2 in [22]). Using standard algorithmic
techniques we can test in O(|E|) time whether a given set R ⊆ V is an S-strong region (we compute
PS∪nbr(R) and check if it contains R). Therefore, our algorithm has a running time of O(n · |E|). �
It is known that planar graphs have tree-width O(

√
n), and such a tree decomposition can be

found in O(n
3

2) time [2]. This fact together with the above theorem proves the following theorem.

Theorem 3.7 Algorithm 1 achieves an approximation guarantee of O(
√
n) for the Planar PDS

problem.

As mentioned earlier, Haynes et al.[16] presented a linear-time algorithm for optimally solving
PDS on trees. By modifying Algorithm 1, we can solve PDS optimally on trees. The resulting
algorithm differs from the algorithm of Haynes et al. since our algorithm uses strong regions.
Informally, the algorithm makes a level-by-level and bottom-to-top pass over the tree G. At a node
v of the tree G if the set of nodes in the subtree rooted at v forms a strong region, then we add v
to the solution, otherwise we skip v. Formally, we define Xv = {v} for each v ∈ V (G), and we run
Algorithm 1 on the tree G. Note that defining bags in this way does not give a tree decomposition
of G.

Theorem 3.8 A modification of Algorithm 1 runs in time O(n · |E|) and solves PDS optimally on
trees.

3.2 Lower bounds via disjoint strong regions

In this part we show that any approximation algorithm for PDS that uses the number of disjoint
strong regions as a lower bound has an approximation guarantee of Ω(

√
n). In proposition 3.12

we give a lower bound on the optimal value for PDS on an ℓ×m grid. Independently, [12] gave a
stronger result for this.

Lemma 3.9 Any minimal S-strong region is connected.

Proof: Assume that R is a minimal S-strong region that is not connected. Let C ⊂ R be a
connected component of R. The set C is an S-weak region since R is a minimal S-strong region.
By the definition of a weak region we have C ⊆ PS∪nbr(C). The set C is a connected component of
R, so the neighborhood of C has no intersection with R \ C. This implies that nbr(C) ⊆ nbr(R),
and consequently we have C ⊆ PS∪nbr(C) ⊆ PS∪nbr(R). The same argument as above shows that
R \ C ⊆ PS∪nbr(R). Hence, R ⊆ PS∪nbr(R) which is a contradiction. �

Lemma 3.10 The number of disjoint strong regions in an ℓ×m grid is exactly one.

Proof: For the sake of contradiction, assume that the given grid has two disjoint strong regions.
Take as few nodes as possible from these strong regions until we get minimal strong regions, say
R1 and R2. It is easy to check that the set of nodes of any row or any column of the grid power
dominates all nodes in the grid. By Lemma 3.3, R1 and R2 should have at least one node from
every feasible solution. In the other words, R1 and R2 must have at least one node from each row
and also from each column. By lemma 3.9, we know that R1 and R2 induce connected subgraphs.
Hence, in R1 there is a path from a node in the top row to a node in the bottom row, and also in R2

10

there is a path from a node in the rightmost column to a node in the leftmost column. Obviously
these two paths share a common node. This is a contradiction, since R1 and R2 are assumed to be
disjoint. �

We denote by Pi
S a set of nodes that are power dominated after applying propagation rule, Rule

2, for i number of times to P0
S = S ∪ nbr(S). Obviously this depends on the order of applying the

propagation rule. We use the notation without specifying the order of applying the propagation
rule.

Lemma 3.11 (Propagation lemma) Given an ordering of propagation rules applied to S ∪ nbr(S)

with Pk
S = PS we have:

∣

∣

∣
ext(Pj

S)
∣

∣

∣
≤

∣

∣ext(Pi
S)
∣

∣ ,∀ 0 ≤ i < j ≤ k.

Proof: We will prove that
∣

∣ext(Pi+1
S)

∣

∣ ≤
∣

∣ext(Pi
S)
∣

∣, for all 0 ≤ i ≤ k − 1. Consider the set Pi
S

and assume that in the (i + 1)-st step we apply Rule 2 to v ∈ ext(Pi
S) and power dominate u; i.e.

u ∈ Pi+1
S , u /∈ Pi

S . To apply Rule 2 to v all neighbors of v except u should be power dominated, so
we have nbr(v)\Pi

S = {u}. Also since we power dominate u at step (i+1), we have nbr(v) ⊆ Pi+1
S .

Therefore, v is not in ext(Pi+1
S), but u may be in the exterior of Pi+1

S . Hence, we have ext(Pi+1
S) ⊆

(

ext(Pi
S) \ {v}

)

∪ {u}. It follows that
∣

∣ext(Pi+1
S)

∣

∣ ≤
∣

∣ext(Pi
S) \ {v}

∣

∣+ |{u}| =
∣

∣ext(Pi
S)
∣

∣. �

Proposition 3.12 Let G be an ℓ×m grid with ℓ ≤ m, then Opt(G) = Θ(ℓ).

Proof: First note that any row or any column of the grid power dominates all nodes. In the
following we prove that any feasible solution of PDS needs to have at least l−1

5 nodes. Assume that

there exists S ⊆ V such that |S| < l−1
5 and PS = V (G). The maximum degree in G is 4, so we have

∣

∣ext(P0
S)
∣

∣ ≤ |S ∪ nbr(S)| < l−1
5 · 5 = l − 1. Therefore, P0

S contains no full row or no full column of
G. The set S power dominates G, so there is an i such that Pi

S contains a full row or a full column.
Consider the smallest i with this property. Hence, Pi−1

S has no full row or full column. But some
row or some column must have at least l − 1 nodes in Pi−1

S since Pi
S contains an entire row or an

entire column. Without loss of generality assume that these l− 1 nodes are from a column. By the
definition of i, each of the l − 1 nodes in this column are in a row which is not a subset of Pi−1

S .
Therefore, there are at least l − 1 rows with at least one node in Pi−1

S and at least one node not
in Pi−1

S . This implies that
∣

∣ext(Pi−1
S)

∣

∣ ≥ l − 1. Finally, by using Lemma 3.11 we get the following

contradiction: l − 1 >
∣

∣P0
S

∣

∣ ≥
∣

∣ext(P0
S)
∣

∣ ≥
∣

∣ext(Pi−1
S)

∣

∣ ≥ l − 1. �

Consider any approximation algorithm for PDS that uses only the number of disjoint strong
regions as a lower bound on the size of an optimal solution. By Lemma 3.10, this algorithm finds
a lower bound of 1 on the size of an optimal solution on a grid. The

√
n×√n grid has an optimal

solution of size Θ(
√
n) by Proposition 3.12. This shows that the approximation guarantee of the

algorithm is Ω(
√
n), even on planar graphs.

Proposition 3.13 Consider any approximation algorithm for PDS that uses only the number of
disjoint strong regions as a lower bound on the optimal value. Then the approximation guarantee
is Ω(

√
n).

4 PDS in Directed Graphs

In this section we extend the PDS problem to directed graphs to obtain the Directed Power

Dominating Set (Directed PDS) problem. Our motivation for studying the directed prob-
lem comes from theoretical considerations. The Dominating Set problem is studied on both

11

undirected and directed graphs, and there is extensive literature on the latter (see [17, 18]). The
similarities between the Dominating Set problem and the PDS problem led us to define and study
the Directed PDS problem. We give a result on the hardness of approximation of Directed

PDS. Then we reformulate the Directed PDS problem in terms of valid coloring of the edges.
Using this, we design an algorithm for solving Directed PDS in linear-time on a special class of
directed graphs.

Let G = (V,E) be a directed graph. A node w is called an out-neighbor (in-neighbor) of a
node v if there is a directed edge from v to w (from w to v) in G. The number of out-neighbors
(in-neighbors) of a node v is called the out-degree (in-degree) of v and is denoted by d+G(v) (or
similarly d−G(v)). For a set of nodes X, the subgraph of G induced by X is denoted by G[X]. The
directed graphs that we consider here have no loops nor parallel edges, but may have two edges
with different directions on the same two end nodes (we call such edges antiparallel). Given a
directed graph G by the underlying undirected graph we mean the undirected graph obtained from
G, by removing the direction of edges and also removing any parallel edges that are introduced
after removing the directions.

Definition 4.1 (the Directed PDS problem) Let G be a directed graph. Given a set of nodes
S ⊆ V (G), the set of nodes that are power dominated by S, denoted by PS, is obtained as follows:

(D1) if node v is in S, then v and all of its out-neighbors are in PS;

(D2) (propagation) if node v is in PS, one of its out-neighbors w is not in PS, and all other
out-neighbors of v are in PS, then w is inserted into PS.

We say that S power dominates G if PS = V (G). The Directed PDS problem is to find a node
set S with minimum size that power dominates all the nodes in G.

We prove a threshold of 2logn
1−ǫ

for the hardness of approximation of Directed PDS modulo
the same complexity assumption as in Theorem 2.2. The proof uses a reduction from the MinRep

problem to the Directed PDS problem in a directed acyclic graph. This reduction is similar to
the reduction in Theorem 2.2; the main difference comes from the gadget for modeling the super
edges.

Theorem 4.2 The Directed PDS problem even when restricted to directed acyclic graphs cannot
be approximated within ratio 2log

1−ǫ n, for any fixed ǫ > 0, unless NP ⊆ DTIME(npolylog(n)).

The reduction: We create an instance G = (V ,E) of the Directed PDS problem from a given
instance G = (A,B,E)(H = (A,B, E)) of the MinRep problem.

1. Start with a copy of each node in A∪B in G. For convenience, we use the same notation for
nodes (and sets of nodes) in G and their copies in G.

2. Add a new node w∗ to the graph G, and add a directed edge from w∗ to each node in A∪B.

3. ∀i ∈ {1, . . . , qA} , j ∈ {1, . . . , qB} if AiBj is a super edge, then do the following:

(a) Let Eij be the set of edges between Ai and Bj in G, and let ℓij denote |Eij|. We denote
the edges in Eij by e1, e2, . . . , ek, . . . , eℓij .

12

(b) Let Dij be the graph on 6ℓij + 1 nodes as shown in Figure 4(a). In Dij there are 6
nodes uk, vk, dk, αk, βk, γk associated with an edge ek of Eij . The part of Dij associated
with an edge ek is shown in Figure 4(b); note that all these parts share a common node,
called the center node, in Dij . Make λ = 4 new copies of the graph Dij (λ can be any
constant greater than 3). For each edge ek = akbk ∈ Eij and for each of the 4 copies of
Dij , we add a directed edge from ak to uk and a directed edge from bk to vk. In addition
to these edges, there are directed edges from w∗ to some nodes inside Dij; these directed
edges are denoted by a dashed line in Figure 4(a).

w∗
v1

u2

vk

u1

v2

d2

dk

d1

uℓij

dℓij

uℓij

uk

(a) The Dij graph

bk ak

vk uk

dk

γk

βk

αk

center node

ek

(b) Part of gadget corre-
sponding to an edge ek

Figure 4: The cover testing gadget.

4. Let G = (V ,E) be the obtained graph.

The next lemma shows that the size of an optimal solution in Directed PDS is exactly one
more than the size of an optimal solution in the MinRep instance. The number of nodes in the
constructed graph is at most

∣

∣V (G)
∣

∣ ≤ 1 + |V (G)| + 7λ |E(G)|. This will complete the proof of
Theorem 4.2 by showing that the above reduction is a gap preserving reduction from MinRep to
Directed PDS with the same gap (hardness ratio) as the MinRep problem.

Lemma 4.3 A∗∪B∗ is an optimal solution to the instance G = (A,B,E) of the MinRep problem
if and only if S∗ = A∗∪B∗∪{w∗} ⊆ V (G) is an optimal solution to the instance G of the Directed

PDS problem.

Proof: First note that w∗ should be in any feasible solution; because it has in-degree zero.

Assume that A∗ ∪ B∗ is a feasible solution for the MinRep instance G. We will show that
S = A∗ ∪B∗ ∪ {w∗} is a feasible solution to the Directed PDS instance G. Note that all nodes
in A ∪ B and some nodes inside the gadgets Dij are power dominated by applying rule (D1) on
w∗. Now, we only need to show that all nodes in the gadgets Dij are power dominated. Consider
a super edge AiBj of H. The set A∗ ∪ B∗ covers all the super edges in H. Hence, there exists
a pair of nodes ak ∈ A∗ ∩ Ai, bk ∈ B∗ ∩ Bj that induces an edge of G. Since ak and bk are
in S their out-neighbors uk and vk in each of the λ = 4 copies of the Dij graph will be power
dominated by applying rule (D1). Now node dk, that is already power dominated by w∗, will power
dominate the center node by an application of rule (D2). Now we claim that the center node will
power dominate the remaining nodes in the gadget Dij. Consider the part of gadget (shown in

13

Figure 4(b)) corresponding to an edge er ∈ Eij . Note that the nodes γr, αr, and dr are already
power dominated by w∗. It is easy to check that the nodes βr, ur, vr will be power dominated by
sequentially applying rule (D2) on γr, αr, and dr. This shows that S power dominates all nodes in
G. Therefore, Opt(G) is at most |A∗ ∪B∗|+ 1.

Let S∗ ⊆ V (G) be an optimal solution for Directed PDS. As we showed above w∗ should be in
any feasible solution for Directed PDS. Now define A′ = A∩S∗ and B′ = B∩S∗. First we prove
that any optimal solution of Directed PDS is contained in A∪B ∪{w∗}, and then we show that
A′ ∪B′ covers all the super edges of H. Suppose that S∗ contains some nodes not in A∪B ∪{w∗}.
Hence, there are some gadgets that are not completely power dominated by S∗ ∩ (A ∪ B ∪ {w∗}).
Let Dij be such a gadget. By symmetry each of the λ = 4 copies of Dij is not completely power
dominated. Therefore, the optimal solution S∗ needs to have at least 3 nodes from the 4 copies of
Dij . By removing these 3 nodes from S∗ and adding ak ∈ Ai and bk ∈ Bj to S∗ for some arbitrary
edge ek = akbk ∈ Eij, we can power dominate all 4 copies of Dij . This contradicts the optimality
of S∗, and proves that S∗ ⊆ A ∪B ∪ {w∗}. To see that A′ ∪B′ covers all super edges, it is enough
to note the following. Suppose no node from any copy of Dij is in the optimal solution, then any
Dij can be power dominated only by taking a pair of nodes a ∈ Ai and b ∈ Bj that induces an
edge of G. Otherwise, any power dominated node in the gadget has at least 2 out-neighbors that
are not power dominated, so rule (D2) cannot be applied. This completes the proof of the lemma.
�

There are several notions for the tree-width of directed graphs such as DAG width [29], directed
tree-width [21], and Kelly-width [19]. Directed acyclic graphs have width equal to zero for the first
two notions [29], and have Kelly-width of 1. Hence, Theorem 4.2 gives a hardness threshold of
O(2log n

1−ǫ
) even if the directed graph has width ≤ 1 according to any of the above three notions.

We reformulate Directed PDS in terms of valid colorings of the edges in order to develop
an algorithm based on dynamic-programming for Directed PDS. Guo et al. [15] introduced the
notion of valid orientations to get a new formulation for PDS (in undirected graphs). They also
designed a linear-time dynamic-programming algorithm based on valid orientations for optimally
solving PDS on graphs of bounded tree-width. Our method applies to directed graphs such that
the underlying undirected graph has bounded tree-width.

Definition 4.4 A coloring of a directed graph G = (V,E) is a partitioning of the edges in G into
red and blue edges. We denote a coloring by C = (V,Er ∪ Eb) where Er is the set of red edges and
Eb is the set of blue edges.

We reformulate the Directed PDS problem via a so-called valid coloring of directed graphs;
informally speaking, these colorings “model” the application of rules (D1) and (D2) of Directed

PDS.

Definition 4.5 A valid coloring C = (V,Er ∪ Eb) of a directed graph G = (V,E) is a coloring of
G with the following properties:

1. No two antiparallel edges can be colored red.

2. The subgraph induced by the red edges, Gr = (V,Er), has the following properties:

(a) ∀v ∈ G : d−Gr
(v) ≤ 1, and

(b) ∀v ∈ G : d−Gr
(v) = 1 =⇒ d+Gr

(v) ≤ 1.

14

3. G has no dependency cycle. A dependency cycle is a sequence of directed edges whose under-
lying undirected graph forms a cycle such that all the red edges are in one direction, all the
blue edges are in the other direction, and there are no two consecutive blue edges.

We call a node an origin of C if it has no incoming edges in Gr.

Our dynamic-programming algorithm for Directed PDS is based on the following lemma.

Lemma 4.6 Given a directed graph G and S ⊆ V (G), S power dominates G if and only if there
is a valid coloring of G with S as the set of origins.

Proof: Suppose S ⊆ V power dominates G. Then we give a valid coloring C with S as the set
of origins by coloring the edges in G according to the way that S power dominates G. We color
an edge (v,w) red if node w is power dominated by applying the power domination rules on v;
either by the domination rule (D1) or by the propagation rule (D2). Note that when we apply
the propagation rule (D2), then we do not power dominate the previously power dominated nodes.
Also when we apply rule (D1) on v, then we power dominate all (not some subset of) neighbors
of v that are not power dominated. We write v < u when a node u is power dominated after
v. It is easy to check that with this coloring the degree requirements are satisfied; each node can
be power dominated only once, and if it is a power dominated node (not in S) , then it cannot
power dominate more than one of its out-neighbors due to rule (D2). Now, we need to prove that
there is no dependency cycle. By way of contradiction, suppose that C∗ = u1, u2, . . . , um is a
dependency cycle. Focus on the edges of C∗. Call the direction of the red edges forward, and call
the direction of the blue edges backward. Observe that a dependency cycle has ≥ 1 red edges, and
each of its red edges corresponds to an application of rule (D2). Assume that all the edges in C∗

are red. Then the red edges (ui, ui+1) imply that ui < ui+1 for all i = 1, 2, . . . ,m − 1; therefore
u1 < u2 < · · · < um, but this is a contradiction since the last red edge from um back to u1 implies
that um < u1. Hence, there is no dependency cycle with all edges colored red. Now, assume that
the dependency cycle C∗ has some blue edges. We show that a similar contradiction occurs when
there are no two consecutive blue edges. Consider a blue edge (u, v) of C∗ and note that the other
edge of C∗ incident to u is a red edge, say (u,w). By rule (D2), we see that v should be power
dominated before u can power dominate w; thus we have w > v. Repeating this argument, we
get an ordering for the occurrences of power domination of some of the nodes in C∗ that gives a
contradiction, e.g., if m is even and the edges of C∗ are alternatively blue and red (starting with
blue) we get u1 < u3 < u5 < · · · < um−1 < u1 (see Figure 5 for an example). Hence, G has a valid
coloring with S as the set of origins.

B RR

B

Ru1 u2 u3 u4 u5

Figure 5: The blue edge (u4, u3) means that u3 should be power dominated before we can power
dominate u5 by applying rule (D2) on u4; thus u3 < u5. Again the blue edge from u1 to u5 implies
that u5 < u2. Finally , the red edge (u2, u3) shows that u2 < u3. Combining these dependencies
we get u3 < u5 < u2 < u3. This is a contradiction, and shows that there cannot be a dependency
cycle in a coloring obtained from the application of rules (D1) and (D2) of Directed PDS.

Now suppose that G has a valid coloring C = (V,Er ∪ Eb) with S ⊆ V (G) as the set of origins.
The nodes in S and all of their out-neighbors in Gr = (V,Er) are power dominated by applying

15

the rule (D1). Now we prove that S will power dominate all nodes in G. Suppose that this does
not happen. Let X ⊂ V be the maximal set of nodes that can be power dominated by S. We
claim that there is at least one red edge from X to V \X. Note that all of the origins are in X,
so each of the nodes in V \ X has in-degree 1 in Gr. Hence, if there is no red edge from X to
V \X, then there should be a directed cycle of red edges in G[V \X]. This is not possible since
there are no dependency cycles. Therefore there is at least one red edge from X to V \ X. Let
e1 = (x1, y1), . . . , ek = (xk, yk) be all of the red edges from X to V \X. If some xi has all of its out-
neighbors in X except yi, then by applying rule (D2) on xi the node yi will be power dominated. By
the maximality assumption of X this cannot happen. Therefore, each xi has another out-neighbor,
say zi, in V \X. Then (xi, zi) is a blue edge, otherwise, xi would be an origin and yi would be power
dominated by applying rule (D1) on xi. Now, we construct a dependency cycle as follows: starting
from x1, use a blue edge to move to a node z1 in V \X; then move in the reverse direction over a
sequence of red edges (z2, z1), (z3, z2), · · · until we reach a red edge (zi, zi−1) with zi−1 ∈ V \X and
zi ∈ X (such an edge exists since G[V \X] has no directed cycle of red edges); note that (zi, zi−1) is
one of the red edges (x1, y1), · · · , (xk, yk). If zi = x1, then we have a dependency cycle; otherwise,
we again use a blue edge (zi, zi+1) to move to a node in V \X. By repeating these steps, we will
eventually find a dependency cycle. Note that all the blue edges are in one direction, and all the red
edges are in the other direction. This is a contradiction, since C has no dependency cycle. Hence,
we have X = V , so S power dominates G. �

Theorem 4.7 Given a directed graph G and a tree decomposition of width k of its underlying
undirected graph, Directed PDS can be optimally solved in O(ck

2 · n) time for a global constant
c.

A consequence of the above theorem is a linear-time algorithm for solving the Directed PDS

problem optimally on directed graphs, given a bounded tree-width decomposition of the underlying
undirected graph. Also since the tree-width decomposition for graphs with bounded tree-width can
be computed in polynomial-time [5], there is a polynomial-time algorithm to solve Directed PDS

optimally on the class of directed graphs such that the underlying undirected graph has bounded
tree-width.

5 Conclusions

We studied the PDS problem from the perspective of approximation algorithms. We introduced
a natural extension of the problem to directed graphs. We showed that both problems have a
threshold of O(2log n

1−ǫ
) for the hardness of approximation. We presented an O(

√
n) approxi-

mation algorithm for Planar PDS. We designed a dynamic-programming algorithm for solving
the Directed PDS problem optimally in linear-time for those directed graphs whose underlying
undirected graph has bounded tree-width.

Here, we describe an algorithm with an approximation guarantee of O(n
logn) for the PDS problem.

The algorithm works as follows. Partition the nodes of the graph G into log n equal-sized sets
V1, V2, · · ·. Next, consider all possible ways of picking these sets (we pick all nodes in a set). Among
all these different candidates, output the one that power dominates G and has the minimum
number of nodes. Note that in the algorithm we only consider 2logn = n different candidates.
Clearly, the algorithm runs in polynomial time, since the feasibility of each candidate can be tested
in polynomial time. Let S∗ be an optimal solution. It is easy to see that the set of Vi’s that

16

intersect S∗ forms a feasible solution for the PDS problem in G; this solution has size at most
n

logn · |S∗|. This establishes the approximation guarantee. The same algorithm and analysis applies
to the Directed PDS problem.

Proposition 5.1 There is a polynomial time n
logn -approximation algorithm for both the PDS prob-

lem and the Directed PDS problem.

There is a gap between our hardness threshold of O(2logn
1−ǫ

) and our approximation guarantee of
O(n

logn), and narrowing this gap is an open question.

A major open question in the area is whether there exists a PTAS (polynomial time approximation
scheme) for Planar PDS. A first step may be to obtain an improvement on our approximation
guarantee of O(

√
n). There has been a lot of research on designing PTASs for NP-hard problems on

planar graphs. Some of the most important developments are the outerplanar layering technique by
Baker [3], and the bidimensionality theory by Demaine and Hajiaghayi [10]. Unfortunately, these
methods do not apply to Planar PDS.

Baker [3] showed that the Dominating Set problem in planar graphs has a PTAS. In the Baker
method we first partition the graph into smaller graphs. Then we solve the problem optimally on
each subgraph, and finally we return the union of the solutions as a solution for the original graph.
The example in Figure 1 shows that this method does not apply to Planar PDS. The size of an
optimal solution is 1, but if we apply the Baker method, then the size of the output solution will
be at least as large as the number of subgraphs in the partition which can be Θ(n).

Demaine and Hajiaghayi [10] introduced the bidimensionality theory and used it to obtain PTASs
for several variants of the Dominating Set problem on planar graphs. An important property
of bidimensionality is that when an edge is contracted the size of an optimal solution should not
increase. Consider the example in Figure 6. If we contract edges e1, e2, . . . , en in G, then we get
the graph G′. It can be checked that Opt(G) = 1 but Opt(G′) = Θ(n). Thus the bidimensionality
theory does not apply to Planar PDS, since the optimum value may increase when an edge is
contracted.

v

=⇒
v

u1 un

ene1

G G′

Figure 6: Optimal value of PDS increases when edges are contracted.

Lastly, we consider some variations of greedy algorithms for PDS and show that they perform very
poorly even on planar graphs. In contrast, for other related problems such as Dominating Set and
Set Covering, greedy algorithms perform well since they achieve a logarithmic approximation
guarantee, and no substantial improvement is possible by any polynomial time algorithm, under
complexity assumptions like P 6= NP. The most natural greedy algorithm for PDS is the one that
starts with S = ∅, and in each step, adds a new node v to the current solution S such that v power
dominates the maximum number of new nodes.

17

Unfortunately, this greedy algorithm may find a solution S such that |S| ≥ Θ(n) ·Opt(G). To see
this, consider a graph G that is obtained from a 9ℓ× 9m grid by subdividing all row-edges, except
with minor changes in the four corners as shown in Figure 7(a). Partition the graph G into 9 × 9
grids (ignoring the nodes introduced by subdivision), see Figure 7(b). It is easy to check that any
single node can power dominate at most 7 nodes, and the center node of any one of the 9× 9 grids
achieves this maximum. So the greedy algorithm at the first iteration may pick the center node
of any one of the 9 × 9 grids. Assuming all nodes picked by the algorithm so far have been these
center nodes, we see that picking another center node maximizes

∣

∣PS∪{v} \ PS
∣

∣ over all v ∈ V . So
the greedy algorithm could continue picking center nodes, and after that possibly picking other
nodes until it finds a feasible solution S. The size of the output S is at least m · ℓ = Θ(n). By

(a) Grid (b) 9× 9 grid

Figure 7: Bad example for the greedy algorithm

Proposition 3.12, we have Opt(G) = Θ(ℓ). Now by fixing ℓ = Θ(1) we can see that the size of the
output solution can be bigger than Opt(G) by a factor of Θ(n).

Proposition 5.2 The greedy algorithm for the PDS problem may find a solution S such that |S| ≥
Θ(n) · Opt(G).

We will consider two other variations of the greedy algorithm, namely Proximity and Cleanup.
We have examples of Planar PDS showing that these variations of the greedy algorithm perform
poorly.

Proximity: In each step of the Proximity algorithm we choose a node such that the set of all
power dominated nodes induces a connected subgraph, and subject to this, the number of newly
power dominated nodes is maximized. Informally, this is to escalate the use of the propagation
rule.

The bad example for the proximity version of the greedy algorithm is obtained by modifying the
center row of the h × (2m + 1) grid, as shown in Figure 8, by inserting ℓ subdividing nodes into
the edges in the middle row, and also subdividing all of the other row-edges except some of the
corner edges. Figure 8 illustrates an example of such a grid for l = 5 and h = 9 rows, but for a
bad example for the proximity greedy algorithm we need h to be sufficiently large constant (h = 17
suffices). We use the figure for illustration, to show the working of the proximity greedy algorithm.

It is easy to check that by picking all nodes of the first column we can power dominate the entire
graph, so the optimal solution is Θ(1). The proximity greedy algorithm starts by picking a node
that power dominates maximum number of nodes (which is 17 = 2ℓ+ 7); any white node satisfies
this requirement. Therefore the algorithm may pick for example the first white node (from the

18

left). It is easy to check that in the next step the algorithm will pick the white node to the right of
the first one, since all of the power dominated region stays connected and also it power dominates
maximum number of new nodes (which is 16 = 2ℓ+ 6). The algorithm continues picking all white
nodes and at the end it will pick possibly more nodes to get a feasible solution. (The shaded
region shown in Figure 8 indicates the nodes that will be power dominated by picking all white
nodes.) Therefore, the size of the solution found by the algorithm is at least m = Θ(n). Hence, the
proximity greedy algorithm may find a feasible solution that is Θ(n) times worse than the optimal
solution.

Figure 8: Bad example for the proximity greedy algorithm

Cleanup Step: Some of the recent approximation algorithms, especially some based on the primal-
dual method, use a clean up step at the end: this step removes redundant elements from the solution
in some sequential order. In the Cleanup algorithm, we first run the greedy algorithm to find a
solution (node set) S, then we repeatedly remove nodes from S, until S is an inclusionwise minimal
power dominating set. Although a cleanup step may substantially improve on the solution found
by the greedy algorithm on some examples, this does not hold for all examples.

The same bad example for the proximity version is also a bad example for the cleanup version of
the greedy algorithm. The cleanup greedy algorithm may again pick the first white node (from the
left), and after picking this white node, it may pick the third white node. Since both of them power
dominate maximum number of new nodes (which is 17 = 2ℓ+ 7). Note that in the original greedy
algorithm there is no need to have a connected subgraph induced on power dominated nodes. The
algorithm continues to pick all the odd indexed white nodes, and after that it will start picking the
even indexed white nodes since any one of them power dominates maximum number of new nodes
(which is at least 15 = 2ℓ + 5). At this stage of the algorithm the set of power dominated nodes
are those in the shaded region of Figure 8. It is easy to check that we need to pick nodes from
both upper and lower parts in order to power dominate the entire graph. The greedy algorithm
may pick some nodes from the leftmost column in the top part and some nodes from the rightmost
column in the bottom part to power dominate the entire graph. Now we start doing the cleanup
process. It can be checked that if we remove any two consecutive white nodes from the obtained
solution, the graph cannot be power dominated completely. So we need to keep at least half of the
white nodes. Therefore, the size of the output solution at the end of cleanup process is at least
m
2 = Θ(n), but the optimal solution is just Θ(1) as before.

19

References

[1] A. Aazami and M. D. Stilp. Approximation algorithms and hardness for domination with
propagation. In Proceedings of the 10th International Workshop on Approximation Algorithms
for Combinatorial Optimization Problems, volume 4627 of LNCS, pages 1–15. Springer, 2007.

[2] J. Alber, H. L. Bodlaender, H. Fernau, T. Kloks, and R. Niedermeier. Fixed parameter
algorithms for dominating set and related problems on planar graphs. Algorithmica, 33(4):461–
493, 2002.

[3] B. S. Baker. Approximation algorithms for NP-complete problems on planar graphs. J. ACM,
41(1):153–180, 1994.

[4] T. L. Baldwin, L. Mili, M. B. Boisen, and R. Adapa. Power system observability with minimal
phasor measurement placement. IEEE Transactions on Power Systems, 8(2):707–715, 1993.

[5] H. L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small treewidth.
SIAM J. Comput., 25(6):1305–1317, 1996.

[6] D. J. Brueni. Minimal PMU placement for graph observability, a decomposition approach.
Master’s thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA, 1993.

[7] D. J. Brueni and L. S. Heath. The PMU placement problem. SIAM J. Discret. Math.,
19(3):744–761, 2005.

[8] V. Chvatal. A greedy heuristic for the set covering problem. Math. Oper. Res., 4:233–235,
1979.

[9] B. Courcelle, J. A. Makowsky, and U. Rotics. Linear time solvable optimization problems
on graphs of bounded clique width. In Proceedings of the 24th International Workshop on
Graph-Theoretic Concepts in Computer Science, volume 1517 of LNCS, pages 1–16. Springer,
1998.

[10] E. D. Demaine and M. T. Hajiaghayi. Bidimensionality: new connections between FPT al-
gorithms and PTASs. In Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 590–601, 2005.

[11] R. Diestel. Graph Theory. Springer-Verlag, New York, 2nd edition, 2000.

[12] M. Dorfling and M. A. Henning. A note on power domination in grid graphs. Discrete Applied
Mathematics, 154(6):1023–1027, 2006.

[13] U. Feige. A threshold of lnn for approximating set cover. J. ACM, 45(4):634–652, 1998.

[14] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman and Co., New York, NY, USA, 1979.

[15] J. Guo, R. Niedermeier, and D. Raible. Improved algorithms and complexity results for power
domination in graphs. In Proceedings of the 15th International Symposium on Fundamentals
of Computation Theory, volume 3623 of LNCS, pages 172–184. Springer, 2005 (to appear in
Algorithmica).

20

[16] T. W. Haynes, S. M. Hedetniemi, S. T. Hedetniemi, and M. A. Henning. Domination in graphs
applied to electric power networks. SIAM J. Discrete Math., 15(4):519–529, 2002.

[17] T. W. Haynes, S. T. Hedetniemi, and P. J. Slater. Domination in Graphs: Advanced Topics.
Marcel Dekker, New York, 1998.

[18] T. W. Haynes, S. T. Hedetniemi, and P. J. Slater. Fundamentals of Domination in Graphs.
Marcel Dekker, New York, 1998.

[19] P. Hunter and S. Kreutzer. Digraph measures: Kelly decompositions, games, and orderings.
In Proceedings of the 18th Annual ACM Symposium on Discrete Algorithms, pages 637–644,
Philadelphia, PA, USA, 2007.

[20] D. S. Johnson. Approximation algorithms for combinatorial problems. J. Comput. Syst. Sci.,
9(3):256–278, 1974.

[21] T. Johnson, N. Robertson, P. D. Seymour, and R. Thomas. Directed tree-width. J. Comb.
Theory, Ser. B, 82(1):138–154, 2001.

[22] T. Kloks. Treewidth, Computations and Approximations, volume 842 of LNCS. Springer, 1994.

[23] J. Kneis, D. Mölle, S. Richter, and P. Rossmanith. Parameterized power domination complex-
ity. Inf. Process. Lett., 98(4):145–149, 2006.

[24] G. Kortsarz. On the hardness of approximating spanners. Algorithmica, 30(3):432–450, 2001.

[25] C. S. Liao and D. T. Lee. Power domination problem in graphs. In Proceedings of the 11th
International Computing and Combinatorics Conference, volume 3595 of LNCS, pages 818–
828. Springer, 2005.

[26] L. Lovász. On the ratio of optimal integral and fractional covers. Discrete Mathematics,
13:383–390, 1975.

[27] C. Lund and M. Yannakakis. On the hardness of approximating minimization problems. J.
ACM, 41(5):960–981, 1994.

[28] L. Mili, T.L. Baldwin, and A.G. Phadke. Phasor measurements for voltage and transient
stability monitoring and control. In Proceedings of the EPRI-NSF Workshop on Application
of Advanced Mathematics to Power Systems, 1991.

[29] J. Obdrzálek. Dag-width: connectivity measure for directed graphs. In Proceedings of the 17th
Annual ACM Symposium on Discrete Algorithms, pages 814–821. ACM Press, 2006.

[30] P. Slav́ık. A tight analysis of the greedy algorithm for set cover. In Proceedings of the 28th
Annual ACM Symposium on Theory of Computing, pages 435–441, New York, NY, USA, 1996.
ACM Press.

[31] M. D. Stilp. On power dominating sets. Master’s thesis, Combinatorics and Optimization,
University of Waterloo, Ontario, Canada, 2006.

21

A Dynamic Programming

In this section we describe our dynamic-programming algorithm for the Directed PDS problem.
This algorithm is similar to the dynamic-programming algorithm designed by Guo et al.[15] to
optimally solve PDS for undirected graphs with bounded tree-width. It is known that any tree
decomposition of width-k can be transformed to a nice tree decomposition with width k in linear-
time [22] (Lemma 13.1.3). So we can assume that we are given a nice tree decomposition of the
underlying undirected graph of G call it 〈{Xi|i ∈ I} , T 〉. Let Ti denote the subtree of T rooted

at T -node i, and Yi =
(

⋃

j∈V (Ti)
Xj

)

\ Xi. Also let Gi be the subgraph induced by Yi ∪ Xi, i.e.

Gi = G [Yi ∪Xi], and let G′
i = G[Xi].

Consider a valid coloring C of the graph G. We store the color of the edges in each bag by
assigning a state to that bag (the formal definition of a state will follow). We can reconstruct the
coloring C from the states of all bags in the tree decomposition of G; so there is no need to store
the coloring C in the dynamic-programming.

The state of a bag: Given a coloring C, the state of a bag Xi describes the coloring of the edges
in G′

i. In order to detect the dependency cycles in the coloring C without reconstructing the whole
coloring, we need to store some more information in a state. This extra information enables us to
detect a dependency cycle in Gi which goes through Xi, by considering only the state of the bag
Xi. A bag state s contains the following: state of each edge, state of each node, and state of each
pair of nodes in G′

i = G[Xi].

• State of an edge: The state of an edge e ∈ E(G[Xi]) denoted by s(e) is the color that is
assigned to e in the coloring C; s(e) ∈ {R,B}.

• State of a node: The state of a node v ∈ Xi denoted by s(v) shows the number of red
edges between v and Yi.

– s(v) = 1: There is exactly one red edge from a node in Yi to v and no red edge from v
to Yi,

– s(v) = 2: There is exactly one red edge from a node in Yi to v and exactly one red edge
from v to Yi,

– s(v) = 3: There is no red edge between Yi and v,

– s(v) = 4: There are at least two red edges from v to Yi and no red edge from Yi to v,

– s(v) = 5: There is exactly one red edge from v to Yi and no red edge from Yi to v.

• State of a pair of nodes: A dependency path from u to v is a path P where all red edges
in P are directed from u to v and all blue edges are directed from v to u. We categorize
dependency paths according to the color of their first and last edges. There are 4 possible
types RR,RB,BR,BB; for example a path of type RB is a path with the first edge colored
red and the last edge colored blue. For a pair (u, v) ∈ Xi × Xi (u 6= v) the state of (u, v)
denoted by s(u, v) shows the type of dependency paths from u to v in G[Yi ∪ {u, v}]; that is,
s(u, v) ⊆ {RR,RB,BR,BB}. Note that there are 24 = 16 different states for each pair of
nodes.

Detecting dependency cycles:: An important part of the dynamic-programming algorithm is
to detect dependency cycles in the coloring C. Assume we are at bag Xi and we are given the bag
state s corresponding to the coloring C. We can detect the dependency cycles in G′

i = G[Xi] by

22

enumerating all possible cycles; note that the coloring of edges in G′
i is given in the state s. The

dependency cycles in Gi can be detected by considering the state of each pair of nodes in Xi. For
example assume that RB ∈ s(u, v) and RR ∈ s(v, u). Then, by combining a dependency path of
type RB from u to v and a dependency path of type RR from v to u we obtain a dependency cycle
going through u and v in Gi.

Let us denote by Λi the set of all possible states for the bag Xi. The dynamic-programming will
compute a mapping Ai : Λi → N ∪ {+∞}. For a bag state s ∈ Λi the value Ai(s) is the minimum
number of origins in an optimal valid coloring C of Gi under the restriction that the state of nodes,
edges, and pairs of nodes in Xi is given by s. Now, we describe how our dynamic-programming
works.

Step 1: (Initialization): In this step for each leaf node i of T , we initialize the mapping Ai as
follows. For a given state s, we define Ai(s) as +∞ if s has a dependency cycle, a node v with
s(v) 6= 3, or a pair of nodes u and v such that s(u, v) 6= ∅. Otherwise, we define Ai(s) as the
number of nodes with no in-coming red edges in the coloring defined by s.

Step 2: (Bottom-Up Computation): After initialization, we visit the nodes in T in a bottom-
up fashion and at each bag Xi we compute the mapping Ai corresponding to Xi. The update
process depends on the type of T -nodes that we are considering. Here, we only consider the update
process at an Insert Node. The other cases are similar to this one.

Insert Node: Suppose i is an insert node with the child j, and assume that Xi = Xj ∪ {x}. For
each bag state s ∈ Λi do the following:

1. Check whether the coloring given by s forms a valid coloring of G′
i; if not, define Ai(s) = +∞.

2. Compute the set Λj(s) containing bag states of j that are “compatible” with the bag state s.

3. For each s′ ∈ Λj(s), check if a valid coloring of Gj “compatible” with s′ can be extended to
a valid coloring of Gi “compatible” with s.

4. Compute Ai based on the mapping Aj .

Compatible bag state (Step 2): A bag state s′ ∈ Λj is said to be compatible with the bag state
s ∈ Λi if the state of each node, each edge, and each pair of nodes in V (G′

j) in the bag state s′ is the
same as the corresponding state in the bag state s. If s(x) 6= 3, or ∃v ∈ Xj : s(x, v) 6= ∅∨s(v, x) 6= ∅
then we define Λj(s) = ∅.
Detecting dependency cycles (Step 3): The conditions of a valid coloring can be violated due
to degree constraints on the new node x, or by the existence of a dependency cycle going through
x. Both these cases can be tested by considering the bag states s and s′.

Computing Ai (Step 4): The addition of x may change the number of origins in Gi. The node x
will be an origin if it has at least one outgoing red edge in s. But an origin node v ∈ Xj (in s′) that
has an incoming red edge from x, is no longer an origin. So by considering the red edges going out
of x we can update the number of origins and compute the mapping Ai. If the coloring compatible
with s is not a valid coloring, then we define Ai(s) to be +∞.

Step 3: (At root r): Finally, we compute the number of origins in an optimal valid coloring of
G by finding the minimum of Ar(s) over all possible s ∈ Λr. It is easy to see that each bag Xi has
at most 16(k+1)2 · 5k+1 · 2(k+1)2 states; note that |Xi| ≤ (k + 1). It can be checked that the total
running time of our algorithm is O(ck

2 · n), for some global constant c.

23

	Introduction
	Previous literature
	Our contributions

	PDS in Undirected Graphs
	The MinRep problem
	The reduction to PDS

	Approximation Algorithms for Planar Graphs
	Analysis of the algorithm
	Lower bounds via disjoint strong regions

	PDS in Directed Graphs
	Conclusions
	Dynamic Programming

