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CONSTRAINED OPTIMAL CONTROL THEORY FOR
DIFFERENTIAL LINEAR REPETITIVE PROCESSES∗
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Abstract. Differential repetitive processes are a distinct class of continuous-discrete two-
dimensional linear systems of both systems theoretic and applications interest. These processes
complete a series of sweeps termed passes through a set of dynamics defined over a finite duration
known as the pass length, and once the end is reached the process is reset to its starting position
before the next pass begins. Moreover the output or pass profile produced on each pass explicitly
contributes to the dynamics of the next one. Applications areas include iterative learning control
and iterative solution algorithms, for classes of dynamic nonlinear optimal control problems based
on the maximum principle, and the modeling of numerous industrial processes such as metal rolling,
long-wall cutting, etc. In this paper we develop substantial new results on optimal control of these
processes in the presence of constraints where the cost function and constraints are motivated by
practical application of iterative learning control to robotic manipulators and other electromechanical
systems. The analysis is based on generalizing the well-known maximum and ε-maximum principles
to them.
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1. Introduction. Repetitive processes are a distinct class of two-dimensional
(2D) systems of both systems theoretic and applications interest. The unique char-
acteristic of such a process is a series of sweeps, termed passes, through a set of
dynamics defined over a fixed finite duration known as the pass length. On each pass
an output, termed the pass profile, is produced which acts as a forcing function on,
and hence contributes to, the dynamics of the next pass profile. This, in turn, leads
to the unique control problem in that the output sequence of pass profiles generated
can contain oscillations which increase in amplitude in the pass-to-pass direction.

To introduce a formal definition, let α < +∞ denote the pass length (assumed
constant). Then in a repetitive process the pass profile yk(t), 0 ≤ t ≤ α, generated
on pass k acts as a forcing function on, and hence contributes to, the dynamics of the
next pass profile yk+1(t), 0 ≤ t ≤ α, k ≥ 0.

Physical examples of repetitive processes include long-wall coal cutting and metal-
rolling operations (see, for example, the references cited in [17]). Also in recent years
applications have arisen where adopting a repetitive process setting for analysis has
distinct advantages over alternatives. Examples of these so-called algorithmic applica-
tions include classes of iterative learning control (ILC) schemes (see, for example, [13])
and iterative algorithms for solving nonlinear dynamic optimal control problems based
on the maximum principle [15]. In the case of iterative learning control for the linear
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dynamics case, the stability theory for differential (and discrete) linear repetitive pro-
cesses is one method which can be used to undertake a stability/convergence analysis
of a powerful class of such algorithms and thereby produce vital design information
concerning the trade-offs required between convergence and transient performance
(see, for example, [14]).

Attempts to control these processes using standard (or 1D) systems theory and
associated algorithms fail (except in a few very restrictive special cases) precisely be-
cause such an approach ignores their inherent 2D systems structure, i.e., information
propagation occurs from pass to pass and along a given pass. Also the initial con-
ditions are reset before the start of each new pass, and the structure of these can
be somewhat complex. For example, if they are an explicit function of points on
the previous pass profile, then this alone can destroy stability. In seeking a rigorous
foundation on which to develop a control theory for these processes, it is natural
to attempt to exploit structural links which exist between these processes and other
classes of 2D linear systems.

The case of 2D discrete linear systems recursive in the positive quadrant (i, j) :
i ≥ 0, j ≥ 0 (where i and j denote the directions of information propagation) has been
the subject of much research effort over the years using, in the main, the well-known
Roesser [16] and Fornasini–Marchesini [8] state-space models. One approach which
has been the subject of productive research is optimal control—see, for example, [4,
18]. More recently, productive research has been reported on H∞ and H2 approaches
to analysis and controller design—see, for example, [19, 7]. In this paper we consider
so-called differential linear repetitive processes where information propagation along
the pass is governed by a matrix differential equation. The systems theory for 2D
discrete linear systems is therefore not applicable. (Also, as noted above, for discrete
processes the resetting and structure of the boundary conditions may cause problems
which have no Roesser or Fornasini–Marchesini state-space model counterparts.)

In this paper we develop substantial new results on the optimal control of differ-
ential linear repetitive processes with constraints which we motivate from the iterative
learning control application. The results themselves are obtained by extending the
maximum principle and the ε-maximum principle [11] to them. A sensitivity analysis
of the resulting optimal control is also undertaken, and some relevant differentiation
properties are established. Finally, a numerical example is given.

2. Preliminaries. ILC is a technique for controlling systems which are required
to continually repeat the same operation with the requirement that a reference tra-
jectory defined over a finite interval is followed to a high precision. In particular,
the system completes a pass (also known as a trial in some literature) and is then
reset, the next pass is completed, and so on. The basic idea of ILC is to use infor-
mation from previous executions of the task in order to improve performance from
pass to pass in the sense that the tracking error is sequentially reduced. It is clear
therefore that ILC can easily be formulated as a repetitive process, and the stability
theory for them can be used to explain why an incorrectly designed ILC scheme can
result in nonconvergent behavior which manifests itself as oscillations that increase in
amplitude from pass to pass [14].

Since the original work in the mid-1980s [3], the general area of ILC has been the
subject of considerable research in terms of the underlying theory (with experimental
verification in some cases). Commonly used ILC algorithms construct the input to
the plant or process from the input used on the last pass plus an additive increment,
which is typically a function of the past values of the measured output error, i.e.,
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the difference between the achieved output on the current pass and the desired plant
output. Suppose that uk(t) denotes the input to the plant on pass k which is of
duration α, i.e., 0 ≤ t ≤ α < ∞. Suppose also that ek(t) = r(t) − yk(t) denotes the
current pass error. Then the objective of constructing a sequence of input functions
such that the performance achieved is gradually improving with each successive pass
can be refined to a convergence condition on the input and error, i.e.,

lim
k→∞

||ek|| = 0, lim
k→∞

||uk − u∞|| = 0,

where || · || is a signal norm in a suitably chosen function space with a norm-based
topology and u∞ is termed the learned control.

A large number of design algorithms have been developed for this general area,
some of which have also been experimentally tested. Of these, a good number are
based on minimization of a cost function. Given the tracking nature of this gen-
eral problem in the pass-to-pass direction, it is clearly necessary to penalize control
action to prevent a “large” error resulting in the demand for an unacceptably high
control input on the next pass in an attempt to minimize the error. One class of
such algorithms is termed norm-optimal (with an extension to so-called predictive
norm-optimal which is not relevant here). Here (see [1] for full details) on completion
of pass k, the control input for pass k+1 is computed as the solution of the minimum
norm optimization problem

uk+1 = arg min
uk+1

{Jk+1(uk+1) : ek+1 = r − yk+1, yk+1 = Guk+1},

where the performance index, or optimality criterion, used is defined to be

Jk+1(uk+1) = ‖ek+1‖2
Y + ‖uk+1 − uk‖2

U ,

where Y is a real Hilbert space of output or pass profile signals (yk) and U is a real
(and possibly distinct) Hilbert space of input signals (uk). Here the initial control
u0 ∈ U can be arbitrary in theory but, in practice, will be a good first guess at the
solution of the problem. This problem can be interpreted as the determination of the
control input on pass k + 1 with the properties that: (i) the tracking error is reduced
in an optimal way; and (ii) this new control input does not deviate too much from the
control input used on pass k. The relative weighting of these two objectives can be
absorbed into the definitions of the norms in Y and U . Other approaches to learning
control in the presence of input constraints can be found in, for example, [9, 20] (but
note that repetitive processes appear in formulations which have no iterative learning
control interpretation). Suppose now that the plant dynamics are described by the
following matrix differential equation:

dxk(t)

dt
= Axk(t) + Dxk−1(t) + buk(t), 0 ≤ t ≤ α, k ≥ 0,(1)

where, on pass k, xk(t) is the n× 1 state (equal to the pass profile or output) vector,
uk(t) is the scalar control input, A,D are constant n×n matrices, and b is a given n×1
vector. (This model is chosen for simplicity of presentation and is easily extended to
the case when the pass profile vector is a linear combination of the current pass state,
input, and previous pass profile vectors.)

Then it is straightforward to show that the above formulation includes the choice
of a linear quadratic cost function as a special case, but the solution has to be modified
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slightly to guarantee that the resulting Riccati equation-based solution is causal in
the sense that it does not, as the dynamics evolve, require use of information which is
not yet available—see [1] for the details here. Algorithms resulting from this approach
have been experimentally tested on a chain conveyor system with, on the whole, very
encouraging results [2]. However, in some cases it was observed that the computed
control input (a scalar variable in this application) was still above the safe operating
range of the actuator device and the experiment had to be stopped to prevent damage.
Also there was a tendency for the output at the end of each pass to “dip down” in value.

Another feature of repetitive processes which does not appear in the above optimal
control problem is that in each practical application only a finite number of passes
will actually be completed. Suppose therefore that N < ∞ denotes the number of
passes actually completed, introduce the set K = {1, 2, . . . , N}, and let T denote the
finite interval (the pass length) [0, α]. Then, with the above observations in mind,
consider (1) with boundary conditions

xk(0) = dk, k ∈ K, x0(t) = f(t), t ∈ T,(2)

where dk is an n× 1 vector with constant entries and f(t) is a known function t ∈ T.
Then the optimal control problem considered is

max
uk

J(u), J(u) =
∑
k∈K

pTk xk(α),(3)

where pk, k = 1, . . . , N , is a given n×1 vector subject to an end of pass (or terminal)
constraint of the form

Hkxk(α) = ok, k ∈ K,(4)

where ok is an m×1 vector and Hk is an m×n matrix, and the control inputs satisfy
the following admissibility condition.

Definition 1. For each pass number k ∈ K the piecewise continuous function
uk : T → R is termed an admissible control for this pass if it satisfies

|uk(t)| ≤ 1, t ∈ T,(5)

and the corresponding state vector xk(t), t ∈ T, of (1) satisfies the boundary conditions

xk(0) = dk, Hkxk(α) = ok.

Also, without loss of generality, we assume that the matrix A has simple eigen-
values λi, 1 ≤ i ≤ n, and that it is stable in the sense that Re λi < 0, 1 ≤ i ≤ n.
(Stability of the matrix A is a necessary condition for so-called stability along the
pass (essentially bounded input bounded output stability) independent of the pass
length [17].)

3. Optimality conditions for the supporting control functions. Consider
first (1)–(2) in the absence of the terminal conditions (4). Then it has been shown
elsewhere [5] that the solution of these equations can be written as

xk(t) =

k∑
j=1

Kj(t)dk+1−j +

∫ t

0

Kk(t− τ)Df(τ)dτ

+

k∑
j=1

∫ t

0

Kj(t− τ)buk+1−j(τ)dτ, k = 1, . . . , N,(6)
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where the Ki(t) are the solutions of the following n× n matrix differential equations:

K̇1(t) = AK1(t), K̇i(t) = AKi(t) + DKi−1(t), i = 2, . . . , N,(7)

with initial conditions

K1(0) = In, Ki(0) = 0, i = 2, . . . , N.(8)

Also it is easy to show that these solutions have the following properties:

Kj(t− σ) =

∫ t

σ

Kj−k(t− τ)DKk(τ − σ)dτ, 0 ≤ σ < t ≤ α, k = 1, . . . , j − 1,

Kj(t− σ) =

j∑
s=1

Ks(t− τ)Kj+1−s(τ − σ), j = 2, . . . , N − 1,

(9)

which will be used below.
Now by using (6) we can rewrite the optimal problem considered here in the

following integral form:

max
u1,...,uN

J(u), J(u) =

N∑
j=1

∫ α

0

cj(τ)uj(τ)dτ + γ,(10)

subject to the terminal conditions (4) and the control constraint (5). Also we can
write ∫ α

0

g11(τ)u1(τ)dτ = h1,∫ α

0

[
g21(τ)u1(τ) + g22(τ)u2(τ)

]
dτ = h2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .∫ α

0

[
gN1(τ)u1(τ) + · · · + gNN (τ)uN (τ)

]
dτ = hN ,(11)

and

|uk(τ)| ≤ 1, τ ∈ T, k = 1, . . . , N,

where the scalar γ and the scalar functions cj(τ) are defined as follows:

γ =
N∑

k=1

k∑
j=1

pTkKj(α)dk+1−j +

N∑
k=1

∫ α

0

pTkKk(α− τ)Df(τ)dτ,

cj(τ) =

N∑
k=j

pTkKk+1−j(α− τ)b, j = 1, . . . , N, gkj(τ) = HkKk+1−j(α− τ)b, j ≤ k,

hk = ok −
k∑

j=1

HkKj(α)dk+1−j −
∫ α

0

HkKk(α− τ)Df(τ)dτ, k = 1, . . . , N.

Also we require the following.
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Definition 2. For each fixed k, 1 ≤ k ≤ N, the time instances τki, 1 ≤
i ≤ m : 0 < τk1 < τk2 < · · · < τkm < α are termed supporting, and their collection
τksup :=

{
τk1, . . . , τkm

}
is termed the support of pass k for (1)–(4) if the matrix Gk

sup :=
{gkk(τk1), . . . , gkk(τkm)} (i.e., the jth column of the matrix here is the m × 1 vector
gkk(τkj)) is nonsingular.

By using (7) we have that gkk(τ) = Hke
A(α−τ)b. Therefore the existence of the

support τksup is guaranteed by controllability of the pair {HkA, b}.
Definition 3. A pair

{
τksup, uk(t), k = 1, . . . , N

}
consisting of a support τksup

and admissible control functions uk(t), t ∈ T is termed a supporting control function
for (1)–(4).

Remark 1. These last two definitions are motivated as follows. Often an optimal
control problem solution has the so-called bang-bang form; i.e., the control function
takes only boundary values in the admissible set U . If U = {−1 ≤ u ≤ +1}, then
u0(t) = ±1 (the “switch-on/switch-off” regime). Also the switching times are con-
structive elements in the design of the optimal controller. Hence, our goal is to apply
these key elements directly to the optimality conditions, and consequently we use the
supporting time instances and control.

Let
{
τksup, uk(t), k = 1, . . . , N

}
be a support control function and construct a

sequence of m× 1 vectors
{
ν(k), k = 1, . . . , N

}
by solving the following set of linear

algebraic equations:

(ν(N))TGN
sup − c(N)

sup = 0,

(ν(N−1))TGN−1
sup + (ν(N))TFN

(N−1)sup − c(N−1)
sup = 0,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(ν(1))TG1
sup + (ν(2))TF 2

1sup + · · · + (ν(N))TFN
1sup − c(1)sup = 0,(12)

where the 1 ×m vectors c
(k)
sup and the m×m matrices F k

jsup are given by

c(k)
sup :=

(
ck(τk1), . . . , ck(τkm)

)
, k = 1, . . . , N,

and

F k
jsup :=

(
gkj(τj1), . . . , gkj(τjm)

)
, k > j, j = 1, . . . , N − 1,

respectively.
Introduce the 1 ×mN vectors (ν̂)T and csup as

(ν̂)T = ((ν(1))T , . . . , (ν(N))T ), csup = (c(1)sup, c
(2)
sup, . . . , c

(N)
sup ),

respectively, and the mN ×mN triangular matrix

G̃sup :=

⎛
⎜⎜⎜⎜⎝

G1
sup 0m×m . . . 0m×m 0m×m

F 2
1sup G2

sup . . . 0m×m 0m×m

. . . . . . . . . . . .

FN−1
1sup FN−1

2sup . . . GN−1
sup 0m×m

FN
1sup FN

2sup . . . FN
sup GN

sup

⎞
⎟⎟⎟⎟⎠ .(13)

Then the algebraic equations (12) can be rewritten in the form

ν̂T G̃sup − csup = 0,(14)
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where (Definition 2) this matrix is nonsingular and therefore ν̂T = csupG̃
−1
sup. Note

also that the matrix G̃sup can be written in block form as

G̃sup =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

gk1(t), t ∈ τ1
sup

k = 1, 2, . . . , N

∣∣∣∣
0m×m

gk2(t), t ∈ τ2
sup

k = 2, 3, . . . , N

∣∣∣∣∣∣ . . .
∣∣∣∣∣∣

0m×m

0m×m

...
0m×m

gkN (t), t ∈ τNsup
k = N

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,(15)

where the nonzero block entries are given by(
gkj(t), t ∈ τ jsup,

j ≤ k ≤ N, j = 1, . . . , N

)
.

To establish the new optimality conditions, define the so-called cocontrol 1×N vector
function

Δ(t) = (Δ1(t), . . . ,ΔN (t))

as

Δ1(t) = ν(1)T g11(t) + ν(2)T g21(t) + · · · + ν(N)T gN1(t) − c1(t),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ΔN−1(t) = ν(N−1)T gN−1N−1(t) + ν(N)T gNN−1(t) − cN−1(t),

ΔN (t) = ν(N)T gNN (t) − cN (t),

or, on introducing the 1 ×N vector function,

c(t) = (c1(t), . . . , cN (t)),

Δ(t) = ν̂T Ĝ(t) − c(t),

where Ĝ(t) is an mN ×N matrix of the form

Ĝ(t) =

⎛
⎜⎜⎝

g11(t) 0m×1 . . . 0m×1

g21(t) g22(t) . . . 0m×1

. . . . . . . . . . . .
gN1(t) gN2(t) . . . gNN (t)

⎞
⎟⎟⎠ .(16)

Note also that the mN×mN matrix G̃sup is obtained from Ĝ(t) in an obvious manner

by evaluating the rows of the matrix Ĝ(t) at the supporting moments t ∈ τksup, k =
1, . . . , N.

Definition 4. We say that the supporting control function {τksup, uk(t), k =
1, . . . , N} is nondegenerate for the problem (1)–(3) if

dΔk(τj)

dt
�= 0 ∀ τj ∈ τksup, k = 1, . . . , N.

Remark 2. Here nondegeneracy means that in a small neighborhood of the sup-
porting points the admissible control can be replaced by constant functions whose
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values are less than those on the control constraint boundary and satisfy (11); i.e.,
the support control function is nonsingular if there exist numbers λ0 > 0, μ0 >
0, uk

j (λ), j = 1, . . . ,m, k = 1, . . . , N , such that the following equalities:

k∑
j=1

m∑
i=1

ui
j(λ)

∫ τij+λ

τij−λ

gkj(t)dt =

k∑
j=1

m∑
i=1

∫ τij+λ

τij−λ

gkj(t)uj(t)dt,

|uk
j | ≤ 1 − μ0, j = 1, . . . ,m, k = 1, . . . , N,(17)

hold for all λ, 0 < λ < λ0, and k, 1 ≤ k ≤ N . This fact will be used below in the
proof of the optimality conditions.

Associate with each supporting time instance τkj a small subinterval Tkj from
T such that the matrix Gk

gen :=
{ ∫

Tkj
gkk(τ)dτ, j = 1, . . . ,m

}
is nonsingular. Also

without loss of generality we can assume that τkj is one or the other of the end points
of Tkj and the supporting control functions uk(t) = uk

j for t ∈ Tkj , j = 1, . . . , N, are
constant over the segments Tkj . Then we have the following result.

Theorem 1. A supporting control function {τksup, u0
k(t), k = 1, . . . , N} is an

optimal solution of the problem (1)–(4) if

u0
k(t) = −sgn

(
Δk(t)
)
, k = 1, . . . , N, t ∈ T.(18)

Moreover, if this supporting control function is nondegenerate, then the above condi-
tion is necessary and sufficient.

Proof. Let uk(t) �= u0
k(t), k = 1, . . . , N, be an admissible control and xk(t) the

corresponding trajectory of the system (1)–(2). Then standard transformations yield
that the increment ΔJ(u) := J(u0) − J(u) of the cost function can be expressed in
the form

ΔJ(u) =

∫ t∗

0

N∑
j=1

cj(t)
[
u0
j (t) − uj(t)

]
dt = −

N∑
j=1

∫ t∗

0

Δj(t)
[
u0
j (t) − uj(t)

]
dt.

Hence by using (18) we have that ΔJ(u) ≥ 0 for any admissible control u; i.e.,
{τksup, u0

k} is an optimal supporting control function.

Let {τksup, u0
k(t), k = 1, . . . , N} be an optimal nondegenerate control, but there

exists k∗, 1 ≤ k∗ ≤ N , and there exists t∗ ∈ T such that the theorem is not valid.
Suppose also that t∗ ∈ [τk∗j − λ, τk∗j + λ], where λ > 0 is a small number; i.e.,
the instance t∗ lies in an neighborhood of some supporting time instance τk∗j . Then
since the supporting control is nondegenerate there exists a control variation Δu0

k∗
(t),

defined on the intervals [τk∗j − λ, τk∗j + λ], such that J(u0) > 0, which contradicts
the optimality of u0

k(t).
Given this last fact, we now suppose that t∗ �∈ [τk∗j − λ, τk∗j + λ] for all j =

1, . . . ,m, for some small λ > 0. Also, without loss of generality, we assume that
Δ0

k∗
(t∗) > 0 and uk∗(t∗) > 0. Then, by continuity of Δk∗(t) and piecewise-continuity

of uk∗(t), there exists a neighborhood Tk∗(t∗) of t∗, such that Δk∗(t) > 0, uk∗(t) > −1
for t ∈ Tk∗(t∗). Now we have to construct the admissible control variation such that the
corresponding increment of the cost function satisfies ΔJ(u) > 0, which is impossible
for the optimal controls u0

k(t).
Consider now the case of a small real number λ0 > 0 (we see below that the

existence of such a number λ0 is guaranteed by the fact that the supporting control
is nondegenerate), and for all λ, 0 < λ < λ0, define the control variation Δu(t) =
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(Δu1(t), . . . ,ΔuN (t)), t ∈ T, as

Δuk(t) = 0, k < k∗, t ∈ T,

Δuk∗(t) =

⎧⎪⎨
⎪⎩

θ(−1 − uk∗(t)), θ > 0, t ∈ Tk∗(t),

0, t ∈ T \
(

m⋃
j=1

[τk∗j − λ, τk∗j + λ] ∪ Tk∗(t)

)
.

We now have that the control variations on the intervals [τk∗j − λ, τk∗j − λ], j =
1, . . . ,m, can be chosen as constant functions Δuk∗(t) ≡ Δϑk

j (λ). Those for the re-
maining passes k > k∗ are defined as

Δuk(t) ≡ 0, k = k∗ + 1, . . . , N, t ∈ T \
m⋃
j=1

[τkj − λ, τkj + λ],

Δuk(t) ≡ Δϑk
j (λ), t ∈ [τkj − λ, τkj + λ], j = 1, . . . ,m, k > k∗,

where the Δϑk
j (λ) are unknown constants determined below.

By using (11), it follows that the conditions∫ α

0

k∑
s=1

gks(τ)Δus(τ)dτ = 0, k = 1, . . . , N,(19)

hold for any admissible variation Δu(t), and these can be rewritten in the form

φk∗(λ) =

m∑
j=1

∫ τk∗j+λ

τk∗j−λ

gk∗k∗(τ)ϑk∗
j (λ)dτ

= −θ

∫
Tk∗ (t∗)

gk∗k∗(τ)(−1 − uk∗(τ))dτ,

φk∗+1(λ) :=

m∑
j=1

∫ τk∗+1j+λ

τk∗+1j−λ

gk∗+1k∗+1(τ)ϑk∗+1
j (λ)dτ

= −
m∑
j=1

∫ τk∗j+λ

τk∗j−λ

gk∗+1k∗(τ)ϑk∗
j (λ)dτ − θ

∫
Tk∗ (t∗)

gk∗+1k∗(τ)(−1 − uk∗(τ))dτ,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

φN (λ) =

m∑
j=1

∫ τNj+λ

τNj−λ

gNN (τ)ϑN
j (λ)dτ −

m∑
j=1

∫ τk∗j+λ

τk∗j−λ

gNk∗(τ)ϑk∗
j (λ)dτ

− θ

∫
Tk∗ (t∗)

gNk∗(τ)(−1 − uk∗(τ))dτ

− · · · −
m∑
j=1

∫ τN−1j+λ

τN−1j−λ

gNN−1(τ)ϑN−1
j (λ)dτ.(20)

Expanding the function φk∗(λ) of (20) as a Taylor series and setting Δϑk∗
λ =

(Δϑk∗
1 (λ), . . . ,Δϑk∗

m (λ)) now yields

2λGk∗
supΔϑk∗

λ +
λ3

3

{
d2gk∗k∗(τk∗j)

dτ
, j = 1, . . . ,m

}
Δϑk∗

λ + ok∗(λ
3)

= −θ

∫
Tk∗ (t∗)

gk∗k∗(τ)(−1 − uk∗(τ))dτ,
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where ok∗(λ
3) denotes terms of degree 3 and above, which are neglected here. Hence

the required vector Δϑk∗
λ can be represented as

Δϑk∗
λ =

1

λ
θûk∗ + θok∗(λ), where ûk∗ = −1

2
G

k−1
∗

sup

∫
Tk∗ (t∗)

gk∗k∗(τ)(−1 − uk∗(τ))dτ,

(21)

and ok∗(λ) denotes a residual first order term. Using (17) and (21), it follows that
for a small value of λ ∈ (0, λ0) there exists the real number θ = θ(λ) such that
θ(λ) = μk∗λ ≤ 1, where μk∗ > 0 does not depend on λ, and the following inequalities:

|uk∗
j (λ) + Δϑk∗

j (λ)| ≤ 1, j = 1, . . . ,m,

hold. Here we have exploited the fact that the admissible controls are constants uk
j (λ)

over the intervals T k
j , containing the supporting points τkj . Hence, the function

ūk∗(t) =

{
uk∗
j (λ) + Δϑk∗

j (λ), t ∈ [τk∗j − λ, τk∗j + λ],

uk∗(t) + θ(λ)(−1 − uk∗(t)), t ∈ Tk∗(t∗),

is an admissible control function for θ(λ) = μk∗λ ≤ 1 and a sufficiently small μk∗ .
In order to find Δϑk∗+1

λ and θ(λ), expand φk∗+1(λ) as a Taylor series to yield

m∑
j=1

∫ τk∗j+λ

τk∗j−λ

gk∗+1k∗(τ)Δϑk∗
j (λ)dτ = 2λ

m∑
j=1

gk∗+1k∗(ξj)Δϑk∗
j (λ)

= 2λG̃k∗+1
ξ Δϑk∗+1

λ

= 2λG̃k∗+1
ξ

(
1

λ
μk∗λûk∗ + μk∗λok∗(λ)

)
= 2G̃k∗+1

ξ μk∗λûk∗ + μk∗ ŏk∗(λ
3).(22)

Here the matrix G̃k∗+1
ξ is constructed from the rows

{
gk∗+1k∗(ξj), j = 1, . . . ,m

}
,

where ξj are points from the intervals
[
τk∗j − λ, τk∗j + λ

]
. Next, set Δϑk∗+1

λ =

(Δϑk∗+1
1 (λ), . . . ,Δϑk∗+1

m (λ)) to obtain

2λGk∗+1
sup Δϑk∗+1

λ +
λ3

3

{
d2gk∗+1k∗+1(τk∗j)

dτ
, j = 1, . . . ,m

}
Δϑk∗+1

λ + ok∗+1(λ
3)

= −μk∗λ

{
G̃k∗+1

ξ ûk∗ +

∫
Tk∗ (t∗)

gk∗+1k∗+1(τ)(−1 − uk∗(τ))dτ

}

+μk∗ ŏk∗(λ
3),(23)

and hence the required vector Δϑk∗+1
λ can be expressed as

Δϑk∗+1
λ =

1

λ
μk∗λûk∗+1 + μk∗λok∗+1(λ),

ûk∗+1 = −1

2

(
Gk∗+1

sup

)−1
{
G̃k∗+1

ξ ûk∗ −
∫
Tk∗ (t∗)

gk∗+1k∗+1(τ)(−1 − uk∗(τ))dτ

}
.(24)

Now choose Δϑk∗+1
λ such that the following inequalities hold:

|uk∗+1
j (λ) + Δϑk∗+1

j (λ)| ≤ 1, j = 1, . . . ,m,



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

406 M. DYMKOV, E. ROGERS, S. DYMKOU, AND K. GALKOWSKI

and hence the values of μk∗ and λ0 can be decreased as required. Continuing this
expansion procedure for the remaining equations in (20), we obtain the desired ad-
missible control function in the form

ū(t) = u0(t) + Δu(t) =

{
u0

1(t) + Δu1(t), . . . , u
0
N (t) + ΔuN (t)

}
, t ∈ T,

and note here that Δuk(t) = 0 for all k < k∗.
At this stage we can calculate the increment of the cost function generated by

the designed control function ū(t) as

ΔJ(u) = J(ū) − J(u0) =

N∑
k=1

∫ α

0

Δk(t)Δuk(t)dt =

N∑
k=k∗

∫ α

0

Δk(t)Δuk(t)dt

= −θ

∫
Tk∗ (t∗)

Δk∗(t)
(
− 1 − uk∗(t)

)
dt

−
m∑
j=1

∫ τk∗j+λ

τk∗j−λ

Δk∗(t)
[
uk∗
j (λ) + Δϑk∗

j (λ) − uk∗
j (t)
]
dt

−
N∑

s=k∗+1

m∑
j=1

∫ τsj+λ

τsj−λ

Δs(t)
[
us
j(λ) + Δϑs

j(λ) − us
j(t)
]
dt.(25)

Since Δk(τkj) = 0, k = k∗, . . . , N, j = 1, . . . ,m, then, again using the Taylor
series expansion in λ, we have the following estimate for the integral components:

∫ τsj+λ

τsj−λ

Δs(t)
[
us
j(λ) + Δϑs

j(λ) − us
j(t)
]
dt =

∫ τsj

τsj

Δs(t)
[
us
j(λ) + Δϑs

j(λ) − us
j(t)
]
dt

+ 2λΔs(τsj)
[
us
j(λ) + Δϑs

j(λ) − us
j(τsj)
]

+λ2 dΔs(τsj)

dt

[
us
j(λ) + Δϑs

j(λ) − us
j(τsj)
]

+ o1(λ
2) ∼= o(λ2).(26)

Hence (25) and (26) yield

ΔJ(u) = −μk∗λ

∫
Tk∗ (t∗)

Δk∗(t)
(
− 1 − uk∗(t)

)
dt + o(λ) > 0(27)

for a sufficiently small λ > 0, which contradicts the optimality of control functions
u0
k(t), k = 1, . . . , N.

Remark 3. The analysis which now follows shows that the above result can be
reformulated in the traditional maximum principle form. In particular, it will be
shown that the cocontrol functions Δk(t), t ∈ T , here are connected directly to the
adjoint (dual) variables ψk(t), t ∈ T , as Δk(t) = −ψT

k (t)b. Note also that the term
ψT
k (t)b is part of the Hamiltonian function which arises in the maximum principle

statement of the result here. Moreover, the vectors {ν(k), k = 1, . . . , N} (termed
Lagrange multipliers in some literature) will be used as the boundary conditions for
the corresponding differential equations describing the adjoint (dual) variables ψk(t)
(in contrast to the classic maximum principle, where such boundary conditions are
not specified).
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Let ψN (t) be the solution of

dψN (t)

dt
= −ATψN (t), ψN (α) = pN −HT

NνN , t ∈ T,(28)

or

ψN (t) = KT
1 (α− t)ψ(α), t ∈ T.(29)

Hence

ψT
N (t)b =

(
pTN − (νN )THN

)
K1(α− t)b = pTNK1(α− t)b

− (νN )THNK1(α− t)b = cN (t) − (νN )T gNN (t) = −ΔN (t).(30)

In order to verify the validity of the corresponding conditions for subsequent
passes we use (9) for the differential equations (7). Let ψN−1(t), t ∈ T, be a solution
of the differential equation

dψN−1(t)

dt
= −ATψN−1(t) −DTψN (t), ψN−1(α) = pN−1 −HT

N−1ν
N−1, t ∈ T.

(31)

Then

ψT
N−1(t)b = (pTN−1 − (νN−1)THN−1)K1(α− t)b

− (pTN − (νN )THN )

∫ t

0

KT
1 (t− τ)DTKT

1 (α− τ)bdτ

= pTN−1K1(α− t)b− (νN−1)THN−1K1(α− t)b

− (pTN − (νN )THN )K2(α− t)b

= cN−1(t) − (νN−1)T gN−1N−1(t) − (νN )T gNN−1(t) = −ΔN−1(t).(32)

By analogy with the case for (31)–(32), we have

ψT
k (t)b = −Δk(t), k = 2, . . . , N,(33)

where ψk(t), t ∈ T, are the solutions of the following differential equations:

dψk(t)

dt
= −ATψk(t) −DTψk+1(t), ψk(α) = pk −HT

k ν
k, t ∈ T.(34)

For each k = 1, . . . , N introduce the associated Hamilton function as

Hk(xk−1, xk, ψk, uk) = ψT
k

(
Axk + Dxk−1 + buk

)
, t ∈ T.(35)

Then the use of (33) yields that the optimality conditions (18) can be reformulated
in maximum principle form as the following corollary to Theorem 1.

Corollary 1. The admissible supporting control {τksup, u0
k(t), k = 1, . . . , N}

is optimal if along the corresponding trajectories x0
k(t), ψk(t) of (1)–(2) and (34) the

Hamiltonian function has maximum value, i.e.,

Hk(x
0
k−1(t), x

0
k(t), ψk, u

0
k(t)) = max

|v|≤1
Hk(x

0
k−1(t), x

0
k(t), ψk, v), t ∈ T,(36)
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for k = 1, . . . , N . If the admissible supporting control is nondegenerate, then this
condition is necessary and sufficient.

Remark 4. In order to further emphasize the relationship between the support
elements and the control function, note that the optimality conditions given by The-
orem 1 can be equivalently stated in the form

Δk(t) > 0 at u0
k(t) = −1, Δk(t) < 0 at u0

k(t) = 1,

Δk(t) = 0 at − 1 < u0
k(t) < 1, k = 1, 2, . . . , N, t ∈ T.(37)

Hence the supporting elements and control function of optimal solution are inter-
connected such that the supporting instances are the switching moments for optimal
bang-bang control functions.

In the next section, the maximum principle for arbitrary admissible control func-
tions of (1)–(4) is established using the suboptimality conditions.

3.1. ε-optimality conditions. Often in the numerical implementation of op-
timal control algorithms it is beneficial to exploit approximate solutions with cor-
responding error estimation. Hence it is necessary to introduce the “suboptimality”
concept as it is often sufficient to stop the numerical computations when a satisfactory
accuracy level has been achieved.

Assume that {u0
k(t), k ∈ K} is the optimal control for (1)–(4), and let J(u0)

denote the corresponding optimal cost function value.
Definition 5. We say that the admissible control function {uε

k(t), k ∈ K} is
ε-optimal if the corresponding solution {xε

k(t), t ∈ T, k ∈ K} of (1)–(4) satisfies
J(u0) − J(uε) ≤ ε.

Now we proceed to calculate an estimate of a supporting control function

{uk, τksup, k ∈ K, t ∈ T},

i.e., a measure of the nonoptimality of the control. Note also that this estimate can
be partitioned into two principal parts: one of which evaluates the degree of nonop-
timality of the chosen admissible control functions uk(t), and the second the error
produced by nonoptimality of the support τksup. This partition is a major advantage
in the design of numerically applicable solution algorithms.

Introduce an estimate of optimality β = β(τsup, u) as the value of the maxi-
mum increment for the cost function here calculated in the absence of the principal
constraints (4); i.e., this estimate is given by the solution of the following relaxed
optimization problem:

max
Δuk

ΔJ(u), |uk(t) + Δku(t)| ≤ 1, t ∈ T, k = 1, . . . , N.(38)

It is easy to see that

β = β(τsup, u) =

N∑
k=1

∫
T+
k

Δk(t)(uk(t) + 1)dt +

N∑
k=1

∫
T−
k

Δk(t)(uk(t) − 1)dt,(39)

where

T+
k =
{
t ∈ T : Δk(t) > 0

}
, T−

k =
{
t ∈ T : Δk(t) < 0

}
,

and we have the following result.
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Theorem 2 (ε-maximum principle). Given any ε ≥ 0, the admissible control
{uk(t), t ∈ T, k ∈ K} is ε-optimal for (1)–(4) if and only if there exists a support
{τksup, k ∈ K} such that along the solutions xk(t), ψk(t), t ∈ T, k ∈ K, of (1)–(4) and
(34) the Hamiltonian attains its ε-maximum value, i.e.,

Hk(xk−1(t), xk(t), ψk, uk(t)) = max
|v|≤1

Hk(xk−1(t), xk(t), ψk, v) − εk(t), t ∈ T,

(40)

where the functions εk(t), k ∈ K, satisfy the following inequality:

∑
k∈K

∫
T

εk(t)dt ≤ ε.(41)

Proof. Assume that (40) and (41) hold for an admissible control {uk(t), t ∈
T, k ∈ K}. Then by (33) the suboptimal estimate is

β = β(τsup, u) =

N∑
k=1

∫
T+
k

ψT
k (t)b
(
− uk(t) − 1

)
dt +

N∑
k=1

∫
T−
k

ψT
k (t)b
(
1 − uk(t)

)
dt

=

N∑
k=1

∫
T+
k

ψT
k (t)
(
Axk(t) + Dxk−1(t) − b

)
dt

−
N∑

k=1

∫
T+
k

ψT
k (t)
(
Axk(t) + Dxk−1(t) + buk(t)

)
dt

=
N∑

k=1

∫
T−
k

ψT
k (t)
(
Axk(t) + Dxk−1(t) + b

)
dt

−
N∑

k=1

∫
T−
k

ψT
k (t)
(
Axk(t) + Dxk−1(t) − buk(t)

)
dt

+
N∑

k=1

∫
T

[
max
|v|≤1

Hk

(
xk−1(t), xk(t), ψk(t), v

)
−Hk

(
xk−1(t), xk(t), ψk(t), uk(t)

)]
dt

=

N∑
k=1

∫
T

εk(t)dt ≤ ε.

Since the suboptimal estimate (38) has been calculated in the absence of constraints (4),
then it is obvious that

J(u0) − J(u) ≤ β(τsup, u) ≤ ε.

This proves the ε-optimality property of the admissible control {uk(t), t ∈ T, k ∈ K}.
For the converse argument, let {uk(t), t ∈ T, k ∈ K} be an ε-optimal admissible

control, and let {τksup, k ∈ K} be an arbitrary support. Then the suboptimal estimate
of the control corresponding to the chosen support is given by

β(τsup, u) =

N∑
k=1

∫
T

Δk(t)uk(t)dt +

N∑
k=1

∫
T+
k

Δk(t)dt−
N∑

k=1

∫
T−
k

Δk(t)dt.(42)
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Also introduce the following dual optimization problem:

min
y,v,w

I(y, v, w), I(y, v, w) =
∑
k∈K

[
hT
k yk +

∫
T

vk(t)dt +

∫
T

wk(t)dt

]
,(43)

subject to

N∑
s=k

yTs gsk(t) − vk(t) + wk(t) = ck(t), vk(t) ≥ 0, wk(t) ≥ 0, t ∈ T, k ∈ K.(44)

At this stage we have to check that this dual optimization problem has a nonempty
set of admissible variables zk = {yk, vk, wk, k ∈ K}. Suppose therefore that we denote
the chosen support by τksup, k ∈ K, and then use (18) to construct the vectors zk =
{yk, vk, wk, k ∈ K} as

yk = νk, νk(t) = Δk(t); wk(t) = 0 if Δk(t) ≥ 0,

vk(t) = 0, wk(t) = Δk(t) if Δk(t) < 0.

Then, by (18), these satisfy the constraint (44) of the dual problem. Also since this
dual problem has a nonempty set of feasible variables

{yk, vk, wk, k ∈ K},

it is routine to show that it has an optimal solution if there exists an optimal control
for (1)–(4).

Let {y0
k, v

0
k(t), w

0
k(t), t ∈ T, k ∈ K} denote an optimal solution of (43)–(44).

Then (43) and (18) yield

β(τsup, u) =

N∑
k=1

N∑
s=k

∫
T

νTs (t)gsk(t)uk(t)dt−
N∑

k=1

∫
T

cTk (t)uk(t)dt

+

N∑
k=1

∫
T

vk(t)dt−
N∑

k=1

∫
T

wk(t)dt

=

[
N∑

k=1

(νk)T
k∑

s=1

∫
T

gks(t)us(t)dt +

N∑
k=1

∫
T

vk(t)dt−
N∑

k=1

∫
T

wk(t)dt

]

−
[

N∑
k=1

N∑
s=k

∫
T

(y0
s)

T gsk(t)u
0
k(t)dt +

N∑
k=1

∫
T

v0
k(t)dt−

N∑
k=1

∫
T

w0
k(t)dt

]

+

N∑
k=1

∫
T

ck(t)u
0
k(t)dt−

N∑
k=1

∫
T

ck(t)uk(t)dt

=

[
N∑

k=1

(νk)Thk +

N∑
k=1

∫
T

(vk(t) − wk(t))dt

]

−
[

N∑
k=1

(y0
k)

Thk +

N∑
k=1

∫
T

(v0
k(t) − w0

k(t))dt

]

+

N∑
k=1

∫
T

ck(t)u
0
k(t)dt−

N∑
k=1

∫
T

ck(t)uk(t)dt.
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Hence the suboptimal estimate can be written in the form

β(τsup, u) = βsup + βu,(45)

where

βsup =

N∑
k=1

hT
k (νk − y0k) +

N∑
k=1

∫
T

[
(vk(t) − v0

k(t)) − (wk(t) − w0
k(t))

]
dt(46)

denotes the nonoptimality measure of the chosen support {τksup, k ∈ K} and

βu =

N∑
k=1

∫
T

ck(t)
(
uk(t) − u0

k(t)
)
dt(47)

denotes the nonoptimality measure of the given control function {uk(t), t ∈ T, k ∈
K}.

Now choose the support τ0
sup = {τ̃ksup, k ∈ K} such that the corresponding

collection z0
k = {y0

k, v
0
k, w

0
k, k ∈ K} of dual variables is an optimal solution of (43)–(44).

Then the support τ0
sup = {τ̃ksup(ε), k ∈ K} is the one required for the given ε-optimal

control functions {uk(t), k ∈ K}, since βsup = 0, and then β = β(u, τ0
sup) = βu ≤ ε.

Next set

εk(t) = Δk(t)(uk(t) + 1), t ∈ T+
k ,

εk(t) = Δk(t)(uk(t) − 1), t ∈ T−
k ,

εk(t) = 0 if Δk(t) = 0, t ∈ T,

and note from the definition of Δk(t) that

εk(t) = −ψT
k (t)b(uk(t) + 1) = ψT

k (t)(Axk(t) + Dxk−1(t) + b(−1))

−ψT
k (t)(Axk(t) + Dxk−1(t) + buk(t)) if ψk(t)b < 0,

εk(t) = ψT
k (t)(Axk(t) + Dxk−1(t) + b(+1))

−ψT
k (t)(Axk(t) + Dxk−1(t) + buk(t)) if ψk(t)b > 0,

εk(t) = 0 if ψk(t)b = 0, t ∈ T, k ∈ K.

Use of the Hamiltonian (35) now enables these last expressions to be written in the
form

εk(t) = max
|v|≤1

Hk

(
xk−1(t), xk(t), ψk, v

)
−Hk

(
xk−1(t), xk(t), ψk, uk(t)

)
, t ∈ T, k ∈ K.

Finally, noting that {uk(t)} is a suboptimal control yields

N∑
k=1

∫
T

εk(t)dt =

N∑
k=1

∫
T+
k

Δk(t)(uk(t) + 1)dt

+

N∑
k=1

∫
T−
k

Δk(t)(uk(t) − 1)dt = β(u, τ0
sup) = βu ≤ ε,

and the proof is complete.
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The maximum principle now follows from this last result on setting ε = 0 as
stated formally in the following corollary.

Corollary 2. The admissible control {u0
k(t), k ∈ K, t ∈ T} is optimal if

and only if there exists a support {τ0k
sup, k ∈ K} such that the supporting control

{u0
k(t), τ

0k
sup, t ∈ T, k ∈ K} satisfies the maximum conditions

max
|v|≤1

Hk

(
x0
k−1(t), x

0
k(t), ψk, v

)
= Hk

(
x0
k−1(t), x

0
k(t), ψk, u

0
k(t)
)

for all k ∈ K, t ∈ T, where ψk(t) are the corresponding solutions of (34).

4. Differentiable properties of the optimal solutions. An important aspect
of the optimization theory is sensitivity analysis of optimal controls since, in practice,
the system considered can be subject to disturbances or parameters in the available
model can easily arise. Mathematically, perturbations can, for example, be described
by some parameters in the initial data, boundary conditions, and control and state
constraints. Hence it is clearly important to know how a problem solution depends
on these parameters, and in this section we aim to characterize the changes in the
solutions developed due to “small” perturbations in the parameters. This could, in
turn, enable us to design fast and reliable real-time algorithms to correct the solutions
for these effects. As shown next, the major advantage of the constructive approach
developed in this paper is that the sensitivity analysis and some differential properties
of the optimal controls under disturbances can be analyzed.

Suppose that disturbances influence the initial data for (1)–(4). In particular,
consider the system (1)–(4) on the interval Ts = [s, α] with the initial data xk(s) =
zk, zk ∈ Gk, k ∈ K, where Gk ⊂ R

n is some neighborhood of the point xk = dk and s
belongs to the neighborhood G0 of t = 0. We also assume that the following regularity
condition holds: For the given disturbance domain Gk, k ∈ K ∪ {0}, the structure of
the optimal control functions for the nondisturbed data is preserved; i.e., the number
of switching instances together with their order is constant.

Using Theorem 1, the optimal controls {u0
k(t, s, z), k ∈ K} are determined by the

supporting time instances τkj = τkj(s, z), k ∈ K, j = 1, . . . ,m, which are dependent
on the disturbances (s, zk), s ∈ G0, zk ∈ Gk, k ∈ K. Here we study the differential
properties of the functions τkj = τkj(s, z), k ∈ K, j = 1, . . . ,m, and for ease of
notation we set τ ≡ τ(s, z) =

{
τkj(s, z), k ∈ K, j = 1, . . . ,m

}
, z = {zk, k ∈ K} in

what follows.
Theorem 3. If (1)–(4) is regular, then for any k ∈ K and j = 1, . . . ,m the

functions τkj = τkj(s, z) are differentiable in the domain G0 ×Gk ⊂ R × R
n.

Proof. Using (10)–(11) and Theorem 1 it follows immediately that the switching
instances τkj = τkj(s, z), k ∈ K, j = 1, . . . ,m, of the optimal bang-bang control
{u0

k(t, s, z), k ∈ K} for (1)–(4) in this case are the solutions of the following opti-
mization problem:

max
τkj

∑
k∈K

Rk(s, z)

m+1∑
j=1

(−1)j
∫ τkj

τkj−1

ck(t)dt,(48)

subject to

∑
l∈K

Rl(s, z)

m+1∑
j=1

(−1)j
∫ τlj

τlj−1

gkl(t)dt = hk(s, z), k ∈ K.(49)
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Here the constant Rk(s, z) = ±1 denotes the value (u = +1 or u = −1) of the optimal
control on pass k over the first control interval t ∈ [s, τk1], and

hk(s, z) = ok −
k∑

j=1

HkKj(α)zk+1−j −
∫ α

s

HkKk(α− t)Df(t)dt.(50)

Also it is clear that the switching instances τkj = τkj(s, z) satisfy

τk0 < τk1 < τk2 < · · · < τkm < τkm+1, τk0 = s, τkm+1 = α.

Since {u0
k, τ

0
sup, k ∈ K} is the optimal supporting control for (1)–(4) in the absence

of disturbances, the optimization problem (48)–(49) has the optimal solution τ0
kj , k ∈

K, j = 1, . . . ,m} at s = 0, zk = αk, k ∈ k, j = 1, . . . ,m. Hence there exist Lagrange
multipliers λ0

k ∈ R
m, k ∈ K, which are not simultaneously equal to zero, such that the

collection {λ0
k, τ

0
kj} is a stationary point for the following Lagrange function associated

with the optimization problem (48)–(49):

L(λ, τsup) =
∑
k∈K

Rk(s, z)

m+1∑
j=1

(−1)j
∫ τkj

τkj−1

ck(t)dt

+
∑
k∈K

λk

[∑
l∈K

Rl(s, z)

m+1∑
j=1

(−1)j
∫ τlj

τlj−1

gkl(t)dt− hk(s, z)

]
.(51)

The well-known stationarity conditions for a Lagrange function now yield

2Rk(s, z)

[
ck(τkj) +

N∑
l=k

λlglk(τkj)

]
= 0, j = 1, . . . ,m, k ∈ K,(52)

k∑
l=1

Rl(s, z)

m+1∑
j=1

(−1)j
∫ τlj

τlj−1

gkl(t)dt− hk(s, z) = 0, k ∈ K,(53)

with respect to the unknown λk and τk(s, z), k ∈ K, j = 1, . . . ,m. Also the Jacobian
matrix D of the mapping (52) with respect to variables (λ, τsup) calculated at s = 0
and zk = αk can be written in the form

D =
∏
k∈K

2Rk(0, α)

(
Ĝsup F

0 Ĝsup

)
,(54)

where (see also (15) for the notation here) the matrix Ĝsup is given by

Ĝsup =

(
gkj(t), t ∈ τ jsup

j ≤ k ≤ N, j = 1, . . . , N

)
,(55)

and the matrix F is formed from the derivatives of the functions ck(t), gkl(t) evaluated
at the corresponding points. By the definition of the supporting time instances we
have detD �= 0, and by the implicit function theorem there exists a neighborhood of
the point (0, αk, k ∈ K) where (52) has a unique solution λ = λ(s, z), τkj = τkj(s, z),
and these functions are also differentiable. This completes the proof.

The differential properties of the optimal controls developed above can be used
for sensitivity analysis and the solution of the synthesis problem considered here. In
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particular, the supporting control approach [10] can be used to produce the differential
equations for the switching time functions τ(s, z) necessary to design the optimal
controllers. In a similar manner to [6] it can be shown that these satisfy the following
differential equations:

G
∂τ

∂s
+ Q =

∂h

∂s
, P

∂τ

∂z
=

∂h

∂z
,(56)

where h(s, z) = (h1(s, z), . . . , hm(t, s)) is an mN × 1-vector given by (50) and the
matrices G,Q,P are defined (see [6]) by those defining the process dynamics and in-
formation associated with the disturbance-free optimal solution. For example (see also
(13)), G = ΛG̃sup, where the compatibly dimensioned block matrix Λ is constructed
by the disturbance-free optimal control values u0

k(t); k = 1, . . . , N calculated in the
supporting moments τkj from τ0

sup. Also, by Theorem 1, these values are equivalent to

the values of
dΔi(τkj)

dt evaluated for the corresponding indexes i; j; k, where the func-
tions Δi(t); i = 1, . . . , N are designed using the switching times of the basic optimal
control function. Note also that analogous differential equations can be established for
the optimal values of the cost function (treated as the function J(s, z) ≡ J(u(τ(s, z))).

Remark 5. The equations (56) are (sometimes) termed Pfaff differential equa-
tions and model an essentially distinct class of continuous nD systems. The main
characteristic feature of this model is that it is overdetermined (the number of equa-
tions exceeds the unknown functions). It can also be shown that if the nondegenerate
assumption on the supporting control functions holds, then so do the so-called Frobe-
nious conditions which guarantee the existence and uniqueness of solutions of the
Pfaff differential equations.

5. An example. In order to demonstrate the advantages of the supporting con-
trol function approach, we give an example where, as a preliminary, it is instructive
to consider the case of N = 1 and, in particular,

max
|u|≤1

J(u), J(u) := x(2)(1),(57)

for

dx(1)(t)

dt
= x(2), x(1)(t), x(2)(t) ∈ R, t ∈ [s, 1],

dx(2)(t)

dt
= u(t), x(1)(s) = z1, x(2)(s) = z2,(58)

subject to the following constraints on the control signal and a terminal state con-
straint, respectively:

|u(t)| ≤ 1, x(1)(1) = 1/8.(59)

Note that here the superscript (·) is used to denote a particular element in the state
vector.

In this case it is easy to verify that for s = 0 and x(1)(0) = 0, x(2)(0) = 0 the
optimal control signal is given by

u0(t) = −1 for 0 ≤ t ≤ 1 −
√

5/8 and u0(t) = +1 for 1 −
√

5/8 < t ≤ 1.
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Synthesis of the optimal control can be realized using the switching instance function
τ = τ(z1, z2, s), which has to satisfy the following differential equations:

∂τ

∂z1
=

1

2(1 − τ)
,

∂τ

∂z2
=

1 − s

2(1 − τ)
,(60)

∂τ

∂s
=

1 − s− z2

2(1 − τ)
,(61)

with the initial condition

τ(0, 0, 0) = 1 −
√

5/8,

which is a particular case of (56).
The solution of this Pfaff differential system is given by

τ(z1, z2, s) = 1 −
√

5/8 + (s− 1)z2 − z1 − s + s2/2.

Also, without loss of generality, assume s = 0, and then the optimal switching function
is

τ(z1, z2, 0) = 1 −
√

5/8 − z1 − z2.

Figures 1 and 2 illustrate the form of this solution. In particular, Figure 1 shows
the state-space variables together with additional variable t. The optimal trajectories
(57)–(59) corresponding to the bang-bang control law lie on the parabolic cylinders
(Z1) : x(1) = − 1

2 (x(2))2 +C1 +C2 and (Z2) : x(1) = + 1
2 (x(2))2 + C̃1 + C̃2, where the

constants Ci, C̃i, i = 1, 2, are determined by the initial data x(1)(0) = z1, x
(2)(0) = z2.

These cylinders correspond to the solutions of differential equations (58) with u ≡ −1
or u ≡ +1, respectively. It can also be shown that the admissible initial domain for
which the problem can be solved is determined by the inequalities: − 3

8 ≤ z1 +z2 ≤ 5
8 .

The switching manifold Zh is described in parametric form by

x(1) = −
(
1 −
√

5/8 − z2 − z1

)2
2

+ z2

(
1 −
√

5/8 − z2 − z1

)
+ z1,

x(2) = −1 +
√

5/8 − z2 − z1 + z2,

T = 1 −
√

5/8 − z2 − z1 −
3

8
≤ z1 + z2 ≤ 5

8
.

Finally, each optimal trajectory consists of two parts—first it evolves along the vertical
parabolic cylinder Z1 until τ = 1 −

√
5/8 − z2 − z1, when it meets the switching

manifold Zh, and then immediately is switched to continue along the second vertical
cylinder Z2 to meet the target plane x(1) = 1/8. Figure 1 also shows the optimal
trajectory in the space R3 for zero initial data, and Figure 2 shows the projection of
this trajectory onto the x(1), x(2) plane.

Consider now the following example where N = 2 (again the superscript (·) is
used to denote a particular element in the state or control vector on any pass):

max
u1,u2

J(u), J(u) := x
(2)
1 (1) + x

(2)
2 (1),(62)
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Fig. 1. Optimal control synthesis.

Fig. 2. Projection on the x1–x2 plane.

for the process

dx
(1)
1 (t)

dt
= x

(2)
1 (t),

dx
(1)
2 (t)

dt
= x

(2)
2 (t), t ∈ [s, 1],

dx
(2)
1 (t)

dt
= u1(t),

dx
(2)
2 (t)

dt
= x

(1)
1 (t) + u2(t),(63)

with boundary conditions of the form

x
(1)
1 (s) = z

(1)
1 , x

(2)
1 (s) = z

(2)
1 , x

(1)
2 (s) = z

(1)
2 , x

(2)
2 (s) = z

(2)
2 ,(64)

subject to

x
(1)
1 (1) = 1/8, x

(1)
2 (1) = 1/384, |u1(t)| ≤ 1, |u2(t)| ≤ 1.(65)

Equivalently, we can write the problem here as[
ẋ

(1)
k+1(t)

ẋ
(2)
k+1(t)

]
=

[
0 1
0 0

][
x

(1)
k+1(t)

x
(2)
k+1(t)

]
+

[
0 0
1 0

][
x

(1)
k (t)

x
(2)
k (t)

]
+

[
0
1

]
uk+1(t), k = 0, 1.

(66)

Without loss of generality we set x0(t) = 0, t ∈ [s, 1].
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To apply the results developed here to this example we first rewrite (63)–(65) in
the following integral form:

max
u1,u2

{
z
(1)
2 + z

(2)
2 + (1 − s)z

(1)
1 +

(1 − s)2

2
z
(2)
2 +

∫ 1

s

(1 − t)2 + 2

2
u1(t)dt +

∫ 1

s

u2(t)dt

}
,

(67)

subject to ∫ 1

s

(1 − t)u1(t)dt =
1

8
− z

(1)
1 + (1 − s)z

(2)
1 ,

∫ 1

s

[
(1 − t)3

6
u1(t) + (1 − t)u2(t)

]
dt =

1

384
− z

(1)
2 − (1 − s)z

(2)
2 − (1 − s)2

2
z
(1)
1

− (1 − s)3

6
z
(2)
1 .(68)

Hence

g11(t) = 1 − t, g21(t) =
(1 − t)3

6
, g22(t) = 1 − t,

c1(t) =
(1 − t)2 + 2

2
, c2(t) = 1,(69)

and the multipliers required to design the cocontrol function Δi(t), i = 1, 2, can, by
noting (12), be written as

ν(2)g22(τ2sup) − c2(τ2sup) = 0ν(1)g11(τ1sup) + ν(2)g21(τ1sup) − c1(τ1sup) = 0.(70)

We now have that

Δ1(t) = (1 − t)

[
1

1 − τ1sup
+

1 − τ1sup
2

− (1 − τ1sup)
2

6(1 − τ2sup)

]
+

(1 − t)3

6(1 − τ2sup)
− (1 − t)2

2
− 1,

Δ2(t) =
1 − t

1 − τ2sup
− 1,

(71)

and the problem is to find the basic optimal trajectory when all variables in (64) are
zero, i.e.,

s = 0, x
(1)
1 (0) = 0, x

(2)
1 (0) = 0, x

(1)
2 (0) = 0, x

(2)
2 (0) = 0.(72)

Take the supporting instances as

τ1sup = 1 −
√

5

8
, τ2sup = 1 −

√
131

256
.(73)

Then it follows immediately from Theorem 1 that the optimal control functions
for (62)–(65) with initial data (72) are given by

u0
1(t) =

⎧⎨
⎩

−1, 0 ≤ t < 1 −
√

5
8 ,

+1, 1 −
√

5
8 ≤ t ≤ 1,

u0
2(t) =

⎧⎨
⎩

−1, 0 ≤ t < 1 −
√

131
256 ,

+1, 1 −
√

131
256 ≤ t ≤ 1,

(74)



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

418 M. DYMKOV, E. ROGERS, S. DYMKOU, AND K. GALKOWSKI

and (56) gives the switching functions τ1 ≡ τ1(z
(1)
1 , z

(2)
1 , s), τ2 ≡ τ2(z

(1)
1 , z

(1)
2 , z

(2)
1 , z

(2)
2 , s)

as

−2
∂τ2
∂s

(1 − τ2) −
2(1 − τ1)

3

6

∂τ1
∂s

=
(1 − s)2

2
z
(2)
1 + (1 − s)z

(1)
1

+ z
(2)
2 − (1 − s)3

6
− (1 − s)

− 2
∂τ2

∂z
(1)
1

(1 − τ2) −
(1 − τ1)

3

3

∂τ1

∂z
(1)
1

= − (1 − s)2

2
− 2

∂τ2

∂z
(2)
1

(1 − τ2) −
(1 − τ1)

3

3

∂τ1

∂z
(2)
1

= − (1 − s)3

6
− 2

∂τ2

∂z
(1)
2

(1 − τ2) = −1,

−2
∂τ2

∂z
(2)
2

(1 − τ2) = − (1 − s),(75)

with initial conditions

τ1(0, 0, 0) = 1 −
√

5

8
, τ2(0, 0, 0, 0, 0) = 1 −

√
131

162
.(76)

The solutions of this differential system are

τ1(z
(1)
1 , z

(2)
1 , s) = 1 −

√
SR1(z

(1)
1 , z

(2)
1 , s),

τ (2)(z
(1)
1 , z

(1)
2 , z

(2)
1 , z

(2)
2 , s) = 1 −

√
SR2(z

(1)
1 , z

(1)
2 , z

(2)
1 , z

(2)
2 , s),(77)

where

SR1(z
(1)
1 , z

(2)
1 , s) =

5

8
+ (s− 1)z

(2)
1 − z

(1)
1 − s + s2/2,

SR2(z
(1)
1 , z

(1)
2 , z

(2)
1 , z

(2)
2 , s) =

131

256
+

2s4 − 8s3 + 59s2 − 102s

96
+

−20s2 + 40s− 19

48
z
(1)
1

− 1

12
z
(1)2
1 +

4s3 − 12s2 +11s− 3

48
z
(2)
1 +

−s2 +2s− 1

12
z
(2)2
1

+
sz

(1)
1 z

(2)
1

6
− z

(1)
1 z

(2)
1

6
− z

(2)
1 + (s− 1)z

(2)
2 .(78)

It easy to see that the solution of the differential equations describing the process
dynamics with both u1 and u2 constant is

x
(1)
1 (t) = u1

t2

2
+ tC1 + C2,

x
(2)
1 (t) = u1t + C1,

x
(1)
2 (t) = u1

t4

24
+ C1

t3

6
+ C2

t2

2
+ u2

t2

2
+ tC3 + C4,

x
(2)
2 (t) = u1

t3

6
+ C1

t2

2
+ tC2 + tu2 + C3(79)

and in this case that the optimal control for pass k = 1 coincides with that given
earlier in this example.
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Now consider disturbances Ω such that the optimal control is preserved for the

case of zero initial conditions, i.e., u1 = −1 for t ≤ τ1(z
(1)
1 , z

(2)
1 , s), u0

2 = −1 for t ≤
τ2(z

(1)
1 , z

(1)
2 , z

(2)
1 , z

(2)
2 , s), and the inequality τ1(z

(1)
1 , z

(2)
1 , s) < τ2(z

(1)
1 , z

(1)
2 , z

(2)
1 , z

(2)
2 , s)

holds. Using (77) we have that the domain Ω is described by

0 ≤ τ1(z
(1)
1 , z

(2)
1 , s) < τ2(z

(1)
1 , z

(1)
2 , z

(2)
1 , z

(2)
2 , s) ≤ 1,

SR1(z
(1)
1 , z

(2)
1 , s) ≥ 0, SR2(z

(1)
1 , z

(1)
2 , z

(2)
1 , z

(2)
2 , s) ≥ 0.

To construct the solution for pass k = 2, it is necessary to construct the switching
surface F , which is defined by the vectors

x
(1)
2 (t) |t=τ2 = x

(1)
2

(
τ2(z

(1)
1 , z

(1)
2 , z

(2)
1 , z

(2)
2 , s), τ

)
x

(2)
2 (t) |t=τ2 = x

(2)
2

(
τ2(z

(1)
1 , z

(1)
2 , z

(2)
1 , z

(2)
2 , s)
)
,

when the parameters z
(1)
1 , z

(1)
2 , z

(2)
1 , z

(2)
2 , s are members of the set Ω. The parametric

description of the switching surface in this case is given by

x
(1)
2 (t) = − t4

24
+ C1

t3

6
+ C2

t2

2
− t2

2
+ tC3 + C4,

x
(2)
2 (t) = − t3

6
+ C1

t2

2
+ tC2 − t + C3,(80)

where the coefficients Ci are found from the parameters z
(1)
1 , z

(1)
2 , z

(2)
1 , z

(2)
2 , s.

6. Conclusions. In this paper the supporting control functions approach has
been applied to study an optimal control problem for differential linear repetitive
processes. The main contribution is the development of constructive necessary and
sufficient optimality conditions in forms which can be effectively used for the design
of numerical algorithms. The iterative method developed in this work is based on the
principle of decrease of the suboptimality estimate; i.e., the iteration {τksup, uk(t), k =

1, . . . , N} → {τ̂ksup, ûk(t), k = 1, . . . , N} is performed in such a way as to achieve
β(τ̂sup, û) < β(τsup, u). Also this procedure can be separated into two stages: (i)
transformation of the admissible control functions {uk(t), k = 1, . . . , N} → {ûk(t), k =
1, . . . , N}, which decreases the nonoptimality measure of the admissible controls
β(û) < β(u), and (ii) variation of the support {τksup, k = 1, . . . , N} → {τ̂ksup, k =
1, . . . , N} to again decrease the nonoptimality measure of the support, i.e., β(τ̂sup) <
β(τsup). These transformations involve, in effect, the duality theory for the problems
defined in this work by (1)–(4) and (43)–(44) and exploit the ε-optimality conditions
also developed in this work. These results are the first in this general area, and
work is currently proceeding in a number of followup areas. One such area is sensi-
tivity analysis of optimal control in the presence of disturbances, where in the case
of the ordinary linear control systems some work on this topic can be found in, for
example, [12].

REFERENCES

[1] N. Amann, D. H. Owens, and E. Rogers, Iterative learning control using optimal feedforward
and feedback actions, Internat. J. Control, 69 (1996), pp. 277–293.

[2] T. Al-Towaim, A. D. Barton, P. L. Lewin, E. Rogers, and D. H. Owens, Iterative learning
control — 2D systems from theory to application, Internat. J. Control, 77 (2004), pp. 877–
893.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

420 M. DYMKOV, E. ROGERS, S. DYMKOU, AND K. GALKOWSKI

[3] S. Arimoto, S. Kawamura, and F. Miyazaki, Bettering operations of robots by learning, J.
Robotic Systems, 1 (1984), pp. 123–140.

[4] M. Bisiacco and E. Fornasini, Optimal control of two-dimensional systems, SIAM J. Control
Optim., 28 (1990), pp. 582–601.

[5] W. D. Collins, Controllability and canonical forms for multipass systems described by the
ordinary differential equations, IMA J. Math. Control Inform., 1 (1984), pp. 1–25.

[6] M. P. Dymkov and S. Gnevko, Continuous linear programming with desturbed parameters,
Reports of the Academy Sciences of Belarus, Series Physics and Mathematics, 4 (1983),
pp. 8–14 (in Russian).

[7] C. Du and L. Xie, H∞ Control and Filtering of Two-Dimensional Systems, Lecture Notes in
Control and Inform. Sci. 278, Springer-Verlag, Berlin, 2002.

[8] E. Fornasini and G. Marchesini, Doubly indexed dynamical systems: State-space models and
structual properties, Math. Systems Theory, 12 (1978), pp. 59–72.

[9] K. Fujimoto, T. Horiuchi, and T. Sugie, Optimal control of Hamiltonian systems with input
constraints via iterative learning, in Proceedings of the 42nd IEEE Conference on Decision
and Control, 2003, pp. 4387–4392.

[10] R. Gabasov and F. M. Kirillova, Software Optimization, Plenum Press, New York, 1988.
[11] R. Gabasov, F. M. Kirillova, and S. V. Prischepova, Optimal Feedback Control, Lecture

Notes in Control and Inform. Sci. 207, Springer-Verlag, Berlin, 1995.
[12] O. I. Kostyukova, Parametric optimal control problem with variable index, Comput. Math.

Math. Phys., 43 (2003), pp. 26–41; (Zh. Vychis. Mat. i Mat. Fiz., 2003, 43(1), pp. 26–41,
in Russian).

[13] K. L. Moore, Y. Chen, and V. Bahl, Monotonically convergent iterative learning control for
linear discrete-time systems, Automatica, 41 (2005), pp. 1529–1537

[14] D. H. Owens, N. Amann, E. Rogers, and M. French, Analysis of linear iterative learning
control schemes - A 2D systems/repetitive processes approach, Multidimensi. Syst. Signal
Process., 11 (2000), pp. 125–177.

[15] P. D. Roberts, Numerical investigations of a stability theorem arising from 2-dimensional
analysis of an iterative optimal control algorithm, Multidimens. Syst. Signal Process., 11
(2000), pp. 109–124.

[16] R. P. Roesser, A discrete state space model for linear image processing, IEEE Trans. Automat.
Control, 20 (1975), pp. 1–10.

[17] E. Rogers and D. H. Owens, Stability Analysis for Linear Repetitive Processes, Lecture Notes
in Control and Inform. Sci. 175, Springer-Verlag, Berlin, 1992.

[18] M. Sebek and F. J. Kraus, Stochastic LQ-optimal control for 2-D systems, Multidimens. Syst.
Signal Process., 6 (1995), pp. 275–285.

[19] H. D. Tuan, P. Apkarian, T. Q. Nguyen, and T. Narikiyo, Robust Mixed H2/H∞ filtering
of 2-D systems, IEEE Trans. Signal Process., 50 (2002), pp. 1759–1771.

[20] J.-X. Xu, Y. Tan, and T.-H. Lee, Iterative learning control design based on composite energy
function with input saturation, Automatica, 40 (2004), pp. 1371–1377.


