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PROBABILISTIC ROBUSTNESS ANALYSIS — RISKS,

COMPLEXITY AND ALGORITHMS

XINJIA CHEN, KEMIN ZHOU AND JORGE L. ARAVENA

Abstract. It is becoming increasingly apparent that probabilistic approaches
can overcome conservatism and computational complexity of the classical worst-
case deterministic framework and may lead to designs that are actually safer.
In this paper we argue that a comprehensive probabilistic robustness analysis
requires a detailed evaluation of the robustness function and we show that
such evaluation can be performed with essentially any desired accuracy and
confidence using algorithms with complexity linear in the dimension of the
uncertainty space. Moreover, we show that the average memory requirements
of such algorithms are absolutely bounded and well within the capabilities of
today’s computers.

In addition to efficiency, our approach permits control over statistical sam-
pling error and the error due to discretization of the uncertainty radius. For
a specific level of tolerance of the discretization error, our techniques provide
an efficiency improvement upon conventional methods which is inversely pro-
portional to the accuracy level; i.e., our algorithms get better as the demands
for accuracy increase.

1. Introduction

In recent years, a number of researchers have proposed probabilistic control
methods for overcoming the computational complexity and conservatism of the
deterministic worst-case robust control framework (e.g., [1]–[7], [11]–[20] and the
references therein).

The philosophy of probabilistic control theory is to sacrifice cases of extreme
uncertainty. Such paradigm has lead to the concept of confidence degradation func-

tion (originated by Barmish, Lagoa and Tempo [2]), which has demonstrated to be
extremely powerful for the robustness analysis of uncertain systems. Such function,
P(.), is defined as P(r) = inf0<ρ≤r P(ρ) with

P(ρ) = vol{X ∈ Bρ | The robustness requirement is guaranteed for X}/vol{Bρ}
where the volume function vol{.} is the Lebesgue measure, and Bρ denotes the
uncertainty bounding set with radius ρ. Interestingly, it was discovered in [2] that
such function is not necessarily monotone decreasing in the uncertainty radius. In
view of this fact and for the purpose of avoiding the confusion with the concept
of confidence band, used in the evaluation of the accuracy of the estimate of P(r),
the confidence degradation function is referred to as the robustness function in this
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paper. Accordingly, a graph representation of the robustness function is called the
robustness curve. It can be seen that the robustness function is a natural extension
of the concept of robustness margin. From the robustness curve, one can determine
the probabilistic robustness margin [2] and estimate the deterministic robustness
margin.

In addition to overcoming the NP hard complexity and conservatism of determin-
istic robustness analysis methods, the robustness function can address very complex
problems which are intractable by deterministic worst-case methods. Moreover, the
probability that the robustness requirement is guaranteed can be inferred from the
robustness function, while the deterministic margin losses the connection with such
probability. Based on the assumption that the density function of uncertainty is
radially symmetric and non-increasing with respect to the norm of uncertainty, it
has been shown in [2] that the probability that the robustness requirement is guar-
anteed is no less than P(r) = infρ∈(0,r] P(ρ) when the uncertainty is included in a
bounding set with radius r. The underlying assumption is supported by modeling
and manufacturing considerations that the uncertainty is unstructured so that all
directions are equally likely and that small perturbations from the nominal model
are more likely than large perturbations. Since P(.) is not monotonically decreasing
[2], the lower bound of the probability depends on P(ρ) for all ρ ∈ (0, r]. It is not
clear whether it is feasible to estimate P(r) since the estimation of P(ρ) for every
ρ relies on intensive Monte Carlo simulation and P(ρ) needs to be estimated for
numerous values of ρ. For such probabilistic method to overcome the NP hard of
worst-case methods, it is necessary to show that the complexity for estimating P(r)
for a given r is polynomial in terms of computer running time and memory space.
In this paper, we demonstrate that the complexity in terms of space and time is
surprisingly low and is linear in the uncertainty dimension and the logarithm of the

relative width of the range of uncertainty radius.
In the next section we argue that both the deterministic robustness margin and

its risk-adjusted version – the probabilistic robustness margin have inherent limi-
tations. We address those limitations through the use of the robustness function
that can describe the performance of a system over a wide range of uncertainties.
In order to construct the robustness function for wide range of uncertainty radii,
the conventional method independently estimate P(ri) for each grid points of un-
certainty. If there are m grid points and N is the sample size for each radius, then
the total number of simulations is Nm. In Section 3, we use the sample reuse
principle and demonstrate that the robustness curve for arbitrarily wide range of
uncertainty radii can be accurately constructed with surprisingly low complexity.
Clearly, the number of grid points, m, must tend to infinity as the tolerance tends
to zero. However, we show that with our algorithms, the equivalent number of grid

points (ENGP), meq, is strictly bounded from above in the sense that in order to
guarantee the same level of accuracy for the estimation of the robustness function,
the required average computational effort is the same as that of a conventional grid
with meq points. Moreover, we show that the average memory requirement is also
absolutely bounded and is well within the reach of modern computers.

The remainder of the paper is organized as follows. Section 2 provides an exam-
ple illustrating the pitfalls of deterministic robustness margin and the probabilistic
robustness margin. Section 4 discusses the control of estimation error of the robust-
ness function and the required complexity. Section 5 investigates the difficulties of
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the conventional data structure. Section 6 describes our new algorithms, analyzes
the complexity of data processing and memory space, and introduces the concept
of confidence band. The proofs of all the theorems are included in the Appendices.

2. The Risk of Robustness Margins

In this section we make the case for the need to have a robustness function
in order to properly estimate how well a control system tolerates uncertainties.
Conventional robust control approaches the issue with a “worst case” philosophy.
In this regard, it has been demonstrated (Chen, Aravena and Zhou, [5]) that it
is not uncommon for a probabilistic controller to be significantly less risky than
a deterministic worst-case control. The reasons are the “uncertainty in modeling
uncertainties” and the fact that the worst-case design cannot, in some instances,
be “all encompassing.” Therefore, the worst-case approach has an associated risk
that usually is overlooked, while the probabilistic approach acknowledges the risk
and manages it.

From manufacturing and modeling considerations, it is sensible to assume that
the density of the distribution of uncertainty decreases with increasing uncertainty
norm. Such assumption leads to the worst-case property of uniform distribution in
robustness analysis [2]. However, the decay rate of density is generally unknown
to the designer. Therefore, for a given uncertainty radius r, one does not have
good knowledge about the coverage probability of the uncertainty set Br. It is
important to note that the system robustness depends critically on the distribution
of uncertainty norm.

Attempts to improve the analysis have led to the definitions of a deterministic

robustness margin and a probabilistic robustness margin. Both are numbers that
purportedly allow the user to estimate the tolerance to uncertainties. We contend
that both can be misleading, and for essentially the same reason. To demonstrate
this view point, we consider a feedback system shown in Figure 1.

❡ C✲ ✲ ✲ G ✲
✻

r e yu

−

Figure 1. Standard Feedback Configuration

The transfer function of the plant is G(s) = q
s−p

where p and q are uncertain

parameters. The uncertainty bounding set with radius r > 0 is

Br = {(x, y) : |x− q0| ≤ r, |y − p0| ≤ r}, p0 < 0, q0 > 0.

Consider two controllers CA = KA

s+σ
, σ > 0 and CB = KB such that

1 < KB <
KA

σ
,

KA q0 − σ p0
KA + σ

< σ − p0.
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Suppose that the robustness requirement is stability. It can be shown that the
robustness function for controller A is

P
A(r) =





1 for 0 < r < ρA;

1
2 −

KA

“

r+ σ β
KA

−q0

”2

8σ r2
− p0−β

2r for ρA ≤ r ≤ ρ∗A;

1
2 −

(r+β−p0)
“

r+
σ(β+p0−r)

2KA
−q0

”

4r2 − (p0−β)
2r for r > ρ∗A

where

ρA =
KA q0 − σ p0

KA + σ

is the deterministic robustness margin, β = min(σ, p0 + r), and ρ∗A = KA q0−σ p0

KA−σ
.

It can be shown that the robustness function for controller B is given by

P
B(r) =





1 for 0 < r < ρB;

1−
KB

“

r+
p0+r

KB
−q0

”2

8r2 for ρB ≤ r ≤ ρ∗B;

1
2 −

p0
KB

−q0

2r for r > ρ∗B

where

ρB =
KB q0 − p0
KB + 1

is the deterministic robustness margin and ρ∗B = KB q0−p0

KB−1 .

We consider an example with p0 = −10, q0 = 50, σ = 40, KA = 100σ, KB =
10. The corresponding robustness functions are displayed in Figure 2. We obtained
deterministic margins ρA = 49.6040, ρB = 46.3636. Since ρA > ρB, a comparison
based on the deterministic margin simply suggests that controller A is more robust
than controller B. Quite contrary, a judgement based on the robustness curves
indicates that controller B may be more robust. The risk of the probabilistic
robustness margin can also be illustrated by this example.

Robust analysis should be able to help a designer to reliably determine which
controller design is more robust. However, it appears that the concepts of robust-
ness margin fail to meet such fundamental needs of control engineering. On the
other hand, the robustness curve serves the purpose of giving the designer complete
information on how well a control system tolerates uncertainties.

From the previous discussion, it can be seen that there are two crucial factors to
be considered in order to make a reliable judgment about the system robustness:

(i): How fast the robustness curve rolls off.
(ii): The dependency of coverage probability of uncertainty bounding set Br

on the radius r.

The second factor can be a difficulty since a designer generally lacks knowledge
of the coverage probability corresponding to a bounding set of fixed radius. To
overcome such difficulty, the only choice is to construct the robustness curve for a
wide range of uncertainty radius. The construction of the robustness curve may
be seen as a computationally challenging task since the probability of guaranteeing
robustness requirement needs to be estimated for many values of uncertainty radius.
However, as we demonstrate in the next section, using the sample reuse principle one
can construct the robustness curve for virtually the entire scope of uncertainty range
(0,∞) with absolutely bounded average computational requirements, regardless of
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Figure 2. Comparison of Controller Alternatives.

the size of the grid. For example, we shall show that for an uncertainty range as
large as (10−10, 1010), in the average, one needs less than 50 times memory and
computational resources than those needed to evaluate the uncertainty range (1, e)
with the same resolution.

3. Equivalent Number of Grid Points

Throughout this paper, we assume that the uncertainty sets are homogeneous
star-shaped (e.g., [2]). That is, the uncertainty bounding set with radius r is
Br = {rX | X ∈ B1} where B1 denotes the uncertainty bounding set such that
cX ∈ B1 for any X ∈ B1 and any c ∈ [0, 1]. Clearly, most of the commonly
used uncertainty bounding sets such as the lp balls and spectral norm balls are
homogeneous star-shaped.

We shall consider the problem of constructing the robustness curve for arbitrary
robustness requirement P under such assumption of uncertainty sets. Convention-
ally, the robustness curve for a range of uncertainty radii

[
a
λ
, a
]
with a > 0, λ > 1

is constructed by choosing a set of grid points a
λ
= r1 < r2 < · · · < rm = a and,

for every grid point, performing N i.i.d. Monte Carlo simulations. Hence, the total
number of simulations is a deterministic constant mN . To reduce computational
complexity, we shall make use of the following intuitive concept:

Let X be an observation of a random variable with uniform distribution over

Bρ ⊇ Br such that X ∈ Br. Then X can also be viewed as an observation of a

random variable with uniform distribution over Br.

In order to apply such concept, it is necessary to perform the simulation in a
backward direction so that appropriate evaluations of the robust requirement for
larger uncertainty sets can be saved for the use of later simulations on smaller
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uncertainty sets [6]. The sample reuse principle allows a single simulation to be
used for multiple radii. Thus, the actual total number of simulations is significantly
reduced. In order to quantify this reduction we introduce the equivalent number of

grid points (ENGP), meq, defined as

meq =
expected total number of simulations

N
.

In our approach, the number of simulations required at uncertainty radius ri,
denoted by ni for i = 1, · · · ,m, is a random number. The total number of simula-
tions can be represented by the random variable n =

∑m
i=1 ni. The expected value

of the total number of simulations is E[n] =
∑m

i=1 E[ni] where E[X ] denotes the
expectation of random variable X . Hence, we can formally define

meq =
E[n]

N
.

Due to sample reuse, we can achieve a substantial reduction of simulations, i.e.,
E[n] << mN . To quantify the reduction of the computational effort, we have
introduced the notion of sample reuse factor [6], which is defined as

(3.1) Freuse
def
=

mN

E[n]
=

m

meq

.

In our approach, N i.i.d simulation results are collected for each grid point.
Hence, the accuracy of estimation is the same as that of the conventional method.
However, the average number of simulations in our approach is E[n], which is
equivalent to the complexity of meq grid points in the conventional scheme. As a
direct consequence of Theorem 1 of [6], we have that, for any discretization scheme,
meq is independent of the sample size N . Moreover, we have the following general
results.

Theorem 1. Let d be the dimension of uncertainty parameter space. Then, for ar-

bitrary gridding scheme, the equivalent number of grid points based on the principle

of sample reuse is strictly bounded from above by 1 + d lnλ, i.e.,

meq < 1 + d lnλ.

See Appendix A for a proof. By an “arbitrary” discretization scheme, we mean
two things: i) the number of grid points can be arbitrarily large; ii) the grid points
can be distributed arbitrarily over the specified range of uncertainty radius.

A fundamental question of robust control is whether randomized algorithms have
polynomial complexity. In light of the fact the cost of each simulation depends on
problem cases, the computational complexity is usually measured in terms of the
number of simulations. This theorem reveals the following important facts:

(a): The complexity is linear in the dimension of the uncertainty space. Thus
our algorithms overcome the curse of dimensionality.

(b): The complexity depends linearly in the logarithm of the “relative” width,
λ, of the interval of uncertainty radii. This proves that our algorithms are
capable of estimating the robustness function for a wide range of uncer-
tainty.

(c): Our algorithms can arbitrarily reduce the grid error, while keeping the
complexity strictly below a constant bound.
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In order to illustrate these points, Figure 3 displays the variation of meq for
various dimensions of the uncertainty space and for values of λ up to λ = 1020

corresponding to the uncertainty range (10−10, 1010) (which may be deemed a good
approximation to (0,∞)). Notice that even for dimensions as high as d = 1024 the
equivalent number of grid points, meq, is very reasonable.
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Figure 3. Absolute Bounds for meq (ENGP) (d = 2i, i = 1, · · · , 10).

Finally in this section, we consider the case where we need to estimate P(r) for
r ∈ [γ, U ] where γ > 0 is a constant, and U is an estimate of the probabilistic
robustness margin calculated by randomized algorithms. Clearly, U is a random
variable. If U depends on samples which are independent of the samples generated
from the uncertainty set with radius r ∈ [γ, U ] we have the following result:

For any gridding scheme,

(3.2) meq < 1 + d ln
E[U ]

γ
.

To prove (3.2), notice that E[E[X | Y ]] = E[X ] for any random variables X and
Y . Hence, by Theorem 1,

meq = E[E[meq | U ]] < E

[
1 + d ln

U

γ

]
= 1 + d E

[
ln

U

γ

]
< 1 + d ln

E[U ]

γ

where the last inequality is obtained from applying the Jensen’s inequality to the
concave function ln(.).
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4. Error Control

In addition to efficiency, another important issue in any numerical approach is
error control. This point has been emphasized in many control engineering prob-
lems. For instance, when computing the H∞ norm of a system, a lower bound and
an upper bound are obtained and is required that the gap between them be less
than a prescribed tolerance. A similar situation arises in the computation of the
structured singular value (µ).

For the specific case of the estimation of the robustness function, there are two
sources of error: i) the statistical sampling error due to the finiteness of the sample
size, N (sample size error); ii) the discretization error due to the finite number
of points in any partition. Control of the sample size error has been well studied
and emphasized. Existing techniques include the Chernoff bounds [8], binomial
confidence interval [7, 9], etc. However, we claim that control of discretization
error is not sufficiently emphasized. In fact, one can argue that controlling the

sample size error can be meaningless if the discretization error is not controlled.
This will be the case, for example, for those situations where a risk at the level
of a small ε (e.g., ε = 0.001) may be significant or unacceptable. How can any

estimation be useful if the discretization error is not ensured to be less than the

tolerance ε ?
In this section, we first introduce an interpolation result necessary to analyze

error control methods. Afterward, we discuss two different schemes which insure
a discretization error less than a given ǫ ∈ (0, 1). The first is a uniform partition
whereby the uncertainty radius interval [ a

λ
, a] is partitioned by m points

(4.1) ri = a− (m− i)(λ− 1)

(m− 1)λ
a, i = 1, · · · ,m.

In the second scheme we consider a geometric type partition of the form

(4.2) ri = a

(
1

λ

)m−i
m−1

, i = 1, · · · ,m.

For any partition of the uncertainty radius interval, we have the following linear
interpolation results.

Theorem 2. Given an arbitrary partition of the uncertainty radius interval
[
a
λ
, a
]

with a
λ
= r1 < r2 < · · · < rm = a, define

P
∗(r) =

(r − ri) P(ri+1) + (ri+1 − r) P(ri)

ri+1 − ri
,

g(r) = (ri+1 − r)

(
r

ri

)−d

+ (r − ri)
(ri+1

r

)−d

.

Then, for all r ∈ [ri, ri+1],

|P(r)− P
∗(r)| ≤ 1− g(r⋆)

ri+1 − ri
≤ d

2ri
(ri+1 − ri)

where r⋆ ∈ (ri, ri+1) is the unique solution of equation

(ri+1

r

)−d [
1 +

(
1− ri

r

)
d
]
−
(

r

ri

)−d [
1 +

(ri+1

r
− 1
)
d
]
= 0
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with respect to r, which can be solved by a bisection search.

See Appendix B for a proof. As mentioned before, these interpolation results will
be used in the construction of a tight confidence band for the robustness function.

Remark 1. To guarantee a prescribed tolerance ǫ ∈ (0, 1), the number of grid points
must be larger than a certain number. It has been shown by Barmish, Lagoa and
Tempo [2] that if

(4.3) m ≥ 1 +
2(λ− 1)d

ǫ

then |P(r)−P(ri)| < ǫ ∀r ∈ [ri, ri+1] for i = 1, · · · ,m−1. This bound shows that,
for fixed error ǫ, the complexity is polynomial. From another perspective, it also
shows that the number of grid points and computational complexity tend to infinity
as the tolerance tends to zero. For example, the robustness analysis problem for
complex uncertainty of size 30 × 30 over an interval of uncertainty with λ = 10,
requires m ≥ 3, 240, 000, 001 in order to guarantee ǫ ≤ 10−5. The bound, however,
does not account for the sample reuse principle. Using our approach the equivalent
number of grid points for this case is bounded from above by 1 + 1800× ln(10).

The following result is our extension of the result by Barmish et al., cited above,
and quantifies the advantage of using linear interpolation.

Theorem 3. Let

(4.4) m = 2 +

⌊
(λ− 1)d

2ǫ

⌋

where ⌊.⌋ denotes the floor function. Then, for a uniform gridding scheme,

|P(r)− P
∗(r)| < ǫ ∀r ∈ [ri, ri+1]

for i = 1, · · · ,m− 1. Moreover, the equivalent number of grid points is

meq(ǫ) = m−
m−1∑

i=1

(
1− 1

m−1
λ−1 + i

)d

.

See Appendix C for a proof.

Remark 2. We point out that when using linear interpolation the number of grid
points given by (4.4) is approximately 1

4 of the bound given by (4.3).

We now analyze a discretization scheme whereby the partition of the uncertainty
interval under study is defined by a geometric series.

Theorem 4. For a geometric discretization scheme with

m = 2 +

⌊
lnλ

ln
(
1 + 2ǫ

d

)
⌋

and

ri = a

(
1

λ

)m−i
m−1

for i = 1, · · · ,m, the following statements hold true:

(I):

|P(r) − P
∗(r)| < ǫ ∀r ∈ [ri, ri+1], i = 1, · · · ,m− 1.
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(II):

meq(ǫ) = 1 +

(
1 +

⌊
lnλ

ln
(
1 + 2ǫ

d

)
⌋)


1−

(
1

λ

)
d

1+

6

6

6

6

4

lnλ

ln(1+ 2ǫ
d )

7

7

7

7

5


 .

(III):

Freuse >
1

2ǫ

(
1− 1

1 + d lnλ

)
.

See Appendix D for a proof.

Remark 3. Since 1 + d lnλ >> 1 in many situations, the sample reuse factor for
the geometric discretization scheme may be written in a more elegant form. That
is,

Freuse ≈
1

2ǫ
which is inversely proportional to the tolerance of the discretization error. For
example, to ensure that the discretization error is less than 10−4, which is a rather
weak requirement for many applications, our algorithm reduces the computational
effort by a factor of 5, 000 when compared to a conventional approach.

The two discretization schemes considered here, and others, have bounded com-
plexity, but the distributions of the total number of simulations are different. Hence
it is reasonable to ask if there is a “best discretization.” Our results indicate that
the geometric scheme is generally more efficient, as shown by the comparison of
grid points in Figure 4 and the comparison of ENGP in Figure 5.
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5. The Difficulties of Conventional Data Structure

Our previous sample reuse algorithm [6] uses the same data structure as that
of the conventional algorithm. That is, the data structure for implementing the
algorithms is basically a matrix of fixed size. In such data structure, for each
grid point ri, there is a record (ki, ni) where ki represents the number of cases
guaranteeing (or violating) the robustness requirement among ni simulations. In
the course of experiment, the number ni is increment from 0 to sample size N . In
the following two subsections, we demonstrate that the conventional data structure
is not suitable for controlling the error due to finite gridding.

5.1. The Issue of Data Processing. Clearly, the total number of records is
exactly the number of grid points m. For the conventional method, to accomplish
N simulations for each grid points, the total number of updating the data record is
Nm. As illustrated in Section 4, to control the error due to finite gridding requires
an extremely large number, m, of grid points even for moderate requirement of
ǫ. Therefore, Nm is usually a very large number. It can be shown that if the

sample reuse algorithm employs the same data structure as that of the conventional

method, then, for any gridding scheme with m grid points, the total number of

times of updating the data record is also Nm. This is true because, for every time
a record (ki, ni) is updated, the number ni can only be increased by 1, and the
number ni must be N when the experiment is completed. To have a feeling that the
data processing with the conventional data structure is a severe challenge, one can
consider the example discussed in Remark 1 of Section 4. With m ≥ 3, 240, 000, 001
and normal sample size 104 < N < 106, it can be seen that Nm will be in the range
of 3×1013 to 3×1015. This is an enormous burden for today’s computing technology.
For a modern computer with 1.9 GHz CPU and 256 M bytes RAM, it takes about
20 seconds to execute 107 times the command ni ← ni+1 written in the MATLAB
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language. It can be reasonably inferred that updating the data record for 3× 1013

times will take about 20× 10−7 × 3× 1013 seconds (i.e., about 700 days).

5.2. The Issue of Memory Space. For the conventional data structure, the total
number of records is m. To execute the sample reuse algorithm or the conventional
one with such data structure, each record must occupy some physical addresses.
Such addresses are necessary for storing and visualizing the outcome of simulations.
Of course, to obtain the outcome simulations may require a much higher amount
of computer internal memory to execute the algorithm. Since m is usually a very
large number, the consumption of memory to store and visualize the output of
simulation can be enormous. To illustrate, consider again the example discussed in
Remark 1 of Section 4. Since a floating point number occupies 2 bytes, storing a
tuple of the form (ki, ni) needs 4 bytes. For m ≥ 3, 240, 000, 001, the data record
will consumes 4 × 3, 240, 000, 001 ≈ 13 × 109 bytes (i.e., about 13 giga bytes) of
RAM. Such requirement, just for visualizing the outcome of the simulations, is a
challenging task even for modern computers.

6. New Techniques of Sample Reuse

In the last section, we have shown that any algorithm using the conventional
data structure suffer from the problems of the complexity of data processing and
memory space. This is because, the sample size N is usually very large and the
number,m, of points in the partition of uncertainty radius approaches infinity as the
tolerance, ǫ, approaches zero (see Theorem 3). In this section, we shall demonstrate
that, by introducing a dynamic data structure and a new sample reuse algorithm,
the average requirement of memory and the computational effort devoted to data
processing are absolutely bounded, independent of the tolerance, and well within
the power of modern computers.

6.1. Data Structure. In order to address the memory issue and minimize the
effort devoted to data processing, an appropriate data structure is critical. The
key idea is to make use of the observation that, for a set of consecutive grid points

with identical records of simulation results, it suffices to store the information of

the smallest and the largest grid points. To illustrate our techniques, we enumerate,
in a chronicle order of generation, the samples generated from various uncertainty
bounding sets as X1, X2, · · · . When samples X1, X2, · · · , Xj have been generated,
the state of the experiment is completely represented by functions s(i, j) and v(i, j),
where

s(i, j) =

l(i,j)∑

k=1

Y k
i , v(i, j) =

l(i,j)∑

k=1

Zk
i

with

Y k
i =

{
1 if Xk ∈ Bri ;
0 otherwise

(6.1) l(i, j) = max

{
ℓ : 1 ≤ ℓ ≤ j,

ℓ∑

k=1

Y k
i ≤ N

}
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and

Zk
i =

{
1 if Xk ∈ Bri and P is violated for Xk;

0 otherwise

for i = 1, · · · ,m and k = 1, · · · , j. The reason we introduce variable l(i, j) by
(6.1) is that, for grid point ri, once N equivalent simulations are available, the
subsequent simulations can be ignored. By the principle of sample reuse, s(i, j)
and v(i, j) are, respectively, the accumulated numbers of samples and violations
for uncertainty bounding set with radius ri. When the experiment is completed,
we have n samples X1, X2, · · · , Xn and

s(i,n) = N, P(ri) = 1− v(i,n)

N
, i = 1, · · · ,m.

It can be seen that s(i, j) is piece-wise constant (with respect to i) and there exists
a matrix Sj such that, for i = 1, · · · ,m,

(6.2) s(i, j) =

{
[Sj]ℓ,2 for [Sj]ℓ,1 ≤ i < [Sj ]ℓ+1,1 with 1 ≤ ℓ ≤ κ− 1;

[Sj]κ,2 for [Sj]κ,1 ≤ i ≤ m

where κ is the number of rows of Sj and [A]ı, denotes the element of matrix
A in the ı-th row and the -th column. Roughly speaking, the first column of

matrix Sj records the indexes of grid points for which the accumulated numbers of

samples are jumping to different values. The second column of matrix Sj records

the corresponding accumulated numbers of samples.

Similarly, v(i, j) is piece-wise constant (with respect to i) and there exists a
matrix V j such that, for i = 1, · · · ,m,

(6.3) v(i, j) =

{
[V j ]ℓ,2 for [V j ]ℓ,1 ≤ i < [V j ]ℓ+1,1 with 1 ≤ ℓ ≤ τ − 1;

[V j ]τ,2 for [V j ]τ,1 ≤ i ≤ m

where τ is the number of rows of V j . Loosely speaking, the first column of matrix

V j records the indexes of grid points for which the accumulated numbers of viola-

tions are jumping to different values. The second column of matrix V j records the

corresponding accumulated numbers of violations.

In this paper, matrices Sj and V j are, respectively, referred to as the matrix of

sample sizes and the matrix of violations. At any stage that samples X1, · · · , Xj

have been generated, the status of the experiment is completely characterized by
matrices Sj , V j . Both matrices are of two columns but of varying number of rows
in the course of experiment.

To save memory and data processing effort, we shall take advantage of the piece-
wise constant property of the accumulated numbers of samples and violations.
Hence, we shall construct matrices Sj and V j when we have generated X1, · · · , Xj.
As can be seen in the sequel, such matrices can be constructed recursively. Once we
have Sj and V j , we can generate sample Xj+1 and update Sj , V j as Sj+1, V j+1

in accordance with equations (6.2) and (6.3).

6.2. Sample Reuse Algorithm. In this section, we present our sample reuse
algorithms as follows.

Initialization: We initialize the matrices of sample sizes and violations as
follows:

♦ Generate sample X1 uniformly from uncertainty set with radius rm.
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♦ Compute  such that X1 ∈ Bri for  ≤ i ≤ m and X1 /∈ Bri for
1 ≤ i ≤ − 1.

♦ Let S1 =
[
1 1

]
if  = 1 and S1 =

[
1 0
 1

]
if  > 1.

♦ Let V 1 =
[
1 0

]
if I(X1) = 0 and V 1 = S1 if I(X1) = 1, where

I(X) = 1 if the robustness requirement is violated for X and otherwise
I(X) = 0.

Sample generation: If [Sj ]κ,1 < N then generate sample Xj+1 uniformly
from uncertainty set with radius rm, otherwise generate sample Xj+1 uni-
formly from uncertainty set with radius [Sj ]κ−1,1.

Updating matrices: Update Sj as Sj+1 by the method described in Section
6.2.1. If I(Xj+1) = 0 then let V j+1 = V j , otherwise update V j as V j+1 by
the method described in Section 6.2.2.

Stopping criterion: The sampling process is terminated if Sj has only one
row and [Sj ]1,2 = N .

6.2.1. Sample Sizes Tracking. In this section, we describe how to update the matrix
of sample sizes. The key idea is to ensure condition (6.2). Let κ be the number of
rows of Sj . We proceed as follows.

Step (1): Compute an index ∗ such that Xj+1 ∈ Bri for ∗ ≤ i ≤ m and
Xj+1 /∈ Bri for 1 ≤ i ≤ ∗ − 1 (Note that explicit formulas for computing
∗ are available when using uniform or geometric grid scheme).

Step (2): Modify Sj as a temporary matrix Ŝj+1 based on the following three
cases.

Case (1): [Sj ]ℓ∗,1 < ∗ < [Sj ]ℓ∗+1,1 for some ℓ∗ ∈ {1, · · · , κ− 1};
Case (2): ∗ = [Sj]ℓ∗,1 for some ℓ∗ ∈ {1, · · · , κ};
Case (3): ∗ > [Sj]κ,1.

In Case (1), define Ŝj+1 as a (κ+ 1)× 2 matrix such that

[Ŝj+1]ℓ,1 = [Sj]ℓ,1, [Ŝj+1]ℓ,2 = [Sj ]ℓ,2, ℓ = 1, · · · , ℓ∗
[Ŝj+1]ℓ∗+1,1 = ∗, [Ŝj+1]ℓ∗+1,2 = 1 + [Sj]ℓ∗,2

[Ŝj+1]ℓ+1,1 = [Sj ]ℓ,1, [Ŝj+1]ℓ+1,2 = 1 + [Sj ]ℓ,2, ℓ = ℓ∗ + 1, · · · , κ.

In Case (2), define Ŝj+1 as a κ× 2 matrix such that

[Ŝj+1]ℓ,1 = [Sj ]ℓ,1, [Ŝj+1]ℓ,2 = [Sj ]ℓ,2, ℓ = 1, · · · , ℓ∗ − 1

[Ŝj+1]ℓ,1 = [Sj ]ℓ,1, [Ŝj+1]ℓ,2 = 1 + [Sj ]ℓ,2, ℓ = ℓ∗, · · · , κ.

In Case (3), define Ŝj+1 as a (κ+ 1)× 2 matrix such that

[Ŝj+1]ℓ,1 = [Sj ]ℓ,1, [Ŝj+1]ℓ,2 = [Sj ]ℓ,2, ℓ = 1, · · · , κ
[Ŝj+1]κ+1,1 = ∗, [Ŝj+1]κ+1,2 = 1 + [Sj ]κ,2.



PROBABILISTIC ROBUSTNESS ANALYSIS 15

Step (3): Let κ̂ denote the number of rows of Ŝj+1. If [Ŝj+1]
bκ,2 < N then

let Sj+1 = Ŝj+1, otherwise find index ℓ⋆ by a bisection search such that

[Ŝj ]ℓ⋆−1,2 < N ≤ [Ŝj]ℓ⋆,2 and define Sj+1 as an ℓ⋆ × 2 matrix such that

[Sj+1]ℓ,1 = [Ŝj+1]ℓ,1, [Sj+1]ℓ,2 = [Ŝj+1]ℓ,2, ℓ = 1, · · · , ℓ⋆ − 1

[Sj+1]ℓ⋆,1 = [Ŝj+1]ℓ⋆,1, [Sj+1]ℓ⋆,2 = [Ŝj+1]ℓ⋆,2.

6.2.2. Violations Tracking. In this section, we describe how to update the matrix
of violations in the case of I(Xj+1) = 1. The key idea is to ensure condition (6.3).
Let κ be the number of rows of Sj . Let τ be the number of rows of V j . Let ∗ be the
index obtained in the process of updating Sj such that Xj+1 ∈ Bri for ∗ ≤ i ≤ m
and Xj+1 /∈ Bri for 1 ≤ i ≤ ∗ − 1. We proceed as follows.

Step (i): Identify the maximal index ι such that the experiment for uncer-
tainty radius rι has not been completed by the following method.

♦ If [Sj ]κ,2 < N , then let ι = κ, otherwise find ι by a bisection search
such that [V j ]ι,1 < [Sj]κ,1, [V j ]ι+1,1 ≥ [Sj]κ,1.

Step (ii): Modify V j as a temporary matrix V̂ j based on the following two
cases.

Case(a) : [Sj ]κ,2 < N or [Sj ]κ,2 = N, [V j ]ι+1,1 = [Sj ]κ,1.
Case(b) : [Sj ]κ,2 ≥ N and the index ι guarantees [V j ]ι+1,1 > [Sj ]κ,1.

In Case (a), we define V̂ j = V j . In Case (b), we define V̂ j as a (τ+1)×2
matrix such that

[V̂ j ]ℓ,1 = [V j ]ℓ,1, [V̂ j ]ℓ,2 = [V j ]ℓ,2, ℓ = 1, · · · , ι
[V̂ j ]ι+1,1 = [Sj ]κ,1, [V̂ j ]ι+1,2 = [V j ]ι,2

[V̂ j ]ℓ+1,1 = [V j ]ℓ,1, [V̂ j ]ℓ+1,2 = [V j ]ℓ,2, ℓ = ι+ 1, · · · , τ.

Step (iii): Obtain V j+1 by modifying V̂ j based on the following three cases.

Case (i): [V̂ j ]ℓ∗,1 < ∗ < [V̂ j ]ℓ∗+1,1 for some ℓ∗ ∈ {1, · · · , ι− 1};
Case (ii): ∗ = [V̂ j ]ℓ∗,1 for some ℓ∗ ∈ {1, · · · , ι};
Case (iii): ∗ > [V̂ j ]ι,1.

Let τ̂ be the number of rows of V̂ j . In Case (i), define V j+1 as a (τ̂+1)×2
matrix such that

[V j+1]ℓ,1 = [V̂ j ]ℓ,1, [V j+1]ℓ,2 = [V̂ j ]ℓ,2, ℓ = 1, · · · , ℓ∗
[V j+1]ℓ∗+1,1 = ∗, [V j+1]ℓ∗+1,2 = 1+ [V̂ j ]ℓ∗,2

[V j+1]ℓ+1,1 = [V̂ j ]ℓ,1, [V j+1]ℓ+1,2 = 1 + [V̂ j ]ℓ,2, ℓ = ℓ∗ + 1, · · · , ι
[V j+1]ℓ+1,1 = [V̂ j ]ℓ,1, [V j+1]ℓ+1,2 = [V̂ j ]ℓ,2, ℓ = ι+ 1, · · · , τ̂ .

In Case (ii), define V j+1 as a τ̂ × 2 matrix such that

[V j+1]ℓ,1 = [V̂ j ]ℓ,1, [V j+1]ℓ,2 = [V̂ j ]ℓ,2, ℓ = 1, · · · , ℓ∗ − 1

[V j+1]ℓ,1 = [V̂ j ]ℓ,1, [V j+1]ℓ,2 = 1 + [V̂ j ]ℓ,2, ℓ = ℓ∗, · · · , ι
[V j+1]ℓ,1 = [V̂ j ]ℓ,1, [V j+1]ℓ,2 = [V̂ j ]ℓ,2, ℓ = ι+ 1, · · · , τ̂ .
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In Case (iii), define V j+1 as a (τ̂ + 1)× 2 matrix such that

[V j+1]ℓ,1 = [V̂ j ]ℓ,1, [V j+1]ℓ,2 = [V̂ j ]ℓ,2, ℓ = 1, · · · , ι
[V j+1]ι+1,1 = ∗, [V j+1]ι+1,2 = 1 + [V̂ j ]ι,2

[V j+1]ℓ+1,1 = [V̂ j ]ℓ,1, [V j+1]ℓ+1,2 = [V̂ j ]ℓ,2, ℓ = ι+ 1, · · · , τ̂ .

6.3. Complexity of Data Processing and Memory. It can be seen that the
memory requirement and the computation due to data processing are determined by
the sizes of matrices Sj and V j . To quantify the complexity, we have the following
results.

Theorem 5. For any j, the following statements hold true:

(I): The number of rows of matrix Sj is no more than N ;

(II): The expected number of rows of matrix V j is no greater than

(6.4) 1 +N

[
Pe(a) + 2d

∫ a

a
~

Pe(x)

x
dx

]
≤ 1 +NPe(a) (1 + 2d ln ~)

where Pe(x) = 1−miny∈[ a
λ
, x] P(y), ∀x ∈

[
a
λ
, a
]
and

~ = max

(
min

(
λ,

a

ρ0

)
, 1

)

with ρ0 = sup{r | P(r) = 1}.

See Appendix F for a proof. We now revisit the robustness analysis problem
discussed in Remark 1 of Section 4 from the perspective of memory complexity.
Assume that each data record (ki, ni) (or each row of V j) occupies 4 bytes of
computer internal memory (RAM). As illustrated in Section 5.2, when using the
conventional data structure, it takes 13G (giga bytes) of RAM to save the data
and visualize the results. On the other hand, in our new algorithm, if the smallest
proportion is p∗ = min

r∈[ aλ ,a] P(r) > 0.999 and ~ < 3
2 , the RAM requirement will

be equivalent to

4× [1 + (1− p∗) (1 + 2d ln ~)N ]

= 4×
[
1 + (1 − 0.999)×

(
1 + 2× 1800× ln

3

2

)
× 106

]

< 6.2× 106 bytes ≈ 6.2 M bytes.

It can be seen that such requirement of memory is extremely low as compared to
that of the conventional method. Theorem 5 also reveals that the complexity of
data processing is very low.

6.4. Confidence Band. To be useful, any numerical techniques should provide
a method for error assessment. Monte Carlo simulation is no exception. The
following results allows us to construct confidence band for the robustness curve.
Such post-experimental statistical inference can remedy the conservatism of a priori

choice of sample size N based on the Chernoff bound. In order to overcome the
computational complexity of the Clopper-Pearson’s confidence interval [9], we have
developed new methods to facilitate the construction of the confidence band.
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Theorem 6. Let δ ∈ (0, 1). Let L(k) = k
N

+ 3
4

1− 2k
N

−
√

1+4θ k(1− k
N

)

1+θN
and U(k) =

k
N

+ 3
4

1− 2k
N

+
√

1+4θ k(1− k
N

)

1+θN
with θ = 9

8 ln 2
δ

. Let ζ = r−ri
ri+1−ri

. Let

Ki = N − v(i,n), i = 1, · · · ,m.

Let ς = 1 − g(r⋆)
ri+1−ri

. Define P(r) = ζ U(Ki) + (1 − ζ) U(Ki+1) + ς and P(r) =

ζ L(Ki) + (1− ζ) L(Ki+1)− ς. Then

Pr{P(r) < P(r) < P(r), ∀r ∈ [ri, ri+1]} > 1− δ.

See Appendix G for a proof. The family of intervals [P(r), P(r)], r ∈ [a/λ, a] is
referred to as the confidence band. It is important to note that the confidence band
can be efficiently constructed by making use of the piece-wise constant property
of v(i,n). It can be shown that the computational complexity of constructing the
confidence band is also absolutely bounded.

7. Conclusion

It is possible to make a case for the statement that the probabilistic robust-
ness analysis is essentially the study of the robustness function, especially about its
probabilistic implications, efficient evaluation and computational complexity. We
have addressed these issues in this paper. In particular, we have developed ran-
domized algorithms which offer more insights for system robustness. We rigorously
show that, in both aspects of computer running time and memory requirement, the
complexity of such randomized algorithms is not only linear in the dimension of
uncertainty space, but also surprisingly low. While the complexity of conventional
method grows linearly with the number of grid points and the error due to inter-
polation is not well controlled, our techniques completely resolve such issues. In
short, our method guarantees accuracy and efficiency.

Appendix A. Proof of Theorem 1

We first establish a basic inequality that will be used to prove the theorem.

Lemma 1. For any x > 1,
1

x
+ lnx > 1.

Proof. Let

f(x) =
1

x
+ lnx.

Then f(1) = 1 and
d f(x)

dx
=

x− 1

x2
> 0, ∀x > 1.

It follows that f(x) > 1, ∀x > 1. ✷

Now we are in the position to prove Theorem 1. Observing that
(
rm
r1

)d

=

m−1∏

i=1

(
ri+1

ri

)d

,

we have

ln

(
rm
r1

)d

=

m−1∑

i=1

ln

(
ri+1

ri

)d

.
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Therefore,

m−1∑

i=1

(
ri

ri+1

)d

+ ln

(
rm
r1

)d

=

m−1∑

i=1




1
(

ri+1

ri

)d + ln

(
ri+1

ri

)d


 .

Since
(

ri+1

ri

)d
> 1, i = 1, · · · ,m− 1, it follows from Lemma 1 that

1
(

ri+1

ri

)d + ln

(
ri+1

ri

)d

> 1, i = 1, · · · ,m− 1.

Hence,
m−1∑

i=1

(
ri

ri+1

)d

+ ln

(
rm
r1

)d

> m− 1,

or equivalently,

m−
m−1∑

i=1

(
ri

ri+1

)d

< 1 + ln

(
rm
r1

)d

= 1 + d lnλ.

Finally, by Theorem 1 of [6] and the definition of meq, we have

meq = m−
m−1∑

i=1

(
ri

ri+1

)d

< 1 + d lnλ.

Appendix B. Proof of Theorem 2

To prove the theorem, we need some preliminary results. It is derived in [2] that∣∣∣dP(r)dr

∣∣∣ < 2d
r

when P(.) is differentiable. The following lemma indicates that the

bound on the rate of variation of P(.) can be much tighter.

Lemma 2. For arbitrary robustness requirement,

|P(r +∆r) − P(r)| ≤ 1−
(
1 +

∆r

r

)−d

<
d

r
∆r

for any r > 0 and any ∆r > 0.

Proof. Let Qr ⊆ Br be the set such that the robustness requirement is satisfied.
Let

I1 =
vol(Qr+∆r)

vol(Br+∆r)
− vol(Qr)

vol(Br+∆r)
, I2 =

vol(Qr)

vol(Br+∆r)
− vol(Qr)

vol(Br)
.

Let “\” denote the operation of set minus. Observing thatQr+∆r\Qr ⊆ Br+∆r\Br,
we have vol(Qr+∆r) − vol(Qr) ≤ vol(Br+∆r) − vol(Br). Using this fact and the
identity vol(Br) = rd vol(B1), we have

0 ≤ I1 ≤
vol(Br+∆r)− vol(Br)

vol(Br+∆r)
= 1−

(
1 +

∆r

r

)−d

and

−
[
1−

(
1 +

∆r

r

)−d
]
≤ −vol(Qr)

vol(Br)
vol(Br+∆r)− vol(Br)

vol(Br+∆r)
= I2 ≤ 0.
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Therefore, |P(r +∆r)− P(r)| = |I1 + I2| ≤ 1 −
(
1 + ∆r

r

)−d
< d

r
∆r where the last

inequality follows from inequality 1 −
(
1 + x

r

)−d
< dx

r
, ∀x > 0. To prove this

inequality, we can define function h(x)
def
= 1 −

(
1 + x

r

)−d − dx
r
, x > 0 and check

that h(0) = 0 and ∂h(x)
∂x

= d
r

[(
1 + x

r

)−(d+1) − 1
]
< 0, ∀x > 0.

✷

We are now in the position to prove the theorem. It can be shown that

|P(r) − P
∗(r)| =

∣∣∣∣
(ri+1 − r)[P(r) − P(ri)] + (r − ri)[P(r) − P(ri+1)]

ri+1 − ri

∣∣∣∣

≤ (ri+1 − r)|P(r) − P(ri)|+ (r − ri)|P(r) − P(ri+1)|
ri+1 − ri

.(B.1)

By Lemma 2 and inequality (B.1), we have

|P(r)− P
∗(r)| ≤

(ri+1 − r)

[
1−

(
r
ri

)−d
]
+ (r − ri)

[
1−

( ri+1

r

)−d
]

ri+1 − ri

= 1− g(r)

ri+1 − ri
.

Note that
∂g(r)

∂r
= Φ(r) −Ψ(r)

where

Φ(r) =
(ri+1

r

)−d [
1 +

(
1− ri

r

)
d
]
, Ψ(r) =

(
r

ri

)−d [
1 +

(ri+1

r
− 1
)
d
]
.

It can be verified that

Φ(ri) =

(
ri+1

ri

)−d

< 1, Ψ(ri) = 1 +

(
ri+1

ri
− 1

)
d > 1,

∂g(r)

∂r

∣∣∣∣
r=ri

< 0,

Φ(ri+1) = 1 +

(
1− ri

ri+1

)
d > 1, Ψ(ri+1) =

(
ri+1

ri

)−d

< 1,
∂g(r)

∂r

∣∣∣∣
r=ri+1

> 0.

It can be checked that Φ(r) is a monotone increasing function of r and that Ψ(r) is a

monotone decreasing function of r. Hence, ∂g(r)
∂r

is a monotone increasing function

of r. Moreover, there exists an unique r⋆ ∈ (ri, ri+1) such that ∂g(r)
∂r

∣∣∣
r=r⋆

= 0, i.e.,

Φ(r⋆) = Ψ(r⋆). Furthermore, g(r) is a convex function of r. Consequently,

min
r∈[ri, ri+1]

g(r) = g(r⋆)

and we have shown

|P(r) − P
∗(r)| ≤ 1− g(r⋆)

ri+1 − ri
∀r ∈ [ri, ri+1].

Since ∂g(r)
∂r

is a monotone increasing function of r, we can compute r⋆ by a bisection
search over interval (ri, ri+1).
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By Lemma 2 and inequality (B.1), we have

|P(r) − P
∗(r)| ≤

(ri+1 − r)(r − ri)
d
ri

+ (r − ri)(ri+1 − r)d
r

ri+1 − ri

≤
(ri+1 − r)(r − ri)

d
ri

+ (r − ri)(ri+1 − r) d
ri

ri+1 − ri

≤ 2d

ri(ri+1 − ri)
max

r∈[ri,ri+1]
(ri+1 − r)(r − ri)

=
2d

ri(ri+1 − ri)

(ri+1 − ri)
2

4

=
d(ri+1 − ri)

2ri
.

Appendix C. Proof of Theorem 3

By Theorem 2, |P(r) − P
∗(r)| ≤ d (ri+1−ri)

2ri
, ∀r ∈ [ri, ri+1]. Thus, it suffices to

show d (ri+1−ri)
2ri

< ǫ, i.e.,

(C.1)
ri+1

ri
< 1 +

2ǫ

d
.

By definition (4.1), for i = 1, · · · ,m− 1,

ri+1

ri
=

a− (m−i−1)(λ−1)
(m−1)λ a

a− (m−i)(λ−1)
(m−1)λ a

= 1 +
λ− 1

m− 1 + (λ− 1)(i− 1)

≤ 1 +
λ− 1

m− 1
.

By virtue of (C.1), to guarantee that the gridding error is less than ǫ, it suffices to

ensure 1 + λ−1
m−1 < 1 + 2ǫ

d
, i.e., m > 1 + d(λ−1)

2ǫ . Hence, it suffices to have

m ≥ 2 +

⌊
(λ− 1)d

2ǫ

⌋
.

It can be verified that
ri

ri+1
= 1− 1

m−1
λ−1 + i

, i = 1, · · · ,m− 1.

By Theorem 1 of [6], the sample reuse factor is given by

Freuse =
m

m−
∑m−1

i=1

(
ri

ri+1

)d

=
m

m−∑m−1
i=1

(
1− 1

m−1
λ−1 +i

)d
.

Therefore,

meq(ǫ) =
m

Freuse
= m−

m−1∑

i=1

(
1− 1

m−1
λ−1 + i

)d

.
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Appendix D. Proof of Theorem 4

By virtue of (4.2), we have ri+1

ri
= λ

1
m−1 . Hence, by (C.1), it suffices to show

λ
1

m−1 < 1 + 2ǫ
d
, which can be reduced to m > 1 + lnλ

ln(1+ 2ǫ
d )

. This inequality is

equivalent to m ≥ 2+

⌊
lnλ

ln(1+ 2ǫ
d )

⌋
. By equation (3.1) and Theorem 1 of [6], we have

E[n] =
[
m− (m− 1)

(
1
λ

) d
m−1

]
N and hence obtain meq(ǫ). Note that

Freuse =
m

meq(ǫ)
>

m

1 + d lnλ
=

2 +

⌊
lnλ

ln(1+ 2ǫ
d )

⌋

1 + d lnλ
>

lnλ

ln(1+ 2ǫ
d )

1 + d lnλ
.

Making use of the inequality ln(1 + x) < x, ∀x > 0, we have ln
(
1 + 2ǫ

d

)
< 2ǫ

d
.

Therefore,

Freuse >

lnλ
2ǫ
d

1 + d lnλ
=

1

2ǫ

(
1− 1

1 + d lnλ

)
.

Appendix E. Proof of Theorem 5

Proof of statement (I): Obviously, [Sj ]1,2 ≥ 1, [Sj ]κ,2 ≤ N . From the
rules of sampling, we can perform induction with respect to j and have
[Sj ]ℓ+1,2 − [Sj ]ℓ,2 ≥ 1, ℓ = 1, · · · , κ− 1. Observing that

[Sj ]κ,2 = [Sj ]1,2 +

κ−1∑

ℓ=1

(
[Sj ]ℓ+1,2 − [Sj ]ℓ,2

)

≥ 1 +

κ−1∑

ℓ=1

(
[Sj ]ℓ+1,2 − [Sj ]ℓ,2

)

≥ 1 + κ− 1

= κ,

we have κ ≤ [Sj]κ,2 ≤ N .
Proof of statement (II): We need some preliminary results.

Lemma 3. Let 1 ≤ i ≤ m− 1. Then∣∣∣∣∣

[
1−

(
ri

ri+1

)d
]
− d(ri+1 − ri)

ri+1

∣∣∣∣∣ ≤
d(d− 1)

2

(
ri+1 − ri
ri+1

)2

.

Proof. Note that∣∣∣∣∣

[
1−

(
ri

ri+1

)d
]
− d(ri+1 − ri)

ri+1

∣∣∣∣∣ =

∣∣∣∣∣

(
ri

ri+1

)d

−
(
1− d(ri+1 − ri)

ri+1

)∣∣∣∣∣

=
∣∣∣(1− t)d − (1− d t)

∣∣∣

where t = ri+1−ri
ri+1

. It can be checked that
∣∣∣(1− t)

d − (1− d t)
∣∣∣ = d(d−1)

2 t2

for d = 1, 2. For d ≥ 3, by Taylor’s expansion formula, there exists ξ ∈ (0, t)
such that

(1− t)d = 1− d t+
d(d − 1)

2
(1 − ξ)d−2 t2.
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Observing that 0 < t < 1 since 0 < ri < ri+1, we hence have 0 < (1 −
ξ)d−2 < 1 and

∣∣∣(1− t)
d − (1− d t)

∣∣∣ < d(d−1)
2 t2 for d ≥ 3. Therefore, for

any d ≥ 1,

∣∣∣∣∣

[
1−

(
ri

ri+1

)d
]
− d(ri+1 − ri)

ri+1

∣∣∣∣∣ ≤
d(d− 1)

2
t2 =

d(d− 1)

2

(
ri+1 − ri
ri+1

)2

.

✷

Lemma 4. Define the maximum gap between grid points as

̟ = max
1≤i≤m−1

(ri+1 − ri).

Then

m−1∑

i=1

(
ri+1 − ri
ri+1

)2

<
λ(λ− 1)̟

a
.

Proof. Note that

m−1∑

i=1

(
ri+1 − ri
ri+1

)2

≤ ̟

m−1∑

i=1

ri+1 − ri
r2i+1

< ̟

m−1∑

i=1

ri+1 − ri(
a
λ

)2 .

By successive cancelation,

m−1∑

i=1

(ri+1 − ri) = rm − r1 = a− a

λ
.

Hence,

m−1∑

i=1

(
ri+1 − ri
ri+1

)2

< ̟

m−1∑

i=1

ri+1 − ri(
a
λ

)2 = ̟
a− a

λ(
a
λ

)2 =
λ(λ− 1)̟

a
.

✷

Lemma 5. The expected number of rows of the matrix of violations V n is

no greater than 1 +NPe(a) + 2N
∑m−1

j=1 Pe(rj)

[
1−

(
rj

rj+1

)d]
.

Proof. Let Xj
1 , · · · , Xj

nj
be the samples generated from uncertainty set with

radius rj . Let Y j
i = I(Xj

i ), i = 1, · · · ,nj . By the principle of sam-
ple reuse, the value of nj depends only on the samples generated from
uncertainty sets with radius rk, j + 1 ≤ k ≤ m. Consequently, event
{nj = ν} is independent of event {Y j

i = 1} and Pr{Y j
i = 1, nj = ν} =

Pr{Y j
i = 1}Pr{nj = ν}. By the definitions of Y j

i and Pe(.), we have
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Pr{Y j
i = 1} = 1− P(rj) ≤ Pe(rj). Therefore,

E

[
nj∑

i=1

Y j
i

]
=

N∑

ν=1

ν∑

i=1

Pr{Y j
i = 1, nj = ν}

=

N∑

ν=1

ν∑

i=1

Pr{Y j
i = 1}Pr{nj = ν}

≤
N∑

ν=1

ν Pe(rj) Pr{nj = ν}

= Pe(rj) E[nj ]

for j = 1, · · · ,m. We now consider V n with n =
∑m

i=1 ni. By the mecha-
nism of the sample reuse algorithms, for j = 1, · · · ,m−1, every new sample
from uncertainty set with radius rj at most creates 2Y j

i , i = 1, · · · ,nj new
rows for the matrix of violations (see Section 6.2.2). Note that X1 create
at most 1 + Y m

1 rows for V 1. Every new sample from uncertainty set with
radius rm at most creates Y m

i , i = 2, · · · ,nm new rows for the matrix of
violations. Hence

E[The number of rows of matrix V n]

≤ 1 + E

[
nm∑

i=1

Y m
i

]
+ 2 E



m−1∑

j=1

nj∑

i=1

Y j
i




≤ 1 + Pe(rm) E[nm] + 2

m−1∑

j=1

Pe(rj) E[nj ].

By Lemma 6 of [6], we have

(E.1) E[nj ] =

[
1−

(
rj

rj+1

)d
]
N, j = 1, · · · ,m− 1.

By (E.1) and using the fact that E[nm] = N, Pe(rm) = Pe(a), we have

E[The number of rows of matrix V n] ≤ 1+NPe(a)+2N

m−1∑

j=1

Pe(rj)

[
1−

(
rj

rj+1

)d
]
.

✷

Lemma 6. For any grid scheme,

∣∣∣∣∣

m−1∑

i=1

Pe(ri)

[
1−

(
ri

ri+1

)d
]
− d

m−1∑

i=1

Pe(ri+1)(ri+1 − ri)

ri+1

∣∣∣∣∣

<
d(d− 1)λ(λ − 1)̟

2a
+

λd

a

m−1∑

i=1

Pe(ri+1)(ri+1 − ri)−
λd

a

m−1∑

i=1

Pe(ri)(ri+1 − ri).
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Proof. Note that
∣∣∣∣∣

m−1∑

i=1

Pe(ri)

[
1−

(
ri

ri+1

)d
]
− d

m−1∑

i=1

Pe(ri+1)(ri+1 − ri)

ri+1

∣∣∣∣∣

≤
m−1∑

i=1

∣∣∣∣∣Pe(ri)

[
1−

(
ri

ri+1

)d
]
− d

Pe(ri)(ri+1 − ri)

ri+1

∣∣∣∣∣

+

m−1∑

i=1

∣∣∣∣d
Pe(ri)(ri+1 − ri)

ri+1
− d

Pe(ri+1)(ri+1 − ri)

ri+1

∣∣∣∣

<

m−1∑

i=1

∣∣∣∣∣

[
1−

(
ri

ri+1

)d
]
− d(ri+1 − ri)

ri+1

∣∣∣∣∣

+
λd

a

m−1∑

i=1

[Pe(ri+1)(ri+1 − ri)− Pe(ri)(ri+1 − ri)]

where the last inequality follows from the facts that 0 ≤ Pe(ri) ≤ Pe(ri+1) ≤
1 and ri+1 > a

λ
. Making use of Lemma 3 and Lemma 4, we have

∣∣∣∣∣

m−1∑

i=1

Pe(ri)

[
1−

(
ri

ri+1

)d
]
− d

m−1∑

i=1

Pe(ri+1)(ri+1 − ri)

ri+1

∣∣∣∣∣

≤ d(d− 1)

2

m−1∑

i=1

(
ri+1 − ri
ri+1

)2

+
λd

a

m−1∑

i=1

Pe(ri+1)(ri+1 − ri)−
λd

a

m−1∑

i=1

Pe(ri)(ri+1 − ri)

≤ d(d− 1)λ(λ − 1)̟

2a
+

λd

a

m−1∑

i=1

Pe(ri+1)(ri+1 − ri)−
λd

a

m−1∑

i=1

Pe(ri)(ri+1 − ri).

✷

Lemma 7. For a set of grid points G = {rℓ | 1 ≤ ℓ ≤ m} with a
λ
= r1 <

r2 < · · · < rm = a, define function ℵ(.) such that

ℵ(G) =
m−1∑

ℓ=1

Pe(rℓ)

[
1−

(
rℓ

rℓ+1

)d
]
.

Then for any two sets of grid points G1 and G2 such that G1 ⊂ G2,

ℵ(G1) ≤ ℵ(G2).

Proof. Consider two sequences of grid points G1 = {rℓ | 1 ≤ ℓ ≤ m} and
G2 = {r̂ℓ | 1 ≤ ℓ ≤ m+ 1} such that

a

λ
= r1 < r2 < · · · < rm = a,

a

λ
= r̂1 < r̂2 < · · · < r̂m+1 = a,

and that G2 is obtained from G1 by adding a grid point r̂i+1 to interval
(ri, ri+1) where 1 ≤ i ≤ m − 1, i.e., r̂j = rj , j = 1, · · · , i and r̂j+1 =
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rj , j = i+ 1, · · · ,m. By the definition of function ℵ(.), we have

ℵ(G2)− ℵ(G1)

=

m∑

τ=1

Pe(r̂τ )

[
1−

(
r̂τ

r̂τ+1

)d
]
−

m−1∑

τ=1

Pe(rτ )

[
1−

(
rτ

rτ+1

)d
]

= Pe(ri)

[
1−

(
ri

r̂i+1

)d
]
+ Pe(r̂i+1)

[
1−

(
r̂i+1

ri+1

)d
]
− Pe(ri)

[
1−

(
ri

ri+1

)d
]
.

By virtue of the fact that Pe(r̂i+1) ≥ Pe(ri), we have

ℵ(G2)− ℵ(G1)

≥ Pe(ri)

[
1−

(
ri

r̂i+1

)d
]
+ Pe(ri)

[
1−

(
r̂i+1

ri+1

)d
]
− Pe(ri)

[
1−

(
ri

ri+1

)d
]

= Pe(ri)

[
1−

(
ri

r̂i+1

)d

−
(
r̂i+1

ri+1

)d

+

(
ri

ri+1

)d
]
.

Recall that ri < r̂i+1 < ri+1, we have

1−
(

ri
r̂i+1

)d

−
(
r̂i+1

ri+1

)d

+

(
ri

ri+1

)d

=
r̂di+1 − rdi

r̂di+1

− r̂di+1 − rdi
rdi+1

=
(r̂di+1 − rdi )(r

d
i+1 − r̂di+1)

r̂di+1r
d
i+1

> 0.

It follows that ℵ(G2)− ℵ(G1) ≥ 0.
✷

We are now in the position to prove statement (II) of the theorem. For
any set of grid points, we can reduce the maximal gap between grid points
by adding grid points. Every new grid point is placed at the middle of
one of the previous intervals which possess the largest width in order to
ensure that, as more grid points added, the maximal gap of grid points
tends to zero. In this process, we create a series of nested sets of grid



26 XINJIA CHEN, KEMIN ZHOU AND JORGE L. ARAVENA

points Gk, k = 1, 2, · · · ,∞ such that G1 ⊂ G2 ⊂ G3 ⊂ · · · . Note that
∣∣∣∣∣

m−1∑

i=1

Pe(ri)

[
1−

(
ri

ri+1

)d
]
− d

∫ a

a
λ

Pe(x)

x
dx

∣∣∣∣∣

≤
∣∣∣∣∣

m−1∑

i=1

Pe(ri)

[
1−

(
ri

ri+1

)d
]
− d

m−1∑

i=1

Pe(ri+1)(ri+1 − ri)

ri+1

∣∣∣∣∣

+

∣∣∣∣∣d
m−1∑

i=1

Pe(ri+1)(ri+1 − ri)

ri+1
− d

∫ a

a
λ

Pe(x)

x
dx

∣∣∣∣∣

≤ d(d− 1)λ(λ − 1)̟

2a
+

λd

a

m−1∑

i=1

Pe(ri+1)(ri+1 − ri)(E.2)

−λd

a

m−1∑

i=1

Pe(ri)(ri+1 − ri)

+d

∣∣∣∣∣

m−1∑

i=1

Pe(ri+1)(ri+1 − ri)

ri+1
−
∫ a

a
λ

Pe(x)

x
dx

∣∣∣∣∣

where inequality (E.2) follows from Lemma 6. By Lemma 2, P(.) is a

continuous function with respect to r. Consequently, Pe(x)
x

is Riemann

integrable over interval
[
a
λ
, a
]
and

lim
̟→0

m−1∑

i=1

Pe(ri+1)(ri+1 − ri)

ri+1
=

∫ a

a
λ

Pe(x)

x
dx.

Moreover, since Pe(x) is Riemann integrable, we have

lim
̟→0

m−1∑

i=1

Pe(ri+1)(ri+1 − ri) = lim
̟→0

m−1∑

i=1

Pe(ri)(ri+1 − ri) =

∫ a

a
λ

Pe(x)dx.

Hence, the right hand side of inequality (E.2) can be made arbitrarily small
by successively cutting the gap between grid points in half with new grid
points. This proves that

lim
k→∞

ℵ(Gk) = d

∫ a

a
λ

Pe(x)

x
dx.

On the other hand, by Lemma 7, we have ℵ(G1) ≤ ℵ(G2) ≤ ℵ(G3) ≤
· · · . Combining the convergency and the monotone property of sequence

{ℵ(Gk)}∞k=1, we can conclude that ℵ(G) ≤ d
∫ a

a
λ

Pe(x)
x

dx for any set of grid

points G. By Lemma 5, the expected number of rows of the matrix of
violations V n is no greater than

1 +NPe(a) + 2Nℵ(G) ≤ 1 +NPe(a) + 2Nd

∫ a

a
λ

Pe(x)

x
dx

= 1 +NPe(a) + 2Nd

∫ a

a
~

Pe(x)

x
dx
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for any G. Such bound applies to any V j because the number of rows of V j

is non-decreasing with respect to j. Finally, the inequality of (6.4) can be
proved by making use of the observation that Pe(x) ≤ Pe(a), ∀x ∈

[
a
~
, a
]
.

Appendix F. Proof of Theorem 6

We need the following lemma, which has recently been obtained in [7].

Lemma 8. Let Xi, i = 1, · · · , N be i.i.d. Bernoulli random variables such that

Pr{Xi = 1} = 1− Pr{Xi = 0} = PX > 0. Let K =
PN

i=1 Xi

N
. Then

Pr {L(K) < PX < U(K)} > 1− δ.

Applying Lemma 8, we have Pr{L(Ki+1) < P(ri+1) < U(Ki+1)} > 1 − δ
2 and

Pr{L(Ki) < P(ri) < U(Ki)} > 1− δ
2 . Hence by the Bonferroni’s inequality,

Pr{L(Ki+1) < P(ri+1) < U(Ki+1), L(Ki) < P(ri) < U(Ki)} > 1− δ.

By the definitions of P∗(r), P(r) and P(r), we have that event {L(Ki+1) < P(ri+1) <
U(Ki+1), L(Ki) < P(ri) < U(Ki)} implies event {P(r)+ς < P

∗(r) < P(r)−ς, ∀r ∈
[ri, ri+1]}. Hence, Pr{P(r) + ς < P

∗(r) < P(r) − ς, ∀r ∈ [ri, ri+1]} > 1 − δ. By
Theorem 2 and the gridding scheme, Pr{|P∗(r) − P(r)| < ς, ∀r ∈ [ri, ri+1]} = 1.
Applying Bonferroni’s inequality, we have

(F.1) Pr{P(r) + ς < P
∗(r) < P(r)− ς, |P∗(r)− P(r)| < ς, ∀r ∈ [ri, ri+1]} > 1− δ.

Finally, the theorem is proved by observing that the left hand side of inequality
(F.1) is no greater than Pr{P(r) < P(r) < P(r), ∀r ∈ [ri, ri+1]}.
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