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Abstract

We consider the random Schrödinger equation as it arises in the paraxial regime for wave
propagation in random media. In the white noise limit it becomes the Itô-Schrödinger stochastic
partial differential equation (SPDE) which we analyze here in the high frequency regime. We also
consider the large lateral diversity limit where the typical width of the propagating beam is large
compared to the correlation length of the random medium. We use the Wigner transform of the
wave field and show that it becomes deterministic in the large diversity limit when integrated
against test functions. This is the self-averaging property of the Wigner transform. It follows
easily when the support of the test functions is of the order of the beam width. We also show with
a more detailed analysis that the limit is deterministic when the support of the test functions
tends to zero but is large compared to the correlation length.
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1 Introduction

In the study of wave propagation in random media, the parabolic or paraxial approximation is used
often when waves propagate mostly in one direction and there is little backscattering [25]. The
scattering problem is reduced to an initial value problem in a random medium in which distance
along the direction of propagation plays the role of time. This is a very significant simplification
that has been adopted in many physical applications [25, 26, 27, 22]. The study of waves in the
parabolic approximation is also very useful in the analysis of time reversal and imaging in random
media [9, 5, 6, 10, 11]. Self-averaging is the property of some physical quantities to be statistically
stable, that is, independent of the random fluctuations in the medium properties. For this reason,
self-averaging functionals of the wave field play an important role in imaging and time reversal.
They were analyzed in the regime of the parabolic approximation in [5, 23, 2] and in the random
geometrical optics regime in [4]. In this paper we extend and simplify the analysis in [23]. We show
that in the parabolic approximation, in a variety of scaling regimes local averages of the wave field
in phase space are self-averaging when there is substantial lateral diversity. This means that the
correlation length of the inhomogeneities is small compared to the width of the propagating beam.

In the parabolic approximation the wave equation reduces to the Schrödinger equation in a
random medium. When the propagation distance is large compared to the correlation length, then
the random potential in the Schrödinger equation tends to white noise in the propagation direction
[12, 1, 15, 16]. We begin here with this white noise, Itô-Schrödinger equation. In Section 2 we
formulate the problem and introduce the scaling. In Section 3 we introduce the Wigner transform of
the wave field and state the main results. They characterize the behavior of the Wigner transform
in the high frequency and large diversity limits. In Section 4 we prove the weak convergence of
the Wigner transforms in law, in the various asymptotic limits. This is done in a simple way
using infinitesimal generators, which is a general approach that identifies the limit problem in an
efficient way. In Section 5 we extend the analysis of weak convergence in law to test functions with
asymptotically diminishing support. Such results were also obtained in [2] using convergence of the
second moments but the rate of diminishing support is faster in the analysis of Section 5.
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2 The random Schrödinger equation

2.1 Characteristic scales

We consider wave propagation in a random medium in the regime when the paraxial approximation
is valid and waves propagate over distances that are much larger than both the typical wave length
and the correlation length of the random inhomogeneities. We introduce several characteristic scales
in order to identify the regimes for the asymptotic analysis that we want to carry out. They are

• Lz, the characteristic distance in the direction of propagation.

• Lx, the length scale in the directions transverse to the direction of propagation. This is
typically taken to be the width of the propagating beam.

• k0 = 2π/λ0, the central wavenumber corresponding to the central wavelength λ0.

• l, the correlation length of the random medium. It characterizes the dominant spatial scale of
the random fluctuations.

• σ0, the dimensionless standard deviation of the random fluctuations in the medium.

In the asymptotic regimes that we consider here Lz and Lx are large compared to l and λ0, and σ0

is small.

2.2 The parabolic approximation

We consider the wave equation in a random medium

1
c2(~x)

∂2u

∂t2
−4u = 0 , t > 0 , ~x ∈ Rd+1 , (2.1)

with d = 1, 2 and the local wave speed

c−2(z,x) = c−2
0

[
1 + σ0µ

(z
l
,
x
l

)]
.

Here z and x ∈ Rd are, respectively, the coordinates along and transverse to the direction of prop-
agation, and ~x = (z,x). The random function µ models the fluctuations in the propagation speed.
Wave fields propagating mainly in the z direction can be written in the form

u(t,x, z) =
1
2π

∫
eiω(z/c0−t)ψ(z,x;ω/c0)dω , (2.2)

where the complex amplitude ψ(z,x; k) satisfies the Helmholtz equation

2ikψz + ∆xψ + k2(n2 − 1)ψ = −ψzz. (2.3)

Here k = ω/c0 is the wavenumber and n(x, z) = c0/c(x, z) is the random index of refraction relative
to a reference speed c0. The fluctuations of the refraction index have the form

n2(x, z)− 1 = σ0µ
(z
l
,
x
l

)
. (2.4)

The fluctuations are modeled by a stationary random field with mean zero, variance σ2
0 and corre-

lation length l. The normalized and dimensionless covariance is given by

R(z,x) = E{µ(z + z′,x + x′)µ(z′,x′)}. (2.5)

3



We obtain the dimensionless form of (2.3) by introducing dimensionless variables by x = Lxx′,
z = Lzz

′, k = k0k
′ and rewriting it as

2ik
∂ψ

∂z
+

Lz

k0L2
x

∆xψ + k2k0Lzσ0µ

(
zLz

l
,
xLx

l

)
ψ = − 1

Lzk0

∂2ψ

∂z2
, (2.6)

after dropping the primes. We identify now the following three, usually small, dimensionless param-
eters in the problem:

• ε =
l

Lz
, the ratio of the correlation length to the propagation distance,

• δ =
l

Lx
, the ratio of the correlation length to the transverse length scale, which is usually the

beam width,

• θ =
Lz

k0L2
x

=
λ0Lz

2πL2
x

, the Fresnel number, the ratio of the diffraction focal spot of the beam to

its width.

In terms of these parameters (2.6) has the form

2ikψz + θ∆xψ +
k2σ0δ

2

θε2
µ(
z

ε
,
x
δ
)ψ = −θε

2

δ2
ψzz. (2.7)

We will assume here that ε is the smallest parameter in the problem. It then follows formally, but
it is quite difficult to prove, that the ψzz term on the right in (2.7) is a lower order term and can be
neglected. The parabolic wave equation, or the random Schrödinger equation, is what results when
the right side of (2.7) is zero. The validity of this approximation for underwater sound propagation
is discussed in [25] and a more recent analysis is found in [1]. We will thus consider the initial value
problem for the random Schrödinger equation

2ikψz + θ∆xψ +
k2σδ

θ
√
ε
µ

(z
ε
,
x
δ

)
ψ = 0 , z > 0 (2.8)

with ψ at z = 0 given and where

σ =
σ0δ

ε3/2
.

This scaled noise strength parameter will be assumed to be independent of ε and δ as these param-
eters tend to zero in the asymptotic analysis that follows.

2.3 The white noise limit

We are interested in the behavior of the solution of (2.8) in the limit ε→ 0 while δ and θ are fixed.
This means that ε is the smallest of the three parameters ε, θ, δ in (2.8). We note that under suitable
conditions on the random field µ the central limit theorem holds and

lim
ε→0

1√
ε

∫ z

0
µ

(s
ε
,x

)
ds = B(z,x),

weakly in law, where B is a Brownian random field parameterized by x. This means that for any
test function h(x)

1√
ε

∫ z

0
µh(s/ε)ds 7→ Bh(z), z ≥ 0,
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in law, where

µh(z) =
∫

Rd

µ(z,x)h(x)dx , Bh(z) =
∫

Rd

B(z,x)h(x)dx.

The Brownian random field B(z,x) is a Gaussian process with mean zero and covariance

E{B(z1,x1)B(z2,x2)} = R0(|x1 − x2|)min{z1, z2}. (2.9)

Here R0 is the integrated in z transverse correlation function defined by

R0(x) =
∫ ∞

−∞
R(z,x)dz.

We assume that it is smooth, rapidly decaying and isotropic.
In the white noise limit ε → 0 the solution of the random partial differential equation (2.8)

converges in law to the process defined by the stochastic partial differential equation

2ikdzψ + θ∆xψdz +
k2σδ

θ
ψ ◦ dzB

(x
δ
, z

)
= 0 (2.10)

given here in the Stratonovich form. The Itô form of (2.10) is given by

2ikdzψ + θ∆xψdz +
ik3σ2δ2

4θ2
R0(0)ψdz +

k2σδ

θ
ψdzB

(x
δ
, z

)
= 0. (2.11)

When the fluctuation process µ(z,x) is Markovian in z with values in a suitable function space,
then the above white noise limit for the random Schrödinger equation can be analyzed with the
perturbed test function methods presented in [20]. More generally, white noise limits for random
ordinary differential equations are studied in [8] and for partial differential equations in [12]. A
recent study of white noise limits for Schrödinger and Wigner equations is given in [15, 16].

2.4 Scaling limits

There are two small parameters left in the Itô-Schrödinger equation (2.11) after we have taken the
white-noise limit – the Fresnel number θ and the non-dimensional correlation length δ. The purpose
of this paper is to analyze the stochastic partial differential equation (2.10) or (2.11) in the following
scaling limits.

• The low frequency limit and large lateral diversity limit: δ → 0 with θ fixed,

• the high frequency or geometric asymptotics limit followed by the large lateral diversity limit:
θ ¿ δ ¿ 1, that is, θ → 0 followed by δ → 0, and

• the combined scaling limit: θ ∼ δ ¿ 1 with θ → 0 and δ → 0 simultaneously.

We refer to the limit θ → 0 in (2.11) as the high frequency limit and to the limit δ → 0 as the
limit of large lateral diversity.

5



2.5 The low frequency limit

It follows immediately from (2.11) that if we pass to the limit δ → 0 with a fixed θ > 0 we arrive at
the homogeneous Schrödinger equation

2ikψz + θ∆xψ = 0. (2.12)

This is because we have an a priori bound ‖ψ(t)‖L2 = ‖ψ0‖L2 and for any deterministic test function
η(z,x) we have by the Itô isometry

E

[
k2σδ

θ

∫ z

0

∫
η(s,x)ψ(s,x)dzB

(x
δ
, s

)
dx

]2

=
(
k2σδ

θ

)2

E

∫ z

0

∫
η(s,x)η(s,x′)ψ(s,x)ψ(s,x′)R0

(
x− x′

δ

)
dxdx′ds→ 0 as δ → 0.

A similar bound holds for the third term on the left side of (2.11) – therefore, convergence in
probability of the solution to (2.11) to the solution of (2.12) follows.

The other regimes – when θ ¿ δ and θ ∼ δ are more involved. Their analysis is easier to perform
in phase space and not for the solution of the Ito-Schrödinger equation itself. For this purpose we
introduce the Wigner transform.

3 The Itô-Wigner equation

In the high frequency limit θ → 0 (whether coupled with the limit δ → 0, or not) solutions of the
Itô-Schrödinger equation become oscillatory in time and space. Therefore, rather than studying the
limit of the solution itself we consider the limits of its Wigner transform which resolves the wave
energy of oscillatory fields in the phase space and (unlike the spatial energy density) satisfies a closed
evolution equation.

We define the spatial Fourier transform by

f̂(k) =
∫
dxe−ik·xf(x) ,

so that the inverse transform is given by

f(x) =
∫

dk
(2π)d

eik·xf̂(k) ,

where d = 1 or 2 is the number of transverse spatial dimensions.

3.1 The Wigner transform

A convenient tool for the analysis of wave propagation in a random medium is the Wigner distribution
[24]. We define it here relative to the scale θ by

Wθ(z,x,p) =
1

(2π)d

∫

Rd

eip·yψ(x− θy
2
, z)ψ(x +

θy
2
, z)dy , (3.1)

where the bar denotes complex conjugate. The Wigner distribution is real, may be interpreted as
phase space wave energy and is particularly well suited for the high frequency asymptotics in random
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media [24]. Using the Itô calculus we find from (2.11) that the scaled Wigner distribution satisfies
the stochastic transport equation

dWθ(z,x,p) +
p
k
· ∇xWθ(z,x,p)dz =

k2σ2δ2

4θ2

∫ (
Wθ

(
z,x,p +

θq
δ

)
−Wθ(z,x,p)

)
R̂0(q)dq

(2π)d
dz

+
ikσδ

2θ

∫
dq

(2π)d
eiq·x/δ

(
Wθ

(
z,x,p− θq

2δ

)
−Wθ

(
z,x,p +

θq
2δ

))
dB̂(q, z). (3.2)

We will consider the high frequency and large diversity limits with the Itô-Wigner equation (3.2) as
our starting point.

We will use the fact that the L2 norm of the Wigner distribution is conserved

‖Wθ(z)‖L2(R2d) = ‖Wθ(0)‖L2(R2d) ,

which follows from the definition (3.1) and the invariance of the L2(Rd) norm of ψ(z, ·). In the
asymptotic analysis we will assume that the initial Wigner transform is a square integrable function
independent of θ. The way such initial data can arise from the corresponding ones for the Schrödinger
equation is by assuming that we have a suitable mixture of states [3].

3.2 The high frequency limit

We first discuss (2.11) in the high frequency limit θ → 0 followed by the limit of large lateral diversity,
δ → 0. When we take the high frequency limit in (3.2) we find that Wθ converges weakly to Wδ

satisfying the Itô-Liouville equation

dWδ(z,x,p) +
p
k
· ∇xWδ(z,x,p)dz +

k2σ2

8
R
′′
0(0)4pWδdz = −kσ

2
d∇xB

(x
δ
, z

)
· ∇pWδ. (3.3)

We state this in the following theorem:

Theorem 3.1 The solution Wθ of (3.2) converges in the limit θ → 0 weakly in law to the process
Wδ solving (3.3).

We remark that R′′(0) < 0 so that (3.3) is well-posed. Existence and uniqueness of solutions of the
stochastic equation (3.3) follows from the general theory of stochastic flows [19].

3.3 The large diversity limit

The limiting Wigner distribution in Theorem 3.1 solves a stochastic PDE (3.3), in which the coef-
ficient of the random term fluctuates on the small scale δ. When we subsequently take the limit
of large lateral diversity we find that the limiting Wigner distribution actually becomes determinis-
tic. We refer to this as the stabilization of the Wigner distribution. Define W as the deterministic
solution of

∂W

∂z
(z,x,p) +

p
k
· ∇xW (z,x,p) +

k2σ2

8
R
′′
0(0)4pW = 0. (3.4)

Then we have the following theorem.

Theorem 3.2 The solution Wδ of (3.3) converges in the limit δ → 0 weakly in S ′(R2d), in probability
to W solving (3.4).

We prove Theorems 3.1 and 3.2 in Section 4.
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3.4 The combined high frequency and large diversity limit

3.4.1 Weak limit

Next, consider the case where the parameters θ and δ are small and comparable, with the ratio
ξ = δ/θ kept fixed, and δ → 0. We introduce the solution W̃ of the deterministic part of (3.2)

∂W̃

∂z
(z,x,p) +

p
k
· ∇xW̃ (z,x,p) =

k2σ2
ξ

4

∫
dq

(2π)d
R̂0(q)

(
W̃ (z,x,p + q)− W̃ (z,x,p)

)
, (3.5)

with σξ = σξ. The limiting Wigner distribution is now W̃ .

Theorem 3.3 The solution Wδ of (3.2) converges in the limit δ = ξθ → 0 weakly (in S ′(R2d)) and
in probability to W̃ solving (3.5).

We prove this theorem also in Section 4.
Note that when θ is comparable to δ the limit Wigner distribution is again deterministic. How-

ever, unlike the limit in Theorem 3.2, the full lateral correlation function affects the limiting Wigner
distribution, not only its form for small displacements.

3.4.2 Localized test functions

All of the above theorems deal with the weak limit of the Wigner distribution as a distribution in
S ′(R2d) with the test functions independent both of θ and δ. This introduces additional averaging
that makes the proof of the stabilization of the Wigner distribution in the limit fairly straightforward.
The next result shows that the averaging may be performed essentially on an arbitrary scale that
is larger than the non-dimensional correlation length δ but still much smaller than the macroscopic
scale. That means that we have stabilization with much less averaging.

Let λ ∈ C∞c (R2d) be a given smooth test function of compact support, then we define a stretched
test function

λδ(x,p) =
λ(x/δa1 ,p/δa2)

δ(a1+a2)d
(3.6)

This is an approximate δ-function on the spacial scale δa1 and wave vector scale δa2 .

Theorem 3.4 Let Wδ be the (random) solution of (3.2) with ξ = δ/θ and let W̃ satisfy (3.5). Then
the difference process

Zδ(z) =
∫ [

Wδ(z,x,p)− W̃ (z,x,p)
]
λδ(x,p)dxdp

converges to zero in probability as δ → 0, provided that a1 + 2a2 < 1 if d = 1 and a1 + a2 < 2/3 if
d = 2.

We prove this theorem in Section 5. In the case d = 1 one possible choice is a2 = 0, a1 < 1 – which
means that in the case of one transverse direction we may actually average the Wigner transform
on any spatial scale larger than the correlation length provided we average over p. A result similar
to Theorem 3.4 with the weaker condition a1 + a2 < 1/2 is proved in [2].
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4 Generators and weak limits for the Itô-Wigner process

4.1 A general convergence result

Theorems 3.1, 3.2 and 3.3 can be put in a unified framework which we now describe. Consider a
family of distributions Wh(t,x,p) which satisfy a stochastic differential equation

dWh = LhWhdz +
∫

Rd

Mh(q)[Wh]dB̂(z,q)dq, Wh(0,x,p) = W0(x,p), (4.1)

in the sense of the associated weak martingale problem. The Brownian fields B̂(z,q) are the Fourier
transforms of the corresponding ones B(z,x) with covariance (2.9). We will assume that the opera-
tors Mh(q) are anti-symmetric and the operators Lh are non-positive: 〈Lhλ, λ〉 ≤ 0 for any smooth
test function λ(x,p). We also assume that the family Wh(z) is uniformly bounded in L2(Rd × Rd)
as is expected from the skew-symmetry of Mh:

‖Wh(z)‖L2(R2d) ≤ ‖W0‖L2(R2d). (4.2)

In addition, we assume that for any such λ(x,p) we have

Lhλ→ L0λ in L2(R2d) as h→ 0. (4.3)

Regarding the operators Mh we ask that

‖Mh(q)λ‖L2(R2d) ≤ C(λ) (4.4)

with the constant C(λ) independent of h ∈ (0, 1) and q ∈ Rd, and we require that the following
quadratic forms converge:

〈W,Mh(q)λ〉〈W,Mh(−q)λ〉 → 〈W,M0(q)λ〉〈W,M0(−q)λ〉, (4.5)

weakly in S ′(Rd) (as functions of the variable q), uniformly in the ball {‖W‖L2 ≤ C} for each
smooth test function λ. Condition (4.5) is needed to ensure that the infinitesimal generators for the
process Wh converge.

Let us introduce the process W which is a solution of

dW = L0Wdz +
∫

Rd

M0(q)[W ]dB̂(z,q)dq, W (0,x,k) = W0(x,k), (4.6)

in the sense of the associated weak martingale problem. Let also A be the infinitesimal generator
for the process W (t). We assume that the functions of W of the form

F (W ) = f(〈W,λ1〉, . . . , 〈W,λN 〉), (4.7)

where λ1, . . . , λN , . . . ∈ S(Rd × Rd) form a convergence determining class for A. The suitability of
test functions of the form (4.7) is addressed in [14].

Theorems 3.1, 3.2 and 3.3 follow from the following result.

Theorem 4.1 Under the above assumptions Wh converges weakly in S ′(Rd×Rd) to W , solution of
the martingale problem associated to (4.6).
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The existence and uniqueness of the solution of the martingale problem for Wh and W depends in
an essential way on the particular form of the operators Lh, L0, Mh and M0. We address this issue
in the specific applications of this result in the following sections.

The method of the proof of Theorem 4.1 is quite standard [20]. Let us recall a general strategy for
the proof of weak convergence of a family of distributions Wh(z) ∈ C([0, Z];S ′(Rd×Rd)). First, one
has to establish tightness for the family Wh(z). This shows that a weak limit along a subsequence
exists. The second step is to verify that the infinitesimal generators Ah of the Markov processes
Wh(z) converge to the infinitesimal generator A for a process W (z). This identifies the limit as a
solution of the martingale problem for A. As we are dealing with infinite-dimensional processes,
convergence of generators is easier to check on special test functions which nevertheless should
determine the generator uniquely.

4.2 Tightness

We consider the processes Wh(z) in the space C([0, Z];S ′(Rd × Rd)). The sequence Wh(z) induces
a sequence of probability measures Ph on the space D([0, Z];L2(R2d)). We then have

Lemma 4.2 The family of measures Ph is tight.

Proof. It follows from the results of Fouque in [17] and Mitoma in [21] that in order to verify the
tightness of the family of distributions Wh(z) it is sufficient to establish tightness of the processes

Xh[λ](z) = 〈Wh(z), λ〉 =
∫
Wh(z,x,k)λ(x,k)dxdk

for each test function λ ∈ S(Rd × Rd). We use the following tightness criterion:

E
{ |Xh[λ](z)−Xh[λ](z′)|2∣∣Fz′

} ≤ C(z − z′) (4.8)

for all 0 ≤ z′ ≤ z. While (4.8) establishes tightness of the process Xh[λ](z) in the space D([0, Z])
of right continuous functions with left limits as the processes X0[λ](z) are themselves continuous,
tightness in C([0, Z]) also follows [7].

Using the stochastic equation (4.1) we compute that (dropping λ in the notation for Xh[λ](z))

Xh(z) = Xh(0) +
∫ z

0
〈Wh(s),L?

hλ〉ds+
∫ z

0

∫
〈Wh(s),M?

h(q)λ〉dB̂(s,q)dq. (4.9)

It follows from (4.9) that the stochastic process

Gh(z) = Xh(z)−
∫ z

0
〈Wh(s),L?

hλ〉 ds =
∫ z

0

∫
〈Wh(s),M?

h(q)λ〉dB̂(s,q)dq

is a martingale. In addition, it has a bounded quadratic variation:

E
[
(Gh(z)−Gh(z′))2|Fz′

]
(4.10)

= E

[∫ z

z′

∫ z

z′

∫
〈Wh(s),M?

h(q)λ〉 〈Wh(s′),M?
h(q′)λ

〉
dB̂(s,q)dB̂(s′,q′)dqdq′

∣∣∣Fz′

]

=
∫ z

z′

∫
E

[
〈Wh(s),M?

h(q)λ〉 〈Wh(s),M?
h(−q)λ〉 R̂(s,q)dq

∣∣∣Fz′
]
≤ C(λ)(z − z′).

The last inequality above follows from the fact that ‖Wh(z)‖L2 is uniformly bounded by a determin-
istic constant and (4.4). It follows from (4.10) and the uniform bounds (4.2) and (4.3) that we have
the moment bound

E
[
(Xh(z)−Xh(z′))2

∣∣Fz′
]

= E
[
(Gh(z)−Gh(z′) + I(z, z′))2

∣∣Fz′
] ≤ C(λ)(z − z′). (4.11)
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Here we have set
I(z, z′) =

∫ z

z′
〈Wh(s),L?

hλ〉 ds.

The tightness of the family Wh(z) is a consequence of (4.11).

4.3 Generators for a determining class of test functions

As the processes Wh are infinite-dimensional Markov processes, the action of the corresponding
infinitesimal generators on an arbitrary function of W is somewhat difficult to write down explicitly.
However, it is sufficient to consider special continuous functions F ∈ C(S ′;R) of the form (4.7). We
have to verify that for such test functions of the form (4.7) we have

AhF → AF, (4.12)

uniformly in the balls {‖W‖L2 ≤ C}. As we have explained above, (4.12) together with the unique-
ness of the Markov process W (t) with the generator A would prove the weak convergence of Wh to
W .

Let λ1, . . . , λN ∈ C∞c (R2d) be a collection of smooth test functions of compact support and define
the corresponding stochastic processes

Xh
n(z) = 〈Wh, λn〉 (z) =

∫
Wh(z,x,p)λn(x,p) dxdp. (4.13)

Let also f ∈ C∞(RN ) and define the process

f(Xh(z)) = f(Xh
1 (z), . . . , Xh

N (z)). (4.14)

To keep the presentation simple we will consider in detail the action of the generator Ah only in the
special case N = 1 – the generalization to an arbitrary N is immediate at the expense of a greater
number of indices. We drop the subscript n and use the Itô formula to obtain

df(Xh) = f ′(Xh)dXh +
1
2
f ′′(Xh)[dXh]2 = f ′(Xh)〈Wh,L?

hλ〉dz

+
1
2
f ′′(Xh)

∫

Rd

〈Wh, [M?
h(q)λ]〉〈Wh, [M?

h(−q)λ]〉R̂(q)dqdz + f ′(Xh)
∫

Rd

〈Wh, [Mh(q)λ]〉dB̂(z,q)dq.

Therefore, the generator Ah acts on f(X) as

Ahf = 〈W,L?
hλ〉f ′(X) +

1
2

[∫

Rd

〈W, [M?
h(q)λ]〉〈W, [M?

h(−q)λ]〉R̂(q)dq
]
f ′′(X). (4.15)

Similarly, the analogous infinitesimal generator A in the case corresponding to the process W solving
(4.6) acts on f(X) as

Af = 〈W,L?λ〉f ′(X) +
1
2

[∫

Rd

〈W, [M?
0 (q)λ]〉〈W, [M?

0 (−q)λ]〉R̂(q)dq
]
f ′′(X). (4.16)

Therefore, Ahf(X) converges to Af(X) as follows from the assumptions (4.3), (4.5) and (4.4). This
finishes the proof of Theorem 4.1.
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4.4 The High Frequency Limit

We now prove Theorem 3.1. Equation (3.2) may be written in the form (4.1) as follows:

dWθ = LθWdz +
∫

[Mθ(q)W ]dB̂(z,q)dq (4.17)

with

Lθλ(x,p) = −p
k
· ∇xλ(z,x,p) +

k2σ2δ2

4θ2

∫ (
λ

(
z,x,p +

θq
δ

)
− λ(z,x,p)

)
R̂0(q)dq

(2π)d

and

Mθ(q)λ =
1

(2π)d

ikσδ

2θ
eiq·x/δ

(
λ

(
z,x,p− θq

2δ

)
− λ

(
z,x,p +

θq
2δ

))
.

Using the Taylor formula for small θ it is straightforward to verify that the operators Lθ and Mθ(q)
satisfy the assumptions of Theorem 4.1 with the limits (recall that we let θ → 0 with δ > 0 fixed)

L0λ = −p
k
· ∇λ+

k2σ2

8
(−R′′

0(0))∆xλ, M0(q)λ = − ikσe
iq·x/δ

2
q · ∇pλ.

Therefore, Theorem 4.1 applies and the solution of (4.17) converges to the solution of

dW +
p
k
· ∇Wdz − k2σ2

8
(−R′′

0(0))∆xWdz = −kσ
2
∇xdB

(
z,

x
δ

)
· ∇pW. (4.18)

Uniqueness of the solution of the martingale problem for (4.18) follows from the general theory of
stochastic flows [19]. The conclusion of Theorem 3.1 follows.

4.5 The Large Diversity Limit

In this section we take the Itô-Liouville equation (4.18) as our starting point and derive the large
diversity limit δ → 0 in Theorem 3.2. This is also an easy consequence of Theorem 4.1. Indeed,
(4.18) has the form (4.1) with

Lλ = −p · ∇xλ+
k2σ2

8
(−R′′

0(0))4pλ ,

Mδ(q)λ = − ike
iq·x/δ

2
q · ∇pλ.

In order to verify that Theorem 4.1 applies with M0 = 0 we only need to check condition (4.5): for
any test function φ(q) we have

I =
∫

R2d

〈W, [Mδ(q)λ]〉〈W, [Mδ(−q)λ]〉φ(q)dq

=
k2

4

∫

R5d

eiq·x/δ−iq·y/δφ(q)W (x,p)qj
∂λ(x,p)
∂pj

W (y, r)qm
∂λ(y, r)
∂rm

dxdpdydrdq

=
k2

4

∫

R4d

∂2φ̂((y − x)/δ)
∂xm∂xj

W (x,p)
∂λ(x,p)
∂pj

W (y, r)
∂λ(y, r)
∂rm

dxdpdydr,

so that

|I| ≤ C‖W‖2
L2




∫ ∣∣∣∣∣
∂2φ̂((y − x)/δ)

∂xm∂xj

∣∣∣∣∣
2 ∣∣∣∣
∂λ(x,p)
∂pj

∣∣∣∣
2 ∣∣∣∣
∂λ(y, r)
∂rm

∣∣∣∣
2

dxdpdydr




1/2

≤ Cδd/2.

Hence, Theorem 4.1 applies and the conclusion of Theorem 3.2 indeed follows.
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4.6 The combined high frequency and large diversity limit

We now show that Theorem 3.3 is also a corollary of Theorem 4.1. We find from the transport
equation (3.2) that in the case ξθ = δ the Wigner distribution Wδ solves

dWδ(z,x,p) +
p
k
· ∇xWδ(z,x,p)dz =

k2σ2
ξ

4

∫
R̂0(q) (Wδ(z,x,p + q)−Wδ(z,x,p)) dz

dq
(2π)d

+
ikσξ

2

∫
eiq·x/δ

(
Wδ

(
z,x,p− q

2

)
−Wδ

(
z,x,p +

q
2

))
dB̂(q, z)

dq
(2π)d

. (4.19)

This equation is also of the form (4.1) with

Lλ = −p
k
· ∇xλ+

k2σξ

4

∫
R̂0(q) (λ(x,p + q)− λ(x,p))

dq
(2π)d

and
Mδ(q)λ(x,p) =

1
(2π)d

ikσξ

2
eiq·x/δ

[
λ

(
x,p− q

2

)
− λ

(
x,p +

q
2

)]
.

In order to verify that (4.5) holds with M0 = 0 we take a smooth test function φ(q) and compute

I =
∫
〈W, [M?

δ(q)λ]〉φ(q) 〈W, [M?
δ(−q)λ]〉 dq

= −k
2

4

∫
W (x,p)eiq·x/δ

[
λ

(
z,x,p− q

2

)
− λ

(
z,x,p +

q
2

)]
W (y, r)e−iq·y/δ

×
[
λ

(
z,y, r +

q
2

)
− λ

(
z,y, r− q

2

)]
φ(q)dqdxdpdydr

= − 1
(2π)4d

k2

4

∫
λ̂(z,x, η)λ̂(z,y, η′)W (x,p)eiq·x/δ

[
ei(p−q/2)·η − ei(p+q/2)·η

]
W (y, r)e−iq·y/δ

×
[
ei(r+q/2)·η′ − ei(r−q/2)·η′

]
φ(q)dqdxdpdydrdηdη′

= − 1
(2π)4d

k2

4

∫
eip·η+ir·η′ λ̂(z,x, η)λ̂(z,y, η′)

[
φ̂

(
−x− y

δ
+
η − η′

2

)
− φ̂

(
−x− y

δ
+
η + η′

2

)

+φ̂
(
−x− y

δ
− η − η′

2

)
− φ̂

(
−x− y

δ
+
η + η′

2

)]
W (x,p)W (y, r)dxdpdydrdηdη′

= I1 + I2 + I3 + I4.

Let us look, for instance, at I1:

|I1| ≤ C

∫ ∣∣∣λ̂(z,x, η)λ̂(z,y, η′)
∣∣∣
∣∣∣∣φ̂

(
−x− y

δ
+
η − η′

2

)∣∣∣∣
∣∣∣W̃ (x, η)W̃ (y, η′)

∣∣∣ dxdydηdη′.

Here W̃ is the Fourier transform of W (x,k) in the second variable only. We may assume without loss
of generality that λ̂(z,x, η) is compactly supported in η. Then, for almost every (x, η), (y, η′) ∈ suppλ̂
we have

φ̂

(
−x− y

δ
+
η − η′

2

)
→ 0 as δ → 0.

The Lebesgue dominated convergence theorem implies that I1 → 0. Similarly we may show that
I2,3,4 → 0 and thus the proof of Theorem 3.3 is complete.
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5 The Local Weak Convergence

We consider here the Itô-Wigner equation (3.2) in the limit θ ∼ δ → 0 and prove the local weak
convergence result stated in Theorem 3.4.

5.1 The Integral Formulation of the Itô-Wigner Equation

Let us recall the Itô-Wigner equation (3.2) in the regime δ = θ: we will set σξ = 1 without any loss
of generality

dWδ +
p
k
· ∇xWδdz =

k2

4

∫
R̂0(q)[Wδ(p + q)−Wδ(p)]

dq
(2π)d

dz (5.1)

+
ik

2

∫
eiq·x/δ

[
Wδ

(
p− q

2

)
−Wδ

(
p +

q
2

)] dq
(2π)d

dB̂(z,q).

Our objective is to analyze the role of the Brownian term in (5.1), and show that in the limit δ → 0
the rapid oscillatory phase in the q integral makes it small, so that Wδ converges to the solution of
(3.5) in the “locally weak” sense of Theorem 3.4.

The proof is based on the integral formulation of the transport equation and the Picard iter-
ation. In order to develop this argument it is convenient to introduce the function u(z,x,p) =
Wδ(z,x,p) exp (Σz) with the total scattering cross-section

Σ =
k2

4

∫
R̂0(q)

dq
(2π)d

.

Then equation (5.1) becomes

du+
p
k
· ∇xudz =

k2

4

∫
R̂0(q)u(p + q)

dq
(2π)d

dz +
ik

2

∫ [
u

(
p− q

2

)
− u

(
p +

q
2

)] eiq·xδ dq
(2π)d

dB̂(z,q).

(5.2)
This, in turn, can be re-written as an integral equation that will be the starting point of our analysis

u(z,x,p) = W0

(
x− zp

k
,p

)
+
k2

4

∫ z

0

∫
R̂0(q)u

(
s,x− (z − s)

p
k
,p + q

) dqds
(2π)d

(5.3)

+
ik

2

∫ z

0

∫
eiq·

(x−(z−s)p/k)
δ

[
u

(
s,x− (z − s)

p
k
,p− q

2

)
− u

(
s,x− (z − s)

p
k
,p +

q
2

)] dqdB̂(s,q)
(2π)d

.

The first result addresses the existence and uniqueness of solutions of (5.3). Let us fix Z > 0 and
define the space X = C([0, Z];L2(R2d × Ω)) with the norm

‖f‖X = sup
0≤z≤Z

(∫
E

{|f(z,x,p)|2} dxdp
)1/2

.

We have the following proposition.

Proposition 5.1 Assume that

R ≡ max
(
‖R̂0‖L1(Rd), ‖R̂0‖∞

)
<∞ (5.4)

Then there exists a unique solution to (5.3) in the space X.
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We also introduce the function ū that satisfies the deterministic part of (5.3), without the random
term

ū(z,x,p) = W0

(
x− zp

k
,p

)
+
k2

4

∫ z

0

∫
R̂0(q)ū

(
s,x− (z − s)

p
k
,p + q

) dqds
(2π)d

, (5.5)

with the initial data u(0,x,p) = ū(0,x,p) = W0(x,p).
We will show that u converges to ū in a locally weak sense. More precisely, the following

proposition holds.

Proposition 5.2 Let λ(x,p) ∈ C∞c (R2d) be a smooth deterministic test function of compact support
and define the stretched test function as in (3.6)

λδ(x,p) =
λ(x/δa1 ,p/δa2)

δ(a1+a2)d
. (5.6)

Then, under the assumption (5.4) there exists a constant C = C(k,R, λ, Z) > 0 so that for z ≤ Z

E
{|〈u− ū, λδ〉|2

}
(z) ≤ C(k,R, λ, Z)‖W0‖2

L2(R2d) ×
{
δ1−a1−2a2 | log δ|, d = 1
δ2−3(a1+a2), d = 2

. (5.7)

Theorem 3.4 follows immediately from Proposition 5.2.

5.2 Existence: proof of Proposition 5.1

The iterative series

The proof of Proposition 5.1 is by an iterative process expanding the solution into a series according
to the order of scattering. We introduce the operators T1, T2 : X → X by

T1f(z,x,p) =
k2

4

∫ z

0

∫
R̂0(q)f

(
s,x− (z − s)

p
k
,p + q

) dqds
(2π)d

(5.8)

and

T2f =
ik

2

∫ z

0

∫
e

iq·(x−(z−s)p/k)
δ

[
f

(
s,x− (z − s)

p
k
,p− q

2

)
− f

(
s,x− (z − s)

p
k
,p +

q
2

)]dqdB̂(s,q)
(2π)d

.

(5.9)
With this notation, equation (5.3) may be re-written as

u(z,x,p) = W0

(
x− zp

k
,p

)
+ (T1 + T2)u(z,x,p) (5.10)

We now represent the solution of (5.10) as a series. Let

u0(z,x,p) = ū0(z,x,p) = W0

(
x− zp

k
,p

)

be the solution of the homogeneous transport equation, and set the “up to n-th order” scattering
term as

un(z,x,p) = W0

(
x− zp

k
,p

)
+ (T1 + T2)un−1(z,x,p) (5.11)

for n ≥ 1. We also define the pure n-th order scattering contribution as vn = un − un−1, n ≥ 1, the
solution of

vn(z,x,p) = (T1 + T2)vn−1(z,x,p), v0(z,x,p) = u0(z,x,p). (5.12)

Proposition 5.1 follows from the following lemma.

Lemma 5.3 Assume that (5.4) holds. Then there exists a constant C = C(k,R, Z) so that for
n ≥ 1

‖vn‖2
X ≤ ‖W0‖2

L2(R2d)

(C(k,R, Z))n

n!
. (5.13)

15



Convergence of the iteration process

We now prove Lemma 5.3. This lemma follows from the Cauchy-Schwarz inequality and the Itô-
isometry for stochastic flows. Observe that we have

E
{∫ z1

0

∫ z2

0

∫
λ(s1,q1)λ(s2,q2) dB̂(s1,q1)dB̂(s2,q2) dq1dq2

}

=

[z1,z2]∫

0

∫
E {λ(s,q)λ(s,−q)} (2π)dR̂0(q) dsdq , (5.14)

with the correlation function R0 defined in (2.9) and [z1, z2] = min(z1, z2). We then find that the
following bounds hold for the operators T1 and T2, respectively:

E
{
‖T1vn(z)‖2

L2(R2d)

}

≤ CE

{∫ z

0

∫ z

0

∫
|R̂0(q)R̂0(q′)|

{∫
|vn(s,x,p)|2 dxdp

∫ ∣∣vn(s′,x′,p′)
∣∣2 dx′dp′

} 1
2 dqdq′dsds′

(2π)2d

}

≤ Cz
(
‖R̂0‖L1(Rd)

)2
E

{∫ z

0

∫
|vn(s,x,p)|2 dxdpds

}
,

and

E
{
‖T2vn(z)‖2

L2(R2d)

}
≤ C

∫ z

0

∫
|R̂0(q)|

(∫
E

{∣∣∣vn

(
s,x− (z − s)

p
k
,p− q

2

)

−vn

(
s,x− (z − s)

p
k
,p +

q
2

)∣∣∣
2
}
dxdp

)
dqds ≤ C‖R̂0‖L1(R)

∫ z

0

∫
E

{
|vn (s,x,p)|2

}
dxdpds.

Hence we have

E
{
‖(T1 + T2)vn(z)‖2

L2(R2d)

}
≤ C(k,R,Z)

∫ z

0
E

{
‖vn (s) ‖2

L2(R2d)

}
ds. (5.15)

Using (5.12) and iterating (5.15) we obtain for n ≥ 1

E
{
‖vn(z)‖2

L2(R2d)

}
≤ (C(k,R, Z)z)n

n!
‖W0‖2

L2(R2d) ,

and the conclusion of Lemma 5.3 follows. ¤
The proof of Proposition 5.1 is also complete.

5.3 Convergence to the non-random process: proof of Proposition 5.2

The iterative series for the error

In order to prove Proposition 5.2 we construct an iterative approximation ūn to the function u and
estimate the n-th order error un − ūn. Recall that

ū(z,x,p) = W0

(
x− zp

k
,p

)
+ T1ū(z,x,p). (5.16)

Accordingly, we define

ūn(z,x,p) = W0

(
x− zp

k
,p

)
+ T1ūn−1(z,x,p). (5.17)
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Similarly to Lemma 5.3 we have the same estimate for v̄n = ūn − ūn−1 as for vn:

‖v̄n‖2
X ≤ ‖W0‖2

L2(R2d)

(C(k,R, Z))n

n!
. (5.18)

Proposition 5.2 follows from the following Lemma.

Lemma 5.4 Let λδ be a stretched test function as in (5.6). Then, under the assumption (5.4) there
exists a constant C = C(k,R, λ, Z) > 0 so that for z ≤ Z

E
{|〈un − ūn, λδ〉|2

}
(z) ≤ C(k,R, λ, Z)‖W0‖2

L2(R2d) ×
{
δ1−a1−2a2 | log δ|, d = 1
δ2−3(a1+a2), d = 2

. (5.19)

Proof of Proposition 5.2. Lemma 5.3 and (5.18) imply that ∀δ > 0 ∃ N(δ) > 0 so that

E
{|〈u− un, λδ〉|2

}
(z) ≤ δ2 for all n ≥ N(δ)

and
E

{|〈ū− ūn, λδ〉|2
}

(z) ≤ δ2 for all n ≥ N(δ).

The estimate (5.7) now follows by writing u − ū = (u − un) + (un − ūn) + (ūn − ū) and using
Lemma 5.4. ¤

The proof of Lemma 5.4

The difference un − ūn satisfies

un − ūn = T1(un−1 − ūn−1) + T2un−1,

which can be written as

un − ūn =
n−1∑

j=0

Tn−1−j
1 T2uj .

In order to prove Lemma 5.4 we observe from the above that

|〈un − ūn, λδ〉|2 = |
n−1∑

j,l=0

〈Tn−1−j
1 T2uj , λδ〉〈Tn−1−l

1 T2ul, λδ〉|. (5.20)

The individual terms in (5.20) are estimated with the help of the following lemma.

Lemma 5.5 Let θi ∈ X, zi ≤ Z, the stretched test function λδ be defined as in (5.6) and R < ∞
be defined as in (5.4). Then there exist two constants C1(k,R, Z) and C2(k,R, Z, λ), the second of
which depends in addition on the test function λ, such that

∣∣∣E
{
〈[T j

1T2θ1](z1), λδ〉〈[T l
1T2θ2](z2), λδ〉

}∣∣∣ (5.21)

≤ (C1(k,R, Z)z1)j

j!
(C1(k,R, Z)z2)l

l!
C2(k,R, Z, λ) sup

m=1,2
‖θm‖2

X ×
{
δ(1−a1−2a2)| log δ|, d = 1
δ2−3a1−3a2 , d = 2 .

It follows from Lemma 5.5 that
∣∣∣∣∣∣
E





∑

j,l

〈[Tn−1−j
1 T2θj ](z1), λδ〉〈[Tn−1−l

1 T2θl](z2), λδ〉




∣∣∣∣∣∣
(5.22)

≤ eC1(k,R,Z)(z1+z2)C2(k,R, λ, Z) sup
j∈ 1,···,n−1

‖θj‖2
X ×

{
δ(1−a1−2a2)| log δ|, d = 1

δ2−3a1−3a2 , d = 2
.
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Using Lemma 5.3 and expression (5.20) we therefore find that

E
{|〈un − ūn, λδ〉|2

}
(z) ≤ C3(k,R, λ, Z) ‖W0‖2

L2(R2d) ×
{
δ(1−a1−2a2)| log δ|, d = 1

δ2−3a1−3a2 , d = 2
.

Thus, the conclusion of Lemma 5.4 follows. ¤

5.4 The Born expansion: the proof of Lemma 5.5

It remains only to prove Lemma 5.5 in order to finish the proof of Theorem 3.4. First, we obtain
the bound (5.21) in the case j = l = 0. In this case we start by rewriting the expression in (5.20)
using the Fourier transform and Itô isometry. In the second step the z-integral in T2 is decomposed
into two intervals. In the final boundary layer interval we simply use the Cauchy-Schwarz inequality
as well as the smallness of the boundary layer. Outside the final time boundary layer we use the
line integration in (5.9) to produce additional averaging, as is typical in the transport theory. The
price is in the factors of (z1 − s) and (z2 − s) appearing in the denominator which produce large
contributions if the final boundary layer is taken too small. In the last step we optimize with respect
to the width of the boundary layer to obtain a bound for the j = l = 0 term.

Then we present the induction step that gives the bound in Lemma 5.5 for general j and l. The
general term can be written in terms of the corresponding expressions with smaller j and l and
bounded using an induction argument. A complicating aspect of the induction is the shift of the
arguments in the integrals in (5.8), which we handle by introducing a shift operator in the induction.

Bound on Born Term for the Random Scattering

We begin by proving (5.21 ) in the special case j = l = 0. Let θj ∈ X, then we need to show that

|E {〈[T2θ1](z1), λδ〉〈[T2θ2](z2), λδ〉}| ≤ C(k,R, λ, Z) sup
m=1,2

‖θm‖2
X ×

{
δ(1−a1−2a2)| log δ|, d = 1
δ2−3a1−3a2 , d = 2 .

(5.23)
The left side in (5.23) is given explicitly by

I00 = |E {〈[T2θ1](z1), λδ〉〈[T2θ2](z2), λδ〉}| (5.24)

=
k2

4(2π)2d

∣∣∣∣E
{∫ z1

0

∫ z2

0

∫
eiq1·(x1−(z1−s1)p1/k)/δ+iq2·(x2−(z2−s1)p2/k)/δ

×
[
θ1

(
s1,x1 − (z1 − s1)

p1

k
,p1 − q1

2

)
− θ1

(
s1,x1 − (z1 − s1)

p1

k
,p1 +

q1

2

)]

×
[
θ2

(
s2,x2 − (z2 − s2)

p2

k
,p2 − q2

2

)
− θ2

(
s,x2 − (z2 − s2)

p2

k
,p2 +

q2

2

)]

× λδ(x1,p1)λδ(x2,p2)dB̂(s1,q1)dB̂(s2,q2)dq1dq2dx1dx2dp1dp2

}∣∣∣ .

Using the Itô isometry (5.14) and writing λδ in terms of the Fourier transform we find that the above
expression for I00 becomes

I00 = C(k)

∣∣∣∣∣E
{∫ [z1,z2]

0

∫
eiq·(x1−(z1−s)p1/k)/δ−iq·(x2−(z2−s)p2/k)/δ+i[x1·r1+x2·r2]+i[p1·l1+p2·l2]

×
[
θ1

(
s,x1 − (z1 − s)

p1

k
,p1 − q

2

)
− θ1

(
s,x1 − (z1 − s)

p1

k
,p1 +

q
2

)]

×
[
θ2

(
s,x2 − (z2 − s)

p2

k
,p2 +

q
2

)
− θ2

(
s,x2 − (z2 − s)

p2

k
,p2 − q

2

)]

×λ̂(δa1r1, δ
a2l1)λ̂(δa1r2, δ

a2l2)R̂0(q)dqdsΠ2
j=1dxjdpjdrjdlj

}∣∣∣ (5.25)
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with C(k) = k2/(4(2π)5d). Making a change of variables x′j = xj − (zj − s)pj/k and taking the
Fourier transform in x′1 and x′2, we obtain

I00 = C(k)

∣∣∣∣∣E
{∫ [z1,z2]

0

∫
ei[((z1−s)p1/k)·r1+((z2−s)p2/k)·r2]+i[p1·l1+p2·l2] (5.26)

×
[
θ̌1

(
s,−r1 − q

δ
,p1 − q

2

)
− θ̌1

(
s,−r1 − q

δ
,p1 +

q
2

)]

×
[
θ̌2

(
s,−r2 +

q
δ
,p2 +

q
2

)
− θ̌2

(
s,−r2 +

q
δ
,p2 − q

2

)]

×λ̂(δa1r1, δ
a2l1)λ̂(δa1r2, δ

a2l2)R̂0(q)dqdsΠ2
j=1dpjdrjdlj

}∣∣∣ .

Expression (5.26) contains four terms that come from the products of θj . We consider one of them,
take the Fourier transform in p1 and p2 and make a change of variables q/δ 7→ q to find

∣∣∣I(1)
00

∣∣∣ ≤ δdC(k)E

{∫ [z1,z2]

0

∫ ∣∣∣θ̂1 (s,−r1 − q,−l1 − r1(z1 − s)/k) (5.27)

× θ̂2 (s,−r2 + q,−l2 − r2(z2 − s)/k) λ̂(δa1r1, δ
a2l1)λ̂(δa1r2, δ

a2l2)R̂0(δq)
∣∣∣ dqΠ2

j=1drjdlj ds
}
.

We now decompose the interval (0, [z1, z2]) in the above integral as

A1 = {s | min(|s− z1|, |s− z2|) < δp} , (5.28)
A2 = (0, [z1, z2]) \ A1,

for p some positive constant, then
∣∣∣I(1)

00

∣∣∣ ≤ I1 + I2, where Ij is the integral (5.27) over the time
interval Aj .

Making use of the Cauchy-Schwarz inequality in the integration over the random variable and q
we find

I1 ≤ δdC(k)‖R̂0‖∞
∫

A1

∫ [∫
E

{∣∣∣θ̂1 (s,q,−l1 − r1(z1 − s)/k)
∣∣∣
2
}
dq

×
∫
E

{∣∣∣θ̂2
(
s,q′,−l2 − r2(z2 − s)/k

)∣∣∣
2
}
dq′

]1/2 ∣∣∣λ̂(δa1r1, δ
a2l1)λ̂(δa1r2, δ

a2l2)
∣∣∣ Π2

j=1drjdlj ds.

It then follows after applying the Cauchy-Schwarz inequality with respect to the l1 and l2 variables
that

I1 ≤ δdC(k,R)
∫

A1

sup
j=1,2

E
{
‖θj(s)‖2

L2(R2d)

}
ds

∫ [∫ ∣∣∣λ̂(δa1r1, δ
a2l)

∣∣∣
2
dl

∫ ∣∣∣λ̂(δa1r2, δ
a2l)

∣∣∣
2
dl

] 1
2

dr1dr2

≤ δd(1−2a1−a2)+pC(k,R, λ) sup
j=1,2

‖θj‖2
X . (5.29)

Next, we derive a bound for I2, the integral (5.27) over the interval z ∈ A2. Using the Cauchy-
Schwarz inequality as above, with respect to the random variable and the variable q first, and then
with respect to r1 and r2, we obtain

I2 ≤ δdC(k,R)
∫

A2

∫ [∫
E

{∣∣∣θ̂1 (s,q,−l1 − r1(z1 − s)/k)
∣∣∣
2
}
dqdr1

×
∫
E

{∣∣∣θ̂2
(
s,q′,−l2 − r2(z2 − s)/k

)∣∣∣
2
}
dq′dr2

∫ ∣∣∣λ̂(δa1r′1, δ
a2l1)

∣∣∣
2
dr′1

∫ ∣∣∣λ̂(δa1r′2, δ
a2l2)

∣∣∣
2
dr′2

] 1
2

dl1dl2 ds.
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After a change of variables the above integral becomes

I2 ≤ δdC(k,R)
∫

A2

sup
j=1,2

E
{
‖θj(s)‖2

L2(R2d)

}(
k2

(z1 − s)(z2 − s)

)d/2

ds

×
∫ [∫ ∣∣∣λ̂(δa1r, δa2l1)

∣∣∣
2
dr

∫ ∣∣∣λ̂(δa1r′, δa2l2)
∣∣∣
2
dr′

]1/2

dl1dl2 (5.30)

≤ δd(1−a1−2a2)C(k,R, λ) sup
j=1,2

‖θj‖2
X

∫

A2

[(
k

z1 − s

)d

+
(

k

z2 − s

)d
]
ds.

We derive from this the following bound for I2:

I2 ≤ δd(1−a1−2a2)C(k, λ,R) sup
j=1,2

‖θj‖2
X ×

{ | log δp|, d = 1
δ−p, d = 2

. (5.31)

Using (5.29) and (5.31) we then arrive at the following bound for I(1)
00 in (5.27):

|I(1)
00 | ≤ C(k,R, λ) sup

j=1,2
‖θj‖2

X ×
{
δ(1−2a1−a2)+p + δ(1−a1−2a2)| log δp|, d = 1
δ2(1−2a1−a2)+p + δ2(1−a1−2a2)−p, d = 2

.

We choose now p = a1 − a2 to obtain at estimate

|I(1)
00 | ≤ C(k,R, λ, Z) sup

j=1,2
‖θj‖2

X ×
{
δ(1−a1−2a2)| log δ|, d = 1

δ2−3a1−3a2 , d = 2
. (5.32)

The other terms contributing to I00 in (5.26) can be bounded analogously and we can conclude that
(5.23) holds. This proves the bound (5.5) when j = l = 0.

The estimate of I00 in (5.30) is not optimal when z1 6= z2 as far s-integration is concerned. While
this leads to sub-optimal estimates in the higher order terms with j, l > 0, this step does not seem
to over-estimate the term I00 with z1 = z2, which does have a contribution to the overall error in
Proposition 5.2. A more careful analysis would reveal the relative size of the error produced by
various orders of scattering – we do not pursue this avenue here.

Bound on Higher Order Scattering Terms

In this section we treat the general case j > 0, l > 0 in Lemma 5.5 by induction. In order to account
for the shifts of the arguments in various integrals we introduce the shift operator Tc : X → X
defined by

[Tcθ] (z,x,p) = θ(z,x + (c1 + c2z)p + (c3 + c4z),p + c5) , (5.33)

where c1, c2 ∈ R and c3, c4, c5 ∈ Rd. We will establish inductively the following generalized version
of Lemma 5.5:∣∣∣E

{
〈[TcT

j
1T2θ1](z1), λδ〉〈[Tc′T

l
1T2θ2](z2), λδ〉

}∣∣∣ (5.34)

≤ (C1(k,R, Z)z1)j

j!
(C1(k,R, Z)z2)l

l!
C2(k,R, λ, Z) sup

m=1,2
‖θm‖2

X ×
{
δ(1−a1−2a2)| log δ|, d = 1

δ2−3a1−3a2 , d = 2
.

The constants in (5.34) are independent of the shift c. We first assume that (5.34) holds for 0 ≤ j ≤ ĵ
and 0 ≤ l ≤ l̂. Note that

∣∣∣E
{
〈[TcT

bj+1
1 T2θ1](z1), λδ〉〈[Tc′T

l̂
1T2θ2](z2), λδ〉

}∣∣∣

=
∣∣∣∣E

{
k2

4(2π)d

∫ z1

0
R̂0(q)〈[Tec(z1,q)T

bj
1T2θ1](s), λδ〉 dqds 〈[Tc′T

l̂
1T2θ2](z2), λδ〉

}∣∣∣∣ ,
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with the vector c̃ which has the components

c̃(z1,q)1 = c1 + (c2 − 1/k)z1, c̃(z1,q)2 = 1/k,
c̃(z1,q)3 = c3 + c4z1 − z1c5/k, c̃(z1,q)4 = c5/k, c̃(z1,q)5 = c5 + q.

Therefore, it follows from the induction hypothesis that

∣∣∣E
{
〈[TcT

bj+1
1 T2θ1](z1), λδ〉〈[Tc′T

l̂
1T2θ2](z2), λδ〉

}∣∣∣ ≤ k2

4(2π)d

∫ z1

0
|R̂0(q)|(C1(k,R, Z)s)bj

ĵ!
dqds

× (C1(k,R, Z)z2)l̂

l̂!
C2(k,R, λ, Z) sup

m=1,2
‖θm‖2

X ×
{
δ(1−a1−2a2)| log δ|, d = 1

δ2−3a1−3a2 , d = 2

≤ (C1(k,R, Z)z1)(
bj+1)

(ĵ + 1)!
(C1(k,R,Z)z2)l̂

l̂!
C2(k,R, λ, Z) sup

m=1,2
‖θm‖2

X ×
{
δ(1−a1−2a2)| log δ|, d = 1
δ2−3a1−3a2 , d = 2 ,

if we take

C1(k,R, Z) ≥ k2
∫ |R̂0(q)| dq
4(2π)d

.

We conclude that (5.34) holds for 0 ≤ j ≤ ĵ + 1 and 0 ≤ l ≤ l̂.
To complete the induction argument we must finally show that (5.34) is valid for j = l = 0. This

can be accomplished by a generalization of the argument leading to the bound (5.23) derived in the
case without shift and we summarize this step below. We need to estimate

Ĩ00 = |E {〈[TcT2θ1](z1), λδ〉〈[Tc′T2θ2](z2), λδ〉}|

=
k2

4(2π)2d

∣∣∣∣E
{∫ z1

0

∫ z2

0

∫
eiq1·(x̃1−(z1−s1)p̃1/k)/δ+iq2·(x̃2−(z2−s1)p̃2/k)/δ

×
[
θ1

(
s1, x̃1 − (z1 − s1)

p̃1

k
, p̃1 − q1

2

)
− θ1

(
s1, x̃1 − (z1 − s1)

p̃1

k
, p̃1 +

q1

2

)]

×
[
θ2

(
s2, x̃2 − (z2 − s2)

p̃2

k
, p̃2 − q2

2

)
− θ2

(
s, x̃2 − (z2 − s2)

p̃2

k
, p̃2 +

q2

2

)]

× λδ(x1,p1)λδ(x2,p2)dB̂(s1,q1)dB̂(s2,q2)dq1dq2dx1dx2dp1dp2

}∣∣∣ ,

where

x̃1 = x1 + (c1 + c2z1)p1 + (c3 + c4z1), p̃1 = p1 + c5 , (5.35)
x̃2 = x2 + (c′1 + c′2z2)p2 + (c′3 + c′4z2), p̃2 = p2 + c′5.

Using the same transformations as in the passage from (5.24) to (5.26) we obtain the following
generalization of (5.26)

Ĩ00 = C(k)

∣∣∣∣∣E
{∫ [z1,z2]

0

∫
ei[((z1−s)p̃1/k)·r1+((z2−s)p̃2/k)·r2]+i[p1·l1+p2·l2] (5.36)

× e−i[(c1+c2z1)p1+(c3+c4z1)]·r1−i[(c′1+c′2z2)p2+(c′3+c′4z2)]·r2

×
[
θ̌1

(
s,−r1 − q

δ
, p̃1 − q

2

)
− θ̌1

(
s,−r1 − q

δ
, p̃1 +

q
2

)]

×
[
θ̌2

(
s,−r2 +

q
δ
, p̃2 +

q
2

)
− θ̌2

(
s,−r2 +

q
δ
, p̃2 − q

2

)]

× λ̂(δa1r1, δ
a2l1)λ̂(δa1r2, δ

a2l2)R̂0(q)dqdsΠ2
j=1dpjdrjdlj

}∣∣∣ .
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Considering the term similar to that in (5.27) and taking Fourier transform in p1 and p2 we obtain

∣∣∣Ĩ(1)
00

∣∣∣ ≤ C(k)

∣∣∣∣∣E
{∫ [z1,z2]

0

∫
ei[q·((z1−s)r1/k+l1−(z2−s)r2/k−l2)/2]

×e−i[(c1+c2z1)q/2+(c3+c4z1)]·r1+i[(c′1+c′2z2)q/2−(c′3+c′4z2)]·r2+ic5·((c1+c2z1)r1−l1)+ic′5·((c′1+c′2z2)r2−l2)

× θ̂1

(
s,−r1 − q

δ
,−l1 − r1h1(s)/k

)
θ̂2

(
s,−r2 +

q
δ
,−l2 − r2h2(s)/k

)

× λ̂(δa1r1, δ
a2l1)λ̂(δa1r2, δ

a2l2)R̂0(q)dqΠ2
j=1drjdlj ds

}∣∣∣ ,

with
h1(s) = (z1 − s)− k(c1 + c2z1), h2(s) = (z2 − s)− k(c′1 + c′2z2). (5.37)

After the change of variable q/δ 7→ q we find

∣∣∣I(1)
00

∣∣∣ ≤ δdC(k)E

{∫ [z1,z2]

0

∫ ∣∣∣θ̂1 (s,−r1 − q,−l1 − r1h1(s)/k)

× θ̂2 (s,−r2 + q,−l2 − r2h2(s)/k) λ̂(δa1r1, δ
a2l1)λ̂(δa1r2, δ

a2l2)R̂0(δq)
∣∣∣ dqΠ2

j=1drjdlj ds
}
.

In the above integral we decompose the interval (0, [z1, z2]) as

Ã1 = {s | min(|h1(s)|, |h2(s)|) < δp} , Ã2 = (0, [z1, z2]) \ Ã1, (5.38)

for p some positive constant, which is a slight modification of the final boundary layer defined in
(5.28). The argument following (5.27) can now be repeated verbatim with these slightly modified
integration subintervals to give the generalized version of (5.32):

|Ĩ(1)
00 | ≤ C̄(k,R, λ, Z) sup

j=1,2
‖θj‖2

X ×
{
δ(1−a1−2a2)| log δ|, d = 1

δ2−3a1−3a2 , d = 2
.

The other terms contributing to Ĩ00 in (5.36) can again be bounded analogously. This concludes the
inductive proof of (5.34) and hence also that of Lemma 5.5. ¤

References

[1] F. Bailly, J.F. Clouet and J.P. Fouque, Parabolic and white noise approximation for waves in
random media, SIAM Jour. Appl. Math. 56, 1996, 1445-1470.

[2] G. Bal, On the self-averaging of wave energy in random media. Multiscale Model. Simul. 2,
2004, 398–420.

[3] G.Bal and L. Ryzhik, Time reversal and refocusing in random media, SIAM Jour. Appl. Math.,
63, 2003, 1475–1498.

[4] G. Bal, T. Komorowski and L. Ryzhik, Self-averaging of Wigner transforms in random media.
Comm. Math. Phys. 242, 2003, 81–135

[5] G.Bal, G. Papanicolaou and L. Ryzhik, Self-averaging in time reversal for the parabolic wave
equation. Stoch. Dyn. 2, 2002, 507–531.

[6] G.Bal, G. Papanicolaou and L. Ryzhik, Radiative transport limit for the random Schrödinger
equation, Nonlinearity, 15, 2002, 513-529.

22



[7] P. Billingsley, Convergence of probability measures, 2nd edition, New York, Wiley, 1999.

[8] G. Blankenship and G. C. Papanicolaou, Stability and Control of Stochastic Systems with
Wide-Band Noise Disturbances, SIAM J. Appl. Math., 34, 1978, 437-476.

[9] P. Blomgren, G. Papanicolaou, and H. Zhao, Super-Resolution in Time-Reversal Acoustics, J.
Acoust. Soc. Am., 111, 2002, 230-248.

[10] L. Borcea, G. Papanicolaou and C. Tsogka, Interferometric array imaging in clutter, Inverse
Problems, 21, 2005, 1419–1460.

[11] L. Borcea, G. Papanicolaou and C. Tsogka, Adaptive interferometric imaging in clutter and
optimal illumination, Inverse Problems, 22, 2006, 1405–1436.

[12] R. Bouc and E. Pardoux, Asymptotic analysis of PDEs with wide-band noise disturbances and
expansion of the moments, Stochastic Analysis and Applications, 2, 1984, 369-422.

[13] D. Dawson and G. Papanicolaou, A random wave process, Appl. Math. Optim., 12, 1984,
97–114.

[14] D. A. Dawson, Measure-valued Markov processes, in Ecole d’ Ete de Probabilite de Saint-Flour
XXI—1991. [Saint-Flour Summer School on Probability Theory XXI—1991] edited by P. L.
Hennequin, Lecture Notes in Mathematics, 1541, Springer-Verlag, Berlin, 1993.

[15] A. Fannjiang, White-noise and geometrical optics limits of Wigner-Moyal equation for wave
beams in turbulent media. Comm. Math. Phys. 254, 2005, 289–322.

[16] A. Fannjiang, White-noise and geometrical optics limits of Wigner-Moyal equation for beam
waves in turbulent media. II. Two-frequency formulation. J. Stat. Phys. 120, 2005, 543–586.

[17] J.P. Fouque, La convergence en loi pour les processus a valeurs dans un espace nucleaire, Ann.
Inst. H. Poincare Probab. Statist., 20, 1984, 225-245.

[18] J.P. Fouque, G.C. Papanicolaou and Y. Samuelides, Forward and Markov Approximation: The
Strong Intensity Fluctuations Regime Revisited, Waves in Random Media, 8, 1998, 303-314.

[19] H. Kunita, Stochastic flows and stochastic differential equations. Cambridge Studies in Advanced
Mathematics, 24. Cambridge University Press, Cambridge, 1997.

[20] H. Kushner, Approximation and weak convergence methods for random processes, with appli-
cations to stochastic systems theory, MIT Press Series in Signal Processing, Optimization, and
Control, MIT Press, 1984.

[21] I. Mitoma, Tightness of probabilities on C([0, 1];S ′) and D([0, 1];S ′), Ann. Probab., 11, 1983,
989-999.

[22] B. Nair and B. White, High-frequency wave propagation in random media- a unified approach,
SIAM J. Appl. Math., 51, 1991, 374-411.

[23] G. Papanicolaou, L. Ryzhik and K. Solna, Statistical stability in time reversal, SIAM J. on
Appl. Math., 64, 2004, 1133–1155.

[24] L. Ryzhik, G. Papanicolaou, and J. B. Keller. Transport equations for elastic and other waves
in random media, Wave Motion, 24, 327–370, 1996.

23



[25] F. Tappert, The parabolic approximation method, Lecture notes in physics, vol. 70, Wave
propagation and underwater acoustics, Springer-Verlag, 1977.

[26] V. I. Tatarskii, A. Ishimaru and V. U. Zavorotny, editors, Wave Propagation in Random Media
(Scintillation), SPIE and IOP, 1993.

[27] B, J. Uscinski, Wave Propagation and Scattering, Oxford Clarendon Press, 1986.

24


